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A new cluster analysis method for altered rock samples

by Tivadar M. Tôth12 and Martin Engi2

Abstract

A variety of cluster analysis methods are commonly used by geochemists to answer genetic questions Special problems

may arise when one tries to group or classify metamorphic or highly altered samples Various chemical elements
may have been mobilized by a number of alteration processes, thus disturbing or even destroying the original pre-
alteration group-structure.

This paper introduces a new hierarchical clustering procedure that is designed to be particularly useful in classifying

altered rock samples. The basic objective of the method is to determine the pre-alteration structure of the
groups. For this reason, during the analysis each pair of samples is compared element by element in order to decide
their similarity This procedure yields a specified, binary similarity matrix that is used to determine the groups of the
samples As with other hierarchical methods, the result of the new cluster analysis may be visualized with a dendrogram.

Such a graph simplifies the evaluation of the group-structure. The homogeneity of each group as well as the
heterogeneity between pairs of groups may be quantitatively measured by means of two newly introduced indices.
These variables are helpful in interpreting geochemical data.

The procedure is demonstrated on a simple example of twelve historic lava samples from Mt. Etna.

Keywords geochemical data analysis, cluster analysis, dichotomous function, chemical alteration, Mount Etna

Introduction

Cluster analysis routines are frequently used to
solve diverse classification problems in geochemistry.

Because these methods can be applied to
large sets of variables, they usually give more
informative results than traditional discrimination
diagrams. However, under special circumstances,
e.g. when data from highly altered rocks are
analyzed, specific problems of mathematical classification

may arise. During various alteration
processes, the concentrations of most chemical
elements may change to different degrees (e.g.
Gresens, 1967; Grant, 1986). For example, complex

seawater-rock interactions take place in the
early evolution of oceanic crust changing the
chemical composition of the MOR-basalt due
to Mg-, Ca-, and alkali-metasomatic reactions
(Seyfried et al., 1988; Alt, 1995, and references
therein). Wall-rock alteration processes also modify

mineralogical and chemical composition of the
host rock and yield ore deposits (Barnes, 1967;

Riverin and Hodgson, 1980). Hydrothermal
processes in shear zones often lead to pervasive
changes m the concentration of many elements
and composition of minerals (Altenberg, 1991).
Many metamorphic processes are thought to run
under open system conditions, i.e. gain and loss of
different elements occurs (Wood et al., 1976;
Condie et al., 1977; Sorensen and Barton,
1987).

Due to these and other possible alteration
processes, the composition of samples may change
significantly, rendering their mathematical
classification difficult. The aim of this paper is to discuss
special problems that arise regarding the classification

of metamorphic and altered rock samples
and to introduce a new classification method that
deals with these problems. This method has

proven successful when applied to large sets of
geochemical data (e.g. M. Toth, 1994). However,
for illustrative purposes in this paper, only a small
example is presented, consisting of geochemical
data of historic lava samples from Mount Etna.
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Four samples from each of three eruptions (1865,
1911,1974) were chosen for which trace element
data exist (Barbieri et al., 1993). Petrologically,
all samples are hawaiites, but the rocks from 1974
are more mafic than others. Before the application
of the new method, nine popular hierarchical cluster

approaches were applied to classify the given
samples. All combinations of complete linkage,
centroid and Ward methods with Euclidean,
cosine 0 and Pearson correlation measures were
used. None of these approaches could repeat the
expected original structure; indeed these methods
all more or less "mix" the samples.

Some comments on cluster analysis

While many textbooks introduce the mathematical

background (e.g. Anderberg, 1973) of methods

such as cluster analysis (CA), few of them
refer to specific requirements and limits of their
application in the Earth sciences. CA is a useful
exploratory tool in the analysis of large, multivariate
data sets, such as occur typically in geochemistry.
Used most frequently in the geosciences are ag-
glomerative CA methods; these recursively grow
clusters of samples based on similarity between
samples. Subsequent grouping of these clusters
depends on the method chosen. For example, in
the average linkage method, the similarity
between clusters is determined using cluster cen-
troids. This leads to a progressive averaging
process, in which the multivariate characteristics
of a cluster become less well defined as a cluster
grows, accepting samples and other clusters of
samples that "dilute" the original grouping.

In practice, the results are sometimes difficult
to interpret; arbitrary boundaries between classes

may be introduced. This need not be a flaw of the
statistical method because, unlike in biology, samples

in geochemistry typically do not constitute a
priori classes. In many instances, it is useful to view
rocks as transitional between two or more end-
members, between which natural boundaries do
not exist. In situations such as these, the classification

approach may not be a suitable model. Flow-
ever, even where it is, conventional CA sometimes
encounters difficulties, either because of the
progressive averaging problem sketched out above,
or because the data are multidimensional, yet the
ultimate representation of the intersample
relationships is reduced to a 2-D graph, a dendrogram
(see below). A method is suggested in the present
paper to circumroute some of the drawbacks of
traditional CA, in that we use indicator
transforms (Goovaerts, 1994) in the clustering problem.

However, we should stress that, as with all
statistical analysis, it is the responsibility of the
practitioner to ensure that one may expect CA to yield
meaningful results when applied to the geochem-
ical data in question. Where the significance of
(geochemical) classes is not clear, the results of
any classification approach may be difficult to
interpret, no matter how good a CA method is used.

Statement of the problem

Let us assume that a suite of samples under
investigation did at some earlier, pre-alteration stage
show a geochemically recognizable group structure.

One may then ask: how can this structure be
recognized after the alteration?

Many studies on igneous and metamorphic
geochemistry as well as soil chemistry deal with
changes of element concentrations due to different

alteration processes. It is widely recognized
that some elements are mobile during many alteration

processes (e.g. alkalies), while others may be
referred to as immobile (e.g. rare earth elements).
The main chemical and crystal structural factors
controlling element mobility have also been
known for decades (e.g. Govett, 1981). On the
other hand, several studies (e.g. Gast, 1968; Gi-
rardi et al., 1986) show that, given certain
geochemical circumstances, all elements may show
mobile behaviour, and none of them may be
judged completely immobile.Trace elements such
as Zr, Y, Nb,Ti or P generally exhibit conservative
behaviour during many alteration or metamorphic

processes (Pearce, 1975; Graham, 1976;
Wood et al., 1976; Coish, 1977). On the other
hand, under certain geochemical conditions (e.g.
high activity of COz or F~), these elements may
also be mobilized (Morrison, 1978; Pearce and
Norry, 1979, Gieré, 1986, 1990). These results
suggest that the original group structure of the
samples may be disturbed or destroyed by differential

mobilization of chemical elements.
An obvious way to solve this problem would

seem to be the elimination of the most mobile
elements from the classification analysis. However,
due to the different kinds of alteration processes,
the elimination of almost all elements might
theoretically be justified; few if any of them would
remain suitable for use in classification. Worse, there
is no generally accepted procedure to choose
which elements remain suitable. Not only is the
identification of relatively immobile elements a
problem, but the extent of alteration may vary
greatly from one sample to the next. Strongly
altered samples preserve few or none of the
geochemical characteristics of their original (i.e. pre-
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metamorphic, pre-alteration) genetical group (cf.
basalt-diabase alteration, spilitization, propyliti-
zation, rodingitization). Again, there is no general
method to identify and exclude such samples.
However, elimination of all suspicious samples
and elements would lead to significant loss of
information. Therefore, erasing variables from the
data base cannot be the best procedure for dealing

with the complex problem of mobility. A suitable

cluster method should follow a different
approach: The purpose must be to find the "essence"
of the original group structure by determining the
similarity of the sample pairs element by element.
To determine the similarity between two samples,
only those elements should be used which show
immobile behaviour in both samples. A different
set of elements may be necessary to classify
different groups of samples. Samples with significantly

changed composition must be eliminated
during the analysis.

The algorithm

Let us take m (chemical) variables and n samples.
Let us define the graphs gl5 g2,..., gm (one for each
variable) as follows. Each graph has n vertices,
representing the samples. In the case of the fth
graph let two vertices be joined with a tie-line if
the value of the tth variable measured in the two
samples is close enough in value. (The expression
"close enough" will be defined more precisely
later.) Thus in the case of the graphs g,, g2,..., gm those
samples (vertices) would be joined which are similar

to each other according to the 1 st, 2nd,..., mth
variables, respectively. The graph form is useful to
visualize (Fig. 1) the first step of the algorithm;
however, further steps are more easily described
algebraically. Each graph can be represented by a
symmetric, n n type binary (each value is 0 or 1)
matrix (Ak, k 1,2,..., ni). In the case of the kXh
variable, Ak(i,j) 1 if there is a tie-line between

1974/4
1865/1

1865/2

La
O
1\ Nb

in

3
(0

•u
$

Zn

Samples (n=12)

50 50 28

1974/3

1911/4

1974/3

1974/4

1911/3

1865/3

1911/2

1 0 1 0 0

0 1 0 0

0 0 0

0 0

1

Fig. 1 Derivation of the g, graphs and the A, matrices from the original data matrix (in the case of 12 hawaiite lava
samples of Mount Etna).
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the ith and/th samples, otherwise Ak(i,j) 0.
Consequently, the first step of the algorithm yields a

graph and as an equivalent form a binary matrix
representing each row of the original data matrix
(Fig. 1).

By summing up these matrices (or graphs), a

new n n matrix (A) is generated, where

A(i,j) SAk(i,j).

A(i,j) gives the number of variables which
have similar values in samples i and j. The higher
the value A(i,j), the more likely the ith and ;'th
samples belong to the same genetic group. Hence
let us define m different n • n matrices (Br, T
1,2,..., m) as follows:

Br(i j) 1, if A(i,j) > T, else Br(i,j) 0

These matrices are binary and they determine
G,,..., Gm graphs. In these graphs two vertices are
joined if the samples represented by them are similar

to each other according to at least 7, 2,..., m
variables (Fig. 2). Let us call the T value in the
above formula the connection level. If T is small,

the Gr graph likely has many connections. However,

as T increases, the graph must break up,
forming smaller, independent groups. For any one
of these groups, samples belonging to it are similar

to each other in at least T variables, though the
set of the variables may vary from one sample pair
to another within this group. These samples are
related to elements of other groups in fewer than
T variables. The Gr graphs define clusters and
yield a group-structure, one for each value of the
connection level. Though the group-structure may
be obtained in the presented way is not a hierarchical

one by origin, by increasing (or decreasing)
the T value step by step, the results may be visualized

by common hierarchical forms (dendrograms).

To generate the g; graphs, samples are
connected that are " close enough " to each other. To
define "close enough" precisely, a similarity measure

is needed. However, unlike in commonly
used agglomerative cluster analysis, only a
univariate function is needed for the new method. An
obvious definition for a uni-variate similarity

1865/1
1974/4 G 1865/2

A=

1865/1

1865/2

1865/3

1865/4

1974/3

1974/4

vO \£) so
00 00 00

5 8 6 3 2

8 8 3 3

6 3 2

1 3

9

1974/3

1974/1

1974/3

1974/4

1865/3

1865/4

1911/1

1911/4 ^ 1911/2
1911/3

0 1 0 0 0

1 1 0 0

0 0 0

0 0

1

Fig. 2 Derivation of the B; matrices as well as G, graphs from the A matrix (in the case of 12 hawaiite lava samples
of Mount Etna).
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Tab. 1 Trace element content of the examined lava samples (Barbieri et al., 1993).

443

Variables 1865/1 1865/2 1865/3 1865/4 1911/1 1911/2 1911/3 1911/4 1974/1 1974/2 1974/3 1974/4

La 67 82 82 78 66 74 67 69 73 65 61 67

Nb 50 50 57 51 36 41 40 37 31 26 24 28

Rb 47 44 41 40 37 35 31 26 43 47 48 45

Zr 229 249 229 264 220 249 233 211 203 215 180 194

Sr 1230 1160 1140 1180 1190 1210 1170 1140 1170 1150 1140 1140

Ni 30 22 24 24 31 27 31 33 50 54 51 47

Co 32 34 29 30 36 35 38 34 49 45 49 45

Cr 48 35 42 41 58 44 67 55 55 63 61 68

Cu 115 130 118 151 140 130 128 139 117 154 134 138

Zn 82 69 99 102 91 93 86 80 85 101 98 113

measure is the absolute value. Let us define the
similarity of two samples according to a variable
as the absolute value of their difference. Traditional

cluster methods apply real numbers as
similarity measure (e.g. Euclidean distance, cos 0).
Here a dichotomous function is used, requiring
that an absolute value function be transformed to
an indicator function in order to create the g,

graphs. Dichotomy is the most essential feature of
the method because it is used for eliminating
disproportionately large differences between samples.

Numerous possibilities may be suitable to
define an indicator function. Here, we transform an
absolute value function to a sequence of characteristic

similarity functions (Sj) as follows:

Si(x) 1, if x < i • (cr/n), else S,(x) 0

where cr is the standard deviation of the given
variable and n is the number of samples. Let us
call the multiplier of tr/n, (i), the similarity level
(H).

Evaluation of results

The ability to choose the similarity level renders
the method flexible. Although the two determining

factors of the method (connection level and
similarity level) are independent from each other,
they have a common influence on the grouping
tendencies of the samples. If a relatively small
similarity level is chosen to be characteristic, the

groups start to form at a high T. This also means
that relatively many variables are used to classify
the samples. If, in the other extreme, a large
similarity is accepted, the groups develop at a low T
(small number of variables).

Given unaltered rocks, two samples belonging
to the same genetic group are normally rather
close to each other in the original variable space,

so their connection is easy to recognize by using
traditional cluster methods. In the same case, the
value of A(i,j) will be relatively large (close to
m), because the samples are similar to each other

with regard to most of the variables. However,

suppose that the effect of some alteration
processes is to change some of these variables
(elements).The two samples may get "far" from
each other in the original variable space. Thus
their correspondence may remain hidden when
applying traditional classification methods. Given

the same alterations, the value of A(i,j) will
decrease because of this change in the variables,
but this number will remain high relative to two
samples that do not belong to the same genetic
group because these latter two samples will be
similar to each other in only a few variables.

In order to give the possibility of
understanding the geological implication of each

group and of the whole group-structure, the
most characteristic parameters of the groups
must be determined simultaneously while
revealing the significant differences among them.
In other words, the variables must be identified
that play a significant role in determining the
homogeneity of each group, and also those
variables that are responsible for the heterogeneity
between groups. In the present classification
method, the homogeneity of a group means the
number of samples that are similar to each other

according to the given variable. An index of
homogeneity can be defined:

Ihom,.(group) 2 e, / (k, • (k, - 1)), where

Ihom, is the homogeneity index of the ith variable

within one group;
Cj is the number of the tie-lines (connections)

according to the ith variable in the given group;
kj is the number of samples in the given
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Fig. 3 Dendrograms for Mount Etna hawaiite lavas
based on: a) complete linkage method, cos 0 measure; b)
the A matrix of figure 2 with II 9; c) the A matrix of
figure 2 with II 5.

group (and thus (k, (k, - 1)) / 2 is the maximum
number of possible tie-lines).

The homogeneity index alone is not sufficient
to determine the role of the tth variable in the
group. A second parameter is required to indicate
the variables that cause the differences between
two groups, i.e. the number of the tie-lines
between the groups:

I,het,i(groupi, group2) 1 - f, / (k, k2), where

Ihet i is the heterogeneity index of the ith variable

between two groups;
f, is the number of the tie-lines (connections)

according to the ith variable between two given
groups;

kb k2 are the number of samples in the two given

groups (and thus k, • k2 is the maximum number

of possible tie-lines).
These two indices (IhOD1>i, Ihl.tl) provide a sensitive

measure of the role of the ith variable in forming

a given group. However, if (in this group) the
homogeneity index of one of the variables is high
(close to one) while the heterogeneity index is low
(close to zero), the given variable has a similar value

in both groups. Consequently, it may not indicate

much about the important geochemical
features of the groups. Another situation is when the
homogeneity is low and the heterogeneity is high.
In this case, the examined variable has a high
variance in both groups, and neither may be characterized

by it. These two examples may help to
define the parameter which shows the differences
between groups most sensitively:

Id l(group,, group,) (^hom,i(groupj) •

' Ihom,i(group2) Ihetl(groupi, group2))1/3,

where Idi is the discriminant index of the Ith
variable between group, and group2.

The higher this value (close to unity), the more
suitable the fth variable is for characterizing the
given pair of groups.

A geochemical example

Trace element data on hawaiite lavas from three
eruptions (1865,1911,1974) of Mount Etna were
selected (Tab. 1) to test the new classification
method. A detailed petrological and geochemical
presentation as well as a volcanological interpretation

of the samples examined were given by
Barbieri et al. (1993). As volcanoes from the
Mediterranean region commonly do, Mount Etna
shows significant chemical variation among
different eruptions. The data set chosen here may be
useful to demonstrate the new cluster analysis
method introduced above and to compare its per-
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Tab. 2 Homogeneity indices (Ihom-1) of trace elements in
the three lava groups for n 0.

Tab. 3 Heterogeneity indices (IheC]) of examined
elements between the groups for II 0.

Variables Homogeneity indices

Group 1865 Group 1911 Group 1974

La 0.50 0.66 0.33

Nb 1.00 1.00 1.00

Rb 0.67 0.50 1.00

Zr 0.33 0.50 0.50

Sr 0.33 0.33 0.67

Ni 1.00 1.00 1.00

Co 1.00 1.00 1.00

Cr 0.83 0.17 0.83

Cu 0.17 0.50 0.17

Zn 0.17 0.67 0.17

Variables Heterogeneity indices

Groups
1865-1911

Groups
1865-1974

Groups
1911-1974

La 0.75 0.81 0.43

Nb 1.00 1.00 0.81

Rb 0.81 0.25 1.00

Zr 0.50 0.88 0.81

Sr 0.62 0.50 0.63

Ni 0.31 1.00 1.00

Co 0.38 1.00 1.00

Cr 0.75 0.94 0.43

Cu 0.81 0.69 0.56

Zn 0.75 0.69 0.56

formance to other methods. To be sure, these samples

are not as highly altered as are many
(meta)volcanics, especially following hydrothermal

metamorphism. The set of hawaiite samples
from Etna is sufficient, however, to compare some
of the characteristics of the new grouping method
to traditional methods.

Nine commonly used hierarchical cluster
methods were chosen to classify the given samples.

All combinations of complete linkage, cen-
troid and Ward methods with Euclidean, cos 0 and
Pearson correlation measures were applied. None
of these approaches turned out to repeat the
expected original structure; indeed these methods
all more or less mixed the samples. As an example,
figure 3a shows that the four 1911 samples end up
in three different groups, and only two of them are
found to be similar (1911/1 and 1911/3).

When applying the new classification method,
a high If value is selected first. This ensures that,
even in the case of a relatively large distance, two
samples may be considered to be similar.
Consequently, the Gr graph breaks up - subgroups start
forming - only at high values of T, i.e. if a large
number of variables is used for grouping. The set
of variables may vary from one sample pair to
another as mentioned earlier. For II 9, all samples
are connected up to T 5. When decreasing the T
value, three groups form, one for each eruption,
and the original sample structure is reproduced.
The 1911 group remains stable even at T 7 (Fig.
3b).

By decreasing the value of II to 5 (Fig. 3c) the
diagram suggests two groups, one for the 1974
samples and the other for those of 1911. One sample

of the 1865 samples also belongs to this latter
group. The rest of the 1865 samples cannot be

grouped; they form independent groups at T 2

(1865/3,4) and T 3 (1865/2).
The homogeneity indices for the groups (II 9)

show that each group has rather uniform value of
Nb, Ni and Co, while Cu is quite variable within
each group (Tab. 2). Most variables behave differently

within the three groups. The heterogeneity
indices (Tab. 3) indicate that Nb might be the most
suitable variable to distinguish the three groups.
Other elements (e.g. Ni, Co) have high values
between samples from 1865-1974 and 1911-1974

groups, but they play an insignificant role in
distinguishing the 1865-1911 samples (Tab. 3).

There are excellent examples in the given set
of variables to demonstrate the role of the
discriminant index. Although IhoraNl(1865) 1 and
Ihom,N,(1911) 1, one finds that Ihet Nl(1865,1911)
0.31; hence nickel has a similar value in both
groups, and it cannot be used to distinguish the
composition of the two eruptions. Similarly,
though the value of IhctCu(1865,1911 is rather
high (0.86), Ihom,Cu(1865) 0.17 and 1^(1911)
0.33 are low, making the variable (Cu) unsuitable
for discrimination.

In the case of the examined lava rocks, Nb has

high Idl values for each group pair, showing that
Nb is most important in distinguishing the groups.
IdNl and Id Co are also high for group pairs which
contain the 1974 samples (Tab. 4).

Assessment of hierarchical methods

When classifying different cluster methods,
hierarchical and nonhierarchical methods are
distinguished (Anderberg, 1973). The procedure
presented in this paper is not a hierarchical one, every
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Tab. 4 Discriminant indices (Id l) of the variables.

Variables Discriminant indices

Groups
1865-1911

Groups
1865-1974

Groups
1911-1974

La 0.62 0.51 0.45

Nb 1.00 1.00 0.94

Rb 0.64 0.55 0.79

Zr 0.43 0.52 0.59

Sr 0.41 0.48 0.51

Ni 0.67 1.00 1.00

Co 0.72 1.00 1.00

Cr 0.47 0.86 0.39

Cu 0.40 0.26 0.36

Zn 0.43 0.26 0.39

pair of (r, II) determines a valid classification.
However, a hierarchical group structure does in
fact result from increasing (or decreasing) 1 step
by step for each fixed IL On increasing F. an analogy

to divisive methods results; on decreasing F a

similarity to agglomerative methods is evident. As
with other hierarchical methods, the result may be
visualized by dendrograms. Such a diagram may
be suitable to determine the sample groups.

In the case study of the historical lava samples
from Mount Etna, the method possesses the
advantages of the hierarchical cluster analyses.
Among these, agglomerative approaches build a

tree from branches to root, while the divisive
methods begin at the root and work towards the
branches (Anderberg, 1973). The new method
belongs to neither one of these groups. It has some
of the advantages and avoids some of the difficulties

of both families of cluster methods.
Agglomerative approaches usually have a

recursive algorithm with the following two steps;
1) Calculation of the similarity matrix using

one possible definition of a distance.
2) Connection of the most similar groups.
The distances usually applied are all defined

for samples only, and not for groups. Because of
their construction, all of these methods have the
same problem: How does one define distances
that are generally usable to calculate similarities
between groups? There are many established
approaches to answer this question. However, since
the new algorithm uses the original similarity matrix

during the entire classification procedure, it is

not a recursive method; it does not require
recalculation of similarities between groups after each
step. This may be also a considerable computational

advantage when handling large data sets.

Divisive methods operate by splitting the
initial set of samples into two parts. To accomplish
this, a dichotomized data base is commonly used
instead of the original metric one. The basic concept

is then to divide the sample group so as to
minimize the appropriate measure of similarity
between the newly formed subgroups. Many
different approaches to do this were summarized
and tested by Gill and Tipper (1978). The usage
of dichotomized (indicator) variables is familiar
in geology and is popular in geo-mathematical
and geostatistical practice (e.g. Journel, 1983;

Goovaerts, 1994). Divisive cluster methods yield
respectable results and possess theoretically optimal

characteristics (Gill and Tipper, 1978).

Conclusions

The new cluster method, originally designed for
classifying altered and geochemically changed
rock samples, shows the following features.The
algorithm utilizes a specified similarity matrix
defined by binary variables. Dichotomy is used for
eliminating disproportionately large differences.
Similarity between two samples is measured by
variables (element concentrations) and, in the
second step, by the number of corresponding
variables. As a consequence, samples are classified
based only on variables that have not changed
appreciably, and each variable is applied only to
distinguish two samples at a time. This approach can
handle samples with significant changes in some
of their variables. Since grouping involves only F
variables, a sample which is similar to the others
according to fewer than I variables is excluded
from the analysis. In fact, it will form an independent

group. Because of this simultaneous elimination

of some samples and variables, the result
should be the framework of the pre-alteration
group-structure. The choice of similarity level (II)
makes the method more flexible in generating
groups. Due to the simultaneous application of
the two determining parameters (F, IT), a hierarchical

group-structure may also be obtained.
In addition, it may also be possible to determine

variables which may be suitable for describing

the groups geologically. Using the indices
introduced above (Ihom,i» het.r Idj).a detailed investigation

of each group or pair of groups is possible
and may yield geochemical insight.

In addition to the small case study of historic
lava samples of Mount Etna, presented above
primarily for didactic purposes, other geochemical
datasets have been successfully analyzed using
the CA method introduced above. While the
detailed documentation of these applications is be-
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yond the scope of the present paper, this method
and its predecessors (M Toth, 1992) have been
found capable of handling fairly extensive
datasets (M Toth, 1994) as well, and the results
do appear to be geologically sensible Nevertheless,

further tests are desirable, as are more
applications of the new classification procedure in
diverse areas, especially where effects of alteration
processes render the application of traditional
classification approaches difficult
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