Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	71 (1991)
Heft:	1
Artikel:	Preparation and cell refinement of mica microsamples
Autor:	Stern, W.B.
DOI:	https://doi.org/10.5169/seals-54353

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 17.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Frau Prof. Dr. Emilie Jäger gewidmet

Preparation and cell refinement of mica microsamples

by W. B. Stern¹

Abstract

Least squares refinement of X-ray powder diffractograms of mica microsamples is possible when preferred orientation is minimized electrostatically. Their relative 1-sigma errors for a, b, c and cell volume are 0.06, 0.04, 0.02 and 0.05% respectively. The correlation of a and b parameters is within the statistical error of data, but a, b versus c scatter far more. When literature cell parameters of pure end members muscovite-phengite-paragonite are combined in a triangular grid and used for a diffraction analysis of white 2M1-mica, the results obtained correspond trendwise only with chemical analyses performed on the same micas. One may conclude that even qualitative chemical analysis on microsamples (e.g. by energy-dispersive X-ray fluorescence) enables more reliable results than high-quality diffraction data. Though cell parameters a and b of white mica are certainly linked with "phengite"-, and c with "paragonite"-content, the interdependence seems to be more complex than expected from literature.

Keywords: 2M1-mica, cell refinement, X-ray diffraction, microsample, chemical composition.

Zusammenfassung

Zellverfeinerungen pulverdiffraktometrischer Aufnahmen von Mikroproben sind im Falle von Hellglimmer möglich, wenn Orientierungseffekte elektrostatisch reduziert werden. Typische 1-sigma-Relativfehler für a, b, c und Zellvolumen sind 0,06, 0,04, 0,02 und 0,05% für 2M1-Hellglimmer, von denen 53 unterschiedlicher Herkunft diffraktometrisch und röntgenfluoreszenzanalytisch untersucht worden sind. Werden aus der Literatur die b- und c-Zelldaten von Muskowit, Phengit und Paragonit in einem Dreiecksdiagramm kombiniert und zur diffraktometrischen «Analyse» von Hellglimmer verwendet, so zeigen die gefundenen Werte zwar eine ungefähre Korrelation mit den an denselben Proben erhobenen chemischen Daten; von einem quantitativen Zusammenhang kann aber – trotz der kleinen Relativfehler (XRD) – keine Rede sein. Offensichtlich sind die Beziehungen zwischen Gittergrösse und Chemismus komplexer, als z.B. durch die Bezeichnung «Phengit» zum Ausdruck kommt, bei dem Mg, Fe²⁺ und Fe³⁺ einen unterschiedlichen und wohl auch gegenläufigen Einfluss auf die a- und b-Parameter haben können.

Introduction

Lattice dimensions of crystals are essential parameters, but not easy to determine on low-symmetry flaky minerals like mica. When chemical data, based on bulk mineralogical (powdered) specimens are correlated with lattice parameters, the latter should be determined on powdered samples as well (not on single crystals), preferably on the same specimen, from which chemical information was obtained.

A recently developed preparation method for diffraction and chemical investigation on micro-

samples (HANDSCHIN, STERN, 1990) was tested by studying dioctahedral micas from schists, gneisses, granites and pegmatites of various origin.

Procedures and results

X-RAY DIFFRACTION (XRD)

When microsamples have to be investigated by X-ray diffraction or -fluorescence, the size of sample surface is important in order to get statistically relevant signals. Thus, 30 mg of powdered mica

¹ Mineralogisch-Petrographisches Institut der Universität, Bernoullistrasse 30, CH-4051 Basel.

Fig. 1 X-ray diffraction pattern of powdered 2M1 – muscovite (Vz 477): Comparison between conventional preparation (300 mg in sample cup) and electrostatically disoriented microspecimen (30 mg) on stretched foil. Non-basal reflections of the disoriented microsample display double net intensities.

(10 mg would do as well for diffraction work) were distributed evenly on a stretched foil of 40 mm diameter, and fixed to it with 0.25 ml Griltex solution. In order to minimize preferred orientation, the mica flakes were disordered electrostatically by moving a plexiglass rod close to the surface of the drying mica / Griltex film.

In contrast to conventional mounting (e.g. 300 mg powdered mica in a sample cup or smear slides) not only basal spacings (001) are prominent, but also random hkl-reflections (Fig. 1). Since least squares cell refinement (APPLEMAN, EVANS, 1973) of a monoclinic structure needs around 20 linearily independent strong reflections, it is evident that only disoriented samples can be used. Even these diffraction patterns may leed to plausible, but nevertheless erroneous cell parameters (STERN, 1987), when statistics of signal/peak ratios are not appropriate.

In order to combine suitable resolution and signal statistics, the samples were run with an angular goniometer speed of 0.1 degrees 2 Θ only (around 12 hours per exposure); least squares refinements were performed on-line after data reduction, the results transfered to a Lotus worksheet (reg. trade name LOTUS 1-2-3, version 3.0), (Fig. 2, Tab. 1). The statistical average errors are \pm 0.003 Å for a, 0.004 for b and c, and 0.4 Å³ for the cell volume respectively.

The correlation of a and b parameters is fair and corresponds to literature data, e.g. from Borg and SMITH, 1969 (Fig. 2).

X-RAY FLUORESCENCE (XFA)

During the past few years a large amount of micas and "coexisting" mica pairs was re-examined with improved wavelength- and energy-dispersive X-ray fluorescence methods (WD-XFA, ED-XFA) for main constituents and trace elements, part of these unpublished data were used here to correlate them with XRD data.

Quantitative WD-XFA is still (STERN, 1979) executed on fused minerals for main element analysis, and on pressed powders for trace element analysis, both routines taking advantage of fully automated procedures optimized for intensity (matrix-) corrections. All data were automatically transferred to a Lotus worksheet file for further processing and graphical display.

							0
XFA) Musc	<i>6\0</i>	59.9 68.5 55.3 13.6 13.6 52.9	56.6 83.7 85.0 63.3 50.0	80.2 56.6 80.7 75.4 86.7	80.5 77.1 77.1 77.1 84.5 88.1 88.1	88.154 85.14 85.14 85.14 85.14 85.14 85.14 85.15 85.14 85.15	98.9 85.6
ated (Na/Na+	4.6 0.0 13.1 0.7	$\begin{array}{c} 0.7\\ 14.9\\ 1.1\\ 7.8\\ 0.7\\ 0.4\end{array}$	7.6 1.6 3.8 3.8	2.3 5.5 1.2 2.2	29.09.09.09.09.09.09.09.09.09.09.09.09.09	1.1 14.4
1 Calcula Pheng	Si/AĬ I %	40.1 27.0 73.4 52.0 47.1	42.8 16.3 13.9 28.9 29.4 49.6	12.2 39.4 17.7 24.3 9.5	21.4 20.4 17.3 13.3 10.7	212 212 212 212 212 212 212 212	
Specimer no.		XV7361 XV7658 XV7634 XV7632 XV7642	XV7537 XV7537 XV7538 XV7538 XV7523 XV7515 XV7615 XV7473	XV7549 IX1169 XV7646 XV7630 XV7674	XV7553 XV7506 XV7375 1X1163 XV7584 XV7584 XV7603	XV4994 XV6321 XV63221 XV63221 XV63219 XV63219 XV7319 XV7265 XV7265 XV7265 XV7703 XV7703 XV7703 XV7313 XV73313 XV7313 XV7331	XV7343 1X962
WD-XFP	Fe203t	$\begin{array}{c} 4.10\\ 2.57\\ 7.08\\ 2.69\\ 8.58\\ 8.58\\ 4.10\\ \end{array}$	$\begin{array}{c} 5.29 \\ 2.66 \\ 0.82 \\ 0.82 \\ 1.79 \\ 5.89 \\ 7.68 \\ 7.68 \end{array}$	3.80 3.66 3.66 0.84	4.45 2.44 2.90 1.79 2.70	82 82 82 82 82 82 82 82 82 82	2.30
ED-XFA	Fe203t	3.88 7.15 7.14 7.14 7.14 7.14	$\begin{array}{c} 4.65\\ 2.51\\ 0.81\\ 1.68\\ 4.45\\ 5.40\\ 7.19\end{array}$	3.68 2.76 3.01 3.00 0.93	4.07 2.32 6.56 1.79 1.80	924122222222222222222222222222222222222	1.98 0.83
	Fe/Mg	$\begin{array}{c} 0.14 \\ 0.41 \\ 0.41 \\ 0.46 \\ 0.46 \\ 0.15 \end{array}$	$\begin{array}{c} 0.36\\ 0.36\\ 0.05\\ 0.46\\ 0.46\\ 0.46\\ 0.46\end{array}$	$\begin{array}{c} 0.56 \\ 0.36 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.31 \end{array}$	$\begin{array}{c} 0.67\\ 0.41\\ 0.87\\ 0.48\\ 0.37\\ 0.51\\ 0.61 \end{array}$	0.17 0.63 0.64 0.65 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	0.64
	K/Rb	2.600 2.120 2.440	2.520 2.554 2.554 2.210 2.270 2.300	2.610 2.310 2.390 2.660	2.464 2.380 1.760 2.240 2.640 2.360	2.370 2.120 2.120 2.120 2.120 2.150 2.150 2.150 2.1377 2.1377 2.1377 2.1377 2.13777 2.137777 2.13777777777777777777777777777777777777	2.450
-XFA	Al/Fe.	0.610 0.820 0.446 0.360 0.569	$\begin{array}{c} 0.580\\ 0.951\\ 1.410\\ 1.180\\ 0.690\\ 0.420\\ 0.420 \end{array}$	0.860 1.036 0.920 0.810 1.175	0.804 1.010 0.700 0.930 1.156 1.030	0.950 0.432 0.432 0.432 0.985 0.985 0.985 0.985 0.985 0.995	$1.110 \\ 1.098$
ios ex	Si/Al	0.236 0.182 0.375 0.285 0.285 0.285	0.247 0.138 0.093 0.128 0.190 0.192 0.275	0.121 0.233 0.144 0.171 0.171	0.142 0.155 0.159 0.159 0.159 0.159 0.115	0.117 0.213 0.1407 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.1117 0.1150 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.155 0	0.134 0.167
loo-rat	K/K.Ba	-0.051 -0.029 -0.003 -0.003 -0.046	-0.013 -0.010 -0.000 -0.000 -0.000	-0.043 -0.022 -0.007 -0.004 -0.410	-0.018 -0.015 -0.008 -0.025 -0.014 -0.009		-0.007
Std	err. 1	0.012 0.016 0.015 0.015	$\begin{array}{c} 0.011 \\ 0.022 \\ 0.015 \\ 0.017 \\ 0.017 \\ 0.022 \end{array}$	0.012 0.018 0.018 0.016 0.017	0.008 0.016 0.019 0.011 0.011	0.019 0.015 0.017 0.017 0.011 0.011 0.0119 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.021
٩	err.	0.3	0.0 0.0 4.0 4.0 4.0	0.5	0.2		3 0.8 0 0.5
volum volum		935.8 935.1 944.3 929.2 928.9	932.1 941.0 922.7 930.7 938.4 938.4 938.4	928.6 937.6 941.1 937.8 937.8 937.8	8 935.9 8 933.5 8 943.35 8 943.35 8 931.1 8 935.1	2 932 5 932 5 932 5 932 5 932 5 932 5 932 5 932 5 932 5 932 5 932 932 932 932 932 933 933 933 933 933	8 937.8 9 467.(
(XFA heta		95.99	995.6995.6	95.8 95.8 95.8	95.89 95.89 95.89	95.95 95 95 95.95 95 95 95.95 95 95 95 95 95 95 95 95 95 95 95 95 9	99. 1 97.
data	error	0.003 0.003 0.003 0.003	0.001 0.002 0.002 0.002 0.002 0.002	$\begin{array}{c} 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.002\end{array}$	0.001 0		00.00
mical		$\begin{array}{c} 19.960\\ 20.035\\ 19.999\\ 19.977\\ 19.991\\ 19.991\\ 19.940\end{array}$	19.937 20.052 20.056 20.036 20.033 20.033	19.967 20.025 20.049 20.040 19.960	20.044 20.048 20.066 20.032 20.035 20.035 20.033	20.0946 20.0946 20.0055 20.0056 20.0056 20.0057 20.005	20.420
d che	error	0.003 0.005 0.005 0.004 0.003	0.008 0.006 0.005 0.003 0.003	0.004 0.005 0.001 0.005 0.002	0.003 0.002 0.002 0.004 0.003	9,005 0,002 0,003 0,003 0,003 0,003 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,003 0,00000000	0.003
electe	(<u>v</u>) n	9.039 9.021 9.071 9.071 9.060 9.024	9.014 9.042 9.000 9.036 9.038 9.038	9.007 9.026 9.048 9.018 8.984	9.019 9.009 9.059 9.015 9.015	9.035 9.025 9.025 9.013 9.013 9.017 9.017 9.017 9.018 9.017 9.018 9.000000000000000000000000000000000000	5.249 8.991
and se	error	0.002 0.002 0.003 0.003 0.003	0.003 0.003 0.004 0.002 0.002	0.003	0.003 0.003 0.004 0.004 0.004	0,000 0,003 0,00000000	0.010
(RD)	q (Y)	5.213 5.200 5.231 5.190 5.194	5.207 5.217 5.185 5.213 5.213 5.213	5.214 5.214 5.214 5.216 5.183	5.203 5.195 5.216 5.187 5.198 5.188	50000000000000000000000000000000000000	8.878 5.169
ca (X	t Grp		~~~~~~	ოოოო	44444	ດດອດລອດດຸດ ທຸດບາດທາດທາດທາດທາດທາດ	3 1
ie Mi	Hos	**?*??	55555555	នទទទន	~~~~~~		2M1 P Sh
Data Whi	Origin	Bernardino Calanca Bernardino Laengtal Eisten Vals	Bedretto Blenio Levent Chiavenna Tosafall Lebendun Binntal	Antigorio Bavona Croppo ' Beura Verzasca	Prato Lavertezzo Odro Lavertezzo Morobbia Novate	Irkutsk Rustum Kali-b Sdarda Badani Morocco Morocco Morocco Morosci PVSR-India Vandana PVSR-India Vandana Argentina Tucuman Argentina Sudan Malaysia Malaysia Malaysia Malaysia Malaysia Malaysia Malaysia	other than Nalps Verzasca
Tab. Ia	ZMI Sample	Ad41b Ca126 G1111 Ha225 KAW0165 Va1s1	Bedr107a Blen49 Ct22d G1i04 Ha199 KAW0160 KAW0207	Hul132 HuSt900 KAM0082 KAM0083 Vz691	G1110 V2297 V2477 V2501 M5728 M5725	81.200 85.321 86.321 86.323 86.323 88.00397 88.00397 89.001 90.001 90.001 90.001 89.003 90.001 90.001 89.001 90.001 89.001 90.0000 90.0000 90.0000 90.00000 90.00000000	Polytypes KAW0041 Vz690

Tab. 1b Data White Mica (XRD) and selected chemical data (XFA).

			and re-positioned			instead of 0.1	0.5'p min	, 0.5'p min	0.1'p min																	
temarks	lonne estition	position normal,	I from goniometer			eter speed 1'p min	position too low,	position too high	position normal,																	
d.err. I		UID sample	UI3 removed	014	015	.021 goniome	019 sample	032 sample	013 sample	017	011															
IS St	jectec		10.	-0.	10.	2 0.	13 0.	80.	20.	000	0.0				•											
leflection	ised re;	22	55	27	25	30	32	31	26	24	24			and the second	rock type				te			ock groups			orian	U
	ter ı	4 1	Ĵ,	4	4	æ	S	2	4	4	4				HOST	ranite	neiss	chist	egmati			ain ro		lpine	recamt	riassi
		4.0	0.5	0.4	0.5	0.7	0.3	1.0	0.5	0.6	0.4	.53	.19	1	= 150	9 "	in = 6	s = h	۵. ۱			irp =M		-4 A	а.	
	د د	32.5	35.8	37.9	36.1	35.2	55.2	29.7	36.5	35.1	35.5	37.0 0	.459 0		-	9	9	0,	4			0		-	4.)	e e
	c c r	9.4	.75 9.	.82 9.	.75 9.	.79 9.	.98 9	.74 9:	.75 9.	.76 9.	.77 9.	.79 9.	068 6													
	0	02 95	02 95	02 95	02 95	02 95	07 95	05 95	02 95	02 95	02 95	03 95	02 0.								03			05	05	
~		0.0	9 0.0	0.0 6	6 0.0	3 0.0	4 0.0	5 0.0	2 0.0	8 0.0	5 0.0	0.0 9	2 0.0			9	2	9	2	2	0.00	ç	0	5 0.0	2 0.0	
3330		20.00	20.01	20.01	20.01	20.02	20.16	19.98	20.02	20.01	20.01	20.02	0.046			20.09	19.87	19.37	19.94	20.15	19.27	20.12	19.96	10.27	10.07	
tum 8.	000	200.0	0.002	0.003	0.005	0.005	0.003	0.009	0.004	0.005	0.004	0.004	0.002								0.002			0.020	0.020	
g Rust	1	.025 (.027 (.036 (.026 (.023 (.080 (.014 (.029 (.023 (.028 (.031 (.017 (.996	.976	.907	.038	. 990	.893 (.994	.169	.995 (.000	
30 m		003 9	003 9	002 9	003 9	004 9	002 9	007 9	003 9	004 9	003 9	003 9	0 100			80	ω	8	б	8	001 8	8	6	010 8	020 9	
ple (0 06	05 0.1	12 0.1	07 0.1	03 0.1	46 0.1	87 0.1	06 0.1	04 0.1	04 0.1	06 0.4	15 0.4			89	74	34	П	88	30 0.1	83	91	08 0.1	30 0.1	
rosam	1	5 5.1	5 5.2	5 5.2	5 5.2	5 5.2	5 5.2	5 5.1	5 5.2	5 5.2	5 5.2	5.2	0.0			5.10	5.1	5.1	5.2	5.1	5.1	5.1	5.2	5.2	5.2	
e mic								100			1.000					0	0	0	0	0	0	0	0	0	0	
no no	ł	م	Ъ	٩	ط	٩	Р	٩	٩	Р	۵.					5 q	Sh	Sh							٩	
test	1	desh	desh	desh	desh	desh	desh	desh	desh	desh	desh					alia	nda	nda	ornia	et	et	pol	loo	et	oba	
lity		A.Pra	A.Pra.	A.Pra	A.Pra	A.Pra	A.Pra	A.Pra	A.Pra	A.Pra	A.Pra	N=10				Austre	A. Spoi	A. Spoi	Calif	synthe	synth	extra	extra	synth	Manit	
Reproducibi		RUSTUM	RUSTUM2	RUSTUM3	RUSTUM4	RUSTUM5	RUSTUM6	RUSTUM7	RUSTUM8	RUSTUM9	RUSTUM10	Average	Std.dev.		Literature	B+S-1	B+S-2	B+S-4	B+S-5	CHATT-Mu	CHATT-Pq	GUID-Mu	GUID-Ph	YOD-MulM	MOR-MulM	

* Data from SCHWANDER, et al., 1968

Fig. 3 Comparison of quantitative and qualitative X-ray fluorescence data (Fe₂O₃ total).

Qualitative: 30 mg powdered mica on stretched foil (as for x-ray diffraction), ED-XFA

Quantitative: fusion with Li₂B₄O₇ (Tab. 2), WD-XFA The correlation coefficient (r=0.942, N=42) is better than the one obtained by phengite analysis XRD versus XFA.

Some microsamples which were examined by XRD were analyzed qualitatively by ED-XFA (STERN, 1985) in order to examine the reliability of this fast and efficient method of non-destructive simultaneous instrumental analysis (Fig. 3).

The analyzed mica concentrates cover a wide, though not the complete compositional field of dioctahedral mica. They represent various types of host rock, like Alpine schists, gneisses, granites and pegmatites, Triassic granites, and Pre-cambrian pegmatites from Argentina, India, Sudan and Tanzania.

Discussion

Cell parameters of white mica display a large variation, much larger than the error of data determination (ref., see Fig. 4):

1011		phengite	muscovite	paragonite
XFA	а	5.291	5.183	5.135
erthan	b	9.169	8.990	8.993
SXFA.	с	19.947	20.152	19.270
MUSCO	ΟΥΙΤΕ	S.S.		

Fig. 4 Triangular plot of 2M1 dioctahedral micas muscovite – phengite – paragonite. Cell parameters b and c taken from literature: muscovite b, c after ChatterJEE, JOHANNES, 1974; paragonite b, c after Borg and SMITH, 1969; phengite b after GUIDOTTI et al., 1989; phengite c after BORG and SMITH, 1969. The diagram enables - theoretically - the deduction of mica composition (% muscovite, paragonite, phengite) from experimentally determined cell parameters b and c. Far more reliable, and commonly used, is the direct chemical analysis.

The values for a and b have been correlated with the exchange of octahedral Al by Fe²⁺ and Mg combined with exchange of tetrahedral Al³⁺ by Si (Tschermak substitution, see e.g. GUIDOTTI et al., 1989). The value for c has been attributed to the exchange of interlayer K by Na (paragonite substitution, see e.g. CIPRIANI et al., 1968) – among other, less reported substitutions.

Corresponding correlation data published so far display a trendwise interdependence between diffraction and relevant chemical data, but the uncertainty of the correlation has been such that a quantitative use of b- or c-parameters for phengite or paragonite analysis seems hardly possible.

When b- and c-parameters of pure end members phengite, paragonite and muscovite (taken from literature) are combined in a triangular grid, it is - theoretically - possible to determine e.g. the phengite or paragonite content of an unknown white mica (Fig. 4). If results of such a procedure, however, are controlled by chemical analyses, the agreement of diffractometric and chemical data is not too encouraging:

	pheng	ite	parage	onite	muscovite s.s.				
	XRD	XFA	XRD	XFA	XRD	XFA			
Gli-04	8	14	7	1	85	85 (%)			
Gli-11	19	45	20	0	61	65			
KAW-083	21	24	6	0	73	75			
KAW-160	29	29	8	1	63	70			
KAW-165	42	52	6	1	52	47			
KAW-207	60	50	0	0	40	50			
Vz-477	35	21	0	2	65	77			
WS-72b	10	11	6	1	84	88			

White Mica 2M1 XRD vs XFA White Mica calculated "Phengite" 1.5 1.6 r = 0.79 50 1.4 log(Al2O3/(Fe2O3t+MgO)) = 0.26 0.57 1.2 elemental rations 1 1 0.8 0.5 0.6 0.4 0.2 8.96 8.98 9 9.02 9.04 9.06 9.08 9.1 9.12 9.14 0.05 0.1 0.25 0.15 0.2 log(SiO2/Al2O3) b(A) log(Al2O3/Fe2O3t+MgO) log(SiO2/Al2O3) Prec., Triassic 💊 Alpine White Mica 2M1 XRD vs XFA Alpine Mica 2M1 XRD vs XFA 1.5 1.5 50 = 0.10 1 elemental rations 0.40 elemental rations 1 0.5 0 0.5 . -0.5 8.98 9.00 9.01 9.01 9.01 9.02 9.02 9.03 9.04 9.04 9.06 9.07 8.99 9.00 9.01 9.01 9.02 9.02 9.02 9.04 9.04 9.05 9.06 9.10 915 920 925 930 935 940 945 950 955 960 sorted b (A), ascending Cell volume - log(SiO2/Al2O3) - log(Al2O3/Fe2O3t+MgO) log(SiO2/Al2O3) log(Al2O3/Fe2O3t+MgO) ___ log(Fe2O3t/MgO)

Fig. 5 Cell parameter b (XRD, experimental) and "phengite" content (XFA, experimental). Two elemental ratios are indicative, Si/Al connected with phengite content, and Al/Fe + Mg with ferrimuscovite and phengite content. Though a trendlike correlation between b and phengite content (XFA) exists, the interdependence is far too weak to be used for analytical purpose (i.e. phengite analysis by XRD).

157

The question arises (NAEF, STERN, 1982), whether lacking accuracy of diffractometrical cell determination has been the reason for this poor correlation, or the complexity of chemical substitutions occurring.

The present powder diffraction data on disoriented microsamples display relatively small errors, being obviously not the reason for the large scatter around a regression curve e.g. a versus c or b versus volume; the slope of the regression line, again, corresponds well with the situation expected from literature (Borg and SMITH, 1969).

The correlation found between cell data and relevant chemical data (Fig. 5) resembles much from what is known from the literature and is too weak to be used as a calibration function. Since it can not be explained by errors of measurement, opposite effects of chemical substitutions have to account for it. Certain assumptions have been too simple:

- phengite consists of at least two different species, ferro- and picrophengite; the effect of Fe^{2+} and Mg on a and b parameters probably being different (Fig. 5);

- ferric iron is always present and may influence a and b by either replacing tetrahedral or octahedral Al;

- interlayer Na is scarce in phengitic mica and therefore hardly responsible for large deviations of a and b (Fig. 6);

- the size of c certainly depends on the Na-content of mica but on eventual Ca, Ba, Rb as

White Mica 2M1 XRD vs XFA

Fig. 6 Cell parameter c and paragonite content (XFA). Compositional variation of the paragonite content is 0 to 25%, main part of points plotting between 0 and 10% paragonite. No correlation between paragonite percentage and cell parameter c is statistically ascertained (Alpine muscovites s.l. N = 23, r = 0.50; Precambrian, Triassic muscovites s.l. N = 19, r = 0.15).

well, the latter often being neglected in chemical analysis, as is F whose influence on mica cell parameters is virtually unknown.

An intriguing fact is the obviously poor correlation of the c parameter with any of the chemical variables tested (Fig. 6). The use of basal spacings for paragonite quantification – as is common practice in petrographic literature – can therefore not be recommended. They are, however, helpful when paragonite has to be identified in presence of muscovite.

Acknowledgements

Mica samples have been provided by Dr. H.H. Klein, Schweiz. Isolawerke, Breitenbach; by Mr. Askury Abd. Kadir, Geol. Survey of Malaysia, which is gratefully acknowledged. For critical reading I have to thank Prof. Dr. M. Frey, Mineralogical Institute, Basel University, and Dr. H.H. Klein, and for laboratory support Mrs S. Wüthrich and Mr. R. Handschin, both of Geochemical Laboratorium MpI Basel.

References

- APPLEMAN, D.E. and Evans, H.T., Jr. (1973): Indexing and least-squares refinement of powder diffraction data. Report PB 216188, U.S. Dept. Commerce, National Techn. Inf. Service, 5285 Port Royal Rd., Springfield, VA 22151.
 BORG, I.Y. and SMITH, D.K (1969): Calculated X-ray
- BORG, I.Y. and SMITH, D.K (1969): Calculated X-ray powder patterns for silicate minerals. Mem. 122, Boulder CO, Geol. Soc. Amer.
- CIPRIANI, C., SASSI, F.P. and VITERBO-BASSANI, C. (1968): La composizione delle miche chiare in rapporto con le costanti reticolari e col grado metamorfico. Rend. Soc. Ital. Mineral. Petrol., 24, 153–187.
- CHATTERIEE, N.D. and JOHANNES, W. (1974): Thermal stability and standard thermodynamic properties of synthetic 2M1 muscovite KAl₂(AlSi₃O₁₀)(OH)₂. Contrib. Mineral. Petrol. 48, 89.
- CHATTERIEE, N.D. (1974): X-ray powder pattern and molar volume of synthetic 2M-paragonite: a refinement. Contrib. Mineral. Petrol. 43, 25.
- GUIDOTTI, C.V., SASSI, F.P. and BLENCOE, J.G. (1989): Compositional controls on the a and b cell dimensions of 2M1 muscovite. Eur. J. Mineral. 1, 71–84.
- HANDSCHIN, R. and STERN, W.B. (1990): Ein Präparationsverfahren zur röntgendiffraktometrischen und röntgenfluoreszenzspektrometrischen Analyse von Mikroproben. Siemens Analysentechn. Mitt. 319.
- NÄF, U. and STERN, W.B. (1982): Some critical remarks on the analysis of phengite and paragonite components in muscovite by X-ray diffractometry. Contrib. Mineral. Petrol. 79, 35.
- SCHWANDER, H., HUNZIKER, J. and STERN, W. (1968): Zur Mineralchemie von Hellglimmern in den Tessiner Alpen. Schweiz. Mineral. Petrogr. Mitt. 48, 357.
- STERN, W.B. (1979): Probleme der quantitativen röntgenspektrometrischen Analyse von Hauptkomponenten und Spuren in geologischen Proben. Schweiz. Mineral. Petrogr. Mitt. 59, 83.

- STERN, W.B. (1985): Zur Simultananalyse von Silicaten (Hauptkomponenten, Spuren) mittels energiedi-spersiver Röntgenfluoreszenz-Spektrometrie (EDS-XFA). Fresenius Z. Anal. Chem. 320, 6–14.
 STERN, W.B. (1987): Determination of mica cell parame-ters by X-ray powder diffractometry a case study. Powder Diffraction, 2, 249.

Manuscript received August 15, 1990; revised manuscript accepted December 11, 1990.

Appendix: Instrumental conditions

A. X-ray diffraction (XRD)

apparatus	D-500, Siemens GFR
excitation	Cu 40 kV, 30 mA, no primary filter,
	secondary graphite monochromator
apertures	automatic divergence slit set at 3,
	3–3 entrance aperture, 1–0.05–0.15
	secondary side
exposure	0.1 2 Θ P min., angular increment 0.02 2 Θ
	angular limits 3–73 2 O
software	DIFFRAC-500
	least squares refinement after APPLEMAN,
	EVANS, 1973, 3 basal reflections pre-
	indexed, minimum error for rejection
	$0.05\ 20$; only reflections > 10 cps were
	taken for refinement, low scaling factor of
	0.1 for reflections below 20 2 Θ
specimen	30 mg powdered mica on Makrofol
	(KG, Bayer) foil 40 mm ø electrostatically
	disoriented (Handschin, Stern, 1990)

B. X-ray fluorescence (XFA); wavelength-dispersive (WD-XFA)

apparatus	SRS-303, Siemens GFR
excitation	Rh-end window tube, variable according
	to chemical element; 40 to 60 kV, 70 to
	40 mA, 10 to 100 sec
analyzers	In Sb for Si, P, S, Cl
	multilayer OVO-55 for Al, Mg, Na, F
	LiF for K- and L-lines of heavy elements
	fitted background correction for traces
software	SPECTRA/AT (Siemens)
	routines QUANTXV, QUANTIX
	data management with LOTUS 1-2-3
specimen	main constituents: fused glass beads
74	consisting of 150 mg ignited sample
	powder + 2350 mg $Li_2B_4O_7$ annealing in
	95 Pt-5 Au crucible, diameter 32 mm,
	inductive furnace (STERN, 1979);
	trace elements: 800 mg dried sample
	powder pressed into Al-rings, diameter
	20 mm, elvacite binder
	and an and a second an and a second and a second and a second and a second and a

energy-dispersive (ED-XFA)

apparatus	Spectrace-5000, Tracor X-ray, U.S.A.
excitation	W-tube (127 microns Be window),
	6 to 50 kV, 0.35 to 0.20 mA, integration
	time per procedure 200 sec, dead time
	kept below 40%
analyzer	solid state detector (Li)-Si, with ultrathin
	Be-window, 7.6 microns
software	Tracor X-ray, running on IBM AT 80-311
	314 Mb, 2 Mb RAM
specimen	30 mg on stretched Makrofol foil,
	as described under section XRD