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Frau Prof. Dr. Emilie Jdger gewidmet

Sr-INd-Pb isotope data for Fuerteventura (Canary Islands)
basal complex and subaerial volcanics: applications to magma
genesis and evolution

by Kaj Alexander Hoernle' and George Robert Tilton'

Abstract

We report Sr, Nd and Pb isotopic compositions and concentration data for 35 igneous rocks and O and C isotopic
compositions for six carbonatites from Fuerteventura {Canary Islands). The 24 samples from the basal complex (70—
25 Ma) include tholeiitic and alkalic gabbro, basanite through nepheline benmoreite, nephelinite, ijolite, syenite,
fenite and sovitic carbonatite. The alkalic rocks yield very similar Sr, Nd and Pb isotope ratios, suggesting a close
genetic relationship between these rock types. The isotopes of the 11 Miocene to Recent subaerial volcanic samples,
which include basanite, alkali basalt, tholeiite and hawaiitc, have less radiogenic Sr and Pb isotopes and more
radiogenic Nd isotopes. Compared to the more undersaturated samples, the more SiO,-saturated samples from each
unit have lower *Nd/'"*Nd. Comparison of the Fuerteventura data with that from the neighboring island of Gran
Canaria and from the westernmost islands of La Palma and Hierro suggest a model in which the magmas of both
series originate from a mantle plume. Melts from the plume (HIMU) interact with asthenospheric and lithospheric
mantle containing recycled enriched continental lithospheric mantle (EM) from beneath the West African Craton.
The earlier, basal complex magmas, presumably erupted directly over the plume, reflect a mix between plume and
lithospheric mantle. Since the plume was located to the west of the island during Miocene-Recent times, the
subaerial magmas had to travel additional distance through the upper asthenosphere before eruption, leading to a
higher level of asthenospheric (DM + EM) contamination. This model implies a plume origin for the Fuerteventura
carbonatites. The data yield no evidence for contamination of magmas with sialic continental crustal material.

Keywords: Fuerteventura, Canary Islands; Sr, Nd, Pb, C, O isotopes; magma genesis; alkalic and tholeiitic
volcanism; carbonatites.

List of abbreviations

HIMU: mantle material with high time-integrated u (*¥U/*Pb) ratios

DM: mantle material with a time-integrated depletion in large ion lithophile elements

EM: mantle material with a time-integrated enrichment in large ion lithophile elements;
EMI is characterized by a strong time-integrated enrichment of Nd relative to Sm and EM?2 by a strong
time-integrated enrichment of Rb relative to Sr

MORB: mid ocean ridge basalt; two types E (enriched) and N (normal)

Introduction

Fuerteventura, which has been active for ca. the
last 80 Ma, is the oldest known ocean island vol-
cano (LE Bas et al., 1986). The age span of this
island covers the entire age span of the Hawaiian
island — Emperor seamount chain. Unlike most
ocean island volcanoes, the entire history of the
volcano is subaerially exposed. These factors re-
sult from a combination of unique circumstances:

(1) the volcano formed in very shallow water on
the edge of a continental rise, (2) the very slow
rate of motion of the plate kept the volcano from
being cut off from its supply of plume material,
(3) the very low average eruption rate kept the
base from being completely covered by later
eruptives and allowed erosion to keep pace with
volcanism once it was subaerially exposed, and
(4) more than a kilometer of vertical uplift has
exposed the basal portion of the volcano, reveal-
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ing the transition from ocean floor sedimentation
at a continental rise to the submarine build-up of
an ocean island volcano (LE Bas et al., 1986).
Therefore isotopic studies of Fuerteventura
should provide important insights into the initial
stages of ocean island volcanism, as well as yield a
coherent picture of the long term evolution of an
ocean island volcano.

Except for the Cape Verde Islands,
Fuerteventura is the only other known ocean is-
land with subaerially-exposed carbonatites. A
geochemical study of the basal complex on
Fuerteventura can therefore also provide impor-
tant insights into the origin of carbonatites. Al-
though there have been a number of major and
trace element studies on volcanic and plutonic
rocks from Fuerteventura, Sr—Nd-Pb isotopic
studies are rare. To date, only five Pb isotopic
analyses (Lanceror and ALLEGRE, 1974; Sun,
1980) have been published. Stable-isotope data is
included in PiINeAU et al. (1973), Javoy and StiLL-
MaN (1981) and Javoy et al. (1986). In this study
of the evolution of Fuerteventura, which concen-
trates on the basal complex, we present Sr, Nd
and Pb isotope results for 35 samples as well as O
and C isotope results for six carbonatites. A more
detailed study of the Miocene-Recent volcanics is
presently underway (THIRLWALL, 1990).

General geology

Fuerteventura is the second largest (1731 km?
807 m maximum elevation above sea level) of the
Canary Islands (ScHMINCKE, 1976). A number of
major geologic studies have been conducted on
the island (see FusTer et al., 1968; SCHMINCKE,
1976; LE Bas et al., 1986; STiLLMAN, 1987 for sum-
maries). Two main geological units are present on
Fuerteventura: the basal complex, consisting of
submarine volcanics and plutonics, and the later
subaerially-erupted volcanic group, primarily ba-
saltic lava flows and dikes.

Albian-Cenomanian pelagic chalks interbed-
ded with alkaline volcanics provide evidence that
alkaline volcanism on Fuerteventura began in the
Upper Cretaceous. Contemporaneous sedimenta-
tion and submarine volcanism continued until
Oligocene times. Alkali basalt and ankaramite
dikes, ultramafic plutons, tholeiitic and alkalic
gabbros, syenites and the Ajui-Solapa carbon-
atite-ijolite-syenite intrusive (~ 60 Ma) extensive-
ly intrude the lower bedded sequence (ROBERT-
SON and StiLiman, 1979; Le Bas et al., 1986;
StiLLMAN, 1987). These are in turn extensively in-
truded by dikes and high-level plutons, which
range in age from 48 to 12 Ma. A second ijolite-

syenite-carbonatite complex (~ 30 Ma; LE Bas et
al., 1986, Tab. 4) is exposed in the Esquinzo-Tin-
daya area 30 km north of the Ajui-Solapa car-
bonatite complex (BARRERA et al., 1981). Dikes
also extensively intrude this complex. Both the
dikes and host rocks of the basal complex are
metamorphosed to the albite-epidote greenschist
facies (LE Bas et al., 1986; StiLLMAN, 1987). Sta-
ble-isotope data suggest that the dikes may have
acted as pathways for the circulating waters,
which were predominantly meteoric (Javoy et al.,
1986).

The oldest age from the overlying subaerial
volcanics is 20.6 Ma (ABDEL-MoNEM et al., 1971).
FusTer et al. (1968) has divided the subaerially-
erupted volcanics into four Basaltic Series: I
(Miocene), II (Pliocene-Quaternary), II1 (Qua-
ternary ?) and IV (Subrecent). For further discus-
sion and dates from the subaerial volcanics see
Scumincke (1976), ABDEL-MoNEM et al. (1971)
and FErRAUD et al. (1985).

Sampling and analytical methods
SAMPLING

Twenty-four samples in this study come from the
basal complex on Fuerteventura (25-70? Ma),
predominantly from the Ajui-Solapa and the
Esquinzo ijolite-syenite-carbonatite complexes.
These samples include tholeiitic and alkalic gab-
bro, basanite through nepheline benmoreite,
nephelinite, ijolite, syenite, fenite and carbon-
atite. The 11 samples from Basalt Series [-IV
(0-21 Ma) include basanite, alkali basait, tholeiite
and hawaiite and are primarily from the northern
half of the island. Stratigraphic position, a brief
petrographic description and location of the sam-
ples are given in Appendix 1. More detailed pet-
rographic descriptions, as well as XRF and INAA
data for these samples will be presented in
HoEernLE and LE Bas (1991).

ANALYTICAL METHODS

Sr-Nd-Pb isotope analyses from rock powders
and mineral separates and O-C isotope analyses
for six carbonatites are listed in Tab. 1. For whole
rock samples, approximately 100 g of rock was
ground to flour in an agate mill. For isotopic
compositions, 100-200 mg of powder was acid
washed for ~ 45 minutes in a mixture of 50 °C 6N
HCl and 7N HNO; to remove alteration products.
In order to remove secondary calcite without
fractionating the parent-daughter ratios, the pow-
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ders for elemental concentrations of the six pre-21
Ma dikes were soaked for 15 minutes with cold 2N
HCL. The other whole rock powders used to de-
termine elemental concentrations were not acid
washed. For mineral concentrates, we separated
euhedral grains of feldspar, nepheline or calcite.
Calcite separates are estimated to be > 99% pure.
The calcite samples were rinsed with cold 2N HCI
for 30-60 seconds to remove any surface con-
taminants, then dissolved in 2N HCI and split into
two aliquots: one for isotopic composition and
one for elemental concentrations. The silicate
mineral separates were crushed to a flour to avoid
problems with precipitates and to assure that all
trace element and isotope analyses were from
homogeneous sample material. The powders used
to determine the isotope composition were
soaked for 15 minutes in a dilute solution of cold
HF + HCl to remove surface contamination; the
powders for isotope dilution were not acid
washed.

The splits for elemental concentrations were
total-spiked with three mixed spikes: **Pb-**U-
Z0Th, YRb-*Sr and “*Nd—*Sm. All silicate sam-
ples were then dissolved with hot HF + HCIO, in
teflon screwcap vials. The pertinent elements
from each split were separated by column chem-
istry in the following sequence: Pb, U-Th, Rb, Sr,
Nd, Sm. Blank amounts for Sr, Nd and Pb, on the
order of 0.3, < 1.0 and 0.3 nanograms respectively,
were negligible. Isotope ratios were measured on
a multiple collector mass spectrometer (Finnigan
MAT 261) operating in the static mode. For con-
sistency, the Pb, Sr and Nd isotopic ratios in this
study were normalized to the same values as those
used for two recent isotope studies of Gran Ca-
naria, which were performed in the same labora-
tory and measured on the same mass spectrome-
ter (Cousens et al., 1990; HoERNLE et al., 1991a).

The ¥Sr/*S8r ratio was normalized within-run
to 38r/%8r = 0.1194, and then adjusted to a ¥Sr/
%8r value of 0.710250 for NBS 987. The '*Nd/
1Nd ratio was normalized within-run to “*Nd/
Nd = 0.721900, and then adjusted to a '*Nd/
1“Nd value of 0.511850 for the La Jolla standard
or 0.511890 for the Ames standard (Note: the La
Jolla and Ames standards were used at different
times). Replicate analyses over a three year peri-
od of NBS 987 Sr (29 analyses) yielded 0.710199 +
0.000023 (2 sigma), of La Jolla Nd (8 analyses)
yielded 0.511866 £ 0.000019 (2 sigma), and of
Ames Nd (21 analyses) yielded 0.511946 =+
0.000020 (2 sigma). All Pb runs were normalized
to TopT et al. (1984) values for NBS 981. Repli-
cate analyses of Pb standard NBS 981 (10) run
with the samples over a period of three years and
with different Si gels gave the following average

values: 2Pb/”%Pb = 16.902 + 0.008 (2 sigma),
WPH/2%Ph = 15.449 £ 0.014 (2 sigma), and **®Pb/
Pb = 36.562 + 0.046 (2 sigma). The mass-spec-
trometric precision of all concentrations deter-
mined by isotope dilution are better than 1%. The
O and C isotopes were measured on a Finnigan
MAT 251 mass spectrometer at Santa Barbara.
The uncertainties in **O and *C values were £0.04
to 0.06 per mil (2 sigma).

Because of the high degree of alteration (to
the albite-epidote greenschist facies) of the basal
complex (LE Bas et al., 1986; Javoy et al., 1986;
StiLLMAN, 1987), great care was taken in collect-
ing and preparing the freshest possible samples,
which in most cases involved handpicking mineral
separates under a binocular microscope. Never-
theless, we conducted detailed leaching studies on
13 samples from whole rock powders and mineral
separates to determine the reproducibility of the
isotopic composition of the samples (Tab. 2A).
Acid washing affected the Sr and Pb isotopic ra-
tios of about 50% of the samples. In most cases,
the acid washed whole rock powders have lower
81Sr/%Sr ratios. The Pb isotopic ratios, however,
showed no systematic variation with acid washing,
although the Pb isotopic ratio for sample CF5 was
raised significantly (see discussion below). The
estimated two sigma reproducibility of different
acid washed samples is + 0.000025 for Sr and Nd
isotope ratios, < 0.05% per a.m.u. for the *Pb/
24Ph and 2"Pb/**Pb, and < 0.07% per a.m.u. for
208Pb/2Pb. Multiple analyses of the same sample
powders (flours) shows that Pb and U concentra-
tions can be reproduced to 2% and Th to 6%
(Tab. 2B). Differences in the concentrations of
these elements in different pieces of the same
sample illustrate sample heterogeneity (Tab. 2B).
The initial isotope ratios for samples CF3 and
CF4, which were collected 50 cm apart from the
same intrusive body (see Appendix 1), arc essen-
tially within the two sigma analytical precision
(Tab. 1). The initial ¥Syr/%Sr, *Nd/'*Nd and *"Pb/
4Ph ratios for samples CF1 and CF2, collected
2 m apart from the same intrusive body but sepa-
rated by two 0.5 m dikes, are also within the two
sigma analytical precision. The difference in the
W6Ph/2%Pb and the *®Pb/**Pb ratios are due either
to improper corrections for in situ radiogenic Pb,
or to alteration associated with dike injection.
Samples CF1 and CF2 were collected 0.5 km up
canyon from samples CF3 and CF4 and appear to
be from the same intrusive complex. The initial
88r/*Sr, '"*Nd/'**Nd and *"Pb/”*Pb ratios for these
four samples are within the analytical precision,
and the 2“Pb/2%Pb and the **Pb/**Pb ratios for
samples CF3 and CF4 fall within the range for
samples CF1 and CF2.
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8 K.A. HOERNLE AND G.R. TILTON

Tab. 2A 1) The numbers at the end of each sample refer to the following: #1) not acid washed split of sample, #2)
acid washed split (see analytical methods section for acid washing procedures), #3) second acid washed split; .1 and
.2 refer two separate loads after column chemistry of split #3.

2) (Staudigel) refers to the samples analyzed at Lamont-Doherty by Hubert Staudigel.

3) All within run statistical errors are two sigma.

Sample Number Analyzed 87Sr/86Sr 143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb
CF2#1 nepheiine 0.703317(11)  0.512855(11) 19.765(3) 15.601(2) 39.568(5)
CF2#2 nepheline 0.703275(6) 0.512837(11}  19.680(3) 15.595(2) 39.501(6)
CF2#3.1 nepheline 0.703317(15)  0.512865(8) 19.703(4) 15.618(3) 39.579(8)
CF2#3.2 nepheline 0.703320(15) 19.705(5) 15.623(4) 36.608(11)
AVERAGE 0.703297 0.512851 19.692 - 15.608 398.548
CF5#1 whole rock 0.703321(14)  0.512841(9) 18.582(2) 15.548(2) 38.282(4)
CF5#2(5Min) whole rock 0.703306(18) 0.512841(8) 19.550(28) 15.585(25) 39.465(77)
CF5#3(45Min) whoie rock 0.703286(15) 0.512880(10) 18.798(3}) 15.588(3) 38.551(7)
CFe#1 feldspar 0.703326(14) 0.512918(17) 19.753(2) 15.605(2) 39.440(4)
CFe#2 feldspar 0.703297{(15) 0.512923(21) 18.702(4) 15.593(3) 39.423(8)
CF6#3.1 feldspar 0.703291(17)  0.512945(11)  19.700(6) 15.586(5) 39.409(12)
CF6#3.2 teldspar 0.703288{19) 19.707(3) 15.508(2) 39.441(6)
AVERAGE 0.703283 0.512934 19.702 15.593 39.424
CF9#1 feldspar 0.703495(16)  0.512880(9) 20.028(7) 15.644(6) 39.858(17)
CFo#2 feldspar 0.703514(15)  0.512879(9) 16.981(4) 15.564(3) 39.688(7)
CFo#3 1 feldspar 0.703495(17) 0.512879(5) 20.008(5) 15.622(4) 39.779(11)
CFo#3.2 teldspar 0.703497(14)  0.512876(8) 20.010(4) 15.626(3) 39.803(8)
AVERAGE 0.703505 0.512878 19.995 15.609 39.739
CF12#1 nepheline 0.703349(17)  0.512905(33) 19.630(3) 15.571(3) 39.446(6)
CF12#2 nepheline 0.703379(16)  0.512870(33)  19.632(5) 15.572(5) 39.450(14)
CF12#3.1 nepheline 0.703388(15) 0.512886(23) 19.641(6) 15.584(5) 39.491(12)
CF12#3.2 nepheline 0.703355(14) 19.656(5) 15.599(4) 39.547(12)
AVERAGE 0.703375 0.512878 19.641 15.582 39.485
CF15#1 whole rock 0.703401(13) 0.512874(11) 19.773(1) 15.587(1) 39.605(2)
CF15#2 whola rock 0.703336(17)  0.512881(7) 19.819(2) 15.599(2) 39.608(5)
CF15#3.1 whole rock 0.703300(14) 0.512886(8) 19.819(5) 15.589(4) 39.608(11)
CF15#3.2 whole rock 0.703299{15). 0.512808(8) 19.820(2) 15.600(2) 39.619(5)
AVERAGE 0.703318 0.512887 19.819 15.599 39.611
CF16#1 whole rock 0.703350(13) 0.512824(13) 19.839(2) 15.615(2) 39.766(6)
CF1i6#2 whole rock 0.703328(15)  0.512861(9) 19.814(3) 15.599(2) 39.663(6)
CF16#3.1 whole rock 0.703320(19) 0.512851(8) 19.819(4) 15.605(4) 39.680(11)
CF16#3.2 whole rock 0.703294(17) 0.51285816) 19.818(2) 15.605(2) 39.689(5)
AVERAGE 0.703318 0.512858 19.816 15.602 39.673
CF17#1 whole rock 0.703422(11)  0.512830(16) 20.042(2) 15.622(1) 39.843(4)
CF17#2 whole rock 0.703333{17) 0.512831(6) 20.201(5) 15.621(4) 39.745(12)
CF174#3.1 whole rock 0.703352(9) 0.512849(6) 20.206(6) 15.627(5) 39.768(14)
CF17#3.2 whole rock 0.703316(13) 0.512845(4) 20.211(2) 15.631(1) 39.783(4)
AVERAGE 0.703333 0.512839 20.205 15.625 39.760
FEB/SC/73#1 calcite 0.703305(18) 0.512831(8) 19.611(3) 15.562(3) 39.434(8)
F68/SC/73#2 calcite 0.703257(13) 0.512867(7) 19.630(6) 15.582(5) 39.499(14)
F68/SC/73#3.1 calcite 0.703222(19) 0.512873(5) 19.617(9) 15.571(7) 39.462(18)
Fe8/8C/73#3.2 calcite 0.703238(11) 0.512879(6) 19.622(6) 15.576(5) 39.473(14)
AVERAGE | 0.703244 0.512872 19.625 15.578 39.483
Fi75/158#1 calcite 0.703248(12) 0.512879(5) 19.659(2) 15.575(2) 39.464(5)
F/75/158#2 calcite 0.703202(9) 0.512871(7) 19.653(3) 15.572(3) 39.461(7)
F/75/158#3 .1 calcite 0.703231(16) 0.512845(6) 19.661(6) 15.575(5) 39.464(13)
F/75/158#3.2 caicite 0.703259(13) 0.512844(6) 19.663(3) 15.576(2) 39.469(7)
AVERAGE 0.703224 0.512858 19.658 15.574 39.464
KFS69(Staudigel)  whole rock 0.703270

KFS69#2 whole rock 0.703196(13) 0.512912(8) 19.210(12) 15.566(10) 39.057(28)
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Sample Number Analyzed 87Sr/86Sr 143Nd/144Nd  206Pb/204Pb 207Pb/204Pb 208Pb/204Ph
KFS82(Staudigel) whole rock 0.703080(40)

KFS82#2 whole rock 0.703052(19) 0.512976(6) 19.102(4) 15.554(4) 38.863(8)
KFS82#3.1 whole rock 0.703025(15) 0.512985(5) 19.098(3) 15.545(3) 38.840(9)
KFS82#3.2 whole rock 0.703012(13) 0.512979(7) 19.119(2) 15.569(2) 38.922(6)
AVERAGE 0.703035 0.51297¢ 19.105 15.555 38.872
KFS96(Staudigel) whole rock 0.703200(13)

KFS96#3.1 whole rock 0.703147(9) 0.512948(4) 18.330(10) 15.548(8) 39.042(23)
KFS96#3.2 whole rock 0.703166(14)

AVERAGE ) 0.7031586

KFS110(Staudigel) whole rock 0.703120(50)

KFS110#2 whole rock 0.703010(16)  0.512958(5) 19.350(4) 15.552(3) 39.031(8)
KFS110#3.1 whole rock 0.702997(15) 0.512961(9) 19.358(7) 15.560(5) 39.054(14)
KFS110#3.2 whole rock 0.702974(16) 0.512982(8) 19.361(3) 15.563(3) 39.068(7)
AVERAGE 0.702998 0.512965 19.355 15.557 39.046
KFS140(Staudigel) whole rock 0.703210(40)

KFS140#2 whole rock 0.703032(14) 0.512944(5) 19.251(6) 15.544(5) 38.936(13)
KFS140#3.1 whole rock 0.702986(13) 0.512859(5) 19.252(4) 15.542(3) 38.929(8)
KFS140#3.2 whole rock 0.702995(13) 0.512962(5) 19.260(2) 15.552(2) 38.963(5)
AVERAGE 0.703011 0.512852 19.253 15.545 38.941

An additional source of error for the basal
complex samples is the uncertainty in their ages
(see LE Bas ¢t al., 1986, for a detailed discussion).
This uncertainty is most extreme in the nephelin-
ite dikes. Sample CF5 could be anywhere be-
tween 25-60 Ma, and samples CF10b and CF11b
between 30-70(?) Ma. Nonetheless, the initial iso-
topic ratios for the nephelinite dikes are similar to
the other samples from the basal complex, such as
the carbonatites (Tab. 1). The carbonatites have
very small parent daughter ratios for all isotopic
systems and therefore their initial ratios vary only
slightly from their measured ratios. Also, note the
close agreement in *”Pb/?*Pb and **Nd/'*Nd ra-
tios for multiple analyses of the acid-washed sam-
ples and for different samples from the same in-
trusive. These ratios are less affected by age cor-
rections and alteration than the other isotope ra-
tios. Although we do not have Sm and Nd concen-
tration data for several of the subaerial volcanics,
the corrections for the decay of 'Sm to *Nd are
negligible (between 0.000012-15), using the range
in "Sm/**Nd ratios determined for the other
subaerial volcanics.

Results and observations

The samples from the basal complex (> 21 Ma)
fall in a restricted field on isotope correlation di-
agrams (Figs 1-4). The initial ¥S1/*Sr ratios range
from 0.70319 to 0.70337, the initial "*Nd/"**Nd ra-
tios from 0.51274 to 0.51290, and the initial **Pb/
2Pb ratios from 19.54 to 19.85. The O and C
1sotope ratios of the carbonatite samples, which
are all sdvites, range from § = 6.8 to 7.8 and -5.2 to

~-6.3 respectively, and fall within the range of
"mantle fields" for carbonatites as defined in
TavLor et al. (1967), DENes and GoLp (1973) and
DEinEs (1989). The Fuerteventura values also fall
within the range of mantle values based on studies
of MORB (Dgs Marats and Moorg, 1984; KySEr
et al., 1982). The 8"0O and §°C values argue
against significant crustal or seawater interaction
for the Fuerteventura carbonatite magmas. Fur-
thermore, the isotopic composition of radiogenic
elements in the carbonatites are the least likely to
have been affected by crustal contamination, due
to their extremely high concentrations of Sr and
Nd and reasonably high concentrations of Pb
(Tab. 1).

From the basal complex, only carbonatites
have been previously analyzed for Pb isotopes (2
samples) in LANCELOT and ALLEGRE, 1974). These
samples have also been analyzed for O and C
isotopes (3 analyses in Pineau et al,, 1973). The
Pb isotope ratios for their sample P62 (19.69,
15.57, 39.37) agree well with the samples we ana-
lyzed. This sample also had mantle O and C val-
ues. The Pb ratios for their sample P58 (18.71,
15.51, 38.11) are much lower than all of the sam-
ples we analyzed after acid washing. This sample,
which comes from a calcite dike in a syenite
(PINEAU et al., 1973), also has anomalously high
3"%0 (17.0) and 8"C (-3.5) values, possibly re-
flecting crustal interaction. Our sample CFS5, from
a nephelinite dike, had nearly identical Pb isotope
ratios to P58 before we acid washed it (Tab. 2).
This sample contains ca. 15% calcite. After acid
washing the sample for five minutes with 1IN HCI,
the 2Pb/*Pb value increased from 18.6 to 19.6.
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Tab. 2B 1) Capital letters (A, B) after the sample number = different dissolutions of the same powder; number
after the decimal (1, 2) = different pieces of the same sample; AW = acid washed with 2N HCl for 15 minutes (cold).

Sample Number Analyzed Method Pb U Th P w
KFS69A whole rock 1D 1.48 0.56 1.94 24.76 87.72
KFS69B whole rock ID 1.48 0.55 2.086 24.13 93.13
KFS140A whole rock D 1.98 1.02 3.99 33.14 134.47
KFS140B whole rock 1D 1.99 1.02 4.25 33.24 142.65
KFS240A whole rock ID 3.02 1.57 6.39 33.71 141.39
KFS240B whole rock D 3.04 1.59 6.43 33.93 141.63
F122A whole rock ID 0.31 0.04 0.11 7.89 283.17
F122B whole rock ID 0.31 0.04 0.12 7.78 25.55
LFU75/203.1A whole rock ID 254 0.65 2.08 16.96 55.67
LFU75/203.1B whole rock ID 2.56 0.66 2.14 16.86 56.92
LFU75/203.2 whole rock ID 2.89 0.69 2.10 17.00 53.04
F2.1A whole rock ID 259 0.92 3.60 23.24 94.26
F2.1B whole rock ID 2.60 0.91 3.70 23.08 96.62
F2.2 whole rock ID 2.50 0.88 3.38 23.02 91.43
Fe8/SC/72.1 calcite iD g9.93 0.05 0.73 0.34 4.96
F68/8C/72.2 calcite ID g9.29 0.08 1.11 0.55 8.10
CF10.1 feldspar ID 0.43 0.21 0.17 32.86 26.69
CF10.2 feldspar iD 0.79 0.62 0.16 51.71 13.55
CF5bAW whole rock D 8.14 2.51 6.56 20.25 54 .60
CF5b whole rock INAA 2.6 8.3

CF11bAW whole rock ID 3.03 1.00 4.63 21.79 103.90
CF11b whole rock INAA 1.1 5.0

CF17bAW whoie rock ID 2.48 3.44 6.02 81.65 165.81
CF17b whole rock INAA 3.5 6.7

After acid washing for 45 minutes with a mixture
of 50°C 6N HCIl and 7N HNO,, the value in-
creased to 19.8, similar to that of other samples
from the Ajui-Solapa complex. The Sr and Nd
isotopic ratios for the unwashed and acid washed
splits of CF5 are within the + (0.000025 reproduc-
ibility of the other samples in table 2. In conclu-

sion, the anomalously low Pb and high O and C
isotope ratios for P58 and the leaching results for
sample CF5 suggest that the carbonate in samples
P58 and CF5 have a surficial origin (i.e. is second-
ary) or re-equilibrated with fluids derived either
from MORB-like oceanic crust or from sedimen-
tary carbonate.
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The Sr, Nd and Pb isotope ratios for the car-
bonatites with mantle O and C isotopic composi-
tions fall within the field formed by the other
rocks in the basal complex (Figs 1-4). The iso-
topic similarity between the carbonatites, ijolites,
syenites, fenites and nephelinites is consistent
with these rocks being genetically related. The
Ajui-Solapa and the Esquinzo complexes have
similar ranges in Nd and Pb isotope ratios, but the
Esquinzo complex has slightly higher Sr isotope
ratios overall.

The subaerial volcanic samples (< 21 Ma) an-
alyzed in this study have initial ¥Sr/*%Sr = 0.70299-
0.70325, "Nd/"Nd = 0.51290-0.51298, and initial
206Ph/24Ph = 19.10-19.50. Compared to the basal
complex, the younger basalts have lower Sr and
Pb but higher Nd isotope ratios, and are shifted
towards mid-ocean ridge basalt (MORB) field in
the isotope correlation diagrams (Figs 1-4). If we
combine our data with those of Sun (1980; see Fig.
2), the Pliocene-Recent (< 4.5 Ma) volcanics are
shifted towards the least radiogenic Pb, whereas
the Miocene (12-21 Ma) volcanics have Pb iso-
topic ratios which completely overlap both the
basal complex and the Pliocene-Recent basalt
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fields. In summary, the isotopic composition of
the volcanics on Fuerteventura are shifted to-
wards DM (or MORB) with decreasing age.

Similar to what has been observed on the
neighboring islands of Gran Canaria (HoERNLE et
al., 1991) and Lanzarote (ARMIENTI et al., 1990),
the more SiO,-saturated compositions from both
the basal complex and the subaerial volcanics are
shifted to lower Nd isotope ratios. Interestingly,
the Fuerteventura data fall below the Northern
Hemisphere Reference Line (NHRL; HARrT,
1984) in the *Pb/**Pb versus **Pb/**Pb isotope
correlation diagram, but the data lie above the
NHRL in the *®Pb/*™Pb versus **“Pb/2*Pb dia-
gram (Fig. 2).

Identification of mantle sources
for Fuerteventura magmas

If we use the endmembers proposed by ZINDLER
and HaRrT (1986) and WoRNER et al. (1986), then
the basal complex has a composition between the
HIMU and EM endmembers, whereas the sub-
aerial volcanics are shifted towards the DM end-

0.5131
_§ DM E-MORB

0.5130
ﬁg = ‘,’ A-‘-"\\
¥ 05129 HIMU \ _____
E ] Western
Q95128 - Canaries

0.5127

! | i I
0.7028 0.7030 0.7032 0.7034 0.7036 0.7038
87gr/ 863y

Fig. 1 Nd-Sr isotope ratio correlation diagram for Fuerteventura volcanic and plutonic rocks. Basal complex
(> 21 Ma): Solid square = SiO,-undersaturated silicate samples; open square = tholeiitic gabbros; open circles =
carbonatites. Subacrial volcanics (< 21 Ma): solid triangle = SiO,-undersaturated sample (basanite); open triangle =
more SiO,-saturated sample (alkali basalt, tholeiite and hawaiite). Hexagon designates initial ratios for the Oka
carbonatite from BeLL and BLenkinsop (1987). Field for the westernmost Canary Islands (La Palma and Hierro) is
from HoernLE et al. (1991b). E-MORB field designates Atlantic Ocean enriched mid-ocean ridge basalt. DM,
HIMU, EM1 and EM2 (see list of abbreviations) are from ZiNDLER and HART (1986).
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member (Figs 1-4). The simplest model for ex-
plaining thesc isotopic variations involves the
mixing of two heterogeneous components. Ac-
cordingly, the basal complex plutonics would re-
flect the composition of the plume; and the sub-
aerial basalts would reflect interaction of the
plume with DM-like lithosphere/asthenosphere,
after the volcano (island) has moved away from

K.A. HOERNLE AND G.R. TILTON

the plume (for example, CHEn and Frey, 1983,
1985; Wryiiie, 1988). Comparison of the
Fuerteventura data with data from other Canary
Islands, however, suggests that this model is too
simple.

Based on the east to west age progression and
the abundant historic activity as recent as 1971,
ScaMinckE (1982) proposes that the Canary

396 — P
o) ,/’/
£ _~~"WESTERN
g\ 200 CANARIES _
£
o
eo]
(=
(ol
38.8 - —
38.4 ; -+ . . : —
NHRL =
~_ HIMU
15.62 I~ -
0
o
&
S
S 1558 ]
,\f Basal Complex
= (>21 Ma)
Miocene (12-21 Ma
15.54 — DM ( ) ]
- Pliocene - Recent
(<4.5 Ma)
15.50 | 1 i ] l |
18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2
206Pb/ 204Pb

Fig. 2 Pb isotope correlation diagrams for Fuerteventura volcanic and plutonic rocks. Basal complex (> 21 Ma):
solid squares = silicate sample; open circles = carbonatite. Miocene volcanics (12-21 Ma): open triangle = this study;
solid triangle = Sun (1980). Pliocene-Recent basalts (< 4.5 Ma): open diamond = this study; solid diamond = Sun
(1980). NHRL = northern hemisphere reference line of HArT (1984). Field for the westernmost Canary Islands (La
Palma and Hierro} is from HoerniE et al. (1991b). Oka Pb data from GRONENFELDER et al. (1986). Cross designates
carbonatite sample P62 from LanceLoT and ALLEGRE (1974).
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- eQ‘o
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t —
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Fig. 3 Sr—Pb isotope ratio correlation diagram for Fuerteventura, Gran Canaria, Hierro and La Palma volcanic
and plutonic rocks. Abbreviations for fields of Gran Canaria data from Couskns et al. (1990) and HoernLE et al.
{1991a): MUV = Miocene undersaturated volcanics (nephelinites and trachyphonolites); MSB = Miocene saturated
basalt (alkali basalts and tholeiites with MG# > 62); MSEV = Miocene saturated evolved volcanics (alkali basalts-
tholeiites through peralkaline rhyolites with MG# < 62); PUB = Pliocene-Recent undersaturated basalt (SiO, < 44;
MG# = 62); PSB = Pliocene-Recent saturated basalt (SiO, > 44; MG# > 62); PEV = Pliocene-Recent evolved vol-
canics (atkali basalt-basanite through trachyte-phonolite with MG# < 62). Also shown are possible compositions for
the lithosphere and asthenosphere beneath the eastern Canary Islands and for the Canary plume. See figure 1 for
symbols and additional abbreviations and references not given above.

Plume is presently situated beneath La Palma,
one of the two westernmost islands. Holocene
activity on each of the other islands, except
Gomera, may result from the spreading of plume
material through the upper asthenosphere be-
neath the older islands (HoERNLE and SCHMINCKE,
1991). Compared to the Pliocene to Recent data
from the ecastern islands of Gran Canaria,
Fuerteventura and Lanzarote, the volcanics from
the westernmost islands of La Palma and Hierro
have a very restricted range in isotopic composi-
tion, especially in Sr and Nd isotope rations (see
Figs 1-4) (Suxn, 1980; Cousens et al., 1990; Ar-
MIENTI et al., 1990; HOErNLE et al., 1991 a, b). The
data for the western islands is consistent with the
Pliocene-Recent Canary Plume having a HIMU-
like composition (HoerNLE et al., 1991b). The
trend towards DM on the Pb isotope correlation
diagrams (see Fig. 2) of these more oceanic is-
lands is interpreted to reflect interaction of the
plume melts (HIMU) with small-degree melts
from the lithosphere/asthenosphere (DM), as

proposed for Hawaii (Cuen and Frey, 1983, 1985;
FEIGENSON, 1986; WYLLIE, 1988).

The variation in the isotope data from the
Miocene volcanics on Gran Canaria suggest that
the Miocene Canary Plume also had a HIMU-like
composition (HOERNLE et al., 1991a). The most
SiO,-undersaturated Miocene volcanics, nephe-
linites and trachyphonolites, have the lowest Sr
and highest Pb isotope ratios and have the most
HIMU-like compositions (Fig. 3). The more
saturated volcanic suite (alkali basalt-tholeiite
through peralkaline rhyolite) is shifted towards
more radiogenic Sr and less radiogenic Pb iso-
topes and has more EM-like compositions. Based
on mineralogical evidence that these volcanics
cooled and fractionated in the mantle and on the
absence of evidence for sediment contamination
in the *”Pb/**Pb ratios (Sun, 1980; CouUseNs et al.,
1990), HoernLE et al. (1991a) propose that the
more saturated volcanics assimilated enriched
(EM-like) lithospheric mantle. The interpretation
implies a HIMU-like composition for the Mio-
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Fig. 4 Nd-Pb isotope correlation diagram for Fuerteventura, Gran Canaria, Hierro and La Palma voleanic and
plutonic rocks. Abbreviations, symbols and references are the same as in figure 3.

cene Canary plume. The enriched material in the
lithospheric mantle beneath Gran Canaria may
be recycled continental lithospheric mantle from
beneath the West African Craton (1.8-3.4 Ga),
which was thermally eroded or delaminated dur-
ing rifting of Pangaea. Chemical and thermal
equilibrium of the plumbing system wall rocks
beneath Gran Canaria could explain why the
younger, more undersaturated Miocene magmas
experienced less lithospheric contamination than
the older, more saturated magmas.

Compared to the undersaturated Miocene vol-
canics on Gran Canaria and to all the volcanics on
the westernmost islands, the basal complex plu-
tonics on Fuerteventura have higher ¥Sr/*Sr and
28Pb/2%Pb ratios (at a given 2°Pb/2™Pb ratio) but
lower "*Nd/'*Nd ratios and are shifted towards
enriched mantle (Figs 1-4). In figure 3, they have
compositions similar to the saturated Miocene
volcanics. Two possible explanations for these
isotopic differences are the following: (1) the iso-
topic composition of the plume was different in
pre-Miocene than in Miocene-Recent Epochs; or
(2) melts from the pre-Miocene plume, which had
a similar composition to the Miocene-Recent
plume, interacted with enriched material in the
lithospheric mantle beneath Fuerteventura. Two

arguments favor the second hypothesis. First,
since Fuerteventura is between Gran Canaria and
West Africa, one might also expect to find re-
cycled continental lithospheric mantle beneath
Fuerteventura, if it is beneath Gran Canaria. Sec-
ond, on the Nd-Pb isotope correlation diagram
(Fig. 4), the two tholeiitic gabbros from the basal
complex have the lowest Nd isotope ratios and
are shifted towards enriched (EM1-like) mantle
in relation to the more undersaturated volcanics
(Fig. 1). For these rcasons, we propose that the
basal complex magmas originated from a HIMU-
like plume but assimilated enriched lithospheric
mantle as they ascended through the lithosphere.
This interpretation implies a plume origin for the
Fuerteventura carbonatites, providing some of
the most direct evidence to date that at least some
carbonatites are plume derived.

The subaerial volcanics have similar Sr and Nd
but generally lower Pb isotope ratios than the
undersaturated Miocene volcanics and the vol-
canics from the western islands (Figs 1-4). At a
given 2%Pb/*™Pb ratio, however, they have higher
X¥Pb/*Pb than the western islands, suggesting the
presence of enriched mantle in these volcanics
(Fig. 2). On the Sr—Pb and Nd-Pb isotope correla-
tion diagrams (Figs 3 and 4), the subaerial volca-
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nics are shifted towards a composition between
depleted and enriched mantle (just above the
field for E-MORB) and overlap the fields for the
Pliocene-Recent basalts on Gran Canaria. During
the Miocene-Recent on Fuerteventura and the
Pliocene-Recent on Gran Canaria, the plume was
presumably situated to the west of each island.
The plume material that reached these islands
had to travel diagonally or horizontally through
the upper asthenosphere from the plume to the
base of the lithosphere beneath the islands.
Therefore, interaction between plume material/
melts with upper asthenospheric material/melts is
our preferred explanation for the shift towards a
composition between the DM and EM end-
members of the Miocene-Recent volcanics on
Fuerteventura and the Pliocene-Recent volcanics
on Gran Canaria (HoErNLE et al., 1991a). This
interpretation implies that the upper astheno-
sphere, at least beneath the castern Canary Is-
lands, contains some enriched mantle, which is
also possibly recycled West African continental
lithospheric mantle. The more saturated subaerial
volcanics have lower Nd isotopic compositions
and are shifted towards enriched (EM-like) man-
tle (Figs 1 and 4). Variations with degree of SiO,-
saturation have also been observed in the basal
complex plutonics, the Miocene and Pliocene-
Recent basalts on Gran Canaria (CoOUSENS et al.,
1990; HoernLE et al., 1991a) and the Miocene-
Recent basalts on Lanzarote (ARMIENTI et al.,
1990). These differences are consistent with the
interaction of the more SiO,-saturated basalts
from each of the eastern islands with enriched
lithospheric mantle beneath these islands.

Comparison with other young carbonatites

Detailed discussion of isotope relationships in
young carbonatites is beyond the scope of this
study. Here we briefly compare the Fuerteventu-
ra data with four other carbonatites — Cape Verde
Islands, < 7 Ma (GErLACH et al., 1988); Oka,
110 Ma (GRUNENFELDER et al., 1986; BELL and
BLenkinsor, 1987); Kaiserstuhl, 18 Ma (NELsON et
al., 1987); and Magnet Cove, 97 Ma (TiLToN et al.,
1987). The tectonic setting of the Cape Verde
carbonatites most closely resembles that at
Fuerteventura. GErRLACH et al. (1988) present Sr
and Nd isotope data for four carbonatites and a
microsovite from two islands, Fogo and Séio
Vicente. The "*Nd/"*Nd ratios are ca. 0.51297 for
Fogo and 0.51292 for Sdo Vicente, with ¥Sr/%*Sr
ratios ranging between 0.70312 to 0.70360. As-
suming that the higher Sr ratios represent con-
tamination, a reasonable value for the Sao

Vicente carbonatite initial ratios is *Sr/%Sr =
0.70312 and '*Nd/'“Nd = 0.51292, which fall
within the HIMU field of ZinpDLER and Hart
(1986). A HIMU composition for the Cape Verde
carbonatites is consistent with a plume origin, as
has been suggested by GErRLACH et al. (1988). The
single Pb isotope analysis for a carbonatite from
the Cape Verde Islands (LANCELOT and ALLEGRE,
1974) is from a different island (Brava) than the
Sr and Nd isotope analysis, hence cannot be used
for comparison with those data.

The Oka initial Pb, Sr and Nd ratios plot with-
in or close to the basal complex fields shown in
figures 1-4. The Kaiserstuhl und Magnet Cove
ratios (not shown) are displaced from the basal
complex fields towards EM, with Magnet Cove
being more displaced than Kaiserstuhl. In a gen-
eral sense, one can say that the Oka-Kaiserstuhl-
Magnet Cove trend resembles that seen in the
Fuerteventura volcanics, and that the variations
could thus indicate varying degrees of interaction
between asthenospheric plume and lithospheric
components, as suggested in Kwon et al. (1989).
Based on the HIMU-like composition of many
continental carbonatites, NELSON et al. (1988)
have also proposed an asthenospheric mantle
plume origin for carbonatites. It is interesting, and
possibly significant that the Oka carbonatite,
which formed in a rift tectonic environment, has
Pb, Sr and Nd isotope ratios almost identical to
those in the Fuerteventura carbonatite, which
formed in a hot spot tectonic environment.

Conclusions

The Fuerteventura volcanic and plutonic rocks an-
alyzed in this study define two separate fields in
isotope correlation diagrams. The older basal com-
plex rocks (> 21 Ma) fall between HIMU and EM
endmembers. The younger subaerial basalts (< 21
Ma) are shifted towards DM. We propose that the
Fuerteventura magmas originated in a mantle
plume in the asthenosphere but interacted with the
lithosphere and/or asthenosphere as they ascended
to the surface. The basal complex magmas, which
were emplaced when Fuerteventura was above the
plume, reflect mixing between plume material
(HIMU) and lithospheric mantle (EM = DM). The
Miocene-Recent subaerial volcanics were formed
when the plume was beneath the more westerly
islands. Studies of the more westerly islands
(HoEerNLE et al., 1991 a, b} indicate that the Canary
Plume probably had a HIMU-like composition
from the Miocene to Recent. Compared to the
proposed Miocene-Recent plume composition, the
subaerial volcanics on Fuerteventura are shifted
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towards compositions between the DM and EM
endmembers in isotope correlation diagrams. This
shift may reflect contamination of plume material
or melt as it was transported through the upper
asthenosphere from the plume to the base of the
lithosphere beneath Fuerteventura. The isotope
patterns on Fuerteventura resemble the more
completely defined trends from the neighboring
island of Gran Canaria.

Pb, Sr and Nd isotope ratios from the associat-
ed syenites, ijolites, fenites, nephelinites, basa—
nite-nepheline benmoreite, alkali gabbros and
sovitic carbonatites in the basal complex are simi-
lar, suggesting a close genetic relationship be-
tween all rock rypes. This study provides some of
the most direct evidence to date for a plume ori-
gin of at least some carbonatites.
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Appendix 1

Stratigraphic position, brief petrographic descriptions and locations of samples (more detailed petrographic de-
scriptions, and XRF and INAA data from these samples will be presented in HoERNLE and LE Bas, 1991).

I Basal complex
Pre-Ajui-Solapa Complex

F2 Tierra Mala alkali gabbro pluton north of Pajera (see STILLMAN, 1987).

Ajui-Solapa (Ijolite-Syenite-Carbonatite) Complex
CF6

12 cm thick, coarse albitite fenite. Punta de la Nao (10°28'00" W, 28°23'00" N).

CF7 35 cm thick, coarse orthoclasite-albitite fenite, 10 m from CF6.

CF9 20 cm thick, coarse orthoclasite fenite cutting CF7.

F/75/148  Apatite-titanite coarse calcite carbonatite. Cliff face of Punta de la Nao.

F/75/153  Coarse calcite carbonatite with scaitered crystals of albite. Cliff face of Punta de la Nao.
Fr75/158  Coarse calcite carbonatite. Punta de la Nao.

F/751165  Coarse calcite carbonatite intruding albitite. Punta de la Nao.

Post-Ajui-Solapa Complex
CF5

Nephelinite dike, with secondary calcite, cuts fenites and carbonatites. Punta de la Nao.

LFU75/203 Tholeiitic (orthopyroxene-bearing) gabbro pluton (PX1) near Mesquer (see LE Bas et al., 1986).
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Pre-Esquinzo Complex

CF10b Aphanitic nephelinite dike trending E-W. In surf zone, 100 m from th mouth of Barranco de Esquinzo
(10°20°00" W, 28°37'30" N).

CF11b Aphanitic nephelinite dike trending E-W. 5 m from CF10b.

Esquinzo (ljolite-Syenite-Carbonatite) Complex

CF10 10 cm thick, coarse albitite fenite trending N-S. Cuts CF10b.

CF12 25 em thick, coarse ijolite dike which cuts fenites. On cliff face, 100 m south from mouth of Barranco de
Esquinzo.

CF1 Coarse ijolite from pluton (?}) heavily intrudes by mafic to intermediate dikes. 25 m below small dam in

Barranco de Esquinzo (10°18'00" W, 28°36'30" N). Sec BARRERA et al. (1981) for detailed description
of this locality.

CF2 Coarse syenite. 2 m from CF1 but separated by two mafic dikes.

CI3 Coarse ijolite from same or associated intrusive body as CF1 and CF2. Body is heavily intruded by
mafic to intermediate dikes. Sample taken from bottom of Barranco de Esquinzo, 0.5 km downstream
from CF1 and CF2.

CF4 Coarse ijolite. 50 cm from CF3.

68/SC/72  Coarse calcite carbonatite. Esquinzo.

68/SC/73  Coarse calcite carbonatite. Esquinzo.

Post-Esquinzo Complex

CF15 50 c¢m thick, nepheline benmoreite dike which cuts CF1 and CF2 pluton(s).
CF16 1 m thick, carbonate-rich, aphanitic tephrite dike which cuts CF15.

Cr17 1 m thick, clinopyroxene basanite (with rare olivine) which cuts CF16.

F122 Tholeiitic (orthopyroxene-bearing) gabbro pluton (PX2) (see STiLLMAN, 1987).

11, Subaerial volcanics

Basaltic series I (Miocene)

KFS46 Allkali basalt lava flow. West wall of Montana Aceitunal (10°16'30" W, 28°32'15" N). Aceitunal lavas
are stratigraphically beneath flows dated at 11.8 Ma (sample FV30; AsDEL-MoNEM et al., 1971).

KFS53 Olivine-phyric alkali basalt lava flow. Same location as KFS46.

KFS54 Alkali basalt lava flow. East wall of Montafia Aceitunal.

KFS55 Hawatite lava flow. Same location as KFS54.

KFS34a Plagioclase-phyric hawaiite dike. South wall of Montafna Fortaleza.

KFES140 Alkali basalt lava flow. Barranco de Jarubio (10°19'00" W, 28°33'45" N). Same unit as dated at 11.8 Ma
(FV30; ABDEL-MoONEM et al., 1971).

Basaltic series 1 (Pliocene)
KFS110 Basanite lava flow. Barranco de los Molinos (10°21'30" W, 28°18'00" N). Dated at 4.25 Ma (FV18;
ABDEL-MoONEM et al., 1971).

Basaltic series Il (Quaternary)
KFS69 Tholetite lava flow. On beach, east of La Oliva, near Tarajalito.

Basaltic series IV (Subrecent)

KFS596 Basanite lava flow. West side of Montafia Quemada (10°18'00" W, 28°33'45" N).
KFS240 Basanite lava flow. Caldera de Gairia (10°19'30" W, 28°21'00" N).

KFS82 Basanite lava flow. NW of La Oliva, about 25 km west of Pozo Negro.
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