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Schweiz. mineral. petrogr. Mitt. 55, 371-395, 1975

Vektorielle Formulierung der Fresnelschen Konstruktion
und Berechnung der Ausléschungsschiefe fiir beliebige
Kristallfliichen in bezug auf beliebige Bezugsrichtungen

Von Conrad Burri*)

Mit 8 Figuren

Zusammenfassung

Es werden zwei Varianten der FrEsNELschen Konstruktion gegeben, welche deren
vektorielle Formulierung erleichtern, und es wird gezeigt, wie sich die Ausléschungs-
schiefen fir beliebige Kristallflichen, gegeniiber beliebigen Bezugsrichtungen, durch einen
einfachen Vektorausdruck berechnen lassen, unabhéngig vom Kristallsystem und von
der Symmetrie der Indikatrix.

Summary

Two modifications of FRESNEL’S construction are suggested in order to adapt it to
vectorial treatment, and & simple method is given allowing the computation of the extinc-
tion angles for any given crystal face, for any reference direction, irrespective of the
crystal system or the symmetry of the indicatrix.
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372 C. Burri
I. DAS THEOREM VON FRESNEL UND SEINE FORMULIERUNG

Der Satz von FRESNEL, vielleicht der wichtigste Satz der Kristalloptik,
findet sich zum ersten Male in seiner berithmten Abhandlung «Second Mémoire
sur la Double Réfraction» ausgesprochen, welche zu Recht als einer der grund-
legenden Beitrédge zur Kristalloptik angesehen wird.

In ihr wird unter anderm zum ersten Male experimentell und theoretisch
gezeigt, dass es fiir zweiachsige Kristalle, im Gegensatz zu den einachsigen,
keine Wellen gibt, die, unabhingig von Fortpflanzungs- und Schwingungs-
richtung, eine konstante Lichtbrechung aufweisen, sowie, dass sich deren opti-
sches Verhalten mit Hilfe einer dreiachsigen Bezugsfliche erschopfend dar-
stellen ldsst!). Die Formulierung des Satzes lautet im Original:

«Hn considérant toujours comme véritable plan de polarisation celus qui est per-
pendiculaire aux vibrations lumineuses, je vais démontrer que les plans de polari-
sation des ondes ordinaires el extraordinaires divisent en deux parties égales les
angles diedres formés par les deux plans menés suivant la normale & 'onde et les
deux normales aux plans des sections circulaires de la surface d’élasticité.»

Auf den durch FrESNEL gegebenen Beweis, welcher sich der durch ihn ein-
gefithrten Elastizitdtsfliche bedient, soll hier nicht eingegangen werden. An
seiner Stelle wird im folgenden ein solcher gegeben, welcher von der heute ge-
brauchlicheren Indikatrix (Indexellipsoid) Gebrauch macht. Dagegen diirfte es
jedoch angebracht sein, kurz auf einige Punkte der FrrsneLschen Formu-
lierung einzugehen, welche entweder nur aus der damals herrschenden Situ-
ation verstdndlich sind oder welche mit der heute iiblichen Terminologie im
Widerspruch stehen.

Der Hinweis auf den «véritable plan de polarisation» ist durch die damals
sehr aktuelle Streitfrage bedingt, ob die Lichtschwingungen normal zur MArnUs-
schen Polarisationsebene (FrRESNELscher Lichtvektor) oder aber parallel dazu
erfolgten (NEUMANNscher Lichtvektor). Da man heute annimmt, dass die phy-
siologisch empfundene Lichtwirkung durch die dielektrische Verschiebung be-
dingt ist, deren Vektor normal zur Polarisationsebene der Welle steht, hat die
elektromagnetische Lichttheorie den Entscheid mittlerweile zugunsten von
FrESNEL gebracht. Dass fiir zweiachsige Kristalle von «ondes ordinaires» bzw.
«extraordinaires» gesprochen wird, mag auf den ersten Blick besonders befrem-
den, da es ja gerade FRESNEL war, welcher in der gleichen Abhandlung be-
wiesen hatte, dass es fiir zweiachsige Kristalle keine «ordentlichen» Wellen im

1} Die Abhandlung wurde von FRESNEL in den Jahren 1821 und 1822 in drei Teilen
der Pariser Académie des Sciences vorgelegt und am 19. August 1822 auf Antrag einer
aus AMPERE, ArRAGO und Fourigr bestehenden Kommission zur Verdffentlichung in deren
Denkschriften angenommen. Sie findet sich wieder abgedruckt in den « (Euvres complétes
d’AveusTiN FRESNEL», Bd. 2, 8. 479-596. Die hier interessierende Stelle befindet sich auf
S. 581,
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Sinne der heutigen Auffassung geben konne. Der Grund fiir diesen scheinbaren
Widerspruch liegt jedoch darin, dass die Begriffe damals einen andern Sinn
hatten als heute. Unter «ordentlicher» Welle eines zweiachsigen Kristalls wurde
damals diejenige Welle verstanden, deren Polarisationsebene im spitzen raum-
lichen Winkel der beiden Ebenen liegt, welche durch die Wellennormale und
die beiden optischen Achsen bestimmt werden, und als «ausserordentliche»
Welle diejenige mit der Polarisationsebene im stumpfen Winkel derselben. Da
heute allgemein an Stelle der Polarisationsebenen die dazu normal stehenden
Schwingungsebenen betrachtet werden, wiirden diese somit fiir «ordentliche»
Welle im stumpfen, fur die «ausserordentliche» jedoch im spitzen Winkel der
durch die Wellenormale und die optischen Achsen aufgespannten Ebenen liegen.
Heute sind jedoch bekanntlich die Begriffe «ordentliche» bzw. «ausserordent-
liche» Welle nur noch in bezug auf einachsige Kristalle gebréduchlich.

Wihrend der hier interessierende Satz in der zitierten Abhandlung von
FrESNEL keineswegs in irgendeiner Weise hervorgehoben wird oder sonst eine
besondere Stellung einnimmt, wird ihm heute eine wesentlich grossere Be-
deutung beigemessen, indem er gerne etwa als « FREsSNELsches Gesetz» oder als
«Fundamentalsatz der Kristalloptik» bezeichnet wird, und dies durchaus zu
Recht. Da sich die optisch isotropen Kristalle optisch gleich verhalten wie die
iibrigen isotropen Medien, entspricht die sogenannte «Kristalloptik» de facto
der Optik der nichtkubischen, anisotropen Kristalle. Deren charakteristische
Eigenschaft ist jedoch die Doppelbrechung, wie sie der FrESNELsche Satz
beschreibt. Die Aufwertung zu seiner heutigen Bedeutung verdankt dieser aber
vor allem auch der Wichtigkeit, welche er in der polarisationsmikroskopischen
Untersuchungsmethodik erlangte, wie sie in der Folge, angeregt durch die
FresxeLschen Erkenntnisse, durch Forscher wie DEs CLoizeauXx, FouQug,
MicuoerL-Livy, FEporow, BECKE u.a. entwickelt wurde. Da sich hierbei die
Ausléschungsschiefe als eines der wichtigsten diagnostisch verwendbaren Kenn-
zeichen niedrigsymmetrischer Kristallarten erwies, wurde ihre Bestimmung
bzw. Berechnung fiir bestimmte Flichen oder Zonen grundlegend fiir die mikro-
skopische Bestimmung gesteinsbildender Mineralien, besonders von Gliedern
von Mischkristallreihen.

Eine der heutigen Terminologie angepasste Formulierung des FrEsNELschen
Satzes kann wie folgt gegeben werden:

«Die Schwingungsebenen der beiden sich in einer bestimmten Normalenrichtung
N in etnem zweiachsigen Kristall fortpflanzenden Wellen entsprechen den Halbie-
rungsebenen der raumlichen Winkel, welche die durch N und die beiden optischen
Achsen A und B bestimmten Ebenen bilden.»

Der Beweis lasst sich mit Hilfe der Indikatrix wie folgt fithren. Die beiden
auf den durch N und A bzw. B aufgespannten Ebenen errichteten Lote r, ,
stehen normal zu jeder in diesen enthaltenen Geraden. somit auch zu N und
A bzw. B selbst. Sie gehoren daher sowohl der Ebene | N, wie auch den zu
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A bzw. B normalen Kreisschnitten der Indikatrix an. Als Kreisschnittradien
entspricht ihre Linge ng und sie sind zugleich auch zwei Radienvektoren glei-
cher Linge des zu N normalen Ellipsenschnittes der Indikatrix. Aus Sym-
metriegriinden miissen daher dessen Hauptachsen die durch 1, o eingeschlos-
senen Winkel halbieren. Die Hauptachsen der Schnittellipse sind jedoch zu-
gleich die Spuren der Schwingungsebenen und als solche die zu N normal
stehenden Schwingungsrichtungen der betrachteten Kristallfliche. Da jedoch
die Schwingungsebenen die Winkel der auf den durch N und A bzw. B be-
stimmten Ebenen errichteten Lote r; , halbieren, ist dies auch fiir die von
diesen Ebenen selbst eingeschlossenen Winkel der Fall, was es zu beweisen galt.

Da die beiden Lote Iy sowohl der Ebene | N, wie auch den beiden Kreis-
schnittebenen der Indikatrix angehéren, koénnen sie auch als deren Schnitt-
geraden definiert werden. Daraus folgt eine weitere Mdglichkeit zur Formu-
lierung des Satzes von FRESNEL:

«Die Schwingungsrichtungen der beiden sich in einem zweiachsigen Kristall in
einer bestimmien Normalenrichtung N fortpflanzenden Wellen entsprechen den
Winkelhalbierenden der Schnitigeraden der Ebene | N mat den beiden Kreisschnitt-
ebenen der Indikatrix.»

In der mikroskopischen Praxis wird die experimentelle Bestimmung der
Schwingungsrichtungen einer Kristallfliche bzw. eines Priaparates in Form
einer planparallelen Kristallplatte, z.B. eines Diinnschliffes oder Spaltbliatt-
chens, oder die Messung der Ausloschungsschiefe desselben, im parallen Licht-
bei normaler Inzidenz vorgenommen, d.h. Wellennormalenrichtung und Plat-
tennormale fallen zusammen. Dabei muss allerdings festgehalten werden, dass
absolut parallele Wellenbiindel, d. h. aperturloses Licht, nicht erhaltlich ist und
nur einem experimentell nicht streng realisierbaren Idealzustand entspricht.
Man wird daher bei derartigen Untersuchungen immer versuchen, durch ent-
sprechende Handhabung der Aperturblende die Bedingungen optimal zu ge-
stalten.

Fiir den Fall der normalen Inzidenz kann der Satz von FrRESNEL somit auch .
wie folgt formuliert werden:

«Die Schwingungsrichtungen einer Fliche eines zweiachsigen Kristalls halbie-
ren die Winkel der Projektionen der optischen Achsen in Richtung der Flichen-
normalen.»

Aus den erfolgten Darlegungen ergibt sich sofort eine weitere Formulierung
des Satzes von FrRESNEL, welche in den Lehrbiichern gewshnlich ebenfalls als
«Fundamentalsatz der Kristalloptik» bezeichnet wird und welche sich eben-
falls der Indikatrix als Referenzfliche bedient:

«Die Schwingungsrichtungen der beiden Wellen, welche sich in einem Kristall
in einer begtimmien Normalenrichtung N fortpflanzen, entsprechen den Haupt-
achsen der Schnittellipse, in welcher die zu N normale Diameiralebene die Indi-
Eatrixz schneidet.»
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Da die Radien der Indikatrix definitionsgemiss den numerischen Werten
der Brechungsindizes derjenigen Wellen entsprechen, welche parallel dazu
schwingen, so sind die Langen der Halbachsen der Schnittellipse gleich den
numerischen Werten der Brechungsindizes fiir die beiden Wellen. IThre analyti-
sche Berechnung aus den Halbachsen der Indikatrix (Hauptbrechungsindizes)
und der Lage der Wellenormalenrichtung ist daher ohne weiteres moglich, stellt
jedoch eine Aufgabe dar, welche den Rahmen der vorliegenden Betrachtungen
iiberschreitet. Fiir ihre Behandlung sei unter anderm auf RosSENBUSCH-W GLFING
(1921-1924, 8. 109-111) oder KoMMERELL (1949, S. 258-260) verwiesen.

II. DIE FRESNELSCHE KONSTRUKTION UND JHRE VARIANTEN

1. Die klassische Form der Konstruktion

Die praktische Auswertung des Satzes von FRESNEL zur Bestimmung der
Schwingungsrichtungen S, , einer gegebenen Kristallfliche F von bekannter
optischer Orientierung in bezug auf die optischen Achsen des Kristalls erfolgt
iiblicherweise durch die sogenannte FrEsNELsche Konstruktion in stereogra-
phischer Projektion. Thre klassische Form ldsst sich wie folgt formulieren:
Man legt (Fig. 1a) entsprechend den beiden durch die Wellenormale N, welche
bei normaler Inzidenz mit der Flichennormalen ¥ zusammenfillt, und die
beiden optischen Achsen A und B bestimmten sogenannten «Konstruktions-
ebenen» K, ,, zwei Grosskreise durch die Pole N=F und A bzw. B und be-
stimmt ihre Schnittpunkte P und Q mit dem zu F polaren Grosskreis. Durch
Halbieren der Abstinde von P und Q und Ziehen von zwei weiteren Gross-
kreisen durch die Halbierungspunkte S; , und F erhilt man die gesuchten
Schwingungsebenen H, ,. Die Halbierungspunkte S, , selbst sind die Schwin-
gungsrichtungen der beiden Wellen. Dabei entspricht diejenige, welche im glei-
chen rdumlichen Winkel von K, und K, liegt wie (n,], [n,’] und diejenige im
gleichen Winkel wie [n,], [n,']. Ist E eine weitere Kristallfliiche (Spaltfiiiche,
Verwachsungsfliche eines Zwillings zum Beispiel), auf deren Spur mit F die
Ausléschungsschiefe bezogen werden soll, so entspricht der Schnittpunkt ihres
Grosskreises mit demjenigen von F der Bezugsrichtung R, und der gesuchte
Ausléschungswinkel o, , = (R,S,; ,) ldsst sich ablesen. Da die beiden Aus-
l6schungswinkel komplementir sind, braucht nur der eine davon angegeben zu
werden, es muss jedoch vermerkt werden, ob er sich auf [n,'] oder [n,'] bezieht.
{Vergleiche auch das Beispiel Fig. 5.)

2. Varianten der Fresnelschen Konstruktion

Fir die eben erlauterte klassische Form der FrEsNeLschen Konstruktion
ergeben sich Varianten, welche zur Losung weiterer Probleme von Vorteil sind
und welche auch, rein konstruktiv, eher eine Vereinfachung bedeuten.
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a)

G

Fig. 1. Die FreswELsche Konstruktion und ihre Varianten.

Klassische Form: Die Schwingungsebenen H, , der beiden Wellen, welche sich in der Wellen-
normalenrichtung N normal zu Flache F fort.pﬂanzen, sind die Halbierungsebenen der rédum-
lichen Winkel, welche die zwei durch die Wellennormale und die beiden optischen Achsen A
bzw. B bestimmten «Konstruktionsebenen» K, , einschliessen. Die Schwingungsrichtungen
8, , sind die Schnittpunkte P und Q von H, , mit der Ebene F. Die Bezugsrichtung R, ent-
sprechend der Spur der Spaltbarkeit nach einer Flache E auf ¥, wird als Schnittpunkt der zu
F und E polaren Grosskreise erhalten. Der Ausldschungswinkel ¢ erscheint auf dem zu ¥
polaren Grosskreis als Winkel (8, R).

Variante I: Man errichtet auf K, , die Lote r; ,. Thre Winkelhalbierenden entsprechen eben-
falls den Schwingungsrichtungen 8, ,.

Variante I1: Die Lote ry, , werden als Schnittpunkte der zu den optischen Achsen A bzw. B
polaren Grosskreise {Kreisschnitte der Indikatrix) mit dem zu F polaren erhalten. Die Schwin-
gungsrichtungen ergeben sich wiederum als deren Winkelhalbierende. Die zu A bzw. B polaren
Grosskreise schneiden sich ihrerseits in der optischen Normalen {nﬁ].

a) Eine erste Variante besteht darin, dass man, an Stelle der Konstruktion

der Schwingungsebenen H, , als Halbierungsebenen der durch ¥ und die opti-
schen Achsen bestimmten Konstruktionsebenen K, ,, auf den letzteren die
Normalen r, , errichtet, wie sie schon anlisslich des weiter oben gegebenen Be-
weises des FRESNELschen Satzes beniitzt wurden. Man bringt zu diesem Zwecke
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in der Projektion F und A bzw. B je auf einen Grosskreis und bestimmt deren
Pole, welche den Normalen r, , entsprechen. Sie liegen in der Fliche F und
ihre Projektionen fallen daher auf den zu F polaren Grosskreis (Fig. 1b). Thre
Winkelhalbierenden sind identisch mit denjenigen von K, , und entsprechen
daher den Schwingungsrichtungen S, ,. Hinsichtlich ihres Charakters, d.h. ob
[n,'] oder [n,’], sowie hinsichtlich der Bestimmung des Ausléschungswinkels
in bezug auf eine gegebene Bezugsrichtung, gilt das fiir die klassische Form
der Konstruktion Gesagte.

b) Eine weitere konstruktive Variante ergibt sich aus dem Umstand, dass
die beiden Lote r, , sowohl normal zu der Flichenormale zu F wie zu den
optischen Achsen stehen, dass sie somit, wie schon weiter oben erwiahnt, den
Schnittgeraden von F mit den Kreisschnittebenen der Indikatrix entsprechen.
Thre Lage im Stereogramm wird daher auf einfache Weise als Schnittpunkt der
zu A bzw. B polaren Grosskreise mit dem zu F polaren erhalten (Fig. 1¢). Die
beiden zu A bzw. B polaren Grosskreise schneiden sich ihrerseits im Pol von
[ng], in Ubereinstimmung damit, dass die optische Normale Séhnittgera,de der
beiden Kreisschnittebenen der Indikatrix ist. Hinsichtlich der Konstruktion
der Schwingungsrichtungen S, ,, ihres Charakters sowie der Bestimmung der
Ausloschungsschiefe gilt auch hier das bereits weiter oben Gesagte.

3. Umkehr der Fresnelschen Konstruktion

Die FreEsNELsche Konstruktion lasst sich auch im umgekehrten Sinne an-
wenden, d.h. sie erm&glicht es, bei bekannter Position einer optischen Achse
und der Lage der Achsenebene bzw. der optischen Normale [ng] =b,, sowie
einer auf eine bekannte Bezugsrichtung R bezogenen Ausléschungsschiefe, die
Position der zweiten optischen Achse zu bestimmen. Die Ausléschungsschiefe
muss hierbei nach Betrag und Vorzeichen bekannt sein. Man bestimmt hierzu
in der stereographischen Projektion auf Grund der Ausléschungsschiefe die
Lage einer der beiden Schwingungsrichtungen 8, , auf dem zu ¥ polaren Gross-
kreis, welcher der interessierenden Kristallfliche bzw. Praparatenebene ent-
spricht. Die Ausléschungsschiefe o wird konventionell positiv oder negativ ge-
rechnet, je nachdem fiir einen in F situierten Beobachter 8 durch eine Drehung
im positiven oder negativen Sinne in die Bezugsrichtung R ibergefithrt wird.
Der Winkel PS auf dem zu F polaren Grosskreis (Fig. 1a) wird verdoppelt,
womit Punkt Q erhalten wird. Die gesuchte Position der zweiten Achse B
erhilt man als Schnittpunkt des durch Q und F verlaufenden Grosskreises mit
der Achsenebene. Diese Konstruktion wurde u.a. durch FEDOROW, anlisslich
des erstmaligen Entwurfs des Stereogrammes der optischen Orientierung der
Plagioklase, angewandt fir den Fall, dass nur eine optische Achse einmessbar
war. Sie spielt auch eine Rolle bei der bekannten BEckEeschen Methode zur
Bestimmung des optischen Achsenwinkels aus der Hyperbelkriimmung.
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An Stelle der klassischen Form der FresNeLschen Konstruktion kann auch
Variante b) (Fig. 1¢) Verwendung finden. Da sich diese besonders zur rech-
nerischen Auswertung eignet, sei das Vorgehen kurz skizziert. Man findet zuerst
wiederum, auf Grund der Kenntnis der Bezugsrichtung R und der nach Betrag
und Vorzeichen bekannten Ausléschung o, eine der Schwingungsrichtungen
S;,2- Als Schnittpunkt der zu F und zu der als bekannt angenommenen opti-
schen Achse A polaren Grosskreise erhilt man r;, die Normale der durch F
und A bestimmten Ebene. Durch Verdoppelung des Winkels (S,r;) erhilt man
r,, die Normale der durch F und B bestimmten Ebene. Die zweite, gesuchte,
optische Achse B ergibt sich als Schnittpunkt des zu r, polaren, durch F und
Q verlaufenden Grosskreises mit der Achsenebene.

II1. DIE RECHNERISCHE AUSWERTUNG DER FRESNELSCHEN

KONSTRUKTIO

1. Bisherige Versuche

Wie eben gezeigt wurde, gestattet die FreEsNELsche Konstruktion in ihren
diversen Varianten bei bekannter optischer Orientierung, d.h. Achsenlage, die
graphische Bestimmung der Schwingungsrichtungen bzw. der Ausléschungs-
schiefen fiir beliebige Kristallflichen in bezug auf beliebige Bezugsrichtungen.
Damit ist eines der wichtigsten Probleme der auf die polarisationsmikroskopi-
sche Mineral- und Gesteinsuntersuchung angewandten Kristalloptik gelost. In
vielen Fillen diirfte jedoch eine rechrerische Auswertung des im allgemeinen
graphisch durchgefiihrten Verfahrens erwiinscht sein. Diesem Problem wurden
denn auch schon seit langem zahlreiche Untersuchungen gewidmet. Es kann
sich an dieser Stelle nicht darum handeln, diese in ihrer Gesamtheit zu wiir-
digen und kritisch zu sichten, so interessant dies auch wire. Es sei jedoch an
die Arbeiten von MicHEL-LEvy (1877, 1888) erinnert, welcher als erster das
Problem in seiner vollen Bedeutung fiir die polarisationsmikroskopische Me-
thodik erkannte und auch eine der ersten Losungen lieferte. Im tibrigen sei auf
die zusammenfassenden Darstellungen von JOHANNSEN (1918, S. 403-412) und
RosSENBUSCH-WULFING (1921-1924, S. 487-497) verwiesen. Auffallend ist, dass
die meisten Autoren vorwiegend spezielle Probleme behandeln und so gewisser-
massen eine kasuistische Betrachtung einer allgemeinen Lisung vorzogen. Dass
eine solche, zum mindesten solange man sich ausschliesslich sphérisch-trigono-
metrischer Methoden bediente, grosse Schwierigkeiten bietet und zu Ausdriik-
ken von erheblicher Kompliziertheit fiihrt, zeigen u.a. die interessanten Ver-
suche von BEREK (1912). Der von ihm beschrittene Weg zu einer trigono-
metrischen Formulierung der FrREsNELschen Konstruktion fiithrte zwar auch
nicht zu einer praktisch brauchbaren allgemeinen Methode zur Berechnung
von Ausléschungsschiefen. Er lieferte jedoch, gewissermassen als Nebenergeb-
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nis, die Grundlagen zu der theoretisch sehr bemerkenswerten, wenn auch prak-
tisch nicht sehr ergiebigen, weil stark durch die jeweiligen Versuchsbedingungen
beeinflussten «Methode der charakteristischen Funktion der Ausléschung»
(BEREK, 1924, 1953), welche eine Bestimmung von 2V aus der Messung eines
einzigen Ausloschungswinkels gestattet.

Die Situation war demnach bis jetzt dadurch gekennzeichnet, dass das Pro-
blem der Berechnung von Ausléschungsschiefen prinzipiell zwar als geldst be-
zeichnet werden darf, dass aber eine allgemein anwendbare, alle vorkommenden
Fille gleichermassen umfassende Methode noch ausstand und dass eine solche
auf Grund der geleisteten Vorarbeit als reichlich kompliziert erwartet werden
musste. Man konnte sich dabei fragen, ob dies nicht, mindestens teilweise,
dadurch bedingt war, dass man sich bis dahin zur Lésung der Aufgabe durch-
wegs der sphirisch-trigonometrischen Methodik bedient hatte, wie sie aller-
dings als gegeben erscheinen musste, solange man ausschliesslich von der stereo-
graphischen Projektion ausging.

Wenn an dieser Stelle, im Anschluss an frithere Mitteilungen (BUurrt, 1950D,
1975b), erneut auf diesen Problemkreis eingegangen wird, so vor allem deshalb,
weil gezeigt werden kann, dass es durch einen Wechsel der Methodik tatséch-
lich gelingt, zu einer iiberraschend einfachen, allgemein giiltigen Lésung zu
gelangen. Unter Beniitzung einfacher Vekiormethoden an Stelle der sphérisch-
irigonometrischen erweist es sich ndamlich als moglick, einen einfachen und geo-
metrisch anschaulich interpretierbaren Ausdruck abzuleiten, welcher erlaubt, die
Ausloschungsschiefe fiir beliebige Kristallflichen in bezug auf beliebige Bezugs-
richtungen zu berechnen, und zwar unabhingig vom Kristallsystem und von der
Symmetrie der Indikatriz.

2. Die vektorielle Formulierung des Problems und seine Losung

Unter dem Begriff «Ausloschungsschiefe» einer Kristallfliche F versteht man
definitionsgeméss den Winkel zwischen einer ihrer beiden Schwingungsrich-
tungen 8, , und einer ihr ebenfalls angehérenden «Bezugsrichtung» morpho-
logischer Art, R. Diese kann sein: Kante, Spaltriss oder Zwillingsgrenze, d.h.
Spur (Schnittgerade) einer zweiten Kristallfliche E mit der betrachteten
Flache F.

Charakterisiert man die beiden Flichen durch ihre Normalvektoren § und
€, so ist (Fig. 2a) die beiden gemeinsame Bezugsrichtung R gegeben durch
das vektorielle Produkt

mz[%X@]a (1)

wobei die Reihenfolge der drei Vektoren so zu wahlen ist, dass sie ein Rechts-
system bilden.
Von den beiden Schwingungsrichtungen S, , braucht nur eine betrachtet zu
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werden, da sie normal zueinander stehen und sich daher die Lage der einen
aus derjenigen der andern ergibt. Es muss jedoch immer vermerkt werden, ob
die betreffende Schwingungsrichtung der rascheren oder der langsameren Welle
entspricht, d.h. ob sie die Lichtbrechung n,” oder n,” anfweist.

Bezeichnet man den Vektor der betreffenden Schwingungsrichtung S mit
@&, so ergibt sich der Ausloschungswinkel o aus dem skalaren Produkt ()-&)
unter Beriicksichtigung von (1) zu:

B i (8{@) — ([%X@]@) (2)
1R8] |F=E[[S]

Nun ist aber ([Fx€]-©) = [FEE], das sogenannte gemischte oder Spat-
produkt der drei Vektoren &, €, &, dessen absoluter Wert dem Volumen V des
von diesen aufgespannten Spates entspricht. Dieses kann anderseits auch als
Produkt von Grundfliche G = | X €| = |F|-|€|sine, wobei e = < (§, E), und
Hohe h = |@|coso ausgedriickt werden. Geht man zu den Einheitsvektoren
iiber und bezeichnet man das Volumen des von diesen aufgespannten Spates
mit V, und dessen durch §, und €, bestimmte Grundfliche mit G,, so resultiert
die einfache und fiir die Methode grundlegende Beziehung:

Vo _ Vo

cosa=G—0=Sin€-=h0 (3)

COS

a) b.)

Fig. 2.

a) Definition des Ausléschungswinkels ¢ einer Kristallfliche F als Winkel zwischen einer ihrer
Schwingungsrichtungen S und einer Bezugsrichtung R, welche Spur einer zweiten Kristall-
fliche E auf F ist.

b) Der durch die drei Vektoren §, € und & aufgespannte Spat, dessen Schiefe in bezug auf die
Normale zur Grundfliche dem Ausldschungswinkel entspricht.
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d.h. der cos des gesuchten Ausléschungswinkels o ist gleich der Héhe h, des von
Fo: €, und S, aufgespannten Spates mit der durch §, und €, bestimmten Seite
als Grundflache (Fig. 2b). Der Ausloschungswinkel selbst ist gleich der Schiefe
des Spates gegeniiber der auf der Grundflache errichteten Normale [, X &,]1= 3.
Bei der Berechnung des Volumproduktes ist darauf zu achten, dass die Reihen-
folge der drei Vektoren derart gewihlt wird, dass sie ein Rechtssystem bilden,
wobei ¢ spitz resultiert, da ansonst V negativ herauskommt. Der Winkel «
berechnet sich aus dem skalaren Produkt (F,-&,). Es erweist sich somit als
moglich, den Ausléschungswinkel o fiir eine beliebige Kristallfliche, in bezug
auf eine beliebige Bezugsrichtung ganz allgemein durch eine geometrisch ein-
fach interpretierbare Vektorbeziehung auszudriicken, und zwar ganz unab-
hingig vom Kristallsystem und von der Symmetrie der Indikatrix, da dies-
beziiglich keine irgendwie gearteten Voraussetzungen gemacht wurden.

3. Einfithrung eines Bezugssystems

Zur rechnerischen Auswertung der gefundenen Beziehung muss jedoch die
riumliche Lage der Schwingungsrichtung S und der Bezugsrichtung R bekannt
sein. Hierfiir, wie auch zur Formulierung der Normalvektoren von F und E
muss ein Bezugssystem eingefithrt werden. Dieses ist derart zu wihlen, dass
sich die Berechnungen méglichst einfach gestalten. Es wird daher mit Vorteil
orthogonal gewihlt, wobei jedoch darauf zu achten ist, dass es sich auch fiir
das monokline und trikline System eignet. Folgendes System geniigt diesen
Anforderungen:

7 = [001] bzw. [0001], d.h. die kristallographische c-Achse,

Y = | (010) bzw. | (1210),
X = | Ebene YZ.

Dieses System hat den weiteren Vorteil, dass es auch in engster Beziehung
zum GoLpscHMIDTschen Polarkoordinatensystem steht. In diesem werden be-
kanntermassen die Zentraldistanz p von ¢ aus und das Azimut ¢ in der Zone
[001] bzw. [0001] von (010) bzw. (1010) aus gezihlt. Es ergibt sich somit die
praktisch wichtige Konsequenz, dass sich die Komponenten der Normalvek-
toren der interessierenden Fliachenlagen auf einfache Weise aus den (¢,p)-
Werten berechnen lassen, welche den GorpscumipTschen Winkeltabellen ent-
nommen werden kénnen. Fiir den Fall, dass die (¢, p)-Werte fiir eine interes-
sierende Fliche in diesen nicht enthalten sein sollte oder dass es sich um eine
nicht beriicksichtigte Mineralspezies handelt, konnen diese auf einfache Weise
mit Hilfe der kiirzlich gegebenen Ausdriicke (Burri, 1975a) aus dem Achsen-
verhiltnis berechnet werden, ohne dass es notwendig ist, sich des komplizierten
und kaum mehr allgemein bekannten GorpscaMipTschen Algorithmus zu be-
dienen.
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Die Komponenten der Einheitsvektoren fiir die betrachteten Flichen, d.h.
der Ortsvektoren fiir Punkte der Kinheits-Projektionskugel, sind gleich deren
Richtungscosinus. Diese sind jedoch auf einfache Weise aus den (¢, p)-Werten
erhaltlich.

In der Beziehung zwischen (g, p)-Werten nach GoLpscEMIDT und Vektor-
komponenten besteht leider eine gewisse Inkonsequenz, welche historisch be-
dingt ist und mit welcher man sich abzufinden hat. Wahrend man die letzteren
auf ein orthogonales Rechtssystem XYZ bezieht, werden die Azimute bei
GorLpscaMIDT jedoch, ausgehend von +Y, im negativen, d.h. Uhrzeigersinn
von 0° bis 360° gezéhlt.

A

Vo
+X

Fig. 3. Beziehungen zwischen den GorLpscHMIDTschen (g, p}-Werten und den Komponenten des
Ortsvektors eines auf der Einheitskugel gelegenen Punktes P.

Die Beziehungen zwischen den (¢, p)-Werten und den Komponenten (x,y, z)
bzw. dem Richtungscosinus (A, x,v) des Ortsvektors eines Punktes P auf der
Einheitskugel ergeben sich auf Grund von Fig. 3. Fithrt man vorerst den Hilfs-
winkel ¢’ zur Bezeichung des Azimutes ein, so erhilt man fiir den I. Quadranten
(+X, +Y) der oberen Halbkugel: OA = cos (90° —p) = sinp, und weiter:

x:AB:OAsin(p’ =ging  sinp = A , X A

' o < tge = —=—
vy =0B =0Acos¢’ =cosp’'sinp =p (4) Y K (4a)
Z = COSp =y COSp= 2 = v

In bezug auf das Azimut ¢ gilt fiir die verschiedenen Quadranten:

Quadrant: Gesucht: ¢ Gesucht: ¢’

I(+X, +Y) p=9 ¢ =9

II(*X Y p=27—¢ ¢ =27—p (4b)
(- Y) p=n+¢ o =p—m
IV(+X —Y) p=n—¢ ¢ =m—¢
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Das gewihite System XYZ ist auch identisch mit demjenigen, wie es durch
FEpOorOow, MIcHEL-LEVY und BrckEr fiir die Charakterisierung der optischen
Orientierung der Plagioklase eingefiihrt wurde, wobei die X-, Y- und Z-Achse
der ZA der Gesetze Roc Tourné, Albit und Karlsbad entsprechen. Die interes-
sierenden Richtungen, wie optische Achsen, Hauptschwingungsrichtungen
usw., werden durch sphérische Koordinaten A*, o* nach Art der geographischen
Linge und Breite definiert, wobei die Aquatorebene = (010) | 'Y angenom-
men wird. Das System ldsst sich jedoch auch in Verbindung mit den EULER-
Winkeln zur Definition der optischen Orientierung der Plagioklase verwenden
(Burrr, 1972).

Fiir die Beziehungen der besonders von BrckE vielfach verwendeten sphi-
rischen Koordinaten A* ¢* in Komponenten des Einheitsvektors erhilt man
gemiss Fig. 4:

aus Dreieck BPX: cos XP =ginA*cosp* =A =x
cos YP =sing* =u=y (5)
aus Dreieck ZPB: cos ZP = cosA*cosp* =v =1z
A . tgA*
v Z (5&)
p=y =sing*
+Z

Fig. 4. Beziehungen zwischen den. BEckuschen

Kugelkoordinaten A*, ¢* eines P unktes P auf der

Einheitskugel und den Komponenten seines Orts-
vektors.

In bezug auf die Vorzeichen gilt:

Qua,dra,nt:] I(+X,+Y) | I(-X, +Y) ‘III(—X, —Y)’ IV(+X, -Y)

AF — + + -

* —

P s + (5b)
A=x + - — +

b=y t+ + - -

V=% + + + +
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Auf Grund von (4) ist es somit moglich, aus den (¢, p)-Werten fiir beliebige
Flachenlagen, unabhéngig vom Kristallsystem, die Normalvektoren (Einheits- .
vektoren), bezogen auf das gewihlte System XYZ , zu berechnen, Da sich aus
&o und €, gemiiss (1) der Vektor der Bezugsrichtung R ergibt, ist der morpho-
logisch definierte Schenkel des Ausléschungswinkels bekannt, und es bleibt nur
noch der optisch definierte, d.h. die Schwingungsrichtung 8, , vektoriell zu
formulieren, um den Ausléschungswinkel o auf Grund von (2) bzw. (3) zu
erhalten. Hierfiir muss zwischen optisch-einachsigen und optisch-zweiachsigen
Kristallen unterschieden werden.

4. Optisch-zweiachsige Kristalle

Der Vektor der optischen Schwingungsrichtungen S, , kann, je nach der in
Betracht gezogenen Variante der FreESNELschen Konstruktion, auf verschie-
dene Weise erhalten werden.

Gebht man von der klassischen Form aus, so entsprechen die Vektoren der
beiden Schwingungsrichtungen den Winkelhalbierenden der Ortsvektoren von
P und Q (Fig. la), OP = p und 0Q = g, d.h. der Schnittpunkte des zu F
polaren Grosskreises mit den durch F und A bzw. F und B verlaufenden K,
und K,. Es ist somit:

G120 =Potap: (6)

wobei p = F X [F X U} und g = F X [F X B] ist.

Durch Ubergang zu den Einheitsvektoren und Anwendung des Entwick-
lungssatzes erhilt man die fiir die praktische Berechnung bequemeren Aus-
driicke:

P = FoX[FoX Ul = (Fo* Uo) Fo— (Fo" Fo) Up = (Fo* o) Fo— Ao
q= %OX[%OX%O] = (8‘0'%0) %u—(%o‘l 0) %0 = (%o'%o) %o“%o-

Nun ist aber in (6) [FeX W] = 1; und [Fe X Byl = 1, (Fig. 1b), d.h. die
Vektorprodukte entsprechen den Normalen auf die durch die Flichennormale
zu F und die beiden optischen Achsen A und B aufgespannten Ebenen, so dass
auch gilt:

(6a)

Po=[FoxX1,] und gy = [FeX1z]- (6b)

Die Winkel der beiden Ebenen K,;, und diejenigen ihrer Normalen r, ,
erginzen sich als Flichen- und Normalenwinkel zu 180° und sind nur gleich
und 90° fiir den Fall, dass K; und K, normal zueinander stehen. Ihre Winkel-
halbierenden fallen zusammen und es gilt daher fiir die Vektoren der Schwin-
gungsrichtungen S, , auch der einfache Ausdruck:

G2 = T1, % Ty (7)
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wobei 1; = [§o X U] und 1, = [Fo X B,] ist. Bei der Bildung der Vektorprodukte
ist darauf zu achten, dass die Reihenfolge der Vektoren so gewihlt wird, dass
sie ein Rechtssystem bilden. )

Damit ist der zweite, optisch definierte Schenkel des Ausloschungswinkels o
formuliert und (2) bzw. (3) kann Anwendung finden.

5. Beispiele

a) Albit von Gronland

Kristallographische Daten (C. DrREYER und V. GoLpscaMIDT, 1907):
P(001) = F : @ = 82,0° p = 26,85°
M(010) =E:¢9 =0° p=90°

Optische Daten (0. GROSSPIETSCH, 1908):

Positionen der optischen Achsen in Kugelkoordinaten nach
BECKE:

Achse A: A* = +64,2° p* = —49,1°
Achse B: A* = —176,5° p* = —47,8°

Gesucht: Ausléschungsschiefen auf P (001) bezogen auf Spur von M (010) und
auf M (010) bezogen auf Spur von P (001)

o) Ausléschungsschiefe auf P (001) (Fig. 5)

Nach (4) erhdlt man fiir die Normalvektoren von F = (001) und E = (010):

0,447261 0
%o = | 0,062858 G =1
0,892192 0

Nach (5) erhdlt man fiir die Vektoren der optischen Achsen:

—0,589475 3. 859161
’ = 218,0° ; _ .
—0,75585¢) VT 0 9, =| —0,740805) ¥ _ lg?go
0,284964/ P = ' 0,156810/ £ = °%

—0,692279 —0,693403 .

i ¢ = 313,3
=W X Fol =| 0,653378 normiert: v, = | 0,654439) * _7_Cr,
—0,670797 ~0,726978\ .. .o
Ty = [By X Fol = | —0,512610 normiert: 1, ={ —0,555542 @ : H66’2o
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+X

Fig. 5. Albit von Gronland. Stereographische Projektion auf die Ebene | [001]. Konstruktion
der Ausléschungsschiefe auf P (001) bezogen auf die Spur von M (010).

—1,420381 —0,893976

: = 274,0°
Ty, + Ty = 0,098897 | = &, normiert: &, = 0,062245 ¢ _ 63 20
0,705079 0,443771) P T %
Vo = [E, 8, Fol = 0,996080, (Fo- €,) = 0,062858 = cose, € = 86,4°,
: 0,99608
sine = 0,998022 = G, cos o = Vo ,996080 _ 0,998054,

G,  0,998022

woraus: ¢ = 3,57° (gemessen durch GROSSPIETSCH: 3,6°).

Der Ausléschungswinkel gilt fiir [n,’] und ist geméss der ScHUSTERschen
Regel positiv zu nehmen.

B} Ausldschungsschiefe auf M (010)

Gegeniiber dem vorigen Beispiel sind die Bezeichnungen der beiden Flichen
zu vertauschen. Es ist nun:

0 ' 0,447261
Fo=11 &, = | 0,062858
0 0,892192
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0,284964 0,435232

, = 90°
0,589475 0,900318/ P T %%
—0,156810 ~0,233445 .
. p = 270
1, = [By X Fol = 0 normiert: ty = 0 ~ 13.5°
0,653161 0972370/ £ = %
0,668677 [—0,994245\
1‘10_ r20 = 0 = @cx normiert: @0 = 0 v : 83,8°
~0,072052 0,107182/ £ T 7%
sine = 0,998022 = G,, coSo = Vo _ 0,934973 = 0,936826,

G, 0,998022
woraus o = 20,47° (gemessen durch GrossrirTscH: 20,3°).

Der Ausloschungswinkel gilt wiederum. fiir [n,"] und ist nach der SCHUSTER-
schen Regel negativ zu nehmen.

y) Berechnung der Position der optischen Achse B aus derjenigen von A
und der Ausloschungsschiefe auf P(001), op = + 3,57°, bei gleichzeitiger Kennt-
nis der Position der optischen Normale [ng] = b, (Umkehr der FrRESNELschen
Konstruktion) .

Gegeben:
—0,589475 0,447261 0,094893 0
Wy = | —0,755854 | o =1(0,062858| b,=|0285535] &, ={1
0,284964 0,892192 0,953600 0
g =18,4° p=17,5°
Gesucht: B,

Die Ausloschung auf F = P (001) wird auf die Spur von E = M (010) be-
zogen. Fir die Bezugsrichtung R erhilt man somit:

—0,892192 — 0,893960 — 970°
R = (FoxCl=| o0 und, normiert: R, = 0 8.4
0,447261 0448147/ £ 7 7%

Der Vektor der auf [n,’] bezogenen Schwingungsrichtung S, ergibt sich
gemiiss Fig. 6 zu &; = R, +1r, wobei ¢ ein Hilfsvektor ist, welcher sich zu
1 = X,tg o berechnet.
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# A 71"
R
#, Bl A,
)
A
- - > + 28
| -g-aigle-e) % YLyaetge +2|

Fig. 6. Zur umgekehrten Anwendung der FrEsnELschen Konstruktion. Schnitt durch die Ein-
heitskugel parallel der Fliche F = {001). Im Interesse einer besseren Verstindlichkeit der Figur
ist der Ausléschungswinkel ¢ tibertrieben gross dargestellt.

X ist eine normal zu R in F liegende Richtung, und es ist:

—0,028170
X, = [RexFol = 0,998023
—0,056173
—0,001757
o = 3,57° tgo = 0,062389, somit ¢ = | 0,062266
—0,003506
—0,895717 —0,893979
S, =Rtz = 0,062266 normiert: &, = 0,062145 | ¥ B
0,444641 0,443778) P =

= 286°
63,7°

r, ist die Normale auf die durch A und die Normale zu F aufgespannte
Ebene, so dass

—0,692279 —0,603403Y 41990
1 = [FoXWpl = 0,653378 normiert: t,, = 0,654439 y : 72750
0,301011 0,301500) £ T %

Der Winkel (&,,t;) berechnet sich aus dem skalaren Produkt (&,-1,) =
0,794357 zu & = 37,41°. Das gesuchte 1, muss mit &, denselben Winkel bilden,
und wie aus Fig. 6 ersichtlich, mit R einen solchen von é —o = 37,41° —3,57°
= 33,84°. Man erhilt daher den Vektor 1, als 1, = Ry —1’, wobeiy’ = X, tg (3 — o)
mit tg (8§ —o) = 0,670338.

0,018883 -0,875077
r' =X, tg(d—0) = —0,669013 t, = Ry—1 =| —0,669013
0,037668 0,485815
—~0,726874
’ p = 232°
B, = | —0855700 ) ¥ 750

0,485815/ °
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Die gesuchte optische Achse B erhilt man zu:

0,645181 0,653302 — 138.6°
B = [by X 15} =| —0,731483 normiert: B, = | —0,740690 | ¥~ 81,0°
0,154814 0,156763) P = 5
in Ubereinstimmung mit den eingangs gemachten Angaben.
b} Orthaugit
Kristallographische Daten (GoLb- (111)=F: ¢= 441° p=139,0°
scamIpT, Winkeltabellen 281) (110) = E ¢ =1359> p = 90°
Optische Daten (willkiirliche Annahme): ¢ = [n,], Achsenebene (100),

2V =90°

Geesucht: Ausloschungsschiefe o auf (111) gegen Spur von (110)

0,441248 0,695913
%o = | 0,455332 G, = —0,718126
0,773287 0
0 0 0
Wy =|4y2 ) =10,707107 B, =| —0,707107
12 0,707107 0,707107
—0,224828 —0,453001\ ..o
1, = [Fo X Uyl = | —0,312010 normiert: 1; = [ —0,630036 ¥ _ 51’0O
0,312010 0,630036/ P = 7
—0,868765 —0,891591 )
. @ = 289,8
Ty = [Bo X Fol = 0,312010 normiert: t, = 0,320208 _ .48
0,312010 0,320208/ P = '
—1,345582 —0,802771 .
. ¢ = 257,0
Ty, +ty, =| —0,309988 | = &, normiert: &, = { —0,184841 _ g e
0,950244 0,566914/ P = 7%
Vo = (6 Fo Sl = 0,904542 (Fo- ) = —0,019916 = cose, e =91,1°,
0,904542
sine = 0,999802 = G, SN ( I — 0,904720,

G, 0,999802
woraus ¢ = 25,2°.

Das Ergebnis zeigt einmal mehr, dass orthorhombische Kristalle, mit Aus-
nahme der Flichen, welche einer der drei Hauptzonen [100], [010], [001] an-
gehoren, schief ausloschen. Schiefe Ausloschung eines Pyroxens im Diinnschliff
ist daher kein hinreichendes Kriterium fiir dessen monokline Symmetrie. Schiefe
Ausléschung ldsst sich auch an Spaltblittchen nach (110) von Orthaugiten
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beobachten, wenn diese nicht genau planparallel sind und zum Beispiel infolge
treppenartiger Ausbildung der Spaltfliche die c-Achse nicht genau parallel
zum Objekttriager liegt, was zufolge der oft nur unvollkommen ausgebildeten
prismatischen Spaltbarkeit der Orthaugite leicht moglich ist. Fiir Schnitte der
Zone [110] (¢ = 44,1°] berechnen sich fiir geringe Abweichungen von der Lage
von (110) (p = 90° 0 = 0°) zum Beispiel fir p = 85°, o =1,53° und fiir
p = 80°, ¢ = 3,14°, so dass bei der Messung der Ausléschungsschiefe an Spalt-
blittchen nach dem Prisma, welche etwa als Unterscheidungskriterium fiir
orthorhombische und monokline Pyroxene empfohlen wird, eine gewisse Vor-
sicht geboten erscheint.

6. Optisch-einachsige Kristalle

Die fiir optisch-zweiachsige Kristalle angegebene Methode der Berechnung
des Ausléschungswinkels lisst sich ohne weiteres auch auf optisch-einachsige
anwenden. Auch fiir diese ist der Ausléschungswinkel o fiir eine bestimmte
Fliche F mit dem Normalvektor &, gegeben durch den Winkel zwischen einer
ihrer Schwingungsrichtungen S, ,, charakterisiert durch einen Vektor &,
gegeniiber einer Bezugsrichtung R, welcher der Spur einer weiteren Kristall-
fliche E mit dem Normalvektor €, auf F entspricht. Fig. 2a und 2b haben
somit ebenfalls Giiltigkeit, wie auch die Beziechungen (1), (2) und (3). Die Vek-
toren der Schwingungsrichtungen &, , werden auch hier auf Grund der FRESNEL-
schen Konstruktion erhalten, welche jedoch eine gewisse Spezialisierung er-

Sw

+Y

Fig. 7. Anwendung der Fresyverschen Konstruktion auf einen optisch einachsigen Kristall. Pro-
jektion auf die Basis, Bestimmung der Ausléschungsschiefe fiir eine Fliche F (hkl) in bezug auf die

Spuren der Prismenflaichen (hk0) und (100).
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fihrt. Einachsige Kristalle lassen sich als Grenzfall zwejachsiger mit dem
optischen Achsenwinkel 2V = 0 auffassen. Wie die beiden optischen Achsen
fallen auch die beiden Konstruktionsebenen K, , in eine einzige zusammen.
Diese verlduft durch die Flichennormale zu F und die optische Achse und ent-
spricht somit einem Hauptschnitt der Indikatrix (Fig. 7). Von den beiden
Schwingungsebenen H, , liegt die eine in diesem Hauptschnitt, die zweite steht
normal dazu. Die erstere entspricht der ausserordentlichen Welle mit dem
Brechungsindex e, die zweite der ordentlichen mit dem Brechungsindex . Fiir
die Vektoren der beiden Schwingungsrichtungen erhélt man:

€, =[FxA] und &, =[FxE,], (8)
0
wobei A = | 0} der Vektor der optischen Achse ist.
| _ ‘

Im zweiten Ausdruck von (8) kann &, mit Hilfe des ersten eliminiert werden:
@€=%X[%}X9{],' ‘ (8&)

wobei wiederum darauf zu achten ist, dass die Reihenfolge der Vektoren einem
Rechtssystem entspricht. Durch Anwendung des Entwicklungssatzes erhilt
man:

} E=@FWF-FHA=FVNF-|F 1Y (9)
oder, wenn man zu den Einheitsvektoren tibergeht,
Be = (For o) Fo— Uo- (9a)
7. Beispiele
Skapolith (131) = F, ¢ = 18,4°, p = 54,3° (GoLpscumipT, Winkeltabellen,
319). .‘

Gesucht: Ausloschungsschiefen auf F gegen Spuren der Spaltbarkeiten nach
den Prismen I. und II. Stellung.

Im speziellen Falle hingt es von der Schnittlage ab, ob die Spuren der
beiden gleichwertigen Flichenlagen (110) und (110) bzw. (100) und (010) beide
mit gleicher Deutlichkeit sichtbar sind oder nicht. Am deutlichsten tritt die
Spaltbarkeit hervor, wenn die Spaltfliche normal zur Schliffebene steht. Je
mehr sie von dieser Lage abweicht, um so undeutlicher wird sie, um bei sehr
flacher Lage entweder géinzlich zu verschwinden oder zum mindesten ihre Eig-
nung als Bezugsrichtung zu verlieren. Im folgenden wird auf diesen Umstand
keine Riicksicht genommen und die Ausloschungsschiefen berechnet, wie wenn
ihre experimentelle Nachpriifung in jedem Falle moglich wire.
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@) Berechnung des Vektors der o. Schuingungsrichtung

0,256333
Aus ¢ = 18,4° und p = 54,3° erhélt man gemiss (4) F, = 0,770567
| 0,583541
‘ 0,770567
Nach (8) ist &€, = [Fo X Uyl =| —0,256333
0

0,948876
normiert: &, =| —0,315648
' 0

@ = 108,4°
p = 90°

b) Berechnung des Vektors der a. o.'Schwingungsrichtung

Ebenfalls nach (8) ist
—0,149581 —0,184194

. = 198,4°
G = [B,XFo] =| —0,449657 normiert: &, =| —0,553708 ® B 35’70
0,659480 0,812084/ £ = 2%
oder geméiss (9a), ohne Kenntnis von 8,:
0 0 0,149581 —0,149581
S, =Ny~ Wy Fo)Fo={0]-0,583541-5F,={ 0] —{0,449657 | = —0,449657
1 1 0,340520 0,659480
/—-0,184194
und, normiert: &, =| —0,553708 | in Ubereinstimmung mit oben.
0,812084

c) Ausloschungsschiefe in bezug auf die Spaltbarkeit nach dem Prisma

1. Stellung
110) = E 0,707107 110) = E 0,707107
1 2
p=145° €, =|07707107 @ = 135° €,, ={ —0,707107
p = 90° 0 p = 90° 0

Fur die a.o0. Welle erhiilt man:

Vy = [6y, F0 S, = 0.447760, (G, Fo) = 0,726128 = cose, € = 43,4°,

v
a—o = 0,651231, WOTaus oy, = 49,4°.
0

VO = [@20 %0660] = 03894154: " (@2()'%0) — —0,363618 = OOSE, € = ].1].,30,

sine = 0,687559 = G, COS 0(119) =

V ]
0 — 0,959858, WOoraus oyig = 16,3°.

sine = 0,931548 = Gy, cosopiy =5
0
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Fir die Ausloschung in bezug auf die ordentliche Welle erhdlt man in
analoger Weise o, = 40,6° bzw. 73,7°.

Es ergibt sich somit, dass fiir die betrachtete Fliache allgemeiner Lage (131)
von Skapolith die Ausléschung in bezug auf die Spuren-der beiden Flichen des
Prismas I. Stellung schief und nicht symmetrisch ist. Die in vielen elementaren
Anleitungen zum Gebrauch des Polarlsatlonsmlkroskopes enthaltene Aussage,
dass «einachsige Kristalle entweder gerade oder symmetrisch ausloschen», be-
darf somit (wie dem Kenner der Materie natiirlich schon lingst bekannt ist)
einer Erginzung, dahingehend, dass Schnitte allgemeiner Lage (hkl) schief
und nicht symmetrisch ausldschen. Das Verhalten einachsiger Kristalle hin-
sichtlich ihrer Ausléschung kann auch so formuliert werden, dass gerade oder
symmetrische Ausléschung nur fiir Schnittlagen bzw. Flichen auftritt, auf
welchen eine kristallographische SE normal steht oder fiir welche sich eine
solche einstellen wiirde, wenn ein Symmetriezentrum hinzugefiigt wird.

d) Ausloschungsschiefe in bezug auf die Spaltbarkeit nach dem Prisma
11. Stellung

(100) = E, 1 (010) = E, 0
e=90° G =0 p= 0° €, =|1
p = 90° 0 p = 90° @

Fiir die a.o. Welle erhiilt man:

Vo = [Fo G, E;,] = 0,948876, (@:‘30-%0) = 0,256333 = cose, e =175,2°,
sine = 0,966589 = Gy, COB G(y00) = % = 0,981676, WOraus ogee = 11,0°,
0
Vo = [Fo €y, Sl = 0,315649, (Ey,- Fo) = 0,770567 = cose, e = 39,6°,
sine = 0,637359 = G, COS O(g19) = GV—O = 0,495245, WOTaus a(g;q = 60,3°.

0

In bezug auf die ordentliche Welle erhilt man analogerweise o, = 79,0°
bzw. 29,7°. Auch in bezug auf die Spaltbarkeit nach dem Prisma II. Stellung
ist somit die Ausléschung schief und nicht symmetrisch.

Zwischen den vier Ausléschungswinkeln in bezug auf zwei Bezugsrlchtungen
welche ihrerseits die Winkel ¢, und i, einschliessen, ergeben sich, weil die
Winkelsumme in einem Viereck 360° betrégt, eine Reihe von Beziehungen,
welche, da sich ¢ leicht berechnen ldsst, willkommene Kontrollmoglichkeiten
fiir berechnete oder gemessene Ausloschungswinkel bieten (Fig. 8). Sie gelten
natiirlich in gleicher Weise fiir optisch-zweiachsige Kristalie wie fiir die hier
betrachteten optisch-einachsigen.
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Fig. 8. Winkelbeziehungen zwischen den Schwingungsrichtungen 8,, ; einer Kristallfiiche und den
Spuren zweier Spaltbarkeiten.

Wie aus Fig. 8 hervorgeht, ist z.B. oy +0," = ; und o, +0, = ¢§,, woraus
folgt, dass die Summe der vier Ausléschungswinkel = i +, = 180° sein muss.
Der spitze Winkel i,, den die Spuren der beiden Spaltbarkeiten auf der be-
~ trachteten Fliche F einschliessen, ergibt sich zu:

_ [FoxXEy,1- [Fo X Cs,]
1= [Fox Col [ 5o x G| 5}

Erledigt man das auftretende skalare Produkt zweier Vektorprodukte nach
der sogenannten Identitéit von LAGRANGE, so erhdlt man fiir das behandelte
Beispiel von Skapolith (Ausléschung in bezug auf Prisma I):

(o Fo)  (Fo-Cy)| |1 —0,363618
(T €y) (G, 6y 10,726128 0 B
081 = 3% Grl B xCs| ~ 0,687550.0,031548 — 12233,

woraus i, = 65,7°.

Die w. o. angefiihrten Beziehungen sind erfiilit, denn es gilt z. B,
fiir die 0. Welle o1+ iy = 40,6°473,7° = 114,3° = i, = 180° —¢, usw.
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