Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 56 (1976)

Heft: 3

Artikel: Metamorphose von Peliten zwischen Rheinwaldhorn und Pizzo Paglia

(Adula- und Simano-Decke)

Autor: Klein, Hans-Heiner

DOI: https://doi.org/10.5169/seals-43696

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Metamorphose von Peliten zwischen Rheinwaldhorn und Pizzo Paglia (Adula- und Simano-Decke)

Von Hans-Heiner Klein, Basel*)

Mit 9 Figuren und 5 Tabellen im Anhang

Abstract

Metapelites of the Pennine nappes Adula and Simano are polymetamorphic as well as plurifacial. Based on the distribution of eoalpine and mid-tertiary metamorphism, an attempt is made to relate the observed minerals to different metamorphic events (prealpine, eoalpine and mid-tertiary) using the regional distribution of specific minerals and/or parageneses (chloritoid-kyanite-staurolite, relictic and newly formed garnet, white micas-margarite, chlorite-biotite and plagioclase). Four subparallel, mid-tertiary zone-boundaries and a questionable isoreactiongrad are established.

Zusammenfassung

Die altkristallinen Metapelite der Adula- und angrenzender Teile der Simano-Decke sind sowohl polymetamorph als auch plurifaziell. Anhand der fünf Verbreitungskarten (Chloritoid-Disthen-Staurolith, reliktischer Granat-neugebildeter Granat, Hellglimmer-Margarit, Chlorit-Biotit und Plagioklas) und bisherigen Kenntnisse über die Verbreitung der frühalpinen und tertiären Metamorphose wird versucht, die beobachteten Mineralien den verschiedenen Metamorphosephasen (voralpin, frühalpin und tertiär) zuzuordnen. Vier subparallele, tertiäre Zonengrenzen und eine fragliche Isoreaktionsgrade werden ausgeschieden.

Riassunto

Le metapeliti dell'unità tectonica dell'Adula e del Simano sono tanto polimetamorfiche quanto plurifacciali. Grazie alle cinque carte di distribuzione (cloritoide-cianite-staurolite, granato relittico e granato di neoformazione, miche chiare-margarite, clorite-biotite e plagioclase) e grazie alle conoscenze attuali sulla distribuzione della metamorfosi eoalpina e del Medioterziario si cerca di mettere in relazione i minerali osservati alle diverse fasi di metamorfosi (prealpino, eoalpino e medioterziario). Quattro subparalleli e medioterziari limiti di zona e un grado d'isoreazione problematico sono dati.

^{*)} Mineralogisch-Petrographisches Institut der Universität, Bernoullistrasse 30, CH-4056 Basel.

Inhalt

Einleitung	458
Geologische Übersicht	458
Methoden	460
Probeentnahme	460
Röntgenographische Untersuchungen	460
Verbreitung einzelner Mineralien	460
Diskussion	469
Alterszuordnung	469
Physikalische Bedingungen der tertiären Metamorphose	469
Zoneographie	47 0
Anhang: Tabellen	472
Literatur	478

EINLEITUNG

Vorliegende Arbeit befasst sich mit der Petrographie pelitischer, altkristalliner Gesteine der Adula-Decke sowie angrenzender Teile der Simano-Decke. Diese Metapelite sind sowohl polymetamorph (voralpin und alpin) als auch plurifaziell (frühalpin und tertiär), vergleiche zum Beispiel die metamorphe Fazieskarte der Alpen (Zwart, 1973). Während in den mesozoischen Metapeliten ausschliesslich der alpine Anteil der Metamorphose erfasst werden kann (siehe z. B. Frey, 1974), stellt sich in den altkristallinen Gesteinen das schwierige Problem, den reliktischen, voralpinen Mineralbestand zu erkennen. Mit Hilfe der hier angewendeten optischen Untersuchungen liess sich diese Kernfrage allerdings nur unbefriedigend beantworten.

GEOLOGISCHE ÜBERSICHT

Die geologische Gliederung der weiteren Umgebung des Arbeitsgebietes ist in Fig. 1 dargestellt. Im Zentrum liegen die Kristallinkörper der penninischen Abscherdecken Simano, Adula und Tambo, getrennt durch tonige und karbonatische Sedimente wahrscheinlich mesozoischen Alters. Die Schichtflächen fallen gegen Nordosten ein, so dass gegen Osten sukzessiv höhere tektonische Ein-

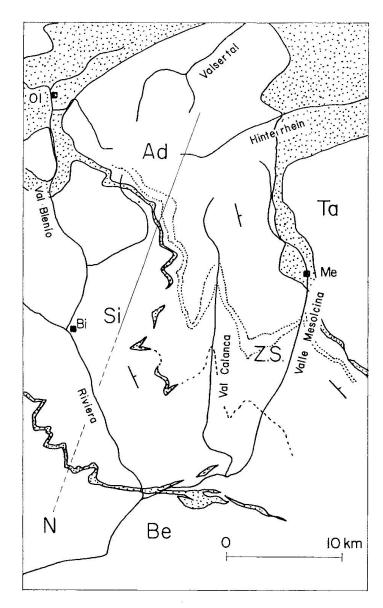


Fig. 1. Geologische Übersichtskarte des Arbeitsgebietes mit eingetragenen Streich- und Falltendenzen. Weiss: Kristallinkörper, punktiert: Deckenscheider. Ad: Adula, Be: Zone von Bellinzona, Si: Simano, Ta: Tambo, ZS: Zone von Soazza, N: Spur der gewählten Projektionsebene (vgl. S. 470), Bi: Biasca, Me: Mesocco, Ol: Olivone.

heiten folgen. Die Adula liegt heute als ein Stapel flachliegender Serien von kristallinen Schiefern vor, welche petrographisch mehrfach bearbeitet wurden (Bruggmann, 1965; Egli, 1966; Fumasoli, 1974; Hänni, 1972; Heitzmann, 1975; Jenny, Frischknecht und Kopp, 1923; Kündig, 1926; Müller, 1958; van der Plas, 1959, und Weber, 1966). Kalifeldspat-Augengneisse, Biotit-Muskovit-Gneisse und Glimmerschiefer herrschen vor; Amphibolite, Ultrabasite und Karbonatgesteine treten untergeordnet auf.

Für das Studium der Mineralassoziationen von Peliten ist die Soazza-Zone (Definition durch Weber, 1966, vgl. Fig. 1) besonders geeignet; in anderen Teilen der Adula sind tonerdesilikatreiche Gesteine selten. Im Norden musste auf benachbarte aluminiumreiche Zonen ausgewichen werden.

460 H.-H. Klein

METHODEN

Probeentnahme

Um Mineralzonen und etwaige Isoreaktionsgrade zu erfassen, wurden 400 Proben aus glimmerreichen Serien gesammelt, wobei aus lithologischen Gründen der mittlere Abschnitt besser belegt ist. Vom mittleren Teil der Valle Mesolcina wurden nur wenig Proben untersucht wegen einer im Gange befindlichen Arbeit von P. Thompson (im Druck 1976).

Röntgenographische Untersuchungen

Etwa 100 Hellglimmer-reiche Proben wurden diffraktometrisch auf Muskovit und Paragonit untersucht. Der d (060)-Wert und die Modifikation von Muskovit wurden auf einer Guinierkamera nach de Wolff bestimmt. Die Quarzlinie (211) diente als interner Standard.

VERBREITUNG EINZELNER MINERALIEN

Chloritoid

Chloritoid tritt ausschliesslich im nördlichen Teil des Untersuchungsgebietes auf (Fig. 2). Zusätzlich zu den aus der Literatur übernommenen Fundpunkten (1-7, vgl. Tabelle 3) konnte Chloritoid neu auf A. Scaradra, 2 km SE des Luzzone-Stausees (Fundpunkt 8), im Läntatal (Fundpunkt 9) sowie im oberen Hinterrheintal (Fundpunkte 10 und 11) festgestellt werden. Bei Fundpunkt 10 scheint der Chloritoid auf Kosten reliktischen Granates zu wachsen, in welchem er nie als Einschluss beobachtet werden konnte; zudem liegt der Chloritoid teilweise quer zur Schieferung, wuchs also postkinematisch (Fig. 3). Aufgrund der bekannten Verbreitung alpin-metamorphen Chloritoids (NIGGLI und NIGGLI, 1965) dürfte es sich auch im vorliegenden Fall um eine alpine Neubildung handeln. Weiterhin konnte Chloritoid in einer Probe aus dem Val Malvaglia (Fundpunkt 12) und aus dem Valle dei Passetti (Fundpunkt 13) als gepanzertes Relikt in Granat (zum Teil jungem Granat) beobachtet werden. Es kann nicht entschieden werden, welcher alpinen Metamorphosephase das Chloritoidwachstum zuzuordnen ist. Nach van der Plas (1959) stellen die Chloritoide der Fundpunkte 1-3 frühalpine Bildungen dar.

Staurolith

Mit Ausnahme von vier Fundpunkten, welche der Literatur entnommen wurden (L auf Fig. 2, vgl. Tabelle 1), handelt es sich durchwegs um neue Staurolithvorkommen. Die meisten der neuen Fundpunkte fügen sich in das bisher lükkenhaft belegte Verbreitungsbild alpin gebildeten Staurolithes ein (Niggli und Niggli, 1965, Fig. 4). Ausnahmen bilden die Fundpunkte 10, 13 und 14. Nach den Dünnschliffbeobachtungen handelt es sich auch hier um alpine Bildungen. Die kleinen Staurolithporphyroblasten (Länge 0,2 mm) zeigen keine Umwand-

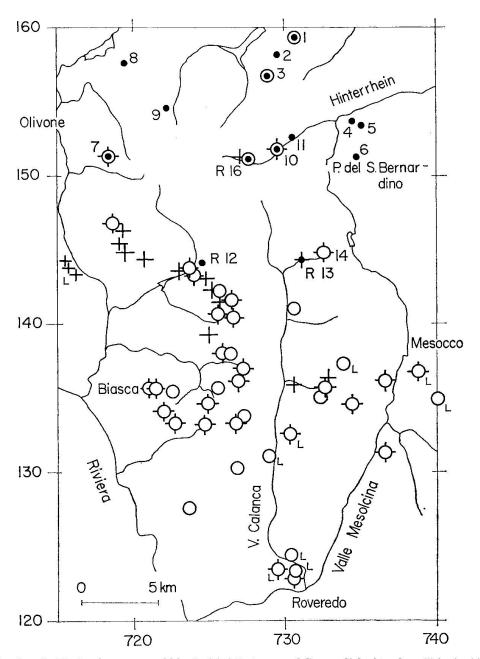
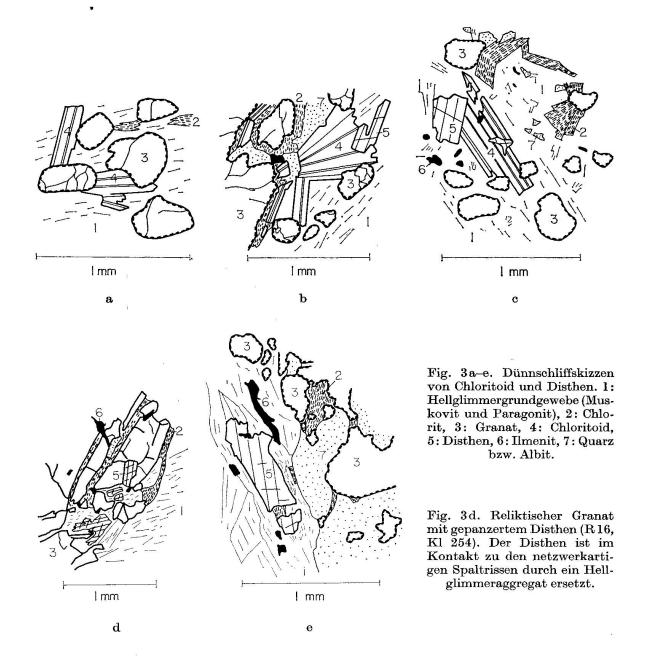



Fig. 2. Regionale Verbreitung von Chloritoid, Disthen und Staurolith. Punkt: Chloritoid, offener Kreis: Disthen, Kreuz: Staurolith, R: reliktische Paragenesen in bezug auf die tertiäre (bzw. alpine) Metamorphose. Abszisse und Ordinate sind mit den schweizerischen Kilometerkoordinaten versehen.

lungserscheinungen (Verglimmerung), wie dies von polymetamorphen Staurolithen bekannt ist (vgl. z. B. Bearth, 1963, p. 412; H. R. Wenk, 1974, Fig. 5).

Disthen

Disthen zeigt eine ähnliche Verbreitung wie Staurolith: sehr verbreitet im südlichen Teil des Untersuchungsgebietes, spärlich im nördlichen Teil. Die 462

Mehrzahl der Fundpunkte sind neu. Nach den mikroskopischen Beobachtungen handelt es sich mit einer Ausnahme (R 16) durchwegs um alpine Bildungen. Dies gilt insbesondere für die neuen Fundpunkte 10 und 14. Im Dünnschliff besitzen die Disthenporphyroblasten scharfe Korngrenzen ohne jede Verglimmerung, wie dies bei einer voralpinen Bildung zu erwarten wäre (vgl. KWAK, 1971; H. R. Wenk, 1974). Nach van der Plas (1959) bildeten sich die Disthene der Fundpunkte 1 und 3 frühalpin, eventuell auch später. In R 16 ist der Disthen durch reliktischen Granat gepanzert. Im Kontakt zu den netzwerkartigen Spaltrissen des Granates liegt der Disthen in Hellglimmer-Pseudomorphosen vor; einzig die Umrisse lassen hier auf Disthen schliessen (vgl. Fig. 3d).

Granat

Granat tritt im ganzen Untersuchungsgebiet auf. Dabei können drei texturelle Ausbildungsformen unterschieden werden:

Reliktischer Granat. Kennzeichen im Dünnschliff sind abgerundete oder eingebuchtete Umrisse, netzwerkartige Spaltrisse mit Chlorit und Limonitbildung, sowie Chloritnester mit Granatrelikten (vgl. Fig. 4a).

Neugebildeter Granat zeigt teilweise idiomorphe oder poikilitische Ausbildung ohne Spaltrisse und retrograde Chloritbildung (vgl. Fig. 4b).

Kombinationsformen. Die Kernzone zeigt Spaltrisse und vorwiegend Quarzeinschlüsse; sie wird häufig umgeben von einem Kranz feinster submikroskopischer Einschlüsse; die Randzone schliesslich zeigt teilweise eine Tendenz zu Idiomorphie (vgl. Fig. 4c).

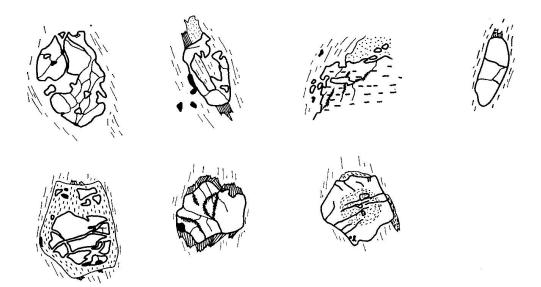


Fig. 4a. Reliktischer Granat. Beispiele: korrodiert und in s gelängt, reliktischer Granat mit zwei Wachstumsphasen (reliktischer Granat I und II), Granat in diversen Korrosionsstadien, Chloritnester mit Granatrelikten (Pseudomorphosen von Chlorit nach Granat), Granat mit im Vergleich zum s verschiedenem Interngefüge.

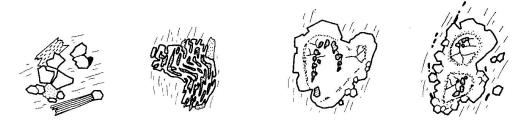


Fig. 4b. Neubildungen.

Fig. 4c. Kombinationsformen.

Fig. 4. Dünnschliffskizzen von Granat.

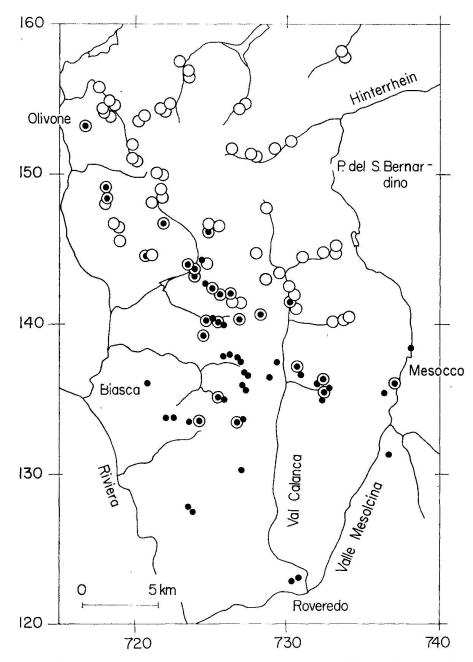


Fig. 5. Regionale Verteilung der drei Granat-Ausbildungsformen. Offener Kreis: reliktischer Granat (I und II), Punkt: neugebildeter Granat, offener Kreis mit Punkt: Kombinationsformen.

Die regionale Verteilung der drei Ausbildungsformen ergibt eine deutliche Zonierung (Fig. 5). Reliktischer Granat tritt im nordöstlichen Teil des Untersuchungsgebietes auf. Südwestlich schliesst sich eine 5–10 km breite Übergangszone an. Im südlichsten Teil scheint ausschliesslich neugebildeter Granat aufzutreten. Eine Alterszuordnung der zwei Granatgenerationen ist schwierig. Während es sich beim neugebildeten Granat wohl um eine tertiäre Neubildung handeln dürfte, kann vorläufig nicht entschieden werden, ob der reliktische Granat voralpin oder frühalpin entstanden ist.

Muskovit

Nach CIPRIANI et al. (1968) gestattet die Lage des (060)-Reflexes eine grobe Abschätzung des Phengitgehaltes. Bei den untersuchten Kali-Hellglimmern handelt es sich mehrheitlich um Muskovite, und zwar auch bei den nördlichst gelegenen Proben, wo man eher phengitischen Muskovit erwartet hätte (vgl. Graeser und Niggli, 1967; Schwander et al., 1968). Der kleine Phengitgehalt

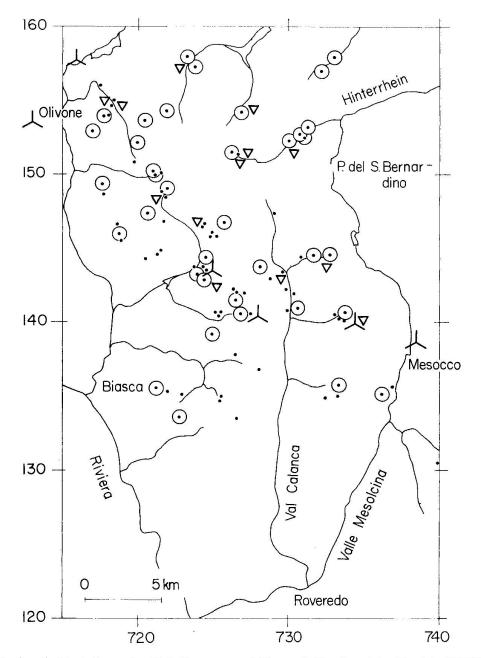


Fig. 6. Regionale Verteilung der Hellglimmer- und Margarit-Fundpunkte. Punkt: 2M-Muskovit, offenes Dreieck: 2M- und 3T-Muskovit, offener Kreis: Paragonit, dreistrahliger Stern: Margarit.

466 H.-H. Klein

unserer Proben dürfte durch den Aluminiumreichtum der untersuchten Metapelite bedingt sein.

In allen zirka 100 geröntgten Proben tritt die Modifikation 2M auf, in 12 Proben des nördlichen Teiles des Arbeitsgebietes konnte zusätzlich die Anwesenheit des 3T-Polymorphs festgestellt werden (Fig. 6). Die Untersuchung des Achsenwinkels an separierten Muskoviten aus dem nördlichen Teil des Untersuchungsgebietes zeigen zwei $2V_x$ -Maxima bei $0^\circ-5^\circ$ und $30^\circ-40^\circ$, südlichere Proben zeigen hingegen nur $2V_x$ -Werte zwischen 30° und 40° . Muskovite mit kleinen Achsenwinkeln stammen aus Gesteinspulvern, in welchen die 3T-Muskovit-Modifikation nachgewiesen werden konnte.

Nach vorläufigen Untersuchungen von Frey et al. scheint die 3T-Modifikation in den Zentralalpen auf jene Gebiete beschränkt zu sein, in welchen die frühalpine Metamorphosephase erkannt worden ist (für die Verbreitung der frühalpinen Hochdruck-Niedertemperatur-Metamorphose siehe z. B. Zwart, 1973, oder Frey et al., 1974). Der nördliche Teil des Untersuchungsgebiets wurde nach van der Plas (1959) ebenfalls von der frühalpinen Metamorphose erfasst, und es wäre demnach möglich, dass es sich bei unseren 3T-Muskoviten um frühalpine Relikte handeln würde.

Paragonit

Paragonit konnte in 37 der etwa 100 untersuchten Proben röntgenographisch nachgewiesen werden. In den nordöstlichsten Metapeliten ist Paragonit fast immer vorhanden (1 Ausnahme), während er nur in einem Drittel der südwestlicheren Proben erkannt wurde (Fig. 6). Der Modalbestand an Paragonit nimmt ebenfalls von Nordosten gegen Südwesten ab, wobei in gleicher Richtung eine Zunahme des Plagioklasgehaltes festgestellt werden kann.

Nach Rosenfeld et al. (1958) und Zen und Albee (1964) zeigen die Basisabstände koexistierender Muskovit-Paragonit-Paare mit zunehmender Metamorphose eine Annäherung, wodurch der Differenzwert d(002)_{Ms} – d(002)_{Pa} immer kleiner wird. Für die sechs untersuchten Hellglimmerpaare (Tabelle 2) dieser Arbeit ergab sich keine deutliche regionale Abhängigkeit. Aus der bekannten Zoneographie der alpinen Metamorphose (Niggli und Niggli, 1965; Wenk, 1962; Trommsdorff, 1966; Wenk und Keller, 1969) würde man für unser Arbeitsgebiet ein Ansteigen des Metamorphosegrades von Nordosten nach Südwesten erwarten. Demgegenüber weist Probe 308 einen zu kleinen Differenzwert auf. Möglicherweise wurden in diesen polymetamorphen und plurifaziellen Gesteinen verschiedenaltrige Glimmergenerationen miteinander verglichen.

Margarit

In sechs Proben konnte optisch Margarit an der spiessigen Ausbildungsform, dem gegenüber Muskovit stärkeren Relief und der kleineren Doppelbrechung sowie positiver Elongation bestimmt werden. In allen Fällen konnte die Anwesenheit von Margarit auch röntgenographisch bestätigt werden (Basisreflex 00.10). Drei der Fundpunkte stammen aus prätriadischen Metapeliten der Adula- und Simano-Decke, die drei übrigen Fundpunkte kommen aus mesozoischen, zum Teil karbonatführenden Metasedimenten. Die zierlichen Margaritkristalle sind postkinematisch gewachsen und dürften daher der tertiären alpinen Metamorphose angehören. Alle Fundpunkte liegen innerhalb des niedriggradigen Bereiches der alpinen Staurolithzone.

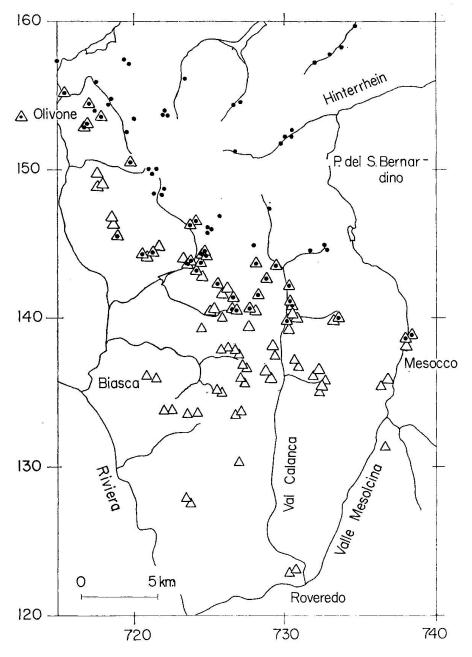


Fig. 7. Regionale Verteilung der Hellglimmer-Chlorit- und Hellglimmer-Biotit-Paragenesen.
Punkt: Hellglimmer-Chlorit, offenes Dreieck: Hellglimmer-Biotit.

Chlorit und Biotit

Chlorit ist im nordöstlichen Teil des Arbeitsgebietes weit verbreitet, während Biotit in den Metapeliten erst südwestlich einer Linie Olivone-Mesocco auftritt (Fig. 7). Der modale Chloritanteil nimmt gegen Südwesten ab, wogegen der Biotitanteil zunimmt. Der Chlorit verschwindet innerhalb einer etwa 5 km breiten Zone südwestlich des ersten Auftretens von Biotit. Dies deutet darauf hin, dass Chlorit an der Biotitbildung beteiligt war.

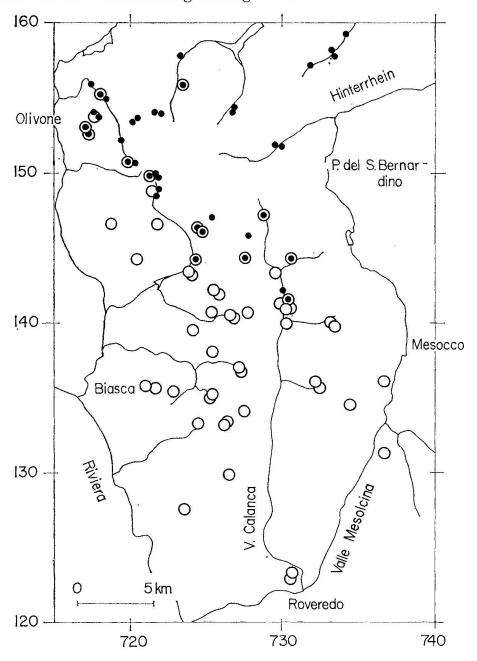


Fig. 8. Regionale Verteilung des An-Gehaltes der Plagioklase. Punkt: Albit (An 0-4), offener Kreis: Oligoklas bis Andesin (An 20-27, selten bis 32), offener Kreis mit Punkt: inverszonare Verwachsung von Albit (im Kern) und Oligoklas (im Rand).

Plagioklas

Der Anorthitgehalt der Plagioklase wurde mit Hilfe des Universaldrehtisches, des Vergleiches $n_{\alpha Qz} - n_{\gamma Plag}$ abgeschätzt und zum Teil röntgenographisch mit dem Diffraktometer (Bambauer et al., 1967) bestimmt. In den nordöstlichen Proben liegt der Plagioklas in Metapeliten als Albit vor, in den südwestlichen als Oligoklas (bis Andesin) (vgl. Fig. 8). Die Übergangszone ist durch die nichtkristallographische Verwachsung von Albit (An 0–4 im Kern) und Oligoklas (An 20–27) im Rand gekennzeichnet. Die einzelnen Phasen der inverszonaren Plagioklase können anhand der Reliefunterschiede ($n_{\alpha Qz} - n_{\gamma Plag}$) identifiziert werden; die Daten wurden durch E. Wenk mit Hilfe des Universaldrehtisches bestätigt.

DISKUSSION

Alterszuordnung

Wie in der Einleitung erwähnt, erlitten die untersuchten Metapelite mindestens drei metamorphe Phasen: voralpine, frühalpine und tertiäre. Die vorwiegend mikroskopischen Untersuchungen dieser Arbeit sowie die bisherigen Kenntnisse über die Verbreitung der frühalpinen und tertiären Metamorphose in den Zentralalpen gestatten es nur unter grossen Vorbehalten, die beobachteten Mineralien den verschiedenen Metamorphosephasen zuzuordnen:

voralpin: eventuell reliktischer Granat I, eventuell Chloritoid (R 12, 13) und Disthen in Probe R 16 (Kl 254),

frühalpin: eventuell reliktischer Granat II, 3T-Muskovit, eventuell Chloritoid und Disthen im nordöstlichen Teil des Untersuchungsgebietes,

tertiär: Biotit, Staurolith, neugebildeter Granat, Disthen (eventuell mit obigen Ausnahmen), die Mehrzahl der Hellglimmer, eventuell Chloritoid.

Physikalische Bedingungen der tertiären Metamorphose

Das Verschwinden von Chloritoid, das Auftreten von Staurolith sowie von Margarit innerhalb des Staurolithfeldes erlauben es, für das Gebiet Olivoneoberstes Hinterrheintal-Mesocco Temperaturen um 500°-550° C abzuschätzen (Hoschek, 1967, 1969; Richardson, 1968; Storre und Nitsch, 1973). Minimale Angaben über den Druck erhält man durch die Anwesenheit von Disthen (p = 4-4,5 kb, Richardson et al., 1969; Holdaway, 1972) sowie von Margarit + Quarz innerhalb der Staurolithzone (p_{H2O} > 5 kb, Storre und Nitsch, 1973).

Zoneographie

Vier subparallele Zonengrenzen durchlaufen das Untersuchungsgebiet von Nordwesten nach Südosten und gliedern das Gebiet in einen schwächer metamorphen nordöstlichen und einen höher metamorphen südwestlichen Teil. Die Zonengrenzen, welche das erste Erscheinen von Biotit, von Oligoklas und neugebildetem Granat definieren, fallen ungefähr zusammen und verlaufen von Olivone nach Mesocco (vgl. Fig. 5, 7 und 8). Die Staurolith-Zonengrenze ist schlecht definiert und zeigt dank den Fundpunkten der Proben Kl 254 und 264 eine Ausbuchtung ins oberste Hinterrheintal (Fig. 2). Alle drei Zonengrenzen dürften der alpinen, tertiären Metamorphosephase angehören.

Um Auskunft über die mögliche dreidimensionale Lage der tertiären Zonengrenzen zu erhalten, wurden die Fundpunkte von Chlorit, Chlorit + Biotit sowie Staurolith (zusätzlich immer mit Muskovit + Quarz) in einem Profil (Fig. 9)

Fig. 9. Normalprojektion der Chlorit-, Chlorit+Biotit- und Staurolith-Fundpunkte tertiärer Bildungen auf eine Ebene senkrecht zu den beschriebenen Zonengrenzen (Spur der Projektionsebene in Fig. 1). Die gestrichelten Linien grenzen die auf Seite 471 beschriebene Isoreaktionsgrade ein.

dargestellt. Das Profil verläuft ungefähr senkrecht zu den oben beschriebenen Zonengrenzen in Richtung NNE (vgl. Fig. 1). Da die Kristallisation die Deformation weitgehend überdauert hat (vgl. z. B. Ayrton und Ramsay, 1974), wurden Fundpunkte von maximal 5 km seitlicher Entfernung senkrecht auf die Profilebene projiziert. Die Aussagen, welche aus Fig. 10 gewonnen werden können, sind vorläufig aus den folgenden Gründen beschränkt. Einmal ist die Probedichte zu gering, vor allem im nördlichen Profilteil; zudem beträgt der Höhenunterschied zwischen tiefst- und höchstgelegener Probe maximal 1,5 km. Schliesslich sind die Reaktionen, welche zur Bildung von Biotit und Staurolith geführt haben, nicht bekannt. Immerhin fällt das erste gehäufte Auftreten von Staurolith zusammen mit dem Verschwinden von Chlorit in Gegenwart von Muskovit, Biotit und Quarz. (Dabei werden die vier nördlicher gelegenen Proben, in welchen Staurolith nur in wenigen Einzelkörnern auftritt, ausser acht

gelassen.) Eine mögliche Reaktion für die Staurolithbildung könnte demnach lauten:

 $Chlorit + Muskovit + Granat \rightarrow Staurolith + Biotit + H_2O.$

In einem p_{tot}-T-Diagramm stellen univariante Kurven von Entwässerungsreaktionen bei Drücken > 4 kb (vgl. S. 469) beinahe Isothermen dar (vgl. z. B. MIYASHIRO, 1973, S. 45). Mit allen Vorbehalten (siehe oben) kann demnach eine Neigung der Isothermenfläche von 50–55° gegen Norden bestimmt werden.

Verdankungen

Ein spezieller Dank gilt meinem Lehrer, Herrn Professor Dr. E. Wenk, auf dessen Anregung hin diese Arbeit entstanden ist. Herrn Professor Dr. M. Frey sei hier für die unermüdliche Hilfe und aufbauende Kritik während der Endphase der Entstehung dieser Publikation ganz besonders gedankt; ebenso Herrn T. Fischer und H. Hänni für das Anfertigen der Dünnschliffe; Herrn Dr. Luigi Bier und Herrn G. Levinson für die Verfassung des Riassunto bzw. Durchsicht des Abstract.

ANHANG: TABELLEN

Tabelle 1. Disthen- und/oder staurolithführende Paragenesen

Ms-Modifikation		Ctd, Ep/Clzo		Ctd	Ctd	prism. Sill.	10	$^{2}\mathrm{M}$		$_{2}\mathrm{M}$	2 M			^{2}M		$3\mathrm{T}\!\gg\!2\mathrm{M}$											^{2}M	2M + evtl. 3T	2 M	2M
$d(060)_{Ms}$							1,497	1,496		1,505	1,496			1,494	•	1,499											1,496	1,496	1,498	1,497
An-Plag							22			23 - 25	20 - 24	21 - 23	21 - 25		20 - 22		24	25				23 - 25	20 - 25		28?	30 - 31	20 - 22		22	
ChI				×	×		0	t;	0		0			C	0		0	0	0	×	×	0			0	0		C	į	0
Pa									×	×	×	1		l		Į,											I	l	I	1
Ms	×		×	×	×	×	×	×	×	×	×	×	×	×	×	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Bi	×					×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Gr	×				×	×	×	×		×	×	×	×	×	×		×	×	×		×	×	×	×	×	×	×	×	×	×
$\mathbf{\hat{s}}_{t}$	×		×			×	×	×	×	×	×	×	×	×			×		×			×			×	×	×	×	×	×
Di		×	×	×	×	×					×	×	×		×	X		0	×	×	×	×	×	×	×	0	×	×	×	
Koordinaten	732.2/136.2	718.4/151.5	718.4/151.5	718.4/151.5	730.6/159.2	736.3/131.3	741.3/131.5	741.7/131.7	730.2/136.4	732.7/135.9	721.8/135.6	721.7/135.6	726.8/133.1	726.5/133.1	727.4/133.9	732.2/134.5	732.8/135.8	730.3/141.4	727.0/136.1	727.0/136.1	727.0/136.1	727.3/136.8	727.0/137.9	726.9/137.9	726.0/138.1	725.2/135.1	725.2/135.1	725.3/140.4	725.3/140.4	725.3/140.3
Lokalität	Calvaresc	Cma. di Bresciano	Cma. di Bresciano	Cma. di Bresciano	Hennensädel	Cabbiolo	A. di Campel	P. Padion	Sopra Augio	Calvaresc	Mottone di Cava	Mottone di Cava	A. Piöv di dentro	A. Piöv di dentro	I Pianon di Piöv	Fil de Calvaresc	Fil de Calvaresc	Valbella	P. di Giümella	P. di Giümella	P. di Giümella	Passo di Giümella	Cerign	Cerign	sopra A. d'Ardedo	Ganna del Torrent	Ganna del Torrent	A. di Caldözz	A. di Caldözz	A. di Caldözz
Probe Nr.	Cal 9	H 224			LP 276a	00				- 7						_		Kl 152	_	K1 160		Kl 165				KI 172		K1 180		Kl 184

$2\mathrm{M} + \mathrm{evtl.}~3\mathrm{T}$	^{2}M	$2\mathrm{M} > 3\mathrm{T}$	$2 \mathrm{M} - \mathrm{Ctd}, \mathrm{Ep}/\mathrm{Clzo}$	$_{2M}$	2M Ctd als Relikt				2M	$2 \mathrm{M} + \mathrm{evtl.} \ 3 \mathrm{T}$									$_{2}\mathrm{M}$							Fibr.	prism. Sill., Fibr.
1,496	1,500	1,501	1,501	1,500	1,499				1,499?	1,496									1,496								
21						21	21 - 25	20				22 - 23	25-27	26 - 27?			273				24 - 25?		20 - 25		28		
O×C)	×	×	×	×	×			0	0	0	×	0			×	0	×	×				0	×			
1	×	1	×	×	×				×	1		1	×						!					×	1		
$\times \times \times$	X	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
\times \times \times	×				×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×××	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	×	×	×	×
×OC) ×	×	×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	×	
×	X	×	×	×		×	×	×	0					×	×		×	×			×			0	×	×	×
725.5/140.3 $726.4/142.1$ $726.7/141.7$	722.6/133.8	726.6/151.3	729.7/151.8	732.7/144.5	731.8/144.4	726.0/140.5	723.7/135.8	727.4/130.6	736.3/135.4	721.1/144.4	718.9/145.6	720.7/144.4	724.4/139.5	724.8/133.3	723.3/133.5	726.4/141.6	725.1/142.4	723.8/143.8	723.8/143.8	718.9/146.4	718.6/146.7	720.7/144.4	724.0/143.3	724.0/143.3	724.1/143.5	731.7/123.7	731.0/123.0
A. di Caldözz Stabbielli (Madra) Ciavasch	Cma. di Biasca	Ursprung	Chämiboden	V. dei Passetti	V. dei Passetti	Vadrece (V. Combra)	A. di Cava	A. di Rossiion	Selva (Soazza)	A. di Ciou	Stabioi	Lavill	Btta. di Bòrsgen	A. d'Oerz	A. della Motta	A. Rotondo	A. di Bragnéi	Madra (ponte)	Madra (ponte)	Grussett	A. di Pièi	Grussett	V. Madra	V. Madra	V. Madra	Grono	Grono
Kl 185 Kl 190 Kl 191		Kl 254			K1 285	K1 322	K1 381	K1 385	Kl 397	Kl 417	Kl 428	Kl 430	Kl 431	Kl 437	Kl 441	Kl 443	Kl 444	Kl 452	Kl 456	Kl 458	KI 460	Kl 462	Kl 477a	Kl 478	Kl 479	FK 12	FK 16a

Aus der Literatur wurden zusätzlich folgende Disthen- und/oder Staurolith-Fundpunkte übernommen (vgl. Fig. 2):

Di: Fil di Dragiva, 733.6/137.4; Di: Sta. Maria-Buseno, 730.0/124.3; Di: N. Roveredo, 729.0/123.0; Di-St: Mti. della Motta, 729.2/131.3; Di-St: N. Giova, 729.3/123.0. KÜNDIG (1926):

Wевек (1966): Di: Corno, 740.6/135.2; Di-St: Gumegna, 738.8/136.8.

NIGGLI und NIGGLI (1965): Di: Landarenca, 729.2/131.3.

Tabelle 2. Basisreflexe koexistierender Muskovite und Paragonite

(Technische Daten: Röntgendiffraktometer, Cu- K_{α} -Strahlung, 40 kV, 30 mA, Divergenzschlitz 1°, Auffangschlitz 0,1°, Streustrahlenschlitz 1°, Abtastgeschwindigkeit $^{1/8}$ ° pro Minute, Papiervorschub 600 mm pro Stunde, Zeitkonstante je nach Intensität 2 bzw. 4; als interner Standard diente Silizium und/oder Quarz. Jeder Reflex [(0010) und (006)] wurde mindestens dreimal gemessen. Die Standardabweichung beträgt im Mittel 0,003 Å.)

	$d(060)_{Ms}$	1,497	1,500	1,502	1,502	1,499?	1,505
Differenz	$d(002)_{Ms} - d(002)_{Pa}$ d	0,323	0,312	0,307	0,290	0.284	0,262
	$\mathrm{d}(002)_{\mathrm{Pa}}$	9,628	9,633	9,647	9,633	9,651	9,647
	$d(002)_{Ms}$	9,951	9,945	9,956	9,923	9,935	6)6'6
	Koordinaten	732.1/157.2	722.9/156.9	721.6/154.5	734.6/159.9	731.8/144.4	732.7/135.8
	Lokalität	Wäschehrut	Läntahütte	Btta. di Fornee	Tritt	V. dei Passetti	Calvaresc
	Probe	KI 305	Kl 244	Kl 235	K1 308	Kl 285	KI 98

Tabelle 3. Chloritoidführende Paragenesen

Ms-Modifikation							$2\mathrm{M} > 3\mathrm{T}$	$_{2}$ M	$2 \mathrm{M}$	2M+3T Ctd als gepanzertes Relikt	2 M Ctd als gepanzertes Relikt
$\mathrm{d}\left(060 ight)$ Ms							1,501	1,501	1,501	1,499	1,498
Ep/ Clzo		×		×	×			×	×		×
Chl	×	×	×	×	×	×	×	×	×	×	×
Pa							1	×	×	X	1
$\mathbf{M}\mathbf{s}$	×	×	×	×	×	×	X	×	×	×	×
Bi						×				×	×
Gr				×	×	×	×	×	×	×	×
Ctd	×	×	×	×	×	×	×	×	×	×	×
$\mathbf{S}_{\mathbf{t}}$							×	×		×	
D.		×	×	×			×	×			
Koordinaten	719.3/157.8					721.6/154.5	726.6/151.3	729.7/151.8	730.6/152.6	731.8/144.4	724.4/143.9
Lokalität	A. Scaradra	Cma. di Bresciano	Cma. di Bresciano	Hennensädel	Hennensädel	Btta. di Fornee	Ursprung	Chämiboden	Hohgufer	V. dei Passetti	Dandrio
$\frac{ ext{Probe}}{ ext{Nr.}}$			H 250b			imes1 236	Kl 254	K1264	KI 265	Kl 285	Kl 484

Zusätzlich wurden folgende Chloritoid-Fundpunkte aus der Literatur übernommen und in Fig. 2 übertragen:

734.4/153.7	735.0/153.5	735.0/151.0	728.9/157.2	729.4/156.7
Gadenstatt	Mittaghorn	P. Ucello	Wissgrätli	Guralätsch
GANSSER (1937)			VAN DER PLAS (1959)	

abelle 4. Hellglimmer – Chlorit – Biotit

		Ms-Modifikation					An $0-4$, $21-22$	- 3T				An 0-4, 20	2 M		3T Di, St, Ctd				Ctd, Di, St	Ctd		Di, St	\mathbf{St}							A A 91 97 (9)	An 0-4, 21-21 (1)		
		Ms-M				2M		$2\mathrm{M} >$			2M		$^{3}\mathrm{T} >$	^{2}M	$2 \mathrm{M} >$	$2M \times$	$2\mathrm{M}\!\gg$	2M	^{2}M	$^{2}\mathrm{M}$		^{2}M	^{2}M	$^{2}\mathrm{M}$	Ę,	Z IM		TA G	M C	TM 7	Me	2 M	
		$\mathrm{d}\left(060\right)_{\mathrm{Ms}}$				1,497		1,501		1,496	1,502	1,501	1,500	1,499	1,501	1,499	1,499	1,500	1,501	1,501		1,500	1,499?	1,499	100	1,437		1 800	1,502	1,433	1 497	1,499	¢.
		Karb	×	0	×																					,							
Tabelle 4. Hellglimmer – Chlorit – Biotit	Tabelle 4.1. Muskovit und Chlorit stabil	$\mathbf{Ep}/\mathrm{Clzo}$		×		0	0	×		×	×	×	×	×		0	0	0	0	0	0			0	0	() () C) ·	. () C	00	ı
Chlorit	l Chlor	Chl	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×:	× :	× :	×;	× :	× :	× >	< ×	×
mer –	ovit une	Pa				×	1	. [×	1	×	×	×	0]	×	×	×	×	×		×	×	Ì	;	×)	×)	×	>	< ×	Ţ
ellglim	Musk	$\mathbf{M}_{\mathbf{S}}$	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×:	× :	×:	×;	×;	× :	×>	< ×	×
e 4. H	elle 4.1	Bi														0		0					0	0	0			(С	(C		0
Tabell	Tab	Gr			×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	× :	× :	×;	×:	× :	××	< ×	×
		Koordinaten	719.3/157.8			725.6/146.7		718.4/154.7	719.6/152.1		721.6/154.5		722.9/156.9		726.6/151.3	726.6/151.4	729.5/151.5	729.5/151.5		730.6/152.6	733.0/144.7	732.7/144.5	731.8/144.4	729.0/147.3	728.1/145.3	7.52.1/1.07.2	799 6/150 9	794 6/150.0	717 0/159.9	1.401/8/11/	791 9/150 1	721.6/148.6	721.5/148.3
		Lokalität	A. Scaradra	A. Predasca	Campo Blenio	A. di Giumello	A. Carassino	A. Carassino	A. Bresciano	A. della Bolla	Btta. di Fornee	Läntahütte	Läntahütte	Grosstäli	Ursprung .	$\operatorname{Ursprung}$	Inner Teiltobel	Inner Teiltobel	${f Studenpirg}$	Hohgufer	Pass di Passit	Pass di Passit	V. dei Passetti	A. de Stabi	A. de Stabi	Wasenenrut	ranellalp	Fanellastarel	Tribt Cime Carin	Cima ogiu	L. dei Cadabi	Fiano dell'Alpe	A. di Quarnei
		Probe Nr.	Ad 33		'n			K_1 204	Kl 206	K1 210	Kl 235	KI 240	Kl = 244	K1 248	Kl = 254	Kl 255								Kl 302				KI 307		KI 314	K1 328		Kl 475

stabil
Biotit
pun
Chlorit
Muskovit,
4.2.
Tabelle

cation		An 0–4, 22 Di		An 0-4, 20-23				Ma							$\mathbf{S}_{\mathbf{t}}$				Hbl, Ma
Ms-Modifikation		2 M	2 M	^{2}M	$^{2}\mathrm{M}$	^{2}M		2M = 3T		^{2}M	$2\mathrm{M} = 3\mathrm{T}$		2M			^{2}M		$2\mathrm{M} > 3\mathrm{T}$	
$d(060)_{Ms}$		1,496	1,501	1,497	1,496	1,496		1,502	1,497	1,497	1,507		1,499			1,499		1,496	
Ep/Clzo O	0			0			0	0		0				0				0	0
Chl	×××	××	×	0	×	×	×	×	×	×	×	×	×	×	×	0	0	0	×
Pa		×	1	×	l	1	×	×	ł	×	1	1	×	×		l		}	
\mathbf{M}	×××	××	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Ä ×	×××	××	×	×	×	0	×	×	×	×	×	0	0	×	×	×	×	0	×
å ×	×××	××	×	0	×	×	×	×	×	×	×	×	×	×	×	×		×	
	738.2/138.9 730.2/139.8	730.3/140.3 $730.3/140.3$	730.3/142.3	716.6/153.1	725.4/145.6	724.4/146.8	719.9/150.5	733.6/139.9	728.5/142.5	727.8/144.7	729.8/143.4	717.9/154.1	717.9/154.1	724.5/144.3	726.4/141.6	721.8/146.8	721.5/146.9	721.2/148.5	712.5/153.7
Lokalität Campo Blenio	riio ai revi Mesocco Matarela	Valbella Valbella	La Mott d'As	Piancabella	A. la Piotta	Piano di Pena	Capna. Adula	A. de Trescolmen	A. de Revi	Purtulina alta	Bosch de Pertus	Cima Sgiu	Cima Sgiu	Dandrio	A. Rotondo	Piano delle Bolle	Piano delle Bolle	Piano dell'Alpe	Camperio
$^{ m pe}$	Cal 558 Mis 69 Kl 147	Kl 150 Kl 152	KI 153									Kl 313					Kl 468a	KI 472	Kl 492

Tabelle 4.3. Muskovit und Biotit stabil

Ms-Modifikation		^{2}M					
1 $\mathrm{Ep/Clzo}$ d $(060)_{Ms}$		1,496					
Ep/Clzo						×	
Chl	×			0		0	
Pa		1					
$\mathbf{M}_{\mathbf{S}}$	×	×	×	×	×	×	×
Bi	×	×	×	×	×	×	×
G.	×	×	×	×	×		×
Koordinaten	727.9/139.6	737.1/135.7	730.8/136.9	730.4/140.4	729.6/137.8	729.3/136.7	729.1/136.0
Lokalität	Fil di Remia	Soazza	I Mot del Scanot	I Mot del Scanot	La Fraggia	Martinel	Paré-Dedent
e Nr.	Cal 35a	17	31	32	33	35	96

	St.	$\mathbf{s_t}$		St	St als Einschluss in Gr					Di, St								Di, St	St				
3T > 2M	\																						
1 497	1,10																						
							0	0					0		0						0	0	0
		0		0	0									0			×						0
>	<				1	1		1	J			I	×							ļ	×	ļ	
×>	<×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
××	××	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×>	××	×	0	×	×	×	×	×	×	×	×	×	×	×			0	×	×	0	×	0	×
726.3/142.3	794.9/142.8	732.8/135.8	730.2/139.5	726.4/142.1	726.7/142.3	726.8/142.3	733.3/140.1	731.1/144.3	730.4/141.2	726.0/140.5	721.8/144.7	721.8/144.6	726.6/141.4	725.1/142.4	720.4/144.8	720.4/144.0	723.8/143.8	718.6/146.7	720.7/144.4	724.1/144.0	717.7/149.6	718.0/148.7	718.0/148.7
Stabbielli	Figuezza	Calvaresc	Moncüch	Stabbielli	Bosco di Camp.	Pian Cascinaccio	A. de Trescolmen	V. dei Passetti	Valbella	Varecc	Sponda Negra	Sponda Negra	A. Rotondo	A. di Bragnéi	A. di Ciou	A. di Ciou	Madra (ponte)	A. Pièi	Grussett	Madra	Pian Premesti	Valle Grande	Valle Grande
	KI 110										Kl 415								K1 462		Kl 486		Kl 490

Tabelle 5. Margaritführende Paragenesen

n Paragenese	Ma - Hgl - Qz - Gr $Ma - Hgl - Qz - Zo - Bi - Gr (?)$ $Ma - Hgl - Qz - Zo - Bi - Gr - Pl$ $Ma - Hgl - Qz - Zo - Bi - Gr - Pl$ $Ma - Hgl - Qz - Zo - Bi - Gr$ $Ma - Hgl - Plag - Zo$ $Ma - Plag$
Koordinater	715.1/157.2 738.0/138.4 733.6/139.9 728.2/140.5 724.4/143.9 712.5/153.7
Lokalität	Campo Blenio Mesocco Alp de Trescolmen P. del Ramulazz Madra Camperio
Probe Nr.	Blen 25 Mis 70 Kl 269 Kl 327 Kl 484 Kl 492

Literatur

SMPM = Schweiz. Mineral. Petrogr. Mitt.

- AYRTON, S. N. and J. G. RAMSAY (1974): Tectonic and metamorphic events in the Alps. SMPM 54, 609-639.
- BAMBAUER, H. U., M. CORLETT, E. EBERHARD and K. VISWANATHAN (1967): Diagrams for determination of plagioclase using X-ray powder methods. SMPM 47, 333-349.
- Bearth, P. (1963): Contribution à la subdivision tectonique et stratigraphique du cristallin de la nappe du Grand-St-Bernard dans le Valais (Suisse). Livre à la mémoire du professeur Paul Fallot, tome II, 407–418, Paris 1960–1963.
- Bruggmann, H. O. (1965): Geologie und Petrographie des südlichen Misox. Diss. Zürich. CIPRIANI, C., F. P. Sassi e C. V. Bassani (1968): La composizione delle miche chiara in rapporto con le constanti reticolari e col grado metamorfico. Rend. Soc. mineral. ital. 24, 153–187.
- EGLI, W. (1966): Geologische und petrographische Untersuchungen in der NW-Aduladecke und in der Sojaschuppe (Bleniotal, Tessin). Diss. Zürich, Offsetdruck P. Schmidberger.
- FREY, M. (1974): Alpine metamorphism of pelitic and marly rocks in the Central Alps. SMPM 54, 489-506.
- FREY, M., J. C. HUNZIKER, W. FRANK, J. BOCQUET, G. V. DAL PIAZ, E. JÄGER and E. NIGGLI (1974): Alpine metamorphism of the Alps A review. SMPM 54, 247–290.
- Fumasoli, M. W. (1974): Geologie des Gebietes nördlich und südlich der Iorio-Tonale-Linie im Westen von Gravedona. Diss. Zürich, Offsetdruck Steinbauer und Rau, München.
- Graeser, S. und E. Niggli (1966): Zur Verbreitung der Phengite in den Schweizer Alpen; ein Beitrag zur Zoneographie der alpinen Metamorphose. «Etages tectoniques», Colloque de Neuchâtel.
- HÄNNI, R. (1972): Das Migmatitgebiet der Valle Bodengo (östliches Lepontin). Beitr. geol. Karte Schweiz, NF 145.
- Heitzmann, P. (1975): Zur Metamorphose und Tektonik im südöstlichen Teil der Lepontinischen Alpen (Provincia di Como, Italia). SMPM 55, 467-522.
- Holdaway, M. J. (1971): Stability of and alusite and the aluminium silicate phase diagram. Amer. J. Sci. 271, 97-131.
- Hoschek, G. (1967): Untersuchungen zum Stabilitätsbereich von Chloritoid und Staurolith. Contr. Mineral. Petrol. 14, 123-162.
- (1969): The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contr. Mineral. Petrol. 22, 208–232.
- JENNY, H., G. FRISCHKNECHT und J. KOPP (1923): Geologie der Adula. Beitr. geol. Karte Schweiz, NF 51.
- KÜNDIG, E. (1926): Beiträge zur Geologie und Petrographie der Gebirgskette zwischen Val Calanca und Misox. Diss. Zürich, Buchdruckerei Gebrüder Leemann und Co.
- KWAK, T. A. P. (1971): The selective replacement of the Al-silicate by white micas. Contr. Mineral. Petrol. 32, 193-210.
- Miyashiro, A. (1973): Metamorphism and metamorphic belts. George Allen & Unwin Ltd., London.
- MÜLLER, R. O. (1958): Petrographische Untersuchungen in der nördlichen Adula. SMPM 38, 403-473.
- Niggli, E. und C. R. Niggli (1965): Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen. Eclogae geol. Helv. 58, 335–368.

- RICHARDSON, S. W. (1968): Staurolite stability in a part of the system Fe-Al-Si-O-H. J. Petrol., 467-488.
- RICHARDSON, S. W., M. C. GILBERT and P. M. Bell (1969): Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminium silicate triple point. Amer. J. Sci. 267, 259–272.
- ROSENFELD, J. L., J. B. THOMPSON and E.-AN ZEN (1958): Data on coexisting muscovite and paragonite. Bull. geol. Soc. Amer. 69, 1637 (Abstr.).
- Schwander, H., J. Hunziker und W. B. Stern (1968): Zur Mineralchemie von Hellglimmern in den Tessineralpen. SMPM 48, 357–390.
- STORRE, B. und K. H. NITSCH (1973): Zur Stabilität von Margarit im System CaO-Al₂O₃-SiO₂-H₂O. Contr. Mineral. Petrol. 43, 1–24.
- TROMMSDORFF, V. (1966): Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. SMPM 46, 431–460.
- VAN DER PLAS, L. (1959): Petrology of the northern Adula region, Switzerland. Leidse geol. Meded. 24, afl. 2.
- Weber, W. (1966): Zur Geologie zwischen Chiavenna und Mesocco. Diss. Zürich, Offsetdruck P. Schmidberger.
- Wenk, E. (1962): Plagioklas als Indexmineral in den Zentralalpen. SMPM 35, 311-319.
- Wenk, E. und F. Keller (1969): Isograde in Amphibolitserien der Zentralalpen. SMPM 49, 157–198.
- Wenk, H. R. (1974): Two episodes of highgrade metamorphism in the northern Bergell Alps. SMPM 54, 555-565.
- ZEN, E.-An and A. L. Albee (1964): Coexisting muscovite and paragonite in pelitic schists. Amer. Mineralogist 49, 904–925.
- ZWART, H. J. (1973): Metamorphic map of the Alps. 1: 1,000,000, sheet 17. The subcommission for the cartography of the metamorphic belts of the world, Leiden/UNESCO Paris.

Manuskript eingegangen am 15. Oktober 1976.