Growth mechanisms of low-grade illites based on shapes of crystal thickness distributions

Autor(en): Brime, Covadonga / Eberl, Dennis D.
Objekttyp: Article
Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band (Jahr): 82 (2002)
Heft 2: Diagenesis and Low-Grade Metamorphism

PDF erstellt am: 27.08.2020
Persistenter Link: http://doi.org/10.5169/seals-62360

Nutzungsbedingungen

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch
Growth mechanisms of low-grade illites based on shapes of crystal thickness distributions

by Covadonga Brime¹ and Dennis D. Eberl²

Abstract

Crystallite thickness distributions (CTDs) of fundamental illite particles have been determined for a set of pelitic samples from Palaeozoic rocks. Observed CTD shapes are of two main types, asymptotic and lognormal, and these shapes evolve systematically with increasing metamorphic grade. The shapes of the CTDs are explained by two growth stages; (1) an early stage of simultaneous nucleation and growth, during which the asymptotic profiles of CTDs were established, and (2) a later stage of surface-controlled growth without further nucleation, giving rise to the lognormal shapes. The transition from the diagenesis zone to the anchizone, as determined from the Kübler index, is marked by a change in CTD shape from asymptotic to lognormal.

Keywords: Illite, growth mechanisms, crystal thickness distributions.

1. Introduction

Evolution of the illitic material (sensus Šrodoň, 1984) has been widely used to assess the evolution of pelitic material during diagenesis and low grade metamorphism. In most studies, illite crystallinity (= Kübler index, see Guggenheim et al., 2002) has been employed despite the limitations of the method (Kisch, 1983; Blendinsop, 1988; Frey, 1987; Frey and Robinson, 1999; Kübler and Goy-Eggenberger, 2001 and references therein). Alternative methods have been proposed based mainly on the determination of crystallite thickness by either TEM or XRD (Eberl and Velde, 1989; Merriman et al., 1990; Nieto and Sánchez-Navas, 1994; Merriman et al., 1995a, b; Lanson et al., 1995, 1996; Arkai et al., 1996; Eberl et al., 1996, 1998a, b; Drits et al., 1998; Jabeidoff et al., 2001).

The present study is an attempt to apply the Bertaut-Warren-Aberbach (BWA) method (Drits et al., 1998), using the MudMaster computer program (Eberl et al., 1996), to evaluate illite thickness evolution in shales during the diagenesis to low grade metamorphism transition. Crystal thickness distributions (CTDs), thus obtained, have distinctive shapes which can convey information about crystal growth history (Eberl et al., 1998b). These shapes can be used in combination with the computer program GALOPER (Eberl et al., 2000) to establish a model for crystal growth of the minerals. Such information may help to unravel the physical and chemical conditions in the rocks that are associated with increasing temperature.

2. Materials and methods

A set of illite-containing pelitic samples from Palaeozoic rocks of the Cantabrian Zone, the external part of the Iberian Variscan belt (NW Spain), ranging in metamorphic grade from diagenesis to high anchizone, were selected for this study. The ages of the rocks range from Cambrian to Carboniferous. Cambrian to Westphalian A-B rocks belong to a pre-tectonic succession, deposited prior to the Variscan deformation, whereas the Westphalian C-D and Stephanian strata are syn-tectonic and were deposited while the Variscan deformation was taking place. Results from previous studies (Brime and Pérez-Estaún, 1980; Brime, 1981, 1985; García-López et al., 1997; Bastida et al., 1999; Brime et al., 2001b) showed that maximum temperatures were attained dur-

¹ Departamento de Geología, Universidad de Oviedo, E-33005 Oviedo, Spain. <brime@geol.uniovi.es>
² U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303-1066, USA. <ddeberl@usgs.gov>
ing sedimentary burial previous to folding. Temperatures, assessed using conodont colour alteration index and its correlation with temperature as established by Epstein et al. (1977) and Rejebian et al. (1987), varied in different parts of the area, but never exceeded 350 °C (García-López et al., 1997, Bastida et al., 1999; Brime et al., 2001b).

Samples were slightly crushed and disaggregated in distilled water with an ultrasonic probe. Then they were saturated with Na, and the <2 μm size fraction separated by centrifugation. Polyvinylpyrrolidone-(PVP-) intercalated samples were prepared according to Eberl et al. (1998a) and X-rayed on single crystal Si-wafers.

Samples were analyzed in Boulder, Colorado, using a Siemens D500 XRD system with a diffracted beam graphite monochromator, CuKα radiation and a scintillation counter. Samples were scanned from 4 to 10 °2θ using a tube current and voltage of 30 mA and 40 kV, respectively. The step size was 0.02 °2θ with a count time normally of 5 s per step, but up to 20 s per step was also used for some samples.

The resulting 001 XRD peaks for illite were measured for mean thickness and thickness distribution by the BWA method (Drits et al., 1998) using the computer program MudMaster (Eberl et al., 1996). Although the options are included in the program, removal of the Kβ radiation and correction for instrumental broadening were not performed, because such corrections are unnecessary in our experimental setup if the crystallite thickness is less than about 25 to 30 nm, and if the 2θ for the peak is less than about 50° (Eberl et al., 1996). Relations between crystal growth mechanism and the shapes of CTDs is based on the methods described by Eberl et al. (1998b) and Šrodon et al. (2000).

Shapes of crystal thickness distributions were simulated using the computer program GALOP-ER (Eberl et al., 2000). Comparison between simulated and measured crystallite distributions were made with the Kolmogorov-Smirnov statistical test. A significance level >1% was considered to be a match.

Table 1 Parameters of PVP dispersed illite samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample</th>
<th>IC Kübler</th>
<th>αmm</th>
<th>β2mm</th>
<th>mean size CTD shape</th>
<th>N + SCG no cycles</th>
<th>SCG no cycles</th>
<th>αgi</th>
<th>β2gi</th>
<th>KS test %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordovician</td>
<td>B73</td>
<td>0.24</td>
<td>2.53</td>
<td>0.43</td>
<td>15.6</td>
<td>LN</td>
<td>4</td>
<td>4</td>
<td>2.62</td>
<td>0.46</td>
</tr>
<tr>
<td>Cambrian</td>
<td>B612</td>
<td>0.29</td>
<td>2.71</td>
<td>0.34</td>
<td>17.8</td>
<td>LN</td>
<td>3</td>
<td>4</td>
<td>2.79</td>
<td>0.39</td>
</tr>
<tr>
<td>Silurian</td>
<td>B12</td>
<td>0.30</td>
<td>2.01</td>
<td>0.41</td>
<td>5.6</td>
<td>LN</td>
<td>3</td>
<td>2</td>
<td>2.04</td>
<td>0.32</td>
</tr>
<tr>
<td>Ordovician</td>
<td>1309</td>
<td>0.40</td>
<td>2.11</td>
<td>0.43</td>
<td>10.2</td>
<td>LN</td>
<td>5</td>
<td>2</td>
<td>2.22</td>
<td>0.43</td>
</tr>
<tr>
<td>Cambrian</td>
<td>S20</td>
<td>0.42</td>
<td>2.21</td>
<td>0.36</td>
<td>11.0</td>
<td>LN</td>
<td>4</td>
<td>3</td>
<td>2.25</td>
<td>0.27</td>
</tr>
<tr>
<td>Ordovician</td>
<td>1222</td>
<td>0.45</td>
<td>1.95</td>
<td>0.41</td>
<td>8.7</td>
<td>LN</td>
<td>5</td>
<td>1</td>
<td>2.04</td>
<td>0.33</td>
</tr>
<tr>
<td>Silurian</td>
<td>1310</td>
<td>0.42</td>
<td>2.33</td>
<td>0.33</td>
<td>12.1</td>
<td>LN</td>
<td>4</td>
<td>3</td>
<td>2.41</td>
<td>0.37</td>
</tr>
<tr>
<td>Ordovician</td>
<td>S1</td>
<td>0.43</td>
<td>1.29</td>
<td>0.41</td>
<td>4.7</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Lower Devonian</td>
<td>S12</td>
<td>0.47</td>
<td>1.20</td>
<td>0.34</td>
<td>4.1</td>
<td>Asymp</td>
<td>4</td>
<td>0</td>
<td>1.28</td>
<td>0.24</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>1248</td>
<td>0.52</td>
<td>1.34</td>
<td>0.43</td>
<td>4.9</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Lower Devonian</td>
<td>1306</td>
<td>0.57</td>
<td>1.46</td>
<td>0.47</td>
<td>5.6</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.45</td>
<td>0.38</td>
</tr>
<tr>
<td>Ordovician</td>
<td>1234</td>
<td>0.61</td>
<td>1.41</td>
<td>0.40</td>
<td>5.1</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.45</td>
<td>0.38</td>
</tr>
<tr>
<td>Upper Silurian</td>
<td>B70</td>
<td>0.62</td>
<td>1.47</td>
<td>0.45</td>
<td>5.6</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>1214</td>
<td>0.65</td>
<td>1.25</td>
<td>0.38</td>
<td>4.4</td>
<td>Asymp</td>
<td>4</td>
<td>0</td>
<td>1.28</td>
<td>0.24</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>1282</td>
<td>0.66</td>
<td>1.31</td>
<td>0.38</td>
<td>4.7</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Lower Devonian</td>
<td>1308</td>
<td>0.72</td>
<td>1.28</td>
<td>0.36</td>
<td>4.3</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Lower Devonian</td>
<td>1307</td>
<td>0.74</td>
<td>1.25</td>
<td>0.36</td>
<td>4.3</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Lower Devonian</td>
<td>B24</td>
<td>0.75</td>
<td>1.17</td>
<td>0.31</td>
<td>3.9</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Upper Devonian</td>
<td>1256</td>
<td>0.76</td>
<td>1.18</td>
<td>0.31</td>
<td>3.9</td>
<td>Asymp</td>
<td>4</td>
<td>0</td>
<td>1.28</td>
<td>0.24</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>1299</td>
<td>0.84</td>
<td>1.19</td>
<td>0.30</td>
<td>4.0</td>
<td>Asymp</td>
<td>4</td>
<td>0</td>
<td>1.28</td>
<td>0.24</td>
</tr>
<tr>
<td>Carboniferous*</td>
<td>H5</td>
<td>0.26</td>
<td>1.86</td>
<td>0.70</td>
<td>9.4</td>
<td>Asymp</td>
<td>7</td>
<td>0</td>
<td>1.84</td>
<td>0.70</td>
</tr>
<tr>
<td>Carboniferous*</td>
<td>H12</td>
<td>0.53</td>
<td>1.53</td>
<td>0.53</td>
<td>6.4</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.47</td>
<td>0.38</td>
</tr>
<tr>
<td>Carboniferous*</td>
<td>H7</td>
<td>0.35</td>
<td>1.51</td>
<td>0.61</td>
<td>6.5</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Carboniferous*</td>
<td>H4</td>
<td>0.41</td>
<td>1.50</td>
<td>0.50</td>
<td>6.1</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
<tr>
<td>Carboniferous*</td>
<td>H24</td>
<td>0.54</td>
<td>1.44</td>
<td>0.48</td>
<td>5.6</td>
<td>Asymp</td>
<td>5</td>
<td>0</td>
<td>1.46</td>
<td>0.39</td>
</tr>
</tbody>
</table>
GROWTH MECHANISM OF ILLITES BASED ON CRYSTAL THICKNESS DISTRIBUTIONS

Fig. 1 Illite crystallite thickness distributions. (a–c) Asymptotic shape; (d–e) Lognormal-like shape. The solid lines are lognormal fits to the data.

X-ray diffraction analyses of the <2 μm fraction for determination of the Kühler index were done in Oviedo, Spain using a Philips 1710 diffractometer equipped with graphite monochromator and using CuKα radiation. Preparation of samples and Kühler index determinations followed the recommendations of the IGCP294 working group (Kisch, 1991). The values of Kühler index
obtained have been converted to Kübler scale, with anchizone limits between 0.42° and 0.25°2θ, using a set of nine samples provided by H.J. Kisch.

3. Results

Results of the XRD thickness measurements for PVP intercalated illite samples, together with Kübler index, are indicated in Table 1. Mean thickness measurements range between 3.9 and 17.8 nm (Table 1). Thickness roughly correlates inversely to the Kübler indices (r² = 0.5).

Measurement of the 001 peak of illite yielded two main types of crystal size distributions, asymptotic and lognormal (Fig. 1). Asymptotic shapes (Figs. 1 a–c) correlate with diagenetic rocks, as indicated by measurement of Kübler indices greater than 0.42°2θ, whereas lognormal distributions (Figs. 1 d–e) correlate with anchizonal values (with Kübler indices less than 0.42°2θ, Table 1).

Lognormal distributions are characterized by a spike at very small sizes, the nature of which was uncertain, but which could be an artifact of the MudMaster calculation. To check this possibility, theoretical XRD patterns were calculated with the NEWMOD computer program (Reynolds, 1985) using lognormal and asymptotic CTDs in the calculations. CTDs then were determined from the calculated patterns using MudMaster. The crystallite thickness distributions used in NEWMOD calculated XRD patterns did not contain spikes. Upon analysis, the spike is not present in MudMaster analysed NEWMOD patterns that used asymptotic CTDs, but is present in those calculated using lognormal CTDs. Therefore, the spike in the measured lognormal CTDs is considered to be an artifact. The spike probably results from the manner in which the hook correction is performed in the MudMaster program (Eberl et al., 1996), because this correction is better optimized in the program for the asymptotic CTD shape. Consequently the spikes shown in Fig. 1 were removed from lognormal CTDs measured for the samples, using a smoothing power of 1 in the MudMaster program, prior to further analysis.

Crystallite thickness distributions can be characterized using parameters α and β² that describe the mean and variance of the natural logarithms of the crystal thickness (Eberl et al., 1998b), respectively (Table 1, Fig. 2). The growth pathways for the samples can be simulated with the aid of an alpha-beta squared diagram and the computer program GALOPER (Eberl et al., 2000). On this diagram, line 1–7 indicates the path for continuous nucleation and growth in open sys-

Fig. 2 α vs β² diagram determined on the samples using the MudMaster program. 1–7, path for simultaneous, constant-rate nucleation and growth; a–g, paths for surface-controlled growth without simultaneous nucleation.
GROWTH MECHANISM OF ILLITES BASED ON CRYSTAL THICKNESS DISTRIBUTIONS

GALOPER simulations indicate that illites with asymptotic CTDs evolved by a mechanism of constant-rate nucleation and growth. These crystals must have formed in highly supersaturated solutions that could sustain nucleation (EBERL et al., 1998b). This behaviour is shown by the Devonian and younger rocks. Similar asymptotic shapes are obtained for samples with a big proportion of detrital material (DUDEK, 2001; SRODON et al., in press), but the fact that the samples closely parallel and approach the theoretical curve in the \(\alpha - \beta^2 \) space for nucleation and growth, lead us to favour this mechanism. However, the presence of various amounts of detrital components could cause the samples to have a larger \(\beta^2 \) than is predicted from crystal growth theory, and therefore cause them to plot to the left of theoretical curve 1–7 in Fig. 2.

In contrast, GALOPER simulations indicate that illites with lognormal-like CTSs grew initially by a mechanism of nucleation and growth followed by surface-controlled growth without nucleation as the level of supersaturation decreased. Nucleation is favoured by elevated supersaturation (e.g. LASAGA, 1998), and therefore a decrease in supersaturation, as nuclei appear and grow, would hamper nucleation. This mechanism is consistent with these samples showing the smaller KÜBLER index values. All of the lognormal CTDs are pre-Devonian.

The behaviour of the syntectonic Carboniferous samples (triangles on Fig. 2) is noteworthy. Although they have a low value of the KÜBLER index, indicating high anchizone for most of them, their CTDs are asymptotic, and organic indicators such as coal rank or palynomorph alteration, indicate that diagenetic conditions prevailed in the area (CASTRO et al., 2000a, b). The disagreement between KÜBLER index and both stratigraphic position of the samples (thermal increase is mostly due to burial) and organic indicators, has been interpreted as the signature of detrital micas inherited from the rapidly uplifting Variscan chain. These micas probably avoided any significant chemical weathering throughout their short transport history (BRIME et al., 2001a). Incorporation of detrital phyllosilicates into the <2 \(\mu \)m fraction of sediments is a well known feature of low-grade shales (KÜBLER et al., 1991; WARR et al., 1996; NIETO et al., 1996; LANSING et al., 1998; GHARRABI et al., 1998), and would tend to narrow the XRD peak at half width. Therefore, it seems that CTD shape may better reflect crystallite evolution than the measurement of the KÜBLER index, particularly if some detrital components are present in the samples. Whereas the KÜBLER index may indicate anchizonal and even epizonal conditions, CTDs would not show the lognormal shapes characteristic of the onset of metamorphism.

4. Discussion

GALOPER simulations indicate that illites with asymptotic CTDs evolved by a mechanism of constant-rate nucleation and growth. These crystals must have formed in highly supersaturated solutions that could sustain nucleation (EBERL et al., 1998b). This behaviour is shown by the Devonian and younger rocks. Similar asymptotic shapes are obtained for samples with a big proportion of detrital material (DUDEK, 2001; SRODON et al., in press), but the fact that the samples closely parallel and approach the theoretical curve in the \(\alpha - \beta^2 \) space for nucleation and growth, lead us to favour this mechanism. However, the presence of various amounts of detrital components could cause the samples to have a larger \(\beta^2 \) than is predicted from crystal growth theory, and therefore cause them to plot to the left of theoretical curve 1–7 in Fig. 2.

In contrast, GALOPER simulations indicate that illites with lognormal-like CTSs grew initially by a mechanism of nucleation and growth followed by surface-controlled growth without nucleation as the level of supersaturation decreased. Nucleation is favoured by elevated supersaturation (e.g. LASAGA, 1998), and therefore a decrease in supersaturation, as nuclei appear and grow, would hamper nucleation. This mechanism is consistent with these samples showing the smaller KÜBLER index values. All of the lognormal CTDs are pre-Devonian.

The behaviour of the syntectonic Carboniferous samples (triangles on Fig. 2) is noteworthy. Although they have a low value of the KÜBLER index, indicating high anchizone for most of them, their CTDs are asymptotic, and organic indicators such as coal rank or palynomorph alteration, indicate that diagenetic conditions prevailed in the area (CASTRO et al., 2000a, b). The disagreement between KÜBLER index and both stratigraphic position of the samples (thermal increase is mostly due to burial) and organic indicators, has been interpreted as the signature of detrital micas inherited from the rapidly uplifting Variscan chain. These micas probably avoided any significant chemical weathering throughout their short transport history (BRIME et al., 2001a). Incorporation of detrital phyllosilicates into the <2 \(\mu \)m fraction of sediments is a well known feature of low-grade shales (KÜBLER et al., 1991; WARR et al., 1996; NIETO et al., 1996; LANSING et al., 1998; GHARRABI et al., 1998), and would tend to narrow the XRD peak at half width. Therefore, it seems that CTD shape may better reflect crystallite evolution than the measurement of the KÜBLER index, particularly if some detrital components are present in the samples. Whereas the KÜBLER index may indicate anchizonal and even epizonal conditions, CTDs would not show the lognormal shapes characteristic of the onset of metamorphism.

5. Conclusions

The illites studied are characterized by distinct CTDs that seem to evolve in thickness systematically with increasing grade. The shapes of the CTDs are best explained by two growth stages, 1) an early stage of nucleation and growth, during which the asymptotic profile of CTDs was established; and, for crystals larger than a certain critical size, 2) a later stage of surface-controlled growth without further nucleation.

According to the results presented here, the critical thickness for the change from growth stage (1) to stage (2) is close to 5 nm (Fig. 2), a thickness which marks the change in CTD shape from asymptotic to lognormal, and which lies at the diagenesis-anchizone boundary. Therefore, at least in the rocks studied here, this boundary marks an important qualitative change in the
mode of crystal growth. Location of this boundary by CTD shape rather than by mean crystallite thickness (determined either by XRD or TEM) may be less subject to measurement errors.

Acknowledgments

We are grateful to Martin Frey and Bernard Kübler for their encouragement and support over the years. This paper is dedicated to their memory. The authors thank A. Blum and J. Srodon for critically reading the original manuscript. Comments by M. Jaboyedoff, W.B. Stern and an anonymous reviewer, as well as careful editorial help by R. Ferriero Mählmann are greatly appreciated. CB is grateful to the U.S. Geological Survey for the facilities given for conducting research while in Boulder, and to D.D. and J. Eberl for their kind hospitality in Boulder. CB thanks financial support from Projects CN-00-233-31 and PB98-1558, and from the Alvarez-Brime Foundation. The GALOPER program for simulating CTS growth, the MudMaster program for measuring CTDs from XRD data, and related programs are available from ftp://brccrftp.cr.usgs.gov/pub/dedebel/mac version (or... pc_version). The use of trade names are for identification purposes only and do not constitute endorsement by the United States Geological Survey.

References

KUBLER, B., FAILLA, A., RUCH, P., JANTSCHIK, T., HOON, S., ADATTE, TH., TURBERG, P. and SCHWALB, A.

Reynolds, R.C. Jr. (1985): NEWMOD®, a computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. R.C. Reynolds, Jr., 8 Brook Dr., Hanover NH 03755.

Manuscript received November 27, 2001; revision accepted July 21, 2002.

Editorial handling: R. Ferreiro Mählmann