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Timing and magma evolution of the
Chelopech volcanic complex (Bulgaria)

Stanislav Stoykov?, Irena Peytcheva >3, Albrecht von Quadt?, Robert Moritz?,
Martin Frank? and Denis Fontignie?

Abstract

The Chelopech voleanic complex is located in the Central Srednogorie magmatic zone and hosts one of the largest
Cu-Au deposits in Europe. Field observations and sedimentary relationships allow to distinguish three units of the
volcanic complex: (I) dome-like bodies, (II} lava to agglomerate flows, and (III) the Vozdol lava breccias and
volcanites. The volcanic rocks are porphyritic with plagioclase and amphibole phenocrysts, quartz and biotite are
rare. The lava flows contain fully crystallised, fine-grained enclaves of more basic composition. Their mineral chem-
istry indicates mingling and mixing between two parental magmas. The geochemical evolution of the Chelopech
voleanic complex developed from intermediate to basic lavas, but the evolution of the magmatism was more complex
including magmatic differentiation, assimilation, mingling and mixing. The trace element distribution is typical for an
active continental margin.

The magmatic activity commenced at the northern border of the Chelopech region with the intrusion of dome-like
bodies at 92.2 £ (0.3 Ma (U-Pb single zircon ID-TIMS dating). The products of the second and the third units are
geochronologically indistinguishable within the error uncertainties, and representative samples yield a crystallisation
age 0of 91.3 £ 0.3 Ma. REE abundances reveal a striking positive Ce-anomaly in zircons of unit 2 and zircon core parts
of unit 3, which relates to a higher oxidation state of the parental magma.

Sr and Nd isotopic compositions suggest a mixed mantle and crustal source of the Turonian magma. Initial Sr ratios
range between 0.70470 and 0.70554, and £*%(Nd) varies between -2.27 and -3.55. £”(Hf) values of concordant zircons
corroborate this data and range between +2.90 to +5.02 in the andesite of the first unit and from +1.06 to +1.38 in the

volcanites of the second and third unit.

Keywords: Late Cretaceous volcanites, Chelopech, petrology, U-Pb zircon geochronology, geochemistry.

Introduction

High-sulphidation epithermal deposits are an im-
portant gold resource in Eastern Europe, notably
in the Bulgarian Panagyurishte region (Central
Srednogorie zone, Fig. 1). High-sulphidation, vol-
canic-hosted, epithermal deposits of economic
importance, such as the Chelopech major gold-
copper mine (Strashimirov et al., 2002; Moritz et
al., 2003), occur in this region. The genesis of the
Chelopech mine, the major ore producing epi-
thermal deposit in this area, is related to interme-
diate Late Cretaceous volcanism, which extruded
in the northern part of the Central Srednogorie
magmatic Zzone (Fig. 1). The ideas about the evolu-
tion of the magmatic complex changed through
time, and one (Terziev, 1968 and recently Jelev et
al., 2003), or two (Mutafchiev, 1967; Popov and

Mutafchiev, 1980) to four stages of magmatic ac-
tivity (Popov and Kovachev, 1996) were supposed.
Consequently the genetic models for the forma-
tion of the Chelopech deposit in relation to the
volcanic products evolved, assuming one (the
“Chelopech volcano”) or two volcanic structures
(“Chelopech” and “Vozdol volcanoes”), require
one or two mineralising systems respectively. For
the timing of the magmatic activity and the miner-
alisation /alteration products just K—Ar data are
available (Lilov and Chipchakova, 1999), which
range from 92 to 57 Ma; respectively. The magma-
tism in the Chelopech region was supposed to be
prolonged, but mainly Senonian in age.

The aim of our investigation is to reconstruct
the geological evolution of the Late Cretaceous
Chelopech volcanic complex and to identify the
temporal relationships between 1ts magmatic
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Fig. 1 (a) Major tectonic zones in Bulgaria (after Ivanov, in press) with the location of the Srednogorie zone and
Chelopech deposit; (b) Simplified geological map of the northern part of Central Srednogorie (modified after
Cheshitev et al., 1989) with the location of the economically important deposits Elatsite, Chelopech and Medet); (¢)
Geological map of the Chelopech region (modified after Popov et al., 2000 and Stoykov et al., 2002).
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products and the mineralised zones outside of the
Chelopech mine. An important part of the present
study is to trace the magmatic source, determine
the precise age of volcanic units, and reconstruct
the magmatic processes that may contribute to
the formation of the high-sulphidation epither-
mal Chelopech deposit. We have combined field
observations with representative whole rock and
mineral geochemical analyses. Conventional U-Pb
single zircon dating has been utilised to determine
the magmatic ages, as this method combines the
relative resistance of the zircons to hydrothermal
overprint with the high precision of the ID-TIMS
(isotope dilution — thermal ionisation mass spec-
trometry) techniques. Cathode-luminescence (CL)
images and Laser Ablation (LA) ICP-MS analy-
ses of the zircons help the proper interpretation
of the geochronological data and give evidence
for changes in the geochemistry and oxidation
state of the magma. Isotope Sm-Nd and Rb-Sr
whole rock and Hf-zircon analyses provide addi-
tional information about the magma sources and
their evolution.

Geological setting and petrology of the
Chelopech volcanic complex

The products of the Chelopech volcanic complex
are located in the Central Srednogorie volcano-
plutonic area, which forms part of the Srednogo-
rie tectonic zone (Dabovski et al., 1991; Fig. 1).
The basement of the volcanic rocks consists of
Srednogorie type (Ivanov, in press) high-grade
metamorphic rocks (two-mica migmatites with
thin intercalations of amphibolites, amphibole-bi-
otite and biotite gneisses), and low metamorphic
phyllites and diabases of the Berkovitsa group
(Early Paleozoic island-arc volcanic complex, Hay-
doutov, 2001; Peytcheva and von Quadt, 2004).
These units are in tectonic contact with each other,
and to the North of Chelopech the phyllites of the
Berkovitsa group are intruded by the Variscan
granitoids (Kamenov et al., 2002) of the Vejen plu-
ton. The base of the Chelopech volcanic rocks is
partly exposed on the surface, although it has been
intersected in the underground mine.

The Late Cretaceous succession in the Chelo-
pech region starts with conglomerates and coarse-
grained sandstones intercalated with coal-bearing
interbeds (coal-bearing formation, Moev and An-
tonov, 1978) covered by polymictic, argilleous and
arkose sandstones to siltstones (sandstone forma-
tion). Collectively, these units have a thickness of
less than 500 m. Pollen data suggests that both for-
mations are Turonian (Stoykov and Pavlishina,
2003), where the age of 93.5 Ma was taken as tran-

sitional from the Cenomanian to the Turonian ac-
cording to the Geological time scale of the Geo-
logical Society of America (Palmer and Geiss-
man, 1999). The sedimentary rocks are cut by vol-
canic bodies and overlain by sedimentary and vol-
canic rocks of the Chelopech Formation (Moev
and Antonov, 1978). It comprises the products of
the Chelopech volcanic complex, epiclastics, as
well as the Vozdol sandstones (Fig,. 1c). The latter
are recently paleontologically dated as Turonian
in age (Stoykov and Pavlishina, 2003). These for-
mations have been eroded and transgressively
covered by sedimentary rocks of the Upper Seno-
nian Mirkovo Formation (reddish limestones and
marls), which are in turn overlain by flysch of the
Chugovo Formation (Campanian-Maetrichtian in
age, Moev and Antonov, 1978) (Fig. 1b, c).

Based on their structures, host rocks, cross-cut-
ting relationships and alterations on the surface
the products of the Chelopech volcanic complex
can be subdivided into 3 units: (I) dome-like
volcanic bodies, (II) lava and agglomerate flows
and (III) the Vozdol volcanic breccias and
volcanics (Stoykov et al., 2002, 2003).

The first unit is composed of dome-like volcan-
ic bodies, which extruded through the unconsoli-
dated Turonian sediments (the sandstone and coal-
bearing formation) and through the metamorphic
basement (Fig. 1¢). The largest volcanic body (Mur-
gana) is approximately 2X1 km in size. It shows a
higher stage of phenocryst crystallisation than the
other units. Brecciated fragments of the dome-like
volcanic bodies have been observed as xenoliths in
the third unit of the Chelopech volcanic complex —
the Vozdol volcanic breccia.

The dome-like bodies mainly have an andesit-
ic and trachydacitic composition (Fig. 2). They are
highly porphyritic (phenocrysts >40 vol%). The
phenocrysts consist of plagioclase, zoned amphi-
bole, minor biotite, titanite and rare corroded
quartz crystals, whereas the microlites consist of
plagioclase and amphibole only. The accessory
minerals are apatite, zircon, and Ti-magnetite.
Lilov and Chipchakova (1999) obtained an age of
65-67 Ma for these bodies based on K-Ar dating.

The second unit is represented by lava flows,
which grade upwards into agglomerate flows
(with fragments up to approximately 30 cm in
size). Borehole data sho ws that the total thick-
ness of these volcanic products is generally less
than 1200 m, but exceeds more than 2000 min the
region of the Chelopech mine (“within their ex-
trusive center”, Popov et al., 2002). The composi-
tion of the lava flows varies from latitic-trachy-
dacitic to dacitic (Fig. 2). Subsidiary andesites are
also present. These volcanic rocks consist of the
same phenocrysts, microlites and accessory min-
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Fig.2 TAS diagram after Le Maitre (1989) for representative magmatic rocks from the studied region (B —basalt;
BA —basaltic andesite; A—andesite; D —dacite; SH—shoshonite; L—latite; TD —trachydacite). DLB—dome-like
bodies (unit 1), LAF—lava and agglomerate flows (unit 2), VBV —Vozdol breccias and volcanites (unit 3).

erals as the first unit, with the exception of the
corroded quartz crystals. The lava flows contain
fine-grained, fully crystallised enclaves of basaltic
andesites to shoshonites. The enclaves consist of
the same minerals as the main mass of unit 2 (pla-
gioclase, amphibole and minor biotite), but com-
prise phenocrysts of different (more basic) chem-
istry. A fine-grained quartz zone marks the mar-
gins of the enclaves. These features are typical for
magma mingling and mixing processes and are
mostly exhibited in the lava {lows compared to
the other volcanic units. Previous K—Ar dating of
non-altered andesite yielded a Turonian age of 91
Ma (Lilov and Chipchakova, 1999).

The third unit is represented by volcanic brec-
cias and volcanites that formed the so called Voz-
dol monovolcano of Popov et al. (2000,2002). The
volcanic breccias contain fragments within their
lava matrix that vary in size between 20 and 80
cm. Brecciated fragments from the andesites of
the first unit can be observed in outcrops in the
Vozdol river valley. The matrix of the volcanic
body in the eastern part hosts small lenses and
layers of sedimentary material (Vozdol sand-
stones), and the abundance increases towards the
margins of the body. The Vozdol volcanic breccias
additionally intercalate and are covered by the
Vozdol sandstones (Fig. 1c). The latter has paleo-
ntologically been dated as Turonian in age (Stoy-
kov and Pavlishina, 2003). These features may
suggest that the extrusion of the third unit volcan-
ites occurred contemporaneous with sedimenta-
tion processes in the Turonian. Based on the bore-
hole data and observation in the eastern part of
the Chelopech mine, which is not in exploration at
present, Popov and Kovachev (1996) and Popov

et al. (2000) conclude that the Vozdol volcanic
breccias and volcanites form the final stage of the
magmatic activity in the Chelopech region, cut-
ting all older products of the volcanic complex, as
well as the ore bodies of the Chelopech mine
(Popov et al., 2000). On the surface, where our
work was concentrated, these relationships are
not clear. In the breccias we can observe strongly
hydrothermally altered volcanic xenoliths with an
obliterated primary texture, which inhibited us to
recognise, which type was the initial volcanic rock.
Additionally there are detailed studies missing on
the alteration type in these xenoliths; the latter
are crucial to clarify, if the high-sulfidation type
alteration (leading to the deposition of the gold)
was genetically linked to the widespread hydro-
thermal alteration along the Petrovden fault (Fig.
1le, Popov et al., 2000, Jelev et al., 2003 ), exposed in
the Vozdol river valley. Hence we can not con-
clude about the possible relation of the observed
xenoliths to the economic mineralisation (as it
was supposed by Jelev et al, 2003).

The composition of the Vozdol volcanites var-
ies from basaltic andesites and andesites to latites
(Fig. 2). They show similar petrographic character-
istics to the older units although their phenocrysts
(plagioclase,amphibole, minor biotite, and titanite)
are less abundant. The groundmass is composed of
microlites of the same nature as minerals of the
second unit. K-feldspar is present as microlites
only in the Vozdol andesitic rocks. A biotite “CAr/
¥Ar age yields a Turonian age of 89.95 = 0.90 Ma
(Velichkova et al., 2001; Handler et al., 2004).
Therefore, the K-Ar age of 65 Ma obtained by
Lilov and Chipchakova (1999) from samples at the
same locality reflects a low-temperature overprint.
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Table I Major and trace element composition of re-
presentative samples of the Chelopech volcanic com-
plex. DLB—dome like bodies (unit 1); LAF—lava and
agglomerate flows (unit 2); VBV —Vozdol breccias and
volcanites (unit 3).

unit DLB DLB LAF LAF VBV
sample NoCh 113 Ch121  Ch37 Ch 56 Ch 10
510, 61.22 60.57 61.07 63.01 5711
o, 0.54 0.53 0.49 0.51 0.65
AlLO, 17.98 17.87 17.68 16.36 18.35
Fe,O4 5.01 5.18 4.56 4.94 7.03
MnO 0.14 0.16 0.13 012 012
MgO 1.44 1.94 1.49 1.63 1.75
Ca0O 3.38 4.45 4.9 491 4.87
Na,O 532 4.28 421 339 419
K,O 270 25 2.95 274 327
P,0O4 0.25 0.25 0.22 0.23 026
LOI 1.73 247 1.54 116 1.55
Total 99.71 100.2 99.24 99.00 99.15
Nb 7 8 8 7 o
Zr 121 134 126 98 127

Y 23 24 24 20 18

Sr 1430 904 1013 781 871
Rb 72 74 67 63 46
Th 4 6 3 3 3
Pb 17 18 12 16 15
Ga 18 18 17 19 18
Zn 46 57 90 72 137
Cu 25 15 10 26 35
Ni 3 2 2 2 4
Co 50 21 7 10 13
Cr 10 10 12 14 15

v 96 97 101 127 139
Ba 870 778 732 1441 768

S 12 3 140 113 29
Hf 7 6 6 6 6

Sc¢ 6 8 10 10 9
As 11 8 3 6 3
La 344 n.d 283 229 21
Ce 60.8 n.d 60.2 493 447
P 6.65 nd 6.7 53 5.2
Nd 30.1 n.d. 217 24 22.8
Sm 5.6 n.d 54 4.9 4.6
Eu 141 n.d 13 1.26 1.27
Gd 3.8 n.d 3.5 23 3
Dy 35 n.d 35 31 3
Ho 067 nd 0.73 0.66 0.64
Er 21 n.d 2 18 1.7
Tm 025 nd 0.28 0.26 0.24
Yb 17 n.d 17 15 14
Lu 024 nd 0.24 022 018

Total Iron as Fe,O5;. Major concentrations are expressed
in wt% and trace element concentrations in ppm re-
spectively; n. d.—not detected.

Several dykes are exposed to the east of to the
Chelopech volcanic complex (outside of the map
on Fig. 1¢). They strike predominately in an east—
west direction and intrude into the Pre-upper
Cretaceous metamorphic basement. They do not
show cross-cutting relationships to the Chelopech
volcanic complex. The largest dyke is more than 7
km in length. These dykes have andesitic, latitic,
dacitic and trachydacitic compositions.

The magma of the volcanic complex initially
erupted more acidic volcanic rocks. The earlier
products (dome-like bodies and lava to agglomer-
ate flows) contain 61-64 wt% SiO, whereas the
more basic Vozdol breccias and volcanites con-
tained 56-58.0 wt% Si0,. The cover of the Chelo-
pech volcanic complex is composed of the Vozdol
sandstones (in the east), muddy limestones of the
Mirkovo Formation (in the center) and sedimen-
tary rocks of the Chelopech formation (in the
west, Fig. 1c).

Analytical techniques
Major and trace elements

Major and trace elements were analysed by X-ray
fluorescence (XRF) at the University of
Lausanne, Switzerland. The rare earth elements
(REE) were analysed by ICP-atomic emission
spectrometry following the procedure of Voldet
(1993). A petrological study has also been per-
formed. Mineral analyses on samples of the differ-
ent units were carried out at the University of
Lausanne on a CAMEBAX SX-50 electron mi-
croprobe.

U-Pb zircon analyses

High-precision “conventional” U-Pb zircon anal-
yses on single zircon grains utilised the Finnigan
MAT 262 thermal 1onisation mass-spectrometer
at ETH-Zurich using an ion counter system. Se-
lected zircons were air-abraded to remove mar-
ginal zones with lead loss, rinsed several times
with distilled water, with acetone in an ultrasonic
bath, and washed in warm 4 N nitric acid. All sam-
ples were spiked with a 2’U-%Pb mixed tracer.
Total blanks were less than 0.002 ng for Pb and U.
The PBDAT and ISOPLOT programs of Ludwig
(1988, 2001) were used for calculating the uncer-
tainties and correlations of U/Pb ratios. All uncer-
tainties are reported at the 2o level. The decay
constants of Steiger and Jaeger (1977) were used
for age calculations, and corrections for common
Pb were made using the Stacey and Kramers
(1975) values.

Lu-Hf isotope analyses

Hf isotope ratios in zircons were measured on a
Nu Instruments multiple collector inductively
coupled plasma mass spectrometer (MC-ICPMS;
David et al., 2001) at the Institute of Isotope Geo-
chemistry and Mineral Resources, ETH-Zurich.
Testing determined that the high Zr in the sam-
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ples did not create significant matrix effects. Dur-
ing analysis, we obtained a "7*Hf/"7”Hf ratio for the
IMC 475 standard of 0.282141 £ 5 (1 sigma) using
a "Hf/77H{=0.7325 ratio for normalisation (ex-
ponential law for mass correction). For the calcu-
lation of the gy values the present-day ratios of
(VSHf/'7"Hf)oy=0.28286 and  (YSLu/"""Hf)eqp
=0.0334 were used. For recalculation to 90 Ma a
Y6Lu/Y"Hf ratio of 0.0050 was taken into account
for all zircons.

Rb-Sr and Sm-Nd whole rock isotope analyses

The isotopic composition of Sr and Nd and the
determination of Rb, Sr, Sm and Nd contents
were performed at ETH-Zurich and the Univer-
sity of Geneva using ID-TIMS techniques. Nd iso-
topic ratios were normalised to Nd/'Nd=
0.7219. Analytical reproducibility was estimated
by periodically measuring the La Jolla standard
(Nd) as well as the NBS 987 (Sr). The mean of 12
runs during this work was 3Nd/'"Nd = 0.511841
+ 0.000007 and 10 runs of the NBS 987 standard
show an ¥7Sr/%Sr ratio of 0.710235 + 0.000006. For
further details the reader is referred to von Quadt
(1997).

Cathodoluminescence (CL) imaging

The CL-pictures were taken from a split screen on
a CamScan CS 4 scanning electron microscope
(SEM) at ETH Zurich. The SEM is equipped with
an ellipsoidal mirror located close to the sample
within the vacuum chamber and can be adjusted
by electro-motors. The sample can be located in
one focal point while the second focal point lies
outside the sample chamber. Here, the CL light
enters the highly sensitive photo multiplier
through a quartz glass-vacuum window and a light
channel.The signal of the photo multiplier is then
used to produce the CL picture via a video-ampli-
fier. In general, weak CL emission (dark colours
in the picture) means high amounts of minor and
trace elements; strong CL emission (light colours
in the picture) means low amounts of minor and
trace elements.

Laser ablation ICPMS (LA-ICPMS)

Laser ablation ICP-MS spot analyses were done
using an Excimer laser (ArF 193 nm) with a gas
mixture containing 5% fluorine in Ar with small
amounts of He and Ne, connected to a PE SCIEX
Elan 6000 ICP-MS. The sample is placed in a
closed cell together with the standard material
(NIST 612), from which the ablated material is
carried out into the ICP-MS by the argon gas

stream. We used a spot diameter of 40 um. The la-
ser pulse repetition rate is 10 Hz. The elements
have been detected with 10 ms dwell time and 3
ms quadrupole settling time. The measurement
efficiency was around 70%. Backgrounds were
measured for 30 s and the transient signals from
the sample material to be analysed were acquired
for approx. 30 s. Calibrations for the zircon analy-
ses were carried out using NIST 612 glass as an
external standard. Limits of detection are calcu-
lated as 3 times the standard deviation of the
background normalised to the volume of the sam-
ple ablated (cps/ug/g). The reproducibility of the
data during this work was estimated measuring
the NIST 612 standard. For further details we re-
fer to Glinter et al. (2001).

Mineral chemistry

The composition of plagioclase phenocrysts of the
Murgana dome-like body vary from Ansgs s
(core) to Ansgrus, (rim) and those of the lava
flows vary from Anys.g, (core) to Ansgy sig
(rim). Phenocrysts of the Vozdol breccias and vol-
canites range between Ang,z in the center to
Ansg, in the periphery. The rims are variable in
composition, which substantially overlaps with

Table 3 HI isotope data for zircons of the Chelopech
volcanic complex (numbers as in Table 2).

No SHEYHE* 20 error e-Hf &-HET o p*™*
CH-10
1 0.282759  0.000006 -0.46 1.03
3 0.282764  0.000003 -0.28 1.20
4 0.282769  0.000003 -0.11 1.38
5 0.282760  0.000002 -0.42 1.06
6 0.282752  0.000002 -0.71 0.78
CH-56
8 0.282769  0.000001 -0.11 1.38
9 0.282761  0.000005 -0.39 1.10
10 0.282767  0.000004 -0.18 1.31
1 0.282749  0.000004 -0.81 0.67
12 0.282760  0.000004 -0.42 1.06
CH-114
17 0.282761  0.000003 -0.39 1.10
18 0.282807  0.000007 1.24 2.72
19 0.282812  0.000007 1.41 2.90
20 0.282855  0.000012 2.94 442
21 0.282872  0.000010 3.54 5.02

* During analysis the 7SH{A77Hf ratio (JMC 475 stan-
dard) of 0.282141 £ 5 (1o) using the H{/17Hf = 0.7325
ratio for normalisation is measured.

** For the calculation of the e-Hf values the present-day
ratios (PCHfA7"Hf)ey= 0.28286 and (Y°Lu/7Hf)ey=
0.0334 are used, and for 90 Ma a "SLu/f77Hf ratio of
0.0050 for all zircons was taken into account.
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that of the phenocryst cores. The composition of
plagioclase microlites varies from Angg to Any. K-
feldspar microlites (Orgs g3) Were only observed
in the Vozdol volcanic breccia and volcanites.
Amphiboles from all the volcanic rocks display
Mg# between 0.48 and 0.67 and their Si per for-
mula unit content ranges between 6.40 and 6.55.
The amphiboles plot on the limit of the magnesio-
hastingsite, pargasite, ferropargasite, hastingsite
and Fe-edenite field of Leake et al. (1997). The
composition of the amphibole phenocrysts of the
more mafic enclaves differs to those from the host
volcanic rocks. They yield higher Mg#, which
range between 0.70 and 0.83 and are magnesio-
hastingsites. The Si per formula unit of these am-
phiboles ranges between 5.90 and 6.10 (Stoykov
et al., 2002, 2003). The large variations in Mg# of
the amphiboles combined with the reverse mine-
ral zonation of the plagioclase phenocrysts reflect

S. Stoykov et al.

processes of magma mixing and mingling that oc-
curred during the evolution of the Chelopech vol-
canic complex.

Bulk rock trace elements composition

MORB normalised patterns for the magmatic
rocks indicate an enrichment of LILE (large ion
lithophile elements) and low values for HFSE
(High Field Strength Element) (Ce, Zr, P and Hf)
with a strong negative Nb anomaly as well as a
depletion of the Fe-Mg elements (Table 1, Fig. 3a).
The enrichment of LILE relative to Nb is charac-
teristic of crustal contamination. The LREE en-
richment ranges from 33 to 105 (Fig. 3b), whereas
La,/Yb, ratios vary from 10 to 13. Middle and
heavy REEs show relatively flat patterns, which
are generally within 5-30 times that of chondrite.
The rocks from the Murgana dome-like body re-
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Fig.3 (a) REE diagram for magmatic rocks of the Chelopech region; (b) spider discrimination plot for the volcanic
rocks of the Chelopech volcanic complex. Data symbols as in Fig. 2.
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veal slightly enriched values of LREEs compared
to the lava flows and the Vozdol volcanic breccia
(Fig. 3). An Eu anomaly is not observed, which
suggests that there was no plagioclase fractiona-
tion involved during the genesis of the andesitic
rocks. All these features are typical for subduc-
tion-related magmatic sequences. Discrimination
diagrams TiO,/Al,O5 vs. Zr/Al,O5 and Zr/Ti0, vs.
Ce/P,05 (Miiller et al., 1992) show similar compo-
sition to active continental margin magmatic
products (Fig. 4).

U-Pb zircon geochronology and Hf zircon
isotope geochemistry

Zircons were separated from the three different
units of the Chelopech volcanic complex (Fig. 1c).
Ten zircon grains of an andesite sample CH-114
from the Murgana dome-like body (unit 1) were
dated (Table 2).Three of them (22,25 and 26, long
prismatic, beige) are plotting on the concordia
within their uncertainties and define a mean
206Ph/238U age of 92.22 +£ 0.30 Ma (Fig. 5). We inter-
pret that these concordant grains most closely
represent the time of intrusion of the andesite
body. Two of the zircon grains reveal lead loss, but
most of the measured zircons have lead inherit-
ance. The regression line through four corre-
sponding points yields an upper intercept age of
467 £ 28 Ma indicating an Early Paleozoic event
(the age of the metamorphic basement?), whereas
one of the analyses (No. 8, Table 2) give evidence

100
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[ 9« $> piB
a. | < O LaF
N B vev
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for a possible Hercynian inheritance (the Varis-
can granites of the Balkan or of the Srednogo-
rie?). The £°(Hf) of the zircons range from +1.10
to +5.02 (Table 3).The zircon grain with the high-
est apparent age (No. 17, Table 2, 3) shows the
lowest £”°(Hf) and gives evidence for upper crus-
tal characteristics of the assimilated materials. On
the other hand there is no clear correlation be-
tween lead inheritance and decrease of the
&%(Hf) values, which is possibly not only due to
the fact, that some grains are abraded and others
not, but more to source differences and inhomo-
geneities.

The U-Pb isotope systematic of the zircon
fractions of a trachydacite (CH-56, Table 2) from
the second unit shows characteristics of lead in-
heritances and lead losses. Four data points are
almost concordant and define a mean 2%Pb/?8U
age of 91.3 £ 0.3 Ma (Fig. 6). The £°°(Hf) of the
concordant zircons change in a narrow range of
+1.06 to +1.38 (Table 3) indicating a mixed crustal
and mantle origin of the magma, but more crustal
influence, compared to the andesite of the first
unit (CH-114, Table 2). The inherited old Pb com-
ponents for two zircon points (Table 2, No. 13,14)
refer to an upper intercept “Variscan age” of the
assimilated crustal material.

Five out of seven zircon analyses of an andes-
ite from the Vozdol lava breccia neck (CH-10,
third unit) are concordant (Fig. 7, Table 2) and
yield a mean 2°°Pb/2¥U age of 913 £ 0.3 Ma. It
coincides within error limits with the age of the
lava flow sample of the second unit. Some similar
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Fig. 4 (a)TiOy Al,O3vs. Z1/AlL O and (b} Zr/TiO; vs. Ce/P,O5 discrimination diagrams (Miiller et al., 1992). CAP—
Continental Arc; PAP—Postcollisional Arc; IOP—Initial oceanic Arc; LOP—Late oceanic Arc; WIP—Within-plate.

For data symbols see Fig. 2.
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features of both samples are revealed by the
£”0(Hf) values of the concordant zircons, changing
in one and the same narrow range of +1.06 to
+1.38 (Table 3, Fig.7). These similarities with close
Hf-isotope characteristics is typical for both vol-
canic units.

S. Stoykov et al.

CL-features and REE geochemistry
of the zircons

Using cathode-luminescence (CL) images and
the Excimer Laser Ablation (LA) ICP-MS analy-
ses (Table 4) we tried to characterise the inner
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Fig.5 U-Pb concordia diagram for zircons of an andesite CH-114 (Murgana dome-like body) representing the first
unit of the Chelopech volcanic complex.
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Fig. 6 U-Pb concordia diagram for zircons of trachydacite CH-56, representing the second unit of the Chelopech
volcanic complex. Solid error ellipse lines are used for the concordant zircons and dashed error ellipse lines mark
zircons with lead loss or lead inheritance. The e—Hf data of Table 3 are plotted for the corresponding data points.
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peculiarities and the chemistry of the zircons from
the first to the third unit of the Chelopech volcan-
1c complex, which helps us to control the proper
interpretation of the geochronological U-Pb zir-
con data. This precise study was provoked addi-
tionally by recently published data of Ballard et
al. (2002) for calc-alkaline intrusions from the
porphyry copper belt in Chile, where a high
Ce(IV)/Ce(III) ratio was characteristic for the
rocks with economic potential, bearing magmatic-
hydrothermal Cu £ Au. It is known, that this posi-

111

tive anomaly is related to the higher oxidation
state of the parental magma that leads to oxida-
tion of Ce’* to Ce*; the latter easily substitutes
Zr# in the lattice of zircon (Cornell and Hegardt,
2003). The higher oxidation state of the parental
magma from the other side is usually considered as
a prerequisite feature of the ore-producing
magmatism.

The typical magmatic oscillatory zoning is ob-
served in all zircon images (Fig.8).The intermedi-
ate and heavy rare earth elements (REE) reveal a

0.018
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[ lava breccia neck - Ill unit
0.017 +
=
©
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0.015 + 94
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Fig. 7 U-Pb concordia diagram for zircons of the andesite

sample CI-10 from the Vozdol lava breccia neck, repre-

senting the third unit of the Chelopech volcanic complex. Error ellipse symbols as in Fig. 6. The =—Hf data of Table 3

are plotted for the corresponding data points.

1able 4 Rare earth element contents (ppm) in zircons of the three units of the

Chelopech volcanic complex.

Sample No CHS56-C CH56-R CH10-C

CH10-R CH114-C CH114-R

Element

La 0.149 0.030 0.038 2.176 4273 0.214
Ce 22.35 19.33 14.13 45.63 15.85 15.51
Pr 0.061 0.037 0.033 0.789 0.998 0.168
Nd 1.027 0.453 0.279 4752 4.017 1.133
Sm 2.701 1.715 0.589 4.660 1.059 1.210
Eu 1.309 0.800 0.436 2.000 0.330 0.878
Gd 15.99 9.332 5.288 23.17 5.611 9.165
Tb 6.541 3.965 2.019 9.676 2.366 3.365
Dy 84.82 54.35 28.88 134.4 28.84 44.82
Ho 37.13 24.38 14.98 58.76 12.49 20.43
Er 191.4 134.4 88.59 302.2 65.01 114.8
Tm 45.92 35.37 24.40 72.90 16.10 29.59
Yb 523.8 420.7 304.5 799.4 188.2 3502
Lu 116.3 99.42 80.28 168.4 41.86 82.62

Abbreviations: C—core, R—r1im.
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Fig. 8 Cathode-luminescent (CL) images of zircons from the three units of the Chelopech voleanic complex with
the corresponding chondrite-normalised distribution of the REE. Circles on the pictures correspond to the laser

ablation spot in the zircon crystals.

constant and typical magmatic (Hoskin and Ir-
land, 2000; Belousova et al., 2002) distribution. Eu
anomaly is not observed in the zircons, which con-
firms the conclusion (based on the rock chemis-

try) that there was no plagioclase fractionation
during the genesis of the andesitic magma.

A recrystallised inherited zircon core is ob-
served within the first unit sample CH-114 (Fig.



Table 5 Rb-Sr and Sm-Nd isotope data for whole rock samples of the Chelopech volcanic complex.
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8), which is in agreement with the U-Pb data,
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(837Sr/%58r); vs. (1BNdAMNA),; diagram for rock samples of Chelopech volcanic complex. Fields of the DMM

(depleted MORB mantle), HIMU (magma source having a high p-2%¥U/2%Pb ratio), EM1 and 2 (enriched mantle 1
and 2) and BSE (bulk silicate earth) are given (corrected for 90 Ma) according to Zindler and Hart (1986) and Hart
and Zindler (1989). Dashed lines correspond to the Sr and Nd isotope values of the undifferentiated reservoir —
identical to CHUR (DePaolo, 1988; Faure, 2001), corrected for 90 Ma. For data symbols see Fig. 2.

ume of the magma chamber, and not to a simple
differentiation of one parental magma, combined
or not with assimilation of upper crustal rocks.

Discussion and constraints for timing
and magma sources

The high-precision U-Pb zircon data demon-
strate that the magmatic activity of the Chelopech
region started at the northern border with the in-
trusion of the dome-like bodies at 92.3 + 0.5 Ma.
The products of the second and the third units fol-
lowed closely one after the other and they are un-
distinguishable within their uncertainties: U-Pb
analyses of zircons of representative samples
yield an intrusion age of 92.22 + 0.30 Ma. The lava
breccias of the third unit contain fragments of the
first unit, hence the geological relationships in the
field are in agreement with isotope geochronolog-
ical data. The high-sulphidation epithermal Cu-
Au mineralisation is hosted by the volcanites of
the second unit. Assuming the error uncertainties
we can calculate a maximum age of 91.6 Ma for
the epithermal deposit, which coincides with the
recently published data of Chambefort et al
(2003) and Moritz et al. (2003). The minimum age
of the deposit is still not constrained. As it was
mentioned in the above chapters, present investi-

gations are focussed on the special features of the
volcanic products on the surface, so that we still
are not able to link the strongly altered volcanic
xenoliths in the volcanic breccias of the third unit
to a distinct mineralising stage.

Chondrite-normalised patterns of REE and
trace elements in the zircons (LA ICP-MS analy-
ses) reveal a well-pronounced positive Ce anoma-
ly in the zircon grains of the second unit (trachy-
dacite) and in the zircon core of the third unit (an-
desite). The latter may be related to a higher oxi-
dation state of the parental magma — a prerequi-
site feature of an ore-producing magmatism.
These data just show the potential of the second
unit volcanites to be the fertile phase of the vol-
canic complex, but are far away to prove this, as
the formation of one deposit is a combination of
factors, which study was not the aim of the present
work.

There is commonly a close spatial relation be-
tween porphyry Cu (+ Au) and high-sulphidation
epithermal Cu—-Au deposits through the world
and the close temporal relation between them
should be an argument for their genetic link (Ar-
ribas et al., 1995). The world-class porphyry Cu
deposit Elatsite is located about 6 km to the NNW
of the Chelopech high-sulphidation epithermal
Cu—Au deposit and a genetic link between them
was proposed by Popov et al. (2002). The ore-pro-
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ducing magmatism in Elatsite was bracketed in
the time span 92.1 + 0.3 Ma to 91.84 + 0.31 Ma
using high-precise U-Pb zircon dating (von
Quadt et al., 2002) and confirmed later by Re-Os
molybdenite age determinations in the range of
93.1-92.3 Ma (Zimmermann et al., 2003). For a
non-productive dyke of the deposit von Quadt et
al. (2002) obtained a mean 2°Pb/?3¥U age of 91.42
+ 0.15. Compared with the present data of the
Chelopech volcanic complex there is an overlap
between the ore-producing magmatism in Elat-
site and the dome-like andesitic bodies. The final
barren stage of the magmatism in Elatsite was al-
most contemporaneous with the volcanic rocks
that host the Chelopech deposit. The age data do
not discard therefore the model of a common
magmatic chamber for both deposits with some
pulses of intrusion/extrusion of magmatites. Un-
fortunately we did not observed the published
data about structures between the Chelopech and
the Elatsite deposits, which could explain the hori-
zontal distance of about 6 km and the vertical dis-
placement of about 1 km. Therefore present iso-
tope-geochronological data are not enough to fa-
vour the idea for one and the same magmatic-hy-
drothermal system for both deposits.

The petrological and geochemical features
give additional evidence for a possible uniform
magma chamber of the volcanic rocks in the
Chelopech and Elatsite deposits with a complex
evolution in Turonian times, when a combination
of processes of magmatic differentiation, assimi-
lation, mingling and mixing took place. The mag-
matic products in Elatsite and Chelopech reveal
similar Sr, Nd and Hf characteristics, where the
tendency of an increase of £”°(Nd) and a decrease
of £*(HIf) zircon could be related to minor assimi-
lation of host rocks within parts of the magmatic
chamber. The amphibole chemistry of the mag-
matic units of both deposits shows some similar
characteristics — Mg# between 0.48 and 0.67 and
Siper formula unit content between 6.40 and 6.55,
but mark differences comparing to the other de-
posits of the Panagyurishte ore region (Kamenov
etal., 2003).

Conclusions

The combined petrologic, isotope-geochemical
and geochronological investigations of the Chelo-
pech volcanic complex suggest:

— The three units of the Chelopech volcanic
complex are separated on the basis of their struc-
tural, textural, petrographical, and geochemical
characteristics including the chemistry of the phe-
nocrysts.

—the magmatic activity proceeded in Turonian
time, starting with the intrusion of the dome-like
bodies at 92.2 + 0.3 Ma and finishing with the for-
mation of the Vozdol breccias and volcanites at
913+ 0.3 Ma;

—Nd and Sr whole rock and Hf-zircon charac-
teristics argue for mixed crustal-mantle origin of
the magma for all three volcanic units;

—the evolution of the magmatism was defined
by processes of magma mingling and mixing, dif-
ferentiation and assimilation of crustal rocks;

—a maximum age of 91.6 Ma of the Chelopech
Cu-Au deposit could be calculated based on the
dating of the second unit volcanites, hosting the
economic mineralisation; the positive Ce anomaly
in zircon from the same unit gives evidence for
the high oxidation state of the magma.

—additional studies on the relationships of the
volcanic units to the economic mineralisation and
altered rocks, as well as detailed tectonic investi-
gations will help to constrain the age of the Chelo-
pech deposit and to create reasonable models of
its formation or possible link to adjacent deposits.
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