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The impact of the Jurassic hydrothermal activity on zircon fission
track data from the southern Upper Rhine Graben area

Zoltan Timar-Geng!", Bernhard Fiigenschuh!, Urs Schaltegger’ and Andreas Wetzel!

Abstract

The influence of the Jurassic hydrothermal activity on the interpretation of fission track (FT) data from the southern
Upper Rhine Graben (URG) is elaborated by means of new zircon FT analyses on samples with known U/Pb crys-
tallisation ages. Zircon FT central ages display a wide spectrum from 162 + 14 Ma to 247 + 22 Ma. The combination
of the U/Pb ages, independent geologic evidence (such as Mesozoic subsidence history, timing of hydrothermal activ-
ity and apatite FT ages) and the zircon FT data unambigously indicate a Jurassic thermal overprint in the investi-
pated area. It is suggested that circulating hydrothermal fluids with temperatures in the order of 200-250 °C were
responsible for the observed thermal anomaly.

The Jurassic hydrothermal fluid migration appears to have been related to a heating event on a regional scale.
Inferences from FT analyses related to burial or denudation history have to take into account how such hydrother-

mal events affect the FT system, including a changing geothermal gradient with time.

Keywords: Black Forest, Vosges, zircon, fission track, partial annealing zone, thermal history.

Introduction

The Upper Rhine Graben (URG) is the most per-
ceptible part of the European Cenozoic rift sys-
tem (Fig. 1) that extends from the North Sea into
the western Mediterranean. Exhumed Variscan
basement is exposed in the Black Forest and the
Vosges and forms the flanks of the southern
URG.

The emplacement age of volcanic and plutonic
rocks in the Vosges was found to be very consist-
ent in the range of 345 to 340 Ma (Schaltegger et
al., 1996). In the Central Vosges the granulite-
facies metamorphism was dated at about 335 Ma
and amphibolite-facies retrograde overprint at
about 328 Ma (Schaltegger et al., 1999). The ana-
lysed granites and rhyolites in the southern Black
Forest yielded emplacement ages of 340 to 332
Ma (Schaltegger, 2000). Late Palacozoic erosion
affected the area, with the notable exception of
some intramontane basins (e.g. Diebold, 1989).
Thus, the base of the Mesozoic strata rests on Var-
iscan crystalline basement.

While the URG and its Cenozoic evolution
have been thoroughly studied in the past decades
(e.g. Rothé and Sauer, 1967; Illies and Miiller,
1970; Illies and Fuchs, 1974; Fuchs et al., 1987; Pro-

dehl et al., 1995; Schumacher, 2002), much less is
known about the Mesozoic geological history of
the area. This is partly due to the fact that most of
the Mesozoic strata have been eroded. After Var-
iscan folding, uplift and subsequent denudation,
the URG area became part of the central Euro-
pean intracontinental basin, which developed
since the Permo-Triassic until the end of the
Jurassic (Geyer and Gwinner, 1991). Based on in-
terpolated isopach maps (Geyer and Gwinner,
1991) the thickness of the eroded Mesozoic de-
posits in the URG area is estimated to be at most
1500 m. Towards the end of the Jurassic (e.g. Gey-
er and Gwinner, 1991) or later (Ziegler, 1990) the
URG area was uplifted above sea level.

In the outcrops of crystalline basement many
vein-type mineralisations of Mesozoic age are
preserved (e.g. von Gehlen, 1987; Wernicke and
Lippolt, 1997; see compilation by Wetzel et al.,
2003), evidencing a strong hydrothermal activity
mainly in jurassic times.

In the present study we apply zircon fission
track (FT) analysis to basement samples from the
Vosges and Black Forest, which were already dat-
ed by the U/Pb method (Schaltegger et al., 1996,
1999; Schaltegger, 2000) and thus, provide addi-
tional information on the thermal history of the
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Fig. I The Upper Rhine Graben (URG) as part of the European Cenozoic rift system (after Prodehl et al., 1995).
Black Forest and Vosges flank the Southern URG. Location of the study area is indicated by dashed square (for

details see Figs. 2 and 3).

rocks. Available apatite FT data range from ~37
Ma to ~75 Ma in the Vosges, and ~29 Ma to ~107
Ma in the Black Forest (Michalski, 1987; Hurford
and Carter, 1994; Wyss, 2001). Published uplift
rates of the Black Forest (Wagner et al., 1989) are
inferred from apatite FT data using rather simple
assumptions about the paleotemperature field, i.e.
constant geothermal gradients. Such an approach
may lead to erronecous conclusions about the ther-
motectonic evolution, if convective heat transport
mechanisms changed the temperature field with
time. In this study we will focus on the influence of
the Jurassic hydrothermal activity on the inter-
pretation of zircon FT data from the Black Forest
and Vosges.

Jurassic hydrothermal activity

In the study area,i.e. the Variscan basement of the
Vosges and Black Forest, several prominent hy-
drothermal events have been reported previously
(e.g.. Wernicke and Lippolt, 1993: Lippolt and

Kirsch, 1994; see compilation by Wetzel et al.,
2003). Two fossil geothermal systems were identi-
fied in the intramontane troughs of Baden-Baden,
northern Black Forest (Zuther and Brockamp,
1988; Brockamp et al., 1994) and Offenburg, cen-
tral Black Forest (Brockamp et al., 2003). For
these two well documented cases the observed
thermal anomaly is clearly related to fault zones
and heating effects can be studied in the adjacent
rocks (e.g., Brockamp and Zuther, 1983; Brock-
amp et al., 1987, 1994; Tapfer, 1987; Zuther and
Brockamp, 1988; Mever et al., 2000; Brockamp et
al.,2003). In the Baden-Baden trough, Upper Car-
boniferous, Lower Permian and Triassic sedi-
ments were hydrothermally altered during the
Jurassic (Zuther and Brockamp, 1988). Vitrinite
data indicate that the hydrothermal fluids
reached temperatures between 240 and 290 °C
(Brockamp and Zuther, 1983). This fossil geother-
mal system is documented by three distinct altera-
tion zones, including from center to margin, seric-
itisation, albitisation and weak alteration (Zuther
and Brockamp, 1988). K/Ar data on authigenic il-




Impact of hydrothermal activity on zircon fission track data 239

lites and hydrothermally altered detrital micas re-
veal two major episodes of fluid migration
(Brockamp et al., 1994). The first episode oc-
curred during the Jurassic (150 Ma) and exten-
sively altered the sediments near the fault system
of Gernsbach, which is located between the Saxo-
thuringian and Moldanubian zone. The second
hydrothermal phase occurred during the Creta-
ceous (100 Ma) and formed the fluorite-quartz
vein-type mineralisation of Kifersteige (Brock-
amp et al., 1994). In the Offenburg trough, central
Black Forest (Brockamp et al., 2003), K/Ar data
on sericites point to hydrothermal activity also
during the Jurassic (145 Ma). Oxygen isotope data
for sericite, sericite composition and vitrinite re-
flectance investigations indicate hydrothermal
fluid temperatures between 150 to 210 °C (Brock-
amp et al., 2003).

Multiple hydrothermal activities mainly dur-
ing the Jurassic can be traced around the Paleo-
Atlantic all over western Europe (e.g., Mitchell
and Halliday, 1976) suggesting fluid circulation on
a wide regional scale. With fluid temperatures in
excess of 200 °C at shallow crustal levels, and ex-
pecting a pervasive heating of the basement due
to continent-wide rifting events during the open-
ing of the North-Atlantic, these hydrothermal
events should have substantially altered the paleo-
temperature field. Thus, interpretation of FT data
assuming a constant geothermal gradient leads
inevitably to erroneus results.

Fission track analysis

Zircon FT thermochronology provides insight
into the low temperature thermal history of rocks
between ~300 °C and ~180 °C, covering the gap
between the K/Ar mica and apatite FT dating.
Zircon FT analyses were carried out on 21 sam-
ples, 14 from the Vosges and 7 from the Black For-
est (Figs. 2, 3). For details on lithology and locali-
tics the reader is referred to Schaltegger (2000)
and Schaltegger et al. (1996, 1999).

Analytical procedure

Mineral separation and sample preparation fol-
lowed standard procedures. After mounting in
PFA® Teflon, zircon grains were polished and
etched in a KOH-NaOH eutectic melt at 220 °C
for variable times up to 12 h depending on track
revelation. Thermal neutron irradiation was car-
ried out at the Australian Nuclear Science and
Technology Organisation (ANSTO) facility, Lu-
cas Heights, Australia. All samples were analysed
using the external detector method (Naeser, 1976;

Gleadow, 1981). Detector micas were etched for
40 minutes in 40% HF at room temperature.
Track counting was performed using an optical
microscope (“Axioscope” by Zeiss) with the aid
of a computer driven stage (Dumitru, 1993).
Magnification was 2500 X using an oil immersion
objective. Ages were determined using the zeta
approach (Hurford and Green, 1982, 1983) with a
zeta value of 113.49 + 1.80 (Fish Canyon Tuff,
CNI1). Data processing. error calculation and
graphical presentation was performed using free-
ware provided by I. Dunkl (2002). All ages are
central ages (Galbraith and Laslett, 1993) and er-
rors are quoted at the 1 o confidence level. Re-
sults are given in Table 1 according to the LU.G.S.
recommendations (Hurford, 1990).

Zircon fission track partial annealing zone

In a wide temperature range, known as partial an-
nealing zone (PAZ; Wagner and van den Haute,
1992), fission tracks gradually shorten and even-
tually disappear completely in response to elevat-
ed temperatures over geological timescales.

In case of the apatite FT system the tempera-
ture range of the PAZ (~120-60 °C) and the an-
nealing kinetics are well established (e.g. Green et
al., 1986; Laslett et al., 1987, Carlson et al., 1999:
Donelick et al., 1999; Ketcham et al., 1999). The
temperature interval over which FT partial an-
nealing in zircon occurs is, however, still a matter
of debate. Early annealing experiments per-
formed on zircon suggest high closure tempera-
tures (exceeding 300 °C) (Fleischer et al., 1965;
Krishnaswami et al., 1974; Carpéna, 1992) and/or
a very broad temperature interval of the PAZ
ranging from ~170 to 390 °C (Yamada et al.,
1995). Geological constraints on the stability of
fission tracks in zircon generally do not confirm
such high values. For rocks with a well-established
cooling history it is possible to assign a “closure
temperature” of the zircon FT system by interpo-
lating the determined FT age. Such calibration
yielded effective closure temperatures of ~175 °C
(Harrison et al., 1979) and 240 + 50 °C (Hurford,
1986) for the zircon FT system. Zaun and Wagner
(1985) estimated the effective closure tempera-
ture to be 210 + 20 °C on the basis of analysed
zircon samples from a borehole section. They in-
terpreted the age reduction with depth as a fossil
PAZ. Deep borehole samples from the Vienna
Basin revealed no partial annealing in zircons for
temperatures up to ~200 °C and a heating dura-
tion of the order of 5-10 Ma (Tagami et al., 1996).
This information, coupled with a relatively nar-
row temperature interval of ~230 to ~330 °C for
the PAZ (Tagami and Shimada, 1996; Tagami et
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lower left corners of the corresponding radial plots.
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Fig.3 Zircon FT data (central ages and radial plots) from the Black Forest. Available U/Pb ages are inserted in the

lower left corners of the corresponding radial plots.

al., 1998), implies an effective closure tempera-
ture of 280 + 50 °C. The latter value would in prin-
ciple validate the results of laboratory extrapola-
tions (Yamada et al., 1995) to geological time-
scales.

However, experience shows that some kinetic
properties of the grains/samples in combination
with different thermal histories (fast versus slow
cooling) lead to distinct annealing characteristics
and hence, give rise to the observed range in (zir-
con) FT closure temperatures.

In the case of apatite, for example, there is a
clear correlation between chemistry and single-
grain ages (Green et al., 1986; O’Sullivan and Par-
rish, 1995) and the higher resistivity of chlorine-
rich apatites with respect to fluor-apatites is well
known. A similar relationship seemingly exists
between the density of accumulated a-recoil
tracks (the damage produced by a-decay events)

and the single-grain age of zircons (Kasuya and
Naeser, 1988; Yamada et al., 1995). This relation-
ship, however, strongly depends on the thermal
history of the investigated rocks as the thermal
stability of zircon decreases with increasing «
damage (Kasuya and Naeser, 1988). Based on
field and laboratory observations Rahn (2001)
proposed an o damage partial annealing zone at
higher temperatures than that for the fission
tracks in zircons. If a sample cools rapidly through
the a damage PAZ and subsequently through the
zircon FT PAZ,no a damage will be present and
thus the annealing of newly forming fission tracks
will occur within a pristine lattice. Conversely,
samples, which are heated and enter the zircon FT
PAZ from the lower temperature side, will have
accumulated « damage over time and the level of
this damage will influence the rate of FT anneal-
ing (Rahn et al., 2004).
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It seems difficult to define a generally applica-
ble zircon FT PAZ because of the manifold de-
pendencies of the annealing characteristics of dif-
ferent samples. As pointed out by Rahn (2001), it
is often more appropriate to rely on a “single-
grain partial annealing zone” and to define a
“sample partial annealing zone™ as the integral of
partial annealing zones of all grains within a sam-
ple. In particular for the determination of the low-
er temperature boundary of the zircon FT PAZ, it
is crucial to independently know the style of the
thermal history, i.e. to know whether or not the
sample entered the PAZ from the low tempera-
ture side. The amount of accumulated radiation
damage has important implications for the tem-
perature interval, at which zircon FT annealing
occurs.

A compilation of annealing models and geo-
logic constraints (Fig. 4) reveals a broad range for
the zircon FT PAZ and reflects its various de-
pendencies on some key parameters such as the
cooling rate, the amount of accumulated « dam-
age and consequently the style of the cooling his-
tory.

Single-grain age distributions
x’ statistics (Table 1) indicate that all grains ana-

lysed for individual samples belong to a single age
population (Green, 1981). Thus, taking a probabil-

500 s

ity of less than 5% as evidence for a mixed age
population, the observed large spread in single-
grain ages does not represent real differences be-
tween the apparent ages because P (x?) values are
consistently higher than 5%. The absence of ex-
tra-Poissonian variation is also indicated by the
radial plots, since all data points scatter within
1 20 around the mean. So, from a formal statisti-
cal point of view, there is no need to further ana-
lyse the single-grain age variation. On the other
hand. it has to be noted that the error on all crys-
tals is notably high because of the low number of
counted tracks. Thus, the x* test may have lacked
power to detect any extra-Poissonian variation
due to the high standard error of the single-grain
age estimates and the low number of random
samples (generally 20 grains). This can be illus-
trated assuming we would obtain the same ratio
of induced and spontancous tracks on crystal sur-
faces ten times greater than the observed ones
(Fig. 5). If we calculate the statistics with these
new values, the x? test would fail and we could
deal with multiple age populations. Once again,
we are fully aware that a statistically founded
evaluation of the single-grain age data is not pos-
sible. However, after careful consideration of the
raw data and relying on our understanding of the
underlying processes, we conclude that the ob-
served spread in single-grain ages shows extra-
Poissonian variation due to different annealing

400 -

w
=)
o

200 +—1—

temperature (°C)
|

100_ ! | N A U S

0 ‘
0.1 1

10 100 1000

time duration for thermal event (My)

Fig. 4 Constraints on the zircon FT PAZ (modified after Rahn et al., 2004). Light grey: range of the PAZ con-
strained by fanning annealing models. Dark grey: PAZ derived from geologic evidence. Highest temperatures for the
upper (high-temperature) boundary of the PAZ are calculated on the basis of annealing experiments with a damage-
free zircon samples (Rahn et al., 2004). Lowest temperatures are derived from geologic examples with long-duration

heating episodes (e.g., Zaun and Wagner, 1985).
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Fig.5 (a) Radial plot and age-spectrum as probability-density diagram for one sample (SU-95-17) from the Vosges.
All single-grain ages plot within + 20 around the mean. (b) Hypothetical plots of the same sample simulating data on
ten times greater crystal surfaces (N, X 10 and N; X 10, the N/N, ratio remaining the same). Under this assumption,

the single-grain ages show extra-Poissonian variation.

kinetics of the individual grains. This is further
evidenced by the fact that none of the samples ex-
perienced fast cooling rates and for this reason
the individual grains could accumulate different
amounts of a damage causing varying annealing
properties of the respective grains (Rahn et al.,
2004). Therefore, the following discussion is based
on this assumption.

Analyses of single-grain age distributions of
detrital zircons have been proven to provide accu-
rate results in exhumation and provenance stud-
ies (e.g., Spiegel et al., 2000; Bernet et al., 2001;
Stewart and Brandon, 2004). The underlying con-
cept is that recycled sediments may contain zir-
cons derived from various source regions with dif-
ferent thermal histories, thus displaying more
than one population of zircon FT ages. However,

a large spread in single-grain age distributions
may also occur due to different track retentivity
of the individual grains within one sample, for ex-
ample owing to variable amounts of accumulated
o damage (Kasuya and Naeser, 1988). Over the
last decades, several attempts have been made to
extract thermochronological information from
FT single-grain age data from previously fully or
partially annealed samples, based on differential
annealing of individual grains (e.g. Green, 1989;
Sobel and Dumitru, 1997; Brandon et al., 1998;
Fiigenschuh and Schmid, 2003). A useful concept
is the interpretation of the fraction of zircons with
the youngest single-grain ages as those with the
lowest thermal stability because they will be the
last to close on a cooling path (Brandon et al.,
1998). The inference is that the youngest single-
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Table I  Zircon FT data.
Sample Elevation No.of crystals ~ Spontaneous Induced tracks P(x?)  Dosimeter py(Ng)  Central age (Ma)
number (m) counted tracks pg (Ny) tracks p; (N,) (%) tlo
Black Forest
SU 94-7 920 18 201 (1183) 22:(127) 81 4.31 (1590) 224 + 22
SU 94-8 610 20 169 (1025) 21 (130) 84 4.20 (1590) 185+ 18
SU 94-9 720 20 251 (1256) 33 (163) 94 3.75 (1590) 162+ 14
SU 94-12 560 9 287 (462) 37 (59) 73 4.54 (1590) 199 £ 28
SU 95-1 980 20 222 (1330) 25 (148) 89 3.47 (1590) 175+ 16
SU 96-6 580 15 297 (1059) 30 (108) 93 3.47 (1605) 190 £ 20
SU 96-7 870 20 237¢1315) 24 (133) 96 3.64 (1590) 201 £19
Vosges
SU 93-7 690 12 395 (936) 38 (90) 100 3.40 (1605) 198 + 23
SU 93-11 700 20 177 (993) 18 (99) 97 3.92 (1590) 219124
SU 93-12 460 20 418 (1959) 42 (199) 98 4.48 (1590) 246 £ 20
SU 94-5 660 10 213 (540) 20 (50) 94 3.81 (1590) 229 + 35
SU 95-5 480 16 289 (974) 48 (161) 31 4.82 (1590) 164 + 15
SU 95-15 890 20 260 (1556) 31 (188) 99 4.71 (1590) 2174 18
SU 95-17 790 20 301 (2241) 35 (260) 71 3.66 (1603) 177+ 13
SU 95-18 400 20 246 (1907) 27 (206) 38 3.86 (1605) 199+ 16
SU 95-19 660 19 377 (2956) 39 (305) 31 3.63 (1590) 196 + 14
SU 96-1 290 9 390 (733) 44 (83) 97 3.53 (1605) 175 £ 21
SU 96-2 320 18 338 (1914) 33 (188) 96 3.72 (1605) 212217
SU 96-4 480 19 278 (1504) 28 (152) 40 4.48 (1590) 247+ 22
SU 96-5 310 20 190 (935) 26 (130) 98 4.87 (1590) 196 £ 19
SuU 97-2 640 20 197 (969) 22 (110) 97 3.86 (1590) 190 £ 20

Track densities (p) are in 10° tracks/cm?, number of tracks counted (N) shown in brackets.
Analyses by external detector method using 0.5 for the 47/27 geometry correction factor.
Ages calculated as central ages according to Galbraith and Laslett (1993) using dosimeter glass CN1 with {y, =

113.49 + 1.80.

P(x?) is the probability of obtaining x? value for v degrees of freedom where v = number of crystals — 1.

grain age represents a maximum age for the date
when the sample finally left the PAZ (Fig. 6).

Results

In the Vosges, zircon FT central ages range be-
tween 164 £ 15 Ma and 247 + 22 Ma (Fig. 2, Table
1). No regional trend can be observed.

Very similar results were obtained for the
southern Black Forest with zircon FT central ages
ranging between 162 + 14 Ma and 224 + 22 Ma
(Fig. 3, Table 1), with a weak tendency for older
ages to be found more to the west of the Black
Forest.

Neither for the Black Forest nor for the Vos-
ges a correlation of FT age with altitude could be
observed (Fig. 7). An altitude dependence of in-
creasing ages with elevation was not even ob-
served for samples, derived from coherent fault
bounded blocks.

Radial plots (Galbraith, 1988, 1990) of ana-
lysed samples reveal broad single-grain age varia-
tions within individual samples (Figs. 2, 3), how-
ever, all samples passed the x*-test (Green, 1981).

Therefore, from a statistical point of view all sam-
ples are characterised by only one grain popula-
tion. The single-grain ages of each sample, as de-
picted in the radial plots (Figs. 2, 3), display a
broad range from ~340 Ma to ~100 Ma.

All single-grain ages from the Black Forest
and Vosges together with the superimposed cen-
tral ages (Fig. 8) reveal a maximum at ~190 Ma in
the Vosges and at ~170 Ma in the Black Forest.

Discussion
Pre-Tertiary thermal event in the URG area

The samples from the Black Forest and Vosges
have experienced substantial annealing, indicated
by the reduced zircon FT central ages with re-
spect to the emplacement ages. Based on inde-
pendent geological evidence the post-Variscan
thermotectonic evolution can be roughly recon-
structed. It started with the emplacement of the
magmatic rocks at the time, given by the U/Pb
ages. Of special interest are samples from volcanic
rocks and samples taken close to the base of the
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Triassic cover series (e.g. SU-96-6 from the Black
Forest). In addition, the Permo-Triassic paleosur-
face is partly preserved in the Black Forest and
has been mapped in the past decades (e.g. Paul,
1955: Wimmenauer and Schreiner, 1990). Thus it is
possible to reliably estimate the thickness of the
eroded pre-Mesozoic crystalline rocks to be 200
to 600 m, depending on the present elevation of
the samples. For the Vosges a similar amount of
eroded material is assumed. From the available
apatite FT data (Michalski, 1987: Hurford and
Carter, 1994; Wyss, 2001). and the youngest zircon
FT single-grain ages it is clear that all samples had
already cooled to temperatures below the zircon
PAZ at ~100 Ma. Thus, partial annealing of the zir-
cons must have occurred between the U/Pb ages
of 330 Ma and 100 Ma.

Taking the estimated thickness of the Mesozoic
sequence into account (~1500 m), the samples have
experienced maximum burial of < 2100 m (thick-
ness of the Mesozoic sediments + =< 600 m eroded
crystalline basement) at the end of the Mesozoic
subsidence phase. Thus, elevated temperatures
needed for the observed annealing due to burial
alone are impossible to reconcile with the known
geology of the region. Interpretation of the zircon
FT data using a paleogeothermal gradient of 30 °C/
km would suggest a burial of the present earth’s
surface of 5-6 km. Instead, the Jurassic hydrother-
mal fluid migration is suggested to have led to the
increased paleotemperatures. The consequence of
this convective heat transport seems to have been a
heating event of regional extent because its effect
can be detected in each of the samples.
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Since the samples entered the zircon FT PAZ
from the lower temperature boundary after a pro-
longed period at lower temperatures, a substan-
tial amount of o damage could be accumulated
causing a decreased thermal stability of the zircon
fission tracks. Thus, rather moderate tempera-
tures of 200-250 °C would have been sufficient to
cause the observed thermal anomaly. Fluid tem-
peratures of this magnitude were reported by
Brockamp and Zuther (1983) for the Baden-
Baden trough based on vitrinite data. This ther-
mal input is furthermore evidenced by paleomag-
netic data from the Southern Vosges (Edel, 1997),
documenting post-Permian thermal overprinting.

Zircon FT central ages and single-grain ages
from the study area cluster around 190 Ma (Fig.
8). This coincides with the main hydrothermal
phase (e.g. Brockamp et al., 1987, 1994; Wernicke
and Lippolt, 1993; Lippolt and Kirsch, 1994; see
compilation by Wetzel et al., 2003) and one of the
most conspicuous subsidence pulses in the inves-
tigated area (Wetzel et al.,2003). Furthermore K-
Ar data from authigenic illites in sandstones
(Schaltegger et al., 1995) and from ore deposits
(e.g. Bonhomme et al., 1983) in Europe scatter

around 180-190 Ma. Obviously this was a time
period of enhanced fluid flow (illite growth;
Schaltegger et al., 1995).

Conclusions

The analysed samples experienced substantial an-
nealing of fission tracks in zircon prior to Creta-
ceous cooling. Temperatures needed to allow for
the observed annealing cannot be due to burial
alone.

Instead, annealing is suggested to be related to
a Jurassic thermal pulse, as evidenced by vein
mineralisations. A thermal event is independently
supported by the well-established hydrothermal
activity in the investigated area, although further
research is needed to determine the extent of this
overprint. However, based on the present study
the heating event caused by the Jurassic hydro-
thermal fluid migration seems to have influenced
the upper crust of the southern URG area on a
regional scale.

Due to the fact that samples entered the PAZ
from the lower temperature boundary and were
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only partially annealed, it can be assumed that a
high density of a damage substantially lowered
the thermal stability of the zircon fission tracks.
Consequently. fluid temperatures in the order of
200-250 °C. as reported for the Jurassic hydro-
thermal activity in the Baden-Baden and Offen-
burg troughs (Brockamp and Zuther, 1983
Brockamp et al., 2003), could have been sufficient
to substantially alter the palacotemperature field
in the southern URG area.

The impact of the Jurassic hydrothermal activ-
ity has important consequences on the interpreta-
tion of FT data from the URG area. Analysis of
FT data using simple assumptions such as a con-
stant paleogeothermal gradient leads inevitably
to erroneous conclusions. The same is also true
for the apatite FT system, especially considering
that it is even more temperature-sensitive than
the zircon FT system. Fluid circulation associ-
ated to Cenozoic rifting may have played a sub-
stantial role also with respect to apatite FT data.
In the light of these results the interpretation of
available apatite FT ages from the Black Forest
as cooling ages (Michalski, 1987) is also arguable
and corresponding uplift rates may have to be
revised.
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