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SCHWEIZ MINERAL. PETROGR. MITT. 82, 151-168, 2002

Mineral homogenization during low-temperature metamorphism
Part 1: numerical models

by Kenneth J.T. Livi', Linda Hinnov', John M. Ferry',
David R. Veblen' and Martin Frey’ (deceased)

Abstract

It has been known that very low-grade metamorphic minerals will compositionally homogenize as time and tempera-
ture increase the metamorphic grade. To explain the natural data, three models of homogenization are presented and
distinguished from each other on the basis of mineral zonation patterns and Fourier analysis of randomly measured
compositional traverses. Numerical simulations of these models were made to determine the effects of relative differ-
ences in diffusivities in the solid and fluid on the homogenization process as recorded by Fourier analysis. Reaction-
rate limited homogenization would produce flat intra-grain zonation patterns and equally reduces the variance of all
frequencies in the Fourier spectrum. Diffusion-controlled homogenization of minerals in the presence of a grain
boundary fluid that is considered an infinite, well-mixed reservoir would produce symmetric zonation patterns and
reduces all frequencies in the Fourier spectrum equally. Diffusion-controlled homogenization in the presence of a
grain boundary fluid of variable composition may create asymmetric zonation patterns and high-frequency suppres-
sion of the Fourier spectrum, if the diffusivity of the fluid is within a few orders of magnitude of that in the mineral.

An equilibrium domain within a rock may be considered a network of equilibrated mineral rims and grain
boundary fluid that lace throughout the rock. The infinite-reservoir equilibration length scale, the distance over
which the fluid and solid rim remain essentially constant in composition (which is a function of mineral size and the
diffusivity ratio of mineral to fluid), is proposed as an adequate definition of equilibrium length scale.

Keywords: Diffusion, homogenization, low-temperature metamorphism, Fourier transforms.

Introduction

In studies of progressive low-temperature meta-
morphism, it is considered that sedimentary rocks
with minerals in textural and chemical disequilib-
rium gradually approach equilibrium as tempera-
ture and/or time increase (e.g., PEACOR, 1992).
This process manifests itself by (1) an overall in-
crease in grain size, (2) migraticn of grain bound-
aries to develop simple grain shapes, (3) the re-
moval of incompatible minerals, and (4) homoge-
nization of mineral compositions. Ail of these
processes have kinetic limits. Most investigations
of the fourth process, compositional homogeneity,
have concentrated on zonation patterns in coex-
isting minerals produced or modified by intra-
and intergranular diffusion (e.g., LASAGA et al.,

1977) and calculations of closure temperatures
(e.g.,DODSON, 1973). Yet, very little has been writ-
ten on intergranular homogenization of minerals
on the hand-sample scale and the information re-
corded in these variations until the last decade
(BLACKBURN, 1968; VELDE et al., 1991; Livi et al.,
1992; Livi, 1994; CHERNOFF and CARLSON, 1997).
Homogenization in isotopic systems have been
addressed by LASSEY and BLATTNER (1988),
BickLE (1992), DEPAOLO and GETTY (1996), and
ABART and SPERB (1997).

Most recent studies considering the interplay
of diffusion in the mineral volume and grain
boundaries have centered on discontinuous reac-
tions such as olivine + quartz = pyroxene (e.g.,
YUND 1997: FISLER et al., 1997; MILKE et al., 2001)
or calcite + quartz = wollastonite (JOESTEN and
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FISHER, 1988) where the reaction product growth
rate 1s dependent upon the grain boundary diffu-
sivity of the reactant species.

In this paper, and in a paper to follow, we have
investigated intergranular and intragranular com-
positional heterogeneities and their progressive
homogenization as a potential recorder of the
kinetic controls of cation transport and exchange
in rocks. Results from this study have a direct
bearing on the estimate of the scale of equilib-
rium. The new approach we take is to consider the
spatial distribution of variations in average miner-
al compositions within a rock. The quantification
of the variance and frequency distributions of the
data is achieved by Fourier analysis.

In part 1, we present numerical models that
simulate different conditions of prograde homog-
enization of minerals reacting with a fluid with
variable diffusivity. The emphasis of the present
study is not only on intragranular zonation pat-
terns, but on the spatial distribution of composi-
tional fluctuations along linear traverses through
rocks. These models demonstrate the importance
of several parameters that can affect the rate and
style of homogenization: reaction rate, the ratio of
mineral to fluid diffusivities, modal abundances of
minerals, the equilibrium distribution coefficient,
and the total cation concentration in the fluid. In
part 2, we present data from low temperature
metamorphic shales from central Switzerland
that demonstrate that homogenization does oc-
cur, and that techniques developed here can be
used to determine the style of homogenization in
natural samples.

Previous work and the definition
of equilibrium domain

Previous mathematical treatments of exchange/
diffusion processes consider relatively high-tem-
perature conditions and assume that the system is
in local equilibrium. They mainly deal with the ef-
fects of retrograde reactions and diffusive trans-
port on the ability of a mineral (or minerals) to
preserve a record of the peak metamorphic condi-
tions or the cooling history of the rock. In con-
trast, our models simulate prograde reactions that
alter a mechanical mixture of minerals with a
range of composition to an equilibrium assem-
blage. Mineral exchange/diffusion calculations
fall into two main categories: (1) exchange reac-
tions between two phases in close proximity and
of similar diffusivities (e.g., LASAGA et al., 1977,
JIANG and LASAGA, 1990) and (2) reactions be-
tween a mineral and an infinite, well-mixed fluid
(e.g., DODSON, 1973; GILETTI, 1986; EILER et al.,

1992, and references within). In the following dis-
cussion, the former category will be referred to as
“local reservoir equilibration” models, while the
latter will be called the “infinite reservoir equili-
bration™ models.

As applied to homogenization, the concept of
local equilibrium would divide a rock into a
number of domains that contain homogeneous
and equilibrated minerals. With progressive meta-
morphic evolution (increased temperature and/or
time), these domains may expand leading to the
division of a system into fewer domains. The sys-
tem, at any time, may be described as being in a
state of mosaic equilibrium. Within each domain,
the composition of a mineral depends upon that
of the minerals next to it.

In our models, the rims of a mineral may equi-
librate with a fluid in the grain boundary region.
This fluid/grain boundary system is considered to
be the main conduit for mass transport in the
rock. At any given time, the interior of the mineral
may still be far from equilibrium with the fluid.
Thus, the definition of equilibrium domain would
be considered a network of equilibrated mineral
rims and grain boundary fluid that lace throughout
the rock.The infinite reservoir equilibration model
of diffusion maintains a homogeneous fluid that is
in equilibrium with all rims. Thus the equilibrium
scale for this model 1s the entire system of fluid
and rims. In the local reservoir equilibration mod-
el, the fluid i1s allowed to vary in composition.
Equilibrium lengths in the fluid (and thus the
rims) would depend on the magnitude and wave-
length of compositional variations.

In the discussion below, it will be demonstrat-
ed that a rock may be controlled by infinite reser-
voir equilibration conditions at small scales, while
larger scales are controlled by local reservoir
equilibration conditions; the relative size of each
scale is related to the rate of homogenization by
diffusion in the fluid versus that in the solid. Thus,
a complete description of equilibrium requires
knowledge of these scales. We present a concept
that allows one to predict the relative local reser-
voir equilibration and infinite reservoir equilibra-
tion scales and the ratio of solid to fluid diffusivi-
ties from Fourier transforms of measured compo-
sitional traverse data.

In a recent paper, CHAKRABOTY and DOHMEN
(2001) outlined a model investigating the influ-
ence of transport in solids and the intergranular
medium and also the solubility of diffusing spe-
cies in the intergranular medium. The model they
present outlines important consequences of vari-
able diffusivities in the fluid and solids and of the
equilibrium distribution coefficient and is similar
to our study. Their study supports the findings of
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H
X

RRL homogenization: D= D! =

ooy dX%/dt = -kX**

DL homogenization: D = co; dX%/dt = DY0°X* /9 x>
FDL homogenization: dX"/dt = D"9X"/ 9x* dX%dt = D*9*X*/0x>

Fig. 1~ Schematic representation of three numerical models. Dark shaded boxes represent solid mineral slabs. Open
rectangles represent a continuous fluid within which the minerals are embedded. Light shaded rectangles are where
exchange reactions take place between solid and fluid. RRL = reaction rate-limited model, DL = infinite fluid
diffusivity-limited model, FDL = finite fluid diffusivity-limited model.

Livi (1994) and what we present here. The major
difference in their approach is that their data is
based on experiments involving a simple system
with two solids and a gas medium, whereas, we
consider an ensemble of minerals and investigate
the evolution of compositional distributions by
Fourier transforms.

Governing equations for homogenization

The basis for our homogenization models is illus-
trated in Fig. 1. The initial rock is composed of a
hundred grains with pore space and grain bound-
aries between them. Exchange of the elements of
interest,a and b, occurs in only one type of miner-
al, a, and if other minerals are present, they do not
contain exchangeable a and b. The grains of « be-
gin with a specified, arbitrary distribution of com-
positions. Each grain is initially homogeneous.
Exchange of matter occurs through the a-b ex-
change reaction at mineral-fluid interfaces

aa + b(,q) & ba +a, (1)

aq)

and is transported in a fluid through connect-
ed pores and grain boundaries. This is the only
mechanism considered for mass transport be-
tween fluid and solid. Thus, the rate and extent of
compositional changes in a are a function of the
fluid composition at the solid-fluid interface. In
the study of natural samples in part 2 of this pa-
per, a and b are Fe’* and Mg and the phase « is
chlorite.

In natural systems, changes in composition of
component a in the fluid (C‘;ﬂ)(moles/cm»*) over
time (r) for any particular component are gov-
erned by the continuity equation:

aC! 2°C"
a +Dﬂ 7a
AT

which sums the contribution of matter pro-
duced/consumed from a mineral-fluid reaction
(q), from one-dimensional diffusion where D/ is
the diffusion coefficient of @ in the fluid for Fick’s
second law, and x is distance. Similarly, changes in
the composition of a slab-shaped mineral (C,") are
governed by:

xs_ L edC X
x _4tDi—a 3)

The quantity g, the surface exchange reaction,
is related to the reaction rate (k,) and the concen-
tration of the reacting species by a rate law (see
BERNER. 1981). Although the exact form is not
important, a typical form may be:

2)

cg-(cg)
-k, | ———= (4)
(cy).

where (C,), is the equilibrium value of 4 in e,
and z is the order of the reaction. Distribution of a
and b between solid and fluid is described by the
equilibrium constant K,

_ 4G, _
dt
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K =1 ©)
(")

If we normalize the concentration of @ in « in
terms of number of moles (n,) per total number
of sites @ may occupy per unit formula (s,), we de-
fine X" within a wafer of solid «:

a a
n n,
e ©)
5, n, +ny

This is identical to parameters such as Fe/
(Fe+Mg) in chlorite if no other atoms (i.e., Al) are
exchanged in the octahedral sites. Compositional
fluctuations in the fluid are related to the number
of moles a in the fluid, n/, and the total chlorinity
in moles (Cl,),

1
n!

fl a:l a
ok al; (7)
2

for divalent cations. Here, C/, is a proxy for
any monovalent complexing agent. With some
manipulation, K, can be related to compositional
fluctuations (see appendix for detailed derivation
and solution of mass balance equations):

Xﬂ
(1-x)
%,

1-x)

Given a specified concentration of a in the
mineral and fluid, K,,, and C/, the mass redistri-
bution necessary for equilibrium at the mineral/
fluid boundary can be calculated.

Three homogenization models

Three end-member homogenization processes
are possible (ignoring advective mass transfer, re-
crystallization and growth of new minerals). (1)
Reaction rate-limited homogenization occurs
when diffusion is fast enough to homogenize any
compositional perturbation in the solid or fluid
created by reaction at the mineral-fluid interface.
In this model, the entire homogeneous mineral
progresses towards equilibrium in the presence of
a fluid with constant composition at a given rate.
This is a subset of the infinite reservoir equilibra-
tion model. Reaction rate laws may be of any

kind. (2) Infinite fluid diffusivity-limited homoge-
nization occurs when reaction rates are fast
enough to maintain equilibrium at the mineral-
fluid interface, and diffusion in the fluid is fast
enough to maintain a homogeneous fluid. This is
also a member of the infinite reservoir equilibra-
tion models. Changes in mineral composition are
determined by the diffusivity of the elements in
the solid. (3) Finite fluid diffusivity-limited homo-
genization occurs when fast reaction rates main-
tain equilibrium at the interface, and changes in
the solid composition are related to both the min-
eral and fluid diffusivities. Local concentration
gradients may build up in the fluid, depending
upon the relative diffusivities of the fluid and
solid. The finite fluid diffusivity-limited model can
be described in terms of both the infinite reser-
voir equilibration model on small scales and the
local reservoir equilibration model on larger
scales.

DETAILS OF THE NUMERICAL MODELS

Computations assume an array of mineral slabs
with unit widths and heights arranged so that
their long axes are parallel to the fast diffusion di-
rection (Fig. 1). Diffusion is assumed to occur only
along this direction. The slabs are embedded in a
continuous medium representing the fluid, where
diffusion is also one-dimensional. Reactions only
occur at the ends of the slabs. This seems justified
in the case of some minerals such as chlorites
since compositional gradients within their crystals
occur mainly along the basal plane which is paral-
lel to the long axis of the crystals (to be published
in a future paper). Fluid is allowed to pass unre-
acted along their sides. This is necessary to main-
tain a continuous fluid medium and to prevent ar-
tificial gradients in fluid composition between
slabs. In the one dimensional models considered,
the solid fraction in the system is proportional to
the sum of the lengths of the slabs divided by the
total length of the fluid medium. Both the miner-
als and the fluid are subdivided into wafers with
thicknesses x, so that D/x’ < 0.5 for numerical sta-
bility (CARSLAW and JAEGER, 1959)(see appendix
for details of diffusion calculations). Reactions at
the mineral-fluid boundary are constrained by the
equilibrium constant (Eq. 8). Although Fick’s sec-
ond law was derived for a single species, LASAGA
et al. (1977) show that it is applicable to diffusion
of two species in an otherwise fixed mineral struc-
ture where charge-balance requirements reduce
the number of independent components to one.
Similar simplifications may apply to the fluid
which is considered to be a solution of H,O and
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single complexes of @ and b (e.g., FeCl, and
MgCl.) and the concentration of the complexing
agent 1s constant.

Numerical models followed three steps: (1)
cquilibration at solid-fluid boundary, (2) diffusion
in the solid, and (3) diffusion in the fluid. How-
ever, assumptions for the reaction rate-limited
model made it unnecessary to calculate steps 2
and 3, and step 3 is unnecessary for the infinite
fluid diffusivity-limited model.

Reaction rate-limited model

The reaction rate-limited model is the simplest of
the three models. Because the model assumes that
diffusion in the solid and fluid is infinitely fast,
both phases maintain homogeneous compositions
and the fluid is held at a constant composition.
Each slab begins with an arbitrarily assigned
homogeneous composition. We normalize the slab
compositions (X) to have a zero mean value and
assume that X =0 is the equilibrium value for all
slabs. As reaction of the slabs with the fluid
progresses, each mineral slab approaches zero X-
value in composition at a rate prescribed by the
rate law.

Infinite fluid diffusivity-limited model

The infinite fluid diffusivity-limited model as-
sumes that reaction rates are fast enough to main-
tain equilibrium at the mineral-fluid boundary
during one time step, the fluid has an infinite dif-
fusivity, and the solid a finite diffusivity. Each slab
begins with an arbitrarily assigned composition,
X,', with a zero mean for the entire slab popula-
tion. The infinite diffusivity of the fluid is repre-
sented by considering a fluid with everywhere con-
stant composition, X,/ = 0. Therefore, boundary
conditions for each slab of length h are at ¢ > 0:

X=x,X"=0,
Xx=x+h: X“=0,

(i.e., the rims are equilibrated to zerc), and at
t = 0 the slab is originally homogeneous:

0<x<x,+h: X" =X;.

Diffusion in the mineral slab proceeds inde-
pendently of its neighbors. Matter diffuses within
the mineral because of compositional gradients
near the slab boundaries imposed by equilibra-
tion with the fluid. Diffusion profiles are thus cre-
ated in the slabs. Average slab compositions X*
were calculated at designated time steps. This
model is a numerical analog of the approximate
analytical solution of SHEWMON (1963, pages 16—

n
N

18) derived for slabs of length £ evolving by diffu-
sion:

X“ 8 ( fDﬁ]
7= 7 eXpl —
X, m™ ]

This equation is valid for:

)

e 2 4

X <
o ZUH,

4 0

Finite fluid diffusivity-limited model
The principle assumption in this model is that re-
action rates are fast enough to maintain equilib-
rium at the mineral-fluid boundary during each
time step. The boundary conditions during the
portion of the calculation in which diffusion oc-
curs in the solid are (1) a homogeneous starting
composition at t = 0, and (2) zero diffusion flux
across the solid-fluid boundary. These constraints
guarantee mass balance and decouple diffusion in
the solid from diffusion in the fluid allowing ex-
change of matter only by reaction and not by dif-
fusion. The boundary conditions computing diffu-
sion in the fluid are zero flux at the extreme
boundaries (total length, L, of fluid medium is the
sum of lengths, 4, of all solid slabs plus the spaces,
s, between slabs), with either a homogeneous
starting composition X; = X* or with variable lin-
ear composition gradients. Linear gradients are
calculated by establishing equilibrium near the
end of each mineral and specifying linear compo-
sitional profiles in regions between minerals. As
calculations progress, the boundary compositions
for each slab depend upon the ability of the fluid
to homogenize local compositional perturbations
created by fluid/mineral reactions. If the diffusivity
in the solid is great, diffusion maintains a homo-
geneous composition in each mineral slab as the
fluid composition evolves. Under these condi-
tions, this model simulates reaction rate-limited
homogenization with an evolving fluid. If diffusiv-
ity in the solid is not fast enough to homogenize
the slab, diffusion profiles will develop in the slab.
Similarly, if the diffusivity of the fluid is great, dif-
fusion can homogenize the entire fluid reservoir.

VALIDITY OF MODEL ASSUMPTIONS

There are several important assumptions in these
models. The first assumption is that the fluid me-
dium can be modeled as one continuous medium
with constant D. This assumption does not strictly
apply to nature. However, if deviations from an
average diffusivity in the fluid are randomly dis-
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tributed in a rock, they should not effect homoge-
nization in a systematic fashion. We assume sam-
pling traverses are longer than the scale of any
fluctuation in D" The second assumption, that
mineral grains are one size with diffusion in one
direction (parallel to slab length), has already
been addressed. A third assumption deals with
the compositional simplicity of our model — both
in the solid and fluid. Although samples with only
one Fe-Mg mineral occur in nature, real metamor-
phic fluids are not as simple as in our models. This
is an oversimplification, the effects of which are
unknown. Finally, we assume that mineral growth

a)

log(P)

Eq. 10

log(f)

In(P)

Eq. 11

(@)
~—

Aln(P)

k2

Fig. 2 Schematic illustration of the effects of diffusion
in a continuous medium on Fourier spectra. (a) The
black line is the original spectrum, the medium gray line
is after diffusion has taken place (Eq. 10), and the light
gray line is after a process not dependent upon frequen-
cy has modified the original data. (b) The plot of the nat-
ural log of power versus wavenumber squared for the
same spectra as in 6a. (¢) Smoothing of curves in 6b by
plotting Aln(P) versus k>

and dissolution do not occur. We have ignored
these phenomena for the sake of simplicity. The
addition of material to a mineral slab would in-
crease the time needed for the entire mineral to
homogenize, while dissolution would shorten it.
This is modeled in the calculations that consider
variations in the length and spacing of slabs. How-
ever, these calculations are static (i.e., they do not
change during the homogenization process). Ex-
actly how dynamic slab sizes would affect homo-
genization needs further study.

Fourier analysis

The numerical simulations presented here gener-
ate both zonation patterns internal to the mineral
slabs and average slab compositions along a
traverse. The average compositions contain infor-
mation on whether neighboring slabs have influ-
enced each other’s compositions as homogeniza-
tion progresses. This “memory™ of neighboring
compositions can be detected by Fourier trans-
form methods (see Appendix 2 for computational
details). A freeware program can be obtained
from the URL listed in Appendix 2.

The Fourier transform is a mathematical tool
used to analyze the second order moment statis-
tics (variance) of stationary, Gaussian processes
as a function of frequency (MARPLE, 1987).
Through the method known as the separation of
variables, Fourier transforms have also been used
to model diffusion processes (SHEWMON, 1963;
CRANK, 1975). We use the Fourier transform to
estimate the distribution of variance, or the “pow-
er” (P), of the average slab composition data and
model results as a function of spatial frequency (f)
along linear arrays of model slabs or sampled

ransects in natural samples. Fourier analysis de-

scribes a data series as a combination of sine and
cosine functions with variable frequencies and
amplitudes. In this context, low frequencies repre-
sent long wavelength (distance) variations, and
high frequencies are short wavelength variations.
Power at a particular frequency is proportional to
the square of the amplitude, and measures the
variance contained at that frequency. Thus, noisy.
random, or inhomogeneous data will contain
power at all frequencies, while clean, identical or
homogeneous data will contain no power at fre-
quencies f # 0. Since the Fourier transform can
separate out the variance contained in different
frequencies, it is ideal for determining the effects of
processes that influence low and high-frequency
data differentially. Diffusion is one such process.

Three-dimensional diffusion in an isotropic.
continuous medium will dampen compositional
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fluctuations according to the equation (BATCH-
ELOR, 1953, p. 92-93):
P = Pe-2D (10)
where P, is the spectral power (Fourier trans-
form) of the fluctuations at time ¢, P, is the Fou-
rier transform of the original fluctuations, and k is
the wavenumber (k = 271f)). Equation 10 is also a
valid approximation to one-dimensional trans-
forms of three-dimensional diffusion when k is
small (BATCHELOR, 1953). This equation dictates
that the power of the transform decays with k2.
Therefore, higher frequencies will be suppressed
more quickly than lower frequencies. Frequency
suppression is related to neighboring composi-
tional fluctuations influencing each other - local
short-wavelength and high compositional gradi-
ents are reduced more rapidly than long-wave-
length and low compositional gradients. The ex-
pression of Eq. 10 is illustrated in the medium
gray curve on the log(P)-log(f) (P-f) diagram in
Fig. 2a, where the original spectrum is the black
line. As the frequency increases, the reduction of
power becomes greater and the curve drops to the
right. However,if a process is not dependent upon
frequency, then the spectrum will drop in power
without a change in slope (light gray line in Fig.
2a).
If we take the natural logarithm of Eq. 10
In(P,) = In(P,) - 2Dtk? (11)
the function is now linear if plotted on a In(P)-
k* diagram (P-k) (medium gray line in Fig. 2b).
The y-intercept marks the power of the original
spectrum, and the slope is a function of Dt. In gen-
eral, the slope is modified by a function related to
the geometry of the system — in the case of an iso-
tropic continuous medium, it has a value of 2. If
homogenization is not a function of frequency, the
slope of the original spectrum does not change,
and there is simply a drop in power for all fre-
quencies (light gray line Fig. 2b). By plotting the
difference between the natural logarithm of the
original and homogenized spectra Aln(P) =
In(P,)-In(P,) against k2, fluctuations in the curves
are smoothed (A-k diagrams; Fig. 2¢). P-f, P-k,
and A-k diagrams will be used to illustrate how
homogenization proceeds in numerical models
and natural data (part 2). Applying these plotting
methods to numerical results, the average compo-
sition of each mineral slab becomes one datum in
a spatial series. In generating the Fourier series,
only the solid compositions were considered; the
fluid compositions were ignored. Results from
numerical models will differ from Eqs. 10 and 11

since the medium analyzed is not continuous but
a series of discrete slabs embedded in a fluid.

Results of numerical models
REACTION RATE-LIMITED

A zero-order rate law (z = 0 in Eq. 4) was chosen
in the simulation of linear reaction-rate limited
homogenization. A portion of the original data is
presented in Fig. 3a. After homogenization pro-
ceeded up to a reaction extent of ~Ark = 0.2 in Eq.
4, the slab compositions changed but retained flat
intramineral composition patterns (Fig. 3b). This
is required for infinitely fast diffusion in the solid.
The P—f diagram for the calculation is presented
in Fig. 3c. Two features are important to note: (1)
the original slope of the spectrum did not change
as homogenization proceeded, and (2) the origi-
nal frequency distribution (peaks and valleys)
changed but there was no systematic suppression
of high frequencies. These features are to be ex-
pected from a process that is not spatially depend-
ent. All mineral slabs reacted with a fluid with the
same constant composition, and each mineral slab
reacted at a designated rate. There is a change in
frequency distribution which can be seen in minor
changes in the shape of the curve. This derives
from the fact that slab compositions slow down as
they approach equilibrium and ceased changing
when they reach equilibrium (zero), and slab
compositions far from equilibrium change faster.
However, since high and low compositions are
spatially randomly distributed, they will not cause
a frequency dependent shift in the Fourier spec-
trum.

INFINITE FLUID DIFFUSIVITY-LIMITED

As in the reaction rate-limited model, the P—fdia-
gram for the infinite fluid diffusivity-limited mod-
ei shows that there is an overall reduction of pow-
er with no systematic suppression of frequencies
(Fig. 4b). The original frequency distribution is
preserved as homogenization progresses. This is
similar to reaction rate-limited homogenization
when the rate law is a function of composition in
the solid (i.e., z > 0 in Eq. 4). The difference be-
tween the reaction rate-limited and infinite fluid
diffusivity-limited models is in the intramineral
zonation patterns. Figure 4a shows that all miner-
als exhibit symmetric zonation patterns with iden-
tical rim compositions. The rate of composition
change can be approximated by Shewmon'’s equa-
tion (Eq. 9), which works as well when the stand-



158

ard deviation of the population is substituted for
composition.

FINITE FLUID DIFFUSIVITY-LIMITED

The finite fluid diffusivity-limited results are di-
vided into sections dealing with the effects of the
main variables. The starting fluid composition for
all computations presented is that of steady-state.
Results vary depending upon the starting compo-
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sitions for calculations using phases of similar dif-
fusivities. However, differences in results for cal-
culations when phases have very different diffu-
sivities were determined to be insignificant, as
long as the number of time steps was about 10+ or
greater.

Finite fluid diffusivity-limited: Effects of rela-
tive solid and fluid diffusivities
Results from six calculations with diffusivity dif-
ferences of up to five orders are presented in P—f
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Results of reaction rate-limited numerical modeling. (a) Original mineral zonation patterns for the first twen

ty slabs. (b) Mineral zonation patterns for the first twenty slabs after homogenization. (c) Fourier spectra.
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diagrams in Figs. Sa—f and in the A-k diagrams in
Figs. 6a. b. Each calculation was run for the same
number of time steps. In Fig. 5Sa, where there is a
five-order of magnitude difference in fluid and
solid diffusivities, the reduction of power is nearly
evenly distributed over all frequencies, and the
original shape of the spectrum is preserved. This is
similar to the infinite fluid diffusivity-limited re-
sults in Fig. 4a. As the diffusivity contrast decreas-
es, the intensity of high-frequency suppression in-
creases (Figs. Sb—d). Theoretically, the homogeni-
zation curves in Figs. 5d-f should drop to infinite-
ly small values. However, the precision of the cal-
culations did not permit the resolution of fluctua-
tion differences less than ~10-. Therefore, when
fluctuation differences reach log(P) values of -3,
the calculation error creates the artificial plateaus
seen in the high-frequency portions of Figs. 5d-f.

When the value of D" is 10 um?/s (1013 m?/s)
or greater (Figs. Se and f), the diffusion process is
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fast enough to nearly homogenize a 1-um slab
within one time step. Therefore, Figs. 5e and f rep-
resent a modified version of the reaction rate—
limited model where, instead of a fixed fluid com-
position, the fluid evolves with time. Figure 6a
combines the six calculations on a A—k plot. As the
difference between solid and fluid diffusivities in-
creases, the degree of homogenization (height of
curve on A-k plot) decreases (for a fixed fluid dif-
fusivity). The maximum height on this curve is
limited by the precision of the calculations. The
change in style is particularly evident in the
blowup of Fig. 6a in Fig. 6b. Notice that calculation
“A” reaches the same degree of homogeneity in
the high-frequency region (log(f) > 1) as “B™, but
attains greater homogeneity in the low-frequency
region. This is because the two calculations have
the same mineral diffusivity (which will control
the ultimate degree of homogenization), but fast-
er fluid diffusivity in “A” than in “B™.
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Fig. 4 Results of infinite fluid diffusivity-limited numerical modeling. (a) Mineral zonation patterns for the first

twenty slabs after homogenization. (b) Fourier spectra.
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In each spectrum, the low-frequency portion
reflects the character of the evolving fluid that is
influenced by the exchange of matter with the
minerals. Thus, as frequency decreases or sam-
pling length-scale increases, mineral compositions
will exhibit increasingly more local reservoir
equilibration characteristics. Note, however, that
the low-frequency portion of calculation “F” (D"/

= 1) approaches but does not have the same
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slope as what would be expected for an isotropic
medium (solid line), and as the difference in diffu-
sivities increases, the slopes decrease. The rela-
tionship between the slope () and the ratio of the
diffusivities in the calculation (with A =1 um,s=1
um, K, = 1.0001, C/, = 1 mol) is related empirical-
ly by

B =33+ 3 In(DYD"). (12)
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Fig.7 Mineral zonation patterns of six finite fluid diffusivity-limited numerical modeling calculation results. Letters
a through f correspond to calculations in Figs. 5a through 5f.
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In contrast, as frequency increases or sampling
length scale decreases, mineral compositions will
increasingly reflect infinite reservoir equilibra-
tion characteristics. Using the square root of the
power of the high-frequency portions of the spec-
tra as estimates of the standard deviation in Eq. 9
gave D"t =2.2 % 10-? um?for simulations “A” and
“B”and D"t = 1.1 x 10-! um? for simulation “C”,
which agrees well with the expected values of 102
and 10-' um?, respectively. Therefore, the calcula-
tions “A”,“B”, and “C" are consistent with the an-
alytical expression of SHEWMON (1963). D"t for
simulation “D™ was calculated at 4.9 X 10! um?
which is half of what it should be. This is because
the error in the calculations is greater than the

compositional differences at high-frequencies in
this simulation.

The zonation patterns of the first twenty slabs
and the local fluid for each of the six calculations
are given in Figs. 7a-7f. The patterns for the solids
in D" =10" (Fig. 7e) and D"t = 10? (Fig. 7f) are
nearly flat because of their high diffusivity. Note
that the fluid is not homogeneous in these cases.
This is because the rate at which matter is ex-
changed by reaction (and the diffusion transport
of matter in the solid to the interface) keeps pace
with diffusion in the fluid. Zonation of solids in
Figs. 7a and b are relatively symmetric and the
fluid is nearly homogeneous. Comparing these re-
sults (7a and b) with that of the infinite fluid diffu-
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sivity-limited model (Fig. 4) show that they are
nearly identical. Zonation of solids in Figs. 7c, d
and e exhibit both symmetric and asymmetric pat-
terns and the fluid has an intermediate degree of
homogenization. Only in these cases are asym-
metric compositional zonation patterns produced
in minerals.

Finite fluid diffusivity-limited: Effects of slab
size and modal abundance
Increase in slab lengths (h) effectively increases
the amount of material that has to be homoge-
nized, and therefore, the time to reach a certain
degree of homogenization is longer. The style of
homogenization is also affected by the spacing (s)

of slabs. Hence, to completely describe a system,
both length and spacing need to be specified.
Both of these parameters are related the modal
abundance of phase «.

Figure 8a demonstrates how the calculations
may be scaled by plotting Aln(P) versus k%/k?,,,. .
which effectively normalizes all wavenumbers to
the sampling rate. Increasing both the length (4)
and spacing (s) of the model by an order of mag-
nitude requires an increase of two orders of mag-
nitude in the diffusivities of both solid and fluid to
maintain the same A-k profile for the same total
time. The modal abundance of minerals in the sys-
tem has not changed in this case. Also note that
the ratio of diffusivities is not required to change.
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By comparison, an increase in s with constant
h reduces the modal abundance of « and the
amount of mineral that must be homogenized.
This has the effect of increasing the rate of homo-
genization (Fig. 8b). Only the low-frequency por-
tion of the 1-um spacing calculation is presented,
because of the differences in scale between the
two calculations. The increased spacing of slabs
decreases the effects of nearest neighbors on each
other, making the A-k curve flatten more quickly
than in the closer-spaced calculation. Increasing A
while keeping s constant increases the modal
abundance of the mineral and slows homogeniza-
tion. Effects of changing spacings become less
pronounced as the difference in diffusivities be-
comes greater. In fact, when the infinite fluid dif-
fusivity-limited model applies, the spacing of «
has no effect on the style or rate of homogeniza-
tion. Only the length of the slab does.

Finite fluid diffusivity-limited: Effects of K,
Figure 9 clearly shows a reduction in the degree of
homogenization when K, differs from 1. Interest-
ingly, the response to either a two-order increase
or decrease in K,, is an equivalent reduction in
homogenization. This is because K,, determines
the magnitude of f in both the fluid and solid (Eq.
8), and either a low or high value of K,, means
that one of the phases will be inefficient at ex-
changing the two components. Unlike slab spac-
ing, the style and degree of homogenization will
be sensitive to K, regardless of the ratio of solid
and fluid diffusivities.

Finite fluid diffusivity-limited: Effects of total
chlorinity
The total amount of chlorine (or the complexing
ligand) in the fluid also has an effect on the rate
and style of homogenization (Fig. 10). Increases in
chlorinity accelerate homogenization and reduces
nearest-neighbor effects. This is due to an increase
in mass transfer for a given reaction interval
(more of a and b in the fluid requires greater
changes in solid compeositions during boundary
equilibrations). This increases the rate of change
in mineral composition at the mineral-fluid inter-
face. This, in turn, causes steeper composition gra-
dients and increases diffusion rates within the min-
eral. Decreasing chlorinity has the opposite effect.

Discussion

Through numerical models, we have demonstrat-
ed that different types of homogenization proc-
esses produce different shapes of Fourier spectra
and mineral zonation patterns. The simulations

show that infinite fluid diffusivity-limited homo-
genization will lower the power in all frequencies.
In contrast, finite fluid diffusivity-limited homo-
genization affects mainly the high frequencies.
Fourier transforms of the model data clearly show
this effect. Other factors such as slab size and
spacing, total chlorinity, and the equilibrium con-
stant have the effect of accelerating or decelerat-
ing the rate of slab homogenization. An order of
magnitude increase in the chlorinity of the fluid is
equivalent to two orders of magnitude change of
K., from unity, but is less effective at homogeniz-
ing the slabs than a change of an order of magni-
tude difference in solid/fluid diffusivities. These
parameters can be grouped into two categories:
(1) transport variables such as the diffusivities of
the solid and fluid, and (2) gradient variables such
as K,,. total chlorinity, and slab size/spacing that
change the chemical potential gradients.

In nature, the combination of factors contrib-
uting to homogenization will be complex and vary
spatially. Exact prediction of the rates of homoge-
nization of any particular rock would require
knowledge of all the features outlined above and
how they vary within the rock. This is obviously
impossible. The best one can hope for is to lump
all of these variables together into an effective
time-integrated spatially-averaged exchange/
transport parameter. However, the use of Fourier
transforms of mineral compositional transects
within a rock would still give information about
the response of homogenization to local equili-
brium. This investigation is presented in part 2 of
this paper where natural chlorite compositions
were gathered along linear traverses and ana-
lyzed by Fourier methods. The models presented
here are the groundwork for gaining further in-
sight on the complex process of equilibrating sed-
iments during low-temperature metamorphism
and other geological processes involving diffusion
homogenization.

In addition to the Fourier analyses, our models
show that the Shewmon equation is applicable to
homogenization of minerals. This may prove to be
a simple tool for estimating the parameters in-
volved in the homogenization process. Its applica-
tion to natural data is presented in part 2. Com-
bining these data with detailed chemical analyses
of zonation patterns in single crystals should re-
veal evidence for local changes in the fluid com-
position (asymmetric zonation) or a homogene-
ous local fluid composition (symmetric zonation).
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Appendix 1

Calculation of changes in composition due to dif-
fusion followed the explicit central difference
method of CARSLAW and JAEGER (1959), so that
for one time step (¢)

(Xl—l.l =% >1(i.l + Xl+l.l) (Al)

AX. .. =D*

L+l

where X, is the magnitude of the fluctuation in
the irth wafer of length x. For the boundaries of
slabs and fluid media

B *(2*x -2*X,,)
=D

LU+l 2

X

it

AX

(A2).

This creates a zero-flux boundary for both the
minerals and the extreme ends of the fluid reser-
VOIr.

If concentration is scaled on a molar basis, and
ng is the number of moles of a per mole of a in Eq.
A3, s, 1s the total number of sites that @ and b enter
per formula unit, n/' is the number of moles of a
per mole of fluid, C/, is the total number of moles
of chlorine per mole of fluid, V" is the molar vol-
ume of mineral a, and V" is the molar volume of
fluid, then we have

ng = 7" (A3)
ni = Ciy1 (A4)
n¢ +ng =s, and (AS)
Cl,=v(nf+nf) (A6)

where v = 2 for divalent cations. The dimen-
sionless compositional fluctuations (X) for the
fluid and solid are:

fl

vn
x" = M

=) (A7)
and
x« = Lo (A8).

Sl

To recast the equilibrium constant equation

(C: )
(8l
K

SR M B (A9)

€q fl
(%

in terms of fluctuations, we substitute Egs. A3
through A8 into Eq. A9 and obtain

Reaction at the mineral-fluid boundary redis-
tributes matter, so that mass is conserved and A10
is satisfied. Given that n/ is the total number of
moles of a in the bordering mineral and fluid wa-
fers and each wafer having volumes V, and V), re-
spectively, and,

n=CV, + CV,

(A10).

XV Llc1 X"V

n, = Va‘\ -C%/_ﬂ L =aX* +bX",
a= V. All

V(l ( )

_ CLV,
b= AT (A12)
and,
fl
xe = M —bX (A13).
a

Plugging Eq. A13 into A10 and solving for X7,
we obtain the quadratic equation:

(Kea 9= 9)x"7 +
(ch -K,, n%+n%+%)(x")+(—"%): 0

(A14)
xn - BB —4AC (A15)
24
where:
A=b/(K  -1) (A16)
n' /
B=K_(1-K_)"/ +b/ (A17)
P “/a (A18).
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Appendix 2

For discrete, finite processes, P may be calculated
using the Blackman-Tukey spectral estimator:

+A

P(f)= ¢ Y w,r,exp[-i2fm¢]

m=-A

where ¢ is the sampling interval of the process
(spatial in our case), r,, is the autocorrelation esti-
mate of the N-sampled process at lag m, fis fre-
quency defined over the range —(2d) ' < f<+ (2d) ",
w,, is the Hann lag window described in HARRIS
(1978), and A is the total number of autocorrela-
tion lags, where A = 0.3N. For real processes, P(-f)
= P(f), and so we restrict our calculation to 0 < f <
+(24)'. We apply aslight modification of this esti-
mator in order to render the estimated values
proportional to spectral power (variance), as op-
posed to spectral power density (dependent on
¢),namely we calculate (Nb)™ P(f) (see MARPLE,
1987, p. 151, for details) where N is the number of
points in the series. Finally, we accommodate the
large dynamic range of P(f) by displaying the re-
sults in log(P)-log(f) space.

The error of P(f) depends and the spectral
properties of w,,,. The degrees of freedom v of P(f)
depend on w,,; for the Hann window, v = 8N/(3A),
where N is the number of process values (JENKINS
and WATTS, 1968). It has been shown that P(f) fol-
lows a y?2-distribution with » degrees of freedom;
the 100(1-a)% confidence interval for P(f) is
thus:

(A19)

[VP(f)/xi(1-a/2), vP( f )/x}(e/2)]

Figure A1l illustrates the procedure applied to
a discrete, second order autoregressive process,
l.e., a process containing a predictive measure of
nonrandomness. The estimated power spectrum
reveals that the low frequencies contain the ma-
jority of the process variance, with peak power
occurring in a band of frequencies centered at f =
0.125 (i.e., log(f) = —0.9). This indicates the pres-
ence of a characteristic wavelength near ¢ () = 8;
this 1s visible in the original process (Fig. Ala).
The absence of high frequencies is reflected in a
rapid drop-off of power for f> 0.2 (log(f) > -0.7)
in Fig. A1b. In log-log space, the 95% confidence

interval is constant with respect to f. The Black-
man-Tukey estimator can be performed using the
freeware ANALYSERIES (PAILLARD et al., 1996)
available at the website www.agu.org/eos_elec/
96097e.html.
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Fig. Al Anillustration of Fourier analysis of a process
containing a degree of non-randomness. (a) Fluctua-
tions (Y) of a hypothetical process along a series of n
measurements. Notice the presence of a characteristic
wavelength of about n = 8. (b) Fourier spectrum in
log(power)-log(frequency) space of data in Ala. The
non randomness of the process reduces variance at high
frequencies which is reflected by the rapid drop of pow-
er at log(f) values greater than -0.7.
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