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Schweiz, mineral, petrogr. Mitt. 55, 371—395, 1975

Vektorielle Formulierung der Fresnelschen Konstruktion
und Berechnung der Auslöschungsschiefe für beliebige

Kristallflächen in bezug auf beliebige Bezugsrichtungen

Es werden zwei Varianten der FRESNELschen Konstruktion gegeben, welche deren
vektorielle Formulierung erleichtern, und es wird gezeigt, wie sieh die Auslöschungsschiefen

für beliebige Kristallflächen, gegenüber beliebigen Bezugsrichtungen, durch einen
einfachen Vektorausdruck berechnen lassen, unabhängig vom Kristallsystem und von
der Symmetrie der Indikatrix.

Two modifications of Fresxel's construction are suggested in order to adapt it to
vectorial treatment, and a simple method is given allowing the computation of the extinction

angles for any given crystal face, for any reference direction, irrespective of the
crystal system or the symmetry of the indicatrix.

Yon Conrad Burri*)
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I. DAS THEOREM VON FRESNEL UND SEINE FORMULIERUNG

Der Satz von Fresnel, vielleicht der wichtigste Satz der Kristalloptik,
findet sich zum ersten Male in seiner berühmten Abhandlung «Second Memoire
sur la Double Réfraction» ausgesprochen, welche zu Recht als einer der
grundlegenden Beiträge zur Kristalloptik angesehen wird.

In ihr wird unter anderm zum ersten Male experimentell und theoretisch
gezeigt, dass es für zweiachsige Kristalle, im Gegensatz zu den einachsigen,
keine Wellen gibt, die, unabhängig von Fortpflanzungs- und Schwingungsrichtung,

eine konstante Lichtbrechung aufweisen, sowie, dass sich deren
optisches Verhalten mit Hilfe einer dreiachsigen Bezugsfläche erschöpfend
darstellen lässt1). Die Formulierung des Satzes lautet im Original:

«En considérant toujours comme véritable plan de polarisation celui qui est

perpendiculaire aux vibrations lumineuses, je vais démontrer que les plans de polarisation

des ondes ordinaires et extraordinaires divisent en deux parties égales les

angles dièdres formés par les deux plans menés suivant la normale à l 'onde et les

deux normales aux plans des sections circulaires de la surface d 'élasticité. »

Auf den durch Feessel gegebenen Beweis, welcher sich der durch ihn
eingeführten Elastizitätsfläche bedient, soll hier nicht eingegangen werden. An
seiner Stelle wird im folgenden ein solcher gegeben, welcher von der heute
gebräuchlicheren Indikatrix (Indexellipsoid) Gebrauch macht. Dagegen dürfte es

jedoch angebracht sein, kurz auf einige Punkte der F resneEsch en Formulierung

einzugehen, welche entweder nur aus der damals herrschenden
Situation verständlich sind oder welche mit der heute üblichen Terminologie im
Widerspruch stehen.

Der Hinweis auf den «véritable plan de polarisation» ist durch die damals
sehr aktuelle Streitfrage bedingt, ob die Lichtschwingungen normal zur Malus-
schen Polarisationsebene (Fees n ELscher Lichtvektor) oder aber parallel dazu
erfolgten (Neuman;n*scher Lichtvektor). Da man heute annimmt, dass die
physiologisch empfundene Lichtwirkung durch die dielektrische Verschiebung
bedingt ist, deren Vektor normal zur Polarisationsebene der Welle steht, hat die
elektromagnetische Lichttheorie den Entscheid mittlerweile zugunsten von
Fresnel gebracht. Dass für zweiachsige Kristalle von «ondes ordinaires» bzw.
«extraordinaires» gesprochen wird, mag auf den ersten Blick besonders befremden,

da es ja gerade Fresnee war, welcher in der gleichen Abhandlung
bewiesen hatte, dass es für zweiachsige Kristalle keine «ordentlichen» Wellen im

1) Die Abhandlung wurde von Fresnel in den Jahren 1821 und 1822 in drei Teilen
der Pariser Académie des Sciences vorgelegt und am 19. August 1822 auf Antrag einer
aus Ampère, Arago und Fourier bestehenden Kommission zur Veröffentlichimg in deren
Denkschriften angenommen. Sie findet sich wieder abgedruckt in den « Œuvres complètes
d'AuGusTiN" Fresnel», Bd. 2, S. 479-596. Die hier interessierende Stelle befindet sich auf
S. 581.
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Sinne der heutigen Auffassung geben könne. Der Grund für diesen scheinbaren
Widerspruch liegt jedoch darin, dass die Begriffe damals einen andern Sinn
hatten als heute. Unter «ordentlicher» Welle eines zweiachsigen Kristalls wurde
damals diejenige Welle verstanden, deren Polarisationsebene im spitzen räumlichen

Winkel der beiden Ebenen liegt, welche durch die Wellennormale und
die beiden optischen Achsen bestimmt werden, und als «ausserordentliche»
Welle diejenige mit der Polarisationsebene im stumpfen Winkel derselben. Da
heute allgemein an Stelle der Polarisationsebenen die dazu normal stehenden
Schwingungsebenen betrachtet werden, würden diese somit für «ordentliche»
Welle im stumpfen, für die «ausserordentliche» jedoch im spitzen Winkel der
durch die Wellenormale und die optischen Achsen aufgespannten Ebenen liegen.
Heute sind jedoch bekanntlich die Begriffe «ordentliche» bzw. «ausserordentliche»

Welle nur noch in bezug auf einachsige Kristalle gebräuchlich.
Während der hier interessierende Satz in der zitierten Abhandlung von

Fresnel keineswegs in irgendeiner Weise hervorgehoben wird oder sonst eine
besondere Stellung einnimmt, wird ihm heute eine wesentlich grössere
Bedeutung beigemessen, indem er gerne etwa als «FßKSNEi.sches Gesetz» oder als
«Eundamentalsatz der Kristalloptik» bezeichnet wird, und dies durchaus zu
Recht. Da sich die optisch isotropen Kristalle optisch gleich verhalten wie die
übrigen isotropen Medien, entspricht die sogenannte «Kristalloptik» de facto
der Optik der nichtkubischen, anisotropen Kristalle. Deren charakteristische
Eigenschaft ist jedoch die Doppelbrechung, wie sie der Fresn et,sehe Satz
beschreibt. Die Aufwertung zu seiner heutigen Bedeutung verdankt dieser aber
vor allem auch der Wichtigkeit, welche er in der polarisationsmikroskopischen
Untersuchungsmethodik erlangte, wie sie in der Folge, angeregt durch die
FuESNELschen Erkenntnisse, durch Forscher wie Des Cloizeaux, Fouqué,
Michel-Lévy, Fedorow, Becke u.a. entwickelt wurde. Da sich hierbei die
Auslöschungsschiefe als eines der wichtigsten diagnostisch verwendbaren
Kennzeichen niedrigsymmetrischer Kristallarten erwies, wurde ihre Bestimmung
bzw. Berechnung für bestimmte Flächen oder Zonen grundlegend für die
mikroskopische Bestimmung gesteinsbildender Mineralien, besonders von Gliedern
von Mischkristallreihen.

Eine der heutigen Terminologie angepasste Formulierung des FRESNELschen
Satzes kann wie folgt gegeben werden :

«Die Schwingungsebenen der beiden sich in einer bestimmten Normalenrichtung
N in einem zweiachsigen Kristall fortpflanzenden Wellen entsprechen den
Halbierungsebenen der räumlichen Winkel, welche die durch N und die beiden optischen
Achsen A und B bestimmten Ebenen bilden. »

Der Beweis lässt sich mit Hilfe der Indikatrix wie folgt führen. Die beiden
auf den durch N und A bzw. B aufgespannten Ebenen errichteten Lote ^ 2

stehen normal zu jeder in diesen enthaltenen Geraden, somit auch zu N und
A bzw. B selbst. Sie gehören daher sowohl der Ebene J_N, wie auch den zu
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A bzw. B normalen Kreisschnitten der Indikatrix an. Als Kreisschnittradien
entspricht ihre Länge n^ und sie sind zugleich auch zwei Radienvektoren gleicher

Länge des zu N normalen Ellipsenschnittes der Indikatrix. Aus
Symmetriegründen müssen daher dessen Hauptachsen die durch r12 eingeschlossenen

Winkel halbieren. Die Hauptachsen der Schnittellipse sind jedoch
zugleich die Spuren der Schwingungsebenen und als solche die zu N normal
stehenden Schwingungsrichtungen der betrachteten Kristallfläche. Da jedoch
die Schwingungsebenen die Winkel der auf den durch N und A bzw. B
bestimmten Ebenen errichteten Lote rx2 halbieren, ist dies auch für die von
diesen Ebenen selbst eingeschlossenen Winkel der Fall, was es zu beweisen galt.

Da die beiden Lote rx 2 sowohl der Ebene _|_ N, wie auch den beiden
Kreisschnittebenen der Indikatrix angehören, können sie auch als deren
Schnittgeraden definiert werden. Daraus folgt eine weitere Möglichkeit zur Formulierung

des Satzes von Fresnel :

«Die Schwingungsrichtungen der beiden sich in einem zweiachsigen Kristall in
einer bestimmten Normalenrichtung N fortpflanzenden Wellen entsprechen den
Winkelhalbierenden der Schnittgeraden der Ebene _L N mit den beiden Kreisschnittebenen

der Indikatrix. »

In der mikroskopischen Praxis wird die experimentelle Bestimmung der
Schwingungsrichtungen einer Kristallfläche bzw. eines Präparates in Form
einer planparallelen Kristallplatte, z.B. eines Dünnschliffes oder Spaltblätt-
chens, oder die Messung der Auslöschungsschiefe desselben, im parallen Licht-
bei normaler Inzidenz vorgenommen, d.h. Wellennormalenrichtung und
Plattennormale fallen zusammen. Dabei muss allerdings festgehalten werden, dass

absolut parallele Wellenbündel, d.h. aperturloses Licht, nicht erhältlich ist und
nur einem experimentell nicht streng realisierbaren Idealzustand entspricht.
Man wird daher bei derartigen Untersuchungen immer versuchen, durch
entsprechende Handhabung der Aperturblende die Bedingungen optimal zu
gestalten.

Für den Fall der normalen Inzidenz kann der Satz von Fresnel somit auch
wie folgt formuliert werden:

«Die Schwingungsrichtungen einer Fläche eines zweiachsigen Kristalls halbieren

die Winkel der Projektionen der optischen Achsen in Richtung der
Flächennormalen. »

Aus den erfolgten Darlegungen ergibt sich sofort eine weitere Formulierung
des Satzes von Fresnel, welche in den Lehrbüchern gewöhnlich ebenfalls als
«Fundamentalsatz der Kristalloptik» bezeichnet wird und welche sich ebenfalls

der Indikatrix als Referenzfläche bedient:
«Die Schwingungsrichtungen der beiden Wellen, welche sich in einem Kristall

in einer bestimmten Normalenrichtung N fortpflanzen, entsprechen den Hauptachsen

der Schnittellipse, in welcher die zu N normale Diametralebene die
Indikatrix schneidet. »
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Da die Radien der Indikatrix definitionsgemäss den numerischen Werten
der Brechungsindizes derjenigen Wellen entsprechen, welche parallel dazu
schwingen, so sind die Längen der Halbachsen der Schnittellipse gleich den
numerischen Werten der Brechungsindizes für die beiden Wellen. Ihre analytische

Berechnung aus den Halbachsen der Indikatrix (Hauptbrechungsindizes)
und der Lage der Wellenormalenrichtung ist daher ohne weiteres möglich, stellt
jedoch eine Aufgabe dar, welche den Rahmen der vorliegenden Betrachtungen
überschreitet. Für ihre Behandlung sei unter anderm aufRosenbusch-Wülfing
(1921-1924, S. 109-111) oder Kommerell (1949, S. 258-260) verwiesen.

II. DIE FRESNELSCHE KONSTRUKTION UND IHRE VARIANTEN

1« Die klassische Form der Konstruktion

Die praktische Auswertung des Satzes von Fresnel zur Bestimmung der
Schwingungsrichtungen S12 einer gegebenen Kristallfläche F von bekannter
optischer Orientierung in bezug auf die optischen Achsen des Kristalls erfolgt
üblicherweise durch die sogenannte FRESNELsche Konstruktion in stereographischer

Projektion. Ihre klassische Form lässt sich wie folgt formulieren:
Man legt (Fig. 1 a) entsprechend den beiden durch die Wellenormale N, welche
bei normaler Inzidenz mit der Flächennormalen F zusammenfällt, und die
beiden optischen Achsen A und B bestimmten sogenannten «Konstruktions-
ebenen» K1j2, zwei Grosskreise durch die Pole N F und A bzw. B und
bestimmt ihre Schnittpunkte P und Q mit dem zu F polaren Grosskreis. Durch
Halbieren der Abstände von P und Q und Ziehen von zwei weiteren
Grosskreisen durch die Halbierungspunkte Sj 2 und F erhält man die gesuchten
Schwingungsebenen H1>2. Die Halbierungspunkte S12 selbst sind die
Schwingungsrichtungen der beiden Wellen. Dabei entspricht diejenige, welche im
gleichen räumlichen Winkel von Kx und K2 liegt wie [nyj. [ny'J und diejenige im
gleichen Winkel wie [na], [na'j. Ist E eine weitere Kristallfläche (Spaltfläche,
Verwachsungsfläche eines Zwillings zum Beispiel), auf deren Spur mit F die
Auslöschungsschiefe bezogen werden soll, so entspricht der Schnittpunkt ihres
Grosskreises mit demjenigen von F der Bezugsrichtung R, und der gesuchte
Auslöschungswinkel crlj2 (R, S1>2) lässt sich ablesen. Da die beiden
Auslöschungswinkel komplementär sind, braucht nur der eine davon angegeben zu
werden, es muss jedoch vermerkt werden, ob er sich auf [ny'] oder [na'J bezieht.
(Vergleiche auch das Beispiel Fig. 5.)

2. Varianten der Fresnelschen Konstruktion

Für die eben erläuterte klassische Form der FRESNELschen Konstruktion
ergeben sich Varianten, welche zur Lösung weiterer Probleme von Vorteil sind
und welche auch, rein konstruktiv, eher eine Vereinfachung bedeuten.
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Fig. 1. Die FuESNELsche Konstruktion und ihre Varianten.
a) Klassische Form: Die Schwingungsebenen Hx 2 der beiden Wellen, welche sich in der Wellen-

normalenrichtung N normal zu Fläche F fortpflanzen, sind die Halbierungsebenen der
räumlichen Winkel, welche die zwei durch die Wellennormale und die beiden optischen Achsen A
bzw. B bestimmten «Konstruktionsebenen» Klt2 einschliessen. Die Schwingungsrichtungen
Slt2 sind die Schnittpunkte P und Q von H1>2 mit der Ebene F. Die Bezugsrichtung R,
entsprechend der Spur der Spaltbarkeit nach einer Fläche E auf F, wird als Schnittpunkt der zu
F und E polaren Grosskreise erhalten. Der Auslöschungswinkel a erscheint auf dem zu F
polaren Grosskreis als Winkel (S,R).

b) Variante I: Man errichtet auf K1>2 die Lote r1>2. Ihre Winkelhalbierenden entsprechen ebenfalls

den Schwingungsrichtungen Slt2.
c) Variante II: Die Lote rlf 2 werden als Schnittpunkte der zu den optischen Achsen A bzw. B

polaren Grosskreise (Kreisschnitte der Indikatrix) mit dem zu F polaren erhalten. Die
Schwingungsrichtungen ergeben sich wiederum als deren Winkelhalbierende. Die zu A bzw. B polaren
Grosskreise schneiden sich ihrerseits in der optischen Normalen [n^].

a) Eine erste Variante besteht darin, dass man, an Stelle der Konstruktion
der Schwingungsebenen H1j2 als Halbierungsebenen der durch F und die
optischen Achsen bestimmten Konstruktionsebenen Kx 2, auf den letzteren die
Kormalen rx 2 errichtet, wie sie schon anlässlich des weiter oben gegebenen
Beweises des Freske Eschen Satzes benützt wurden. Man bringt zu diesem Zwecke
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in der Projektion F und A bzw. B je auf einen Grosskreis und bestimmt deren
Pole, welche den Normalen r12 entsprechen. Sie liegen in der Fläche F und
ihre Projektionen fallen daher auf den zu F polaren Grosskreis (Fig. lb). Ihre
Winkelhalbierenden sind identisch mit denjenigen von K12 und entsprechen
daher den Schwingungsrichtungen S12- Hinsichtlich ihres Charakters, d.h. ob

[ny'j oder [na'j, sowie hinsichtlich der Bestimmung des Auslöschungswinkels
in bezug auf eine gegebene Bezugsrichtung, gilt das für die klassische Form
der Konstruktion Gesagte.

b) Eine weitere konstruktive Variante ergibt sich aus dem Umstand, dass
die beiden Lote r12 sowohl normal zu der Flächenormale zu F wie zu den
optischen Achsen stehen, dass sie somit, wie schon weiter oben erwähnt, den
Schnittgeraden von F mit den Kreisschnittebenen der Indikatrix entsprechen.
Ihre Lage im Stereogramm wird daher auf einfache Weise als Schnittpunkt der
zu A bzw. B polaren Grosskreise mit dem zu F polaren erhalten (Fig. lc). Die
beiden zu A bzw. B polaren Grosskreise schneiden sich ihrerseits im Pol von
[nß], in Übereinstimmung damit, dass die optische Normale Schnittgerade der
beiden Kreisschnittebenen der Indikatrix ist. Hinsichtlich der Konstruktion
der Schwingungsrichtungen S12, ihres Charakters sowie der Bestimmung der
Auslöschungsschiefe gilt auch hier das bereits weiter oben Gesagte.

3. Umkehr der Fresnelschen Konstruktion

Die FniiSMOLsche Konstruktion lässt sich auch im umgekehrten Sinne
anwenden, d.h. sie ermöglicht es, hei bekannter Position einer optischen Achse
und der Lage der Achsenebene bzw. der optischen Normale [n^] b0, sowie
einer auf eine bekannte Bezugsrichtung R bezogenen Auslöschungsschiefe, die
Position der zweiten optischen Achse zu bestimmen. Die Auslöschungsschiefe
muss hierbei nach Betrag und Vorzeichen bekannt sein. Man bestimmt hierzu
in der stereographischen Projektion auf Grund der Auslöschungsschiefe die
Lage einer der beiden Schwingungsrichtungen S12 auf dem zu F polaren Grosskreis,

welcher der interessierenden Kristallfläche bzw. Präparatenebene
entspricht. Die Auslöschungsschiefe a wird konventionell positiv oder negativ
gerechnet, je nachdem für einen in F situierten Beobachter S durch eine Drehung
im positiven oder negativen Sinne in die Bezugsrichtung R übergeführt wird.
Der Winkel PS auf dem zu F polaren Grosskreis (Fig. la) wird verdoppelt,
womit Punkt Q erhalten wird. Die gesuchte Position der zweiten Achse B
erhält man als Schnittpunkt des durch Q und F verlaufenden Grosskreises mit
der Achsenebene. Diese Konstruktion wurde u.a. durch Fedorow, anlässlich
des erstmaligen Entwurfs des Stereogrammes der optischen Orientierung der
Plagioklase, angewandt für den Fall, dass nur eine optische Achse einmessbar
war. Sie spielt auch eine Rolle bei der bekannten BECKEschen Methode zur
Bestimmung des optischen Achsenwinkels aus der Hyperhelkrümmung.
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An Stelle der klassischen Form der FßESNELschen Konstruktion kann auch
Variante b) (Fig. lc) Verwendung finden. Da sich diese besonders zur
rechnerischen Auswertung eignet, sei das Vorgehen kurz skizziert. Man findet zuerst
wiederum, auf Grund der Kenntnis der Bezugsrichtung R und der nach Betrag
und Vorzeichen bekannten Auslöschung er, eine der Schwingungsrichtungen
S12. Als Schnittpunkt der zu F und zu der als bekannt angenommenen
optischen Achse A polaren Grosskreise erhält man r1; die Normale der durch F
und A bestimmten Ebene. Durch Verdoppelung des Winkels (S, rx) erhält man
r2, die Normale der durch F und B bestimmten Ebene. Die zweite, gesuchte,
optische Achse B ergibt sich als Schnittpunkt des zu r2 polaren, durch F und
Q verlaufenden Grosskreises mit der Achsenebene.

III. DIE RECHNERISCHE AUSWERTUNG DER FRESNELSCHEN
KONSTRUKTION

1. Bisherige Versuche

Wie eben gezeigt wurde, gestattet die FRESNELsche Konstruktion in ihren
diversen Varianten bei bekannter optischer Orientierung, d.h. Achsenlage, die

graphische Bestimmung der Schwingungsrichtungen bzw. der Auslöschungsschiefen

für beliebige Kristallflächen in bezug auf beliebige Bezugsrichtungen.
Damit ist eines der wichtigsten Probleme der auf die polarisationsmikroskopische

Mineral- und Gesteinsuntersuchung angewandten Kristalloptik gelöst. In
vielen Fällen dürfte jedoch eine rechnerische Auswertung des im allgemeinen
graphisch durchgeführten Verfahrens erwünscht sein. Diesem Problem wurden
denn auch schon seit langem zahlreiche Untersuchungen gewidmet. Es kann
sich an dieser Stelle nicht darum handeln, diese in ihrer Gesamtheit zu
würdigen und kritisch zu sichten, so interessant dies auch wäre. Es sei jedoch an
die Arbeiten von Michel-Lévy (1877, 1888) erinnert, welcher als erster das

Problem in seiner vollen Bedeutung für die polarisationsmikroskopische
Methodik erkannte und auch eine der ersten Lösungen lieferte. Im übrigen sei auf
die zusammenfassenden Darstellungen von Johannsen (1918, S. 403-412) und
Rosenbusch-Wüleing (1921-1924, S. 487-497) verwiesen. Auffallend ist, dass

die meisten Autoren vorwiegend spezielle Probleme behandeln und so gewisser -

massen eine kasuistische Betrachtung einer allgemeinen Lösung vorzogen. Dass
eine solche, zum mindesten solange man sich ausschliesslich sphärisch-trigonometrischer

Methoden bediente, grosse Schwierigkeiten bietet und zu Ausdrük-
ken von erheblicher Kompliziertheit führt, zeigen u. a. die interessanten
Versuche von Berek (1912). Der von ihm beschrittene Weg zu einer
trigonometrischen Formulierung der FRESNELschen Konstruktion führte zwar auch
nicht zu einer praktisch brauchbaren allgemeinen Methode zur Berechnung
von Auslöschungsschiefen. Er lieferte jedoch, gewissermassen als Nebenergeb-
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nis, die Grundlagen zu der theoretisch sehr bemerkenswerten, wenn auch praktisch

nicht sehr ergiebigen, weil stark durch die jeweiligen Versuchsbedingungen
beeinflussten «Methode der charakteristischen Funktion der Auslöschung»
(Berek, 1924, 1953), welche eine Bestimmung von 2 V aus der Messung eines

einzigen Auslöschungswinkels gestattet.
Die Situation war demnach bis jetzt dadurch gekennzeichnet, dass das

Problem der Berechnung von Auslöschungsschiefen prinzipiell zwar als gelöst
bezeichnet werden darf, dass aber eine allgemein anwendbare, alle vorkommenden
Fälle gleichermassen umfassende Methode noch ausstand und dass eine solche
auf Grund der geleisteten Vorarbeit als reichlich kompliziert erwartet werden
musste. Man konnte sich dabei fragen, ob dies nicht, mindestens teilweise,
dadurch bedingt war, dass man sich bis dahin zur Lösung der Aufgabe durchwegs

der sphärisch-trigonometrischen Methodik bedient hatte, wie sie allerdings

als gegeben erscheinen musste, solange man ausschliesslich von der stereo-
graphischen Projektion ausging.

Wenn an dieser Stelle, im Anschluss an frühere Mitteilungen (Btjrri, 1950 b,
1975b), erneut auf diesen Problemkreis eingegangen wird, so vor allem deshalb,
weil gezeigt werden kann, dass es durch einen Wechsel der Methodik tatsächlich

gelingt, zu einer überraschend einfachen, allgemein gültigen Lösung zu
gelangen. Unter Benutzung einfacher Vektormethoden an Stelle der sphärisch-
trigonometrischen erweist es sich nämlich als möglich, einen einfachen und
geometrisch anschaulich interpretierbaren Ausdruck abzuleiten, welcher erlaubt, die
Auslöschungsschiefe für beliebige Kristallflächen in bezug auf beliebige
Bezugsrichtungen zu berechnen, und zwar unabhängig vom Kristallsystem und von der

Symmetrie der Indikatrix.

2. Die vektorielle Formulierung des Problems und seine Lösung

Unter dem Begriff «Auslöschungsschiefe» einer Kristallfläche F versteht man
definitionsgemäss den Winkel zwischen einer ihrer beiden Schwingungsrichtungen

Slj2 und einer ihr ebenfalls angehörenden «Bezugsrichtung» morphologischer

Art, R. Diese kann sein: Kante, Spaltriss oder Zwillingsgrenze, d.h.
Spur (Schnittgerade) einer zweiten Kristallfläche E mit der betrachteten
Fläche F.

Charakterisiert man die beiden Flächen durch ihre Normalvektoren und
@, so ist (Fig. 2 a) die beiden gemeinsame Bezugsrichtung R gegeben durch
das vektorielle Produkt

SR [0fx®], (l)

wobei die Reihenfolge der drei Vektoren so zu wählen ist, dass sie ein Rechtssystem

bilden.
Von den beiden Schwingungsrichtungen S12 braucht nur eine betrachtet zu
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werden, da sie normal zueinander stehen und sich daher die Lage der einen
aus derjenigen der andern ergibt. Es muss jedoch immer vermerkt werden, ob
die betreffende Schwingungsrichtung der rascheren oder der langsameren Welle
entspricht, d.h. ob sie die Lichtbrechung na' oder ny' aufweist.

Bezeichnet man den Vektor der betreffenden Schwingungsrichtung S mit
so ergibt sich der Auslöschungswinkel a aus dem skalaren Produkt (9t • 3)

unter Berücksichtigung von (1) zu:

(91-®) (fôx(Sj-©)
|8Ü|-|@| |3rX@|-|@|

}

Nun ist aber ([^fX (£]•>) [$(£©], das sogenannte gemischte oder
Spatprodukt der drei Vektoren @, ©, dessen absoluter Wert dem Volumen V des

von diesen aufgespannten Spates entspricht. Dieses kann anderseits auch als
Produkt von Grundfläche G |$rX@| |£$r[*|@|sine, wobei e <£(SV@), und
Höhe h | © | cos er ausgedrückt werden. Geht man zu den Einheitsvektoren
über und bezeichnet man das Volumen des von diesen aufgespannten Spates
mit V0 und dessen durch und (S0 bestimmte Grundfläche mit G0, so resultiert
die einfache und für die Methode grundlegende Beziehung:

C03'-sf-sfe-11« <3)

Fig. 2.

a) Definition des Auslöschungswinkels a einer Kristallfläche F als Winkel zwischen einer ihrer
Schwingungsrichtungen S und einer Bezugsrichtung R, welche Spur einer zweiten Kristallfläche

E auf F ist.
b) Der durch die drei Vektoren Q£ und © aufgespannte Spat, dessen Schiefe in bezug auf die

Normale zur Grundfläche dem Auslöschungswinkel entspricht.
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d. h. der cos des gesuchten Auslöschungswinkels a ist gleich der Höhe h0 des von
[y0, (£0 und 0O aufgespannten Spates mit der durch ?y0 und (£0 bestimmten Seite
als Grundfläche (Fig. 2 b). Der Auslöschungswinkel selbst ist gleich der Schiefe
des Spates gegenüber der auf der Grundfläche errichteten Normale [iy0 X ©0] 9t
Bei der Berechnung des Volumproduktes ist darauf zu achten, dass die Reihenfolge

der drei Vektoren derart gewählt wird, dass sie ein Rechtssystem bilden,
wobei a spitz resultiert, da ansonst V negativ herauskommt. Der Winkel e

berechnet sich aus dem skalaren Produkt ($0'®o)- Es erweist sich somit als
möglich, den Auslöschungswinkel er für eine beliebige Kristallfläche, in bezug
auf eine beliebige Bezugsrichtung ganz allgemein durch eine geometrisch
einfach interpretierbare Vektorbeziehung auszudrücken, und zwar ganz
unabhängig vom Kristallsystem und von der Symmetrie der Indikatrix, da
diesbezüglich keine irgendwie gearteten Voraussetzungen gemacht wurden.

3. Einführung eines Bezugssystems

Zur rechnerischen Auswertung der gefundenen Beziehung muss jedoch die
räumliche Lage der Schwingungsrichtung S und der Bezugsrichtung R bekannt
sein. Hierfür, wie auch zur Formulierung der Normalvektoren von F und E
muss ein Bezugssystem eingeführt werden. Dieses ist derart zu wählen, dass
sich die Berechnungen möglichst einfach gestalten. Es wird daher mit Vorteil
orthogonal gewählt, wobei jedoch darauf zu achten ist, dass es sich auch für
das monokline und trikline System eignet. Folgendes System genügt diesen
Anforderungen :

Z [001] bzw. [0001], d.h. die kristallographische c-Achse,
Y J_ (010) bzw. _L (1210),
X _L Ebene YZ.

Dieses System hat den weiteren Vorteil, dass es auch in engster Beziehung
zum GoLDSCHMiDTschen Polarkoordinatensystem steht. In diesem werden be-
kanntermassen die Zentraldistanz p von c aus und das Azimut <p in der Zone
[001] bzw. [0001] von (010) bzw. (1010) aus gezählt. Es ergibt sich somit die
praktisch wichtige Konsequenz, dass sich die Komponenten der Normalvektoren

der interessierenden Flächenlagen auf einfache Weise aus den (cp,p)-
Werten berechnen lassen, welche den GoLDSCHMiDTschen Winkeltabellen
entnommen werden können. Für den Fall, dass die (<p,p)-Werte für eine
interessierende Fläche in diesen nicht enthalten sein sollte oder dass es sich um eine
nicht berücksichtigte Mineralspezies handelt, können diese auf einfache Weise
mit Hilfe der kürzlich gegebenen Ausdrücke (Btirbj, 1975a) aus dem
Achsenverhältnis berechnet werden, ohne dass es notwendig ist, sich des komplizierten
und kaum mehr allgemein bekannten GoLDSCHMiDTschen Algorithmus zu
bedienen.
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Die Komponenten der Einheitsvektoren für die betrachteten Flächen, d.h.
der Ortsvektoren für Punkte der Einheits-Projektionskugel, sind gleich deren

Richtungscosinus. Diese sind jedoch auf einfache Weise aus den (<p,p)-Werten
erhältlich.

In der Beziehung zwischen (9, p)-Werten nach Goldschmidt und
Vektorkomponenten besteht leider eine gewisse Inkonsequenz, welche historisch
bedingt ist und mit welcher man sich abzufinden hat. Während man die letzteren
auf ein orthogonales Rechtssystem XYZ bezieht, werden die Azimute bei

Goldschmidt jedoch, ausgehend von +Y, im negativen, d.h. Uhrzeigersinn
von 0° bis 360° gezählt.

Fig. 3. Beziehungen zwischen den GoLDSCHMiDTschen (<p, p)-Werten und den Komponenten des
Ortsvektors eines auf der Einheitskugel gelegenen Punktes P.

Die Beziehungen zwischen den (9, p)-Werten und den Komponenten (x, y, z)
bzw. dem Richtungscosinus (Ades Ortsvektors eines Punktes P auf der
Einheitskugel ergeben sich auf Grund von Fig. 3. Führt man vorerst den
Hilfswinkel 9' zur Bezeichung des Azimutes ein, so erhält man für den I. Quadranten
+ X, +Y) der oberen Halbkugel: OA cos(90°—p) sinp, und weiter:

x AB OA sin 9' sin 9' sin p A

y OB OA cos 9' cos 9' sin p p
z cosp v

(4)

x A

tgy "7"?
cos p — z v

(4a)

In bezug auf das Azimut 9 gilt für die verschiedenen Quadranten:

Quadrant:

I( + X,+Y)
II — X, + Y)

III — X, — Y)
IV( + X, -Y)

Gesucht: <P

9 9
9 277 — 9'
9 77 + 9'
9 77 — 9'

Gesucht: 9'

9' 9
9' 2 77 — 9
9' =9—77
9' =77 — 9

(4b)
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Das gewählte System XYZ ist auch identisch mit demjenigen, wie es durch
Fedorow, Michbl-Lévy und Becke für die Charakterisierung der optischen
Orientierung der Plagioklase eingeführt wurde, wobei die X-, Y- und Z-Achse
der ZA der Gesetze Roc Tourné, Albit und Karlsbad entsprechen. Die
interessierenden Richtungen, wie optische Achsen, Hauptschwingungsrichtungen
usw., werden durch sphärische Koordinaten À*, 9* nach Art der geographischen
Länge und Breite definiert, wobei die Äquatorebene (010) _|_ Y angenommen

wird. Das System lässt sich jedoch auch in Verbindung mit den Ettler-
Winkeln zur Definition der optischen Orientierung der Plagioklase verwenden
(Burri, 1972).

Für die Beziehungen der besonders von Becke vielfach verwendeten
sphärischen Koordinaten À*,9* in Komponenten des Einheitsvektors erhält man
gemäss Fig. 4:

aus Dreieck BPX:

aus Dreieck ZPB:

cosXP sinA* cos9* A x
cosYP sin 9* p. y
cosZP cos A* cos 9* v z

A

(5)

Fig. 4, Beziehungen zwischen den BECKEschen
Kugelkoordinaten À*, <p* eines P unktes P auf der
Einheitskugel und den Komponenten seines Orts¬

vektors.

In bezug auf die Vorzeichen gilt:

Quadrant: I( + X, + Y) II(-X, + Y) III(-X, -Y) IV( + X, -Y)
A* — + + —

9* + + - -
A x + — — +
p y + + —

V Z + + ; +

(5h)
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Auf Grund von (4) ist es somit möglich, aus den (cp,p)-Werten für beliebige
Flächenlagen, unabhängig vom Kristallsystem, die Normalvektoren
(Einheitsvektoren), bezogen auf das gewählte System XYZ, zu berechnen. Da sich aus

und ©o gemäss (1) der Vektor der Bezugsrichtung 3t ergibt, ist der morphologisch

definierte Schenkel des Auslöschungswinkels bekannt, und es bleibt nur
noch der optisch definierte, d.h. die Schwingungsrichtung S12 vektoriell zu
formulieren, um den Auslöschungswinkel a auf Grund von (2) bzw. (3) zu
erhalten. Hierfür muss zwischen optisch-einachsigen und optisch-zweiachsigen
Kristallen unterschieden werden.

4. Optisch-zweiachsige Kristalle

Der Vektor der optischen Schwingungsrichtungen S, 2 kann, je nach der in
Betracht gezogenen Variante der FiuosvKLschen Konstruktion, auf verschiedene

Weise erhalten werden.
Geht man von der klassischen Form aus, so entsprechen die Vektoren der

beiden Schwingungsrichtungen den Winkelhalbierenden der Ortsvektoren von
P und Q (Fig. la), ÖP p und OQ C|. d.h. der Schnittpunkte des zu F
polaren Grosskreises mit den durch F und A bzw. F und B verlaufenden Kr
und K2. Es ist somit:

@1,2 Po i fio ' (6)

wobei p pr X [Qr X 31] und q % X [f$f X 93] ist.
Durch Übergang zu den Einheitsvektoren und Anwendung des

Entwicklungssatzes erhält man die für die praktische Berechnung bequemeren
Ausdrücke:

P 3fox[3fox9g (3fo-9lo)3ro-(0ro-3fo)«to (3fo-8to)3fo-9lo,

q =SoXtSoX330] (So-®o)So-(So-So)33o (So-®o)So-S3o-
&)

Nun ist aber in (6) [$0x3l0] iq und [f50x S80] r2 (Fig. lb), d.h. die

Vektorprodukte entsprechen den Normalen auf die durch die Flächennormale
zu F und die beiden optischen Achsen A und B aufgespannten Ebenen, so dass

auch gilt:
Po [So X rl0] und q0 [So X r2o]. (6 b)

Die Winkel der beiden Ebenen K1>2 und diejenigen ihrer Normalen r12
ergänzen sich als Flächen- und Normalenwinkel zu 180° und sind nur gleich
und 90° für den Fall, dass Kt und K2 normal zueinander stehen. Ihre
Winkelhalbierenden fallen zusammen und es gilt daher für die Vektoren der
Schwingungsrichtungen S12 auch der einfache Ausdruck:

@1,2 D0 ± r20> (7)
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wobei [$0 X 2lo] und r2 Ro X 33ol 'st- Bei der Bildung der Vektorprodukte
ist darauf zu achten, dass die Reihenfolge der Vektoren so gewählt wird, dass
sie ein Rechtssystem bilden.

Damit ist der zweite, optisch definierte Schenkel des Auslöschungswinkels a
formuliert und (2) bzw. (3) kann Anwendung finden.

5. Beispiele

a) Albit von Grönland,

Kristallographische Daten (C. Dreyer und V. Goldschmidt, 1907):

P(001) F : 9 82,0° p 26,85°

M (010) E : 9 0°

Optische Daten (0. Grosspietsch, 1908):

p 90c

Positionen der optischen Achsen in Kugelkoordinaten nach
Becke :

Achse A: À* +64,2C

Achse B: À* — 76,5C

cp* -49,P
9* -47,8'

Gesucht: Auslöschungsschiefen auf P (001) bezogen auf Spur von M (010) und
auf M (010) bezogen auf Spur von P (001)

oc) Auslöschungsschiefe auf P (001) (Eig. 5)

Nach (4) erhält man für die Normalvektoren von F (001) und E (010):

/0,447261\
g0 I 0,062858 j

\0,892192/

Nach (5) erhält man für die Vektoren der optischen Achsen:

«o

- 0,589475\
<%0 I -0,755854

<P

0,284964/ 9

'
— 0,692279\

D [2ï0X^0] | 0,653378
0,30101l/

-0,670797\
h=[350x50] -0,512610

0,372390/

218,0C

73,4C

0,65316l\
0,740805 9=1l8't
0,15681o/ 9 81,0C

normiert: rlo

'
— 0,693403\

0,654439
0,301500/

9 313,3C

p 72,5C

'
— 0,726978\

normiert: r2o [ —0,555542 1

0,403579/ 9
9 232,6C

66,2C
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Fig. 5. Albit von Grönland. Stereographische Projektion auf die Ebene _L [001]. Konstruktion
der Auslöschungsschiefe auf P (001) bezogen auf die Spur von M (010).

/ — l,42038l\ /—0,893976\
*io + r2o 0,098897 1 <&a normiert: @0 I 0,062245 I 9 '

\ 0,705079/ \ 0,443771/ P

V0 [®0 @0 ^0] 0,996080, (&„ ©0) 0,062858 cos e, e 86,4°,

sine 0,998022 G0, cosct ^ ggggg^ °'998054>

woraus: er 3,57° (gemessen durch Grosspietsch: 3,6°).

Der Auslöschungswinkel gilt für [na'J und ist gemäss der ScHUSTERschen

Regel positiv zu nehmen.

ß) Auslöschungsschiefe auf M (010)

Gegenüber dem vorigen Beispiel sind die Bezeichnungen der beiden Flächen
zu vertauschen. Es ist nun:

/0\ /0,447261\
%0 1 @o 0,062858

\0/ \0,892192/
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/0,284964\ /0,435232\

U BoX 8to] 0 normiert: rlo 0
25 8°

\0,589475/ \0,900318/
9

/ — 0,156810\ / — 0,233445\
r2 [®0Xgo] 0 normiert: r2o 0 P

0,653161/ \ 0,972370/ P

0,668677\ / — 0,994245\

ïi0-r2„ | 0 ©« normiert: <30 I 0

-0,072052/ \ 0,107132/ p

<p 90c

V0 [@oSo©o] 0,934973, (g0-g0) 0,062858 cos e, e 86,4°,

V 0 934973
sine 0,998022 G0, cos a 0^993922 °>936826>

woraus a 20,47° (gemessen durch Grosspietsch: 20,3°).

Der Auslöschungswinkel gilt wiederum für [na'] und ist nach der Schuster-
schen Regel negativ zu nehmen.

y) Berechnung der Position der optischen Achse B aus derjenigen von A
und der Auslöschungsschiefe auf P(001), aj> + 3,57°, bei gleichzeitiger Kenntnis

der Position der optischen Normale [11^] b0 (Umkehr der PnESNELschen

Konstruktion)

Gegeben:

/ — 0,589475\
910 I -0,755854 j

\ 0,284964/

Gesucht: S80

Die Auslöschung auf F s= P(001) wird auf die Spur von E M (010)
bezogen. Für die Bezugsrichtung R erhält man somit:

/ — 0,892192\ / — 0,89396O\
9Î [$o X ®ol 0 und, normiert: 3î0 0 P5

\ 0,447261/ \ 0,448147/ P

Der Vektor der auf [na'] bezogenen Schwingungsrichtung Sx ergibt sich
gemäss Fig. 6 zu 9t0 + ^, wobei £ ein Hilfsvektor ist, welcher sich zu
£ 3£0tgo- berechnet.

/0,447261\ /0,094893\
I 0,062858 I b0 I 0,285535 j
\0,892192/ \0,953600/

<p 18,4° p 17,5°
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Fig. 6. Zur umgekehrten Anwendung der FaESNELsehen Konstruktion. Schnitt durch die
Einheitskugel parallel der Fläche F (001). Im Interesse einer besseren Verständlichkeit der Figur

ist der Auslöschungswinkel a übertrieben gross dargestellt.

X ist eine normal zu R in ü' liegende Richtung, und es ist:

/ —0,028170\

£„ 0,998023

\-0,056173/
/ —0,001757\

a 3,57°, tgCT 0,062389, somit £ I 0,062266 1

\- 0,003506/

/ — 0,895717\ / — 0,893979\
@i 9to + ï 0,062266 1 normiert: ©lo 0,062145 ^ _ n

0,444641/ \ 0,443778j
p 63,7C

rx ist die Normale auf die durch A und die Normale zu F aufgespannte
Ebene, so dass

/ — 0,692279\ / —0,693403\
30

ri [So X 5ïo] 0,653378 1 normiert: rlo I 0,654439 1 ^
_

'
0

\ 0,301011/ \ 0,301500/ P ~

Der Winkel (©j, tx) berechnet sich aus dem skalaren Produkt (©x-tx)
0,794357 zu § 37,41°. Das gesuchte r2 muss mit ©x denselben Winkel bilden,
und wie aus Fig. 6 ersichtlich, mit 9t einen solchen von S — a — 37,41° —3,57°

33,84°. Man erhält daher den Vektor r2 als r2 9t0 — £', wobei x' 3£0 tg (§ — G)

mit tg(S-CT) 0,670338.

/ 0,018883\ / — 0,875077\

ï' 20tg(8-CT) -0,669013 r2 9t0-£'= -0,6690131

\ 0,037668/ \ 0,485815/

°'726874\ m 232°
r2o=( -0,555709

0,485815/ P
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Die gesuchte optische Achse B erhält man zu:

/ 0,64518l\ / 0,653302\
83 [&oxi;2n] -0,731483 | normiert: 930 I -0,740690 ^ '

\ 0,154814/ \ 0,156763/ 9 81'°

in Übereinstimmung mit den eingangs gemachten Angaben.

b) Orthaugit

Kristallographische Daten (Gold- (111) F: cp 44,1° p 39,0°
Schmidt, Winkeltabellen 281) (HO) E <p 135,9° p 90°

Optische Daten (willkürliche Annahme): c [ny], Achsenebene (100),
2 V 90°

Gesucht: Auslöschungsschiefe a auf (111) gegen Spur von (110)

/0,441248\
%0 0,455332

\0,773287/

\
0,707107

v0,707107/

/° \
% U/2 =|

uw
/-0,224828'

H [5ox 8l0] 1 -0,312010
\ 0,312010

/- 0,868765'

r2 [330x&>] I 0,312010

\ 0,312010

/-1,345582'
rlo + r20

1 -0,309988
\ 0,950244

0,695913\
@0 -0,718126 I

° \
930 I -0,707107

0,707107/

0,45399Ü
normiert: r, I —0,630036

0,630036)

9
P

0,891591\ _normiert: r2o 0,320208 J
^

_0,320208/ 9 -

V0 [eoSo@o] 0,904542,

sine 0,999802 G0,

woraus er 25,2°.

0,80277l\
0,184841 J

0,566914/

($0-g0) -0,019916 cose,

215,8°
51,0°

289,8°
71,3°

257,0°
55,5°

e 91,1°,

COS CT
Ip
Gn

0,904542
0,999802

0,904720,

Das Ergebnis zeigt einmal mehr, dass orthorhombische Kristalle, mit
Ausnahme der Flächen, welche einer der drei Hauptzonen [100], [010], [001]
angehören, schief auslöschen. Schiefe Auslöschung eines Pyroxens im Dünnschliff
ist daher kein hinreichendes Kriterium für dessen monokline Symmetrie. Schiefe
Auslöschung lässt sich auch an Spaltblättchen nach (110) von Orthaugiten
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beobachten, wenn diese nicht genau planparallel sind und zum Beispiel infolge
treppenartiger Ausbildung der Spaltfläche die c-Achse nicht genau parallel
zum Objektträger liegt, was zufolge der oft nur unvollkommen ausgebildeten
prismatischen Spaltbarkeit der Orthaugite leicht möglich ist. Für Schnitte der
Zone [110] (95 44,1°] berechnen sich für geringe Abweichungen von der Lage
von (HO) (p 90°, ar — 0°) zum Beispiel für p 85°, a 1,53° und für
p — 80°, a 3,14°, so dass bei der Messung der Auslöschungsschiefe an Spalt-
blättchen nach dem Prisma, welche etwa als UnterScheidungskriterium für
orthorhombische und monokline Pyroxene empfohlen wird, eine gewisse
Vorsicht geboten erscheint.

6. Optisch-einachsige Kristalle

Die für optisch-zweiachsige Kristalle angegebene Methode der Berechnung
des Auslöschungswinkels lässt sich ohne weiteres auch auf optisch-einachsige
anwenden. Auch für diese ist der Auslöschungswinkel er für eine bestimmte
Fläche F mit dem Normalvektor Jy0 gegeben durch den Winkel zwischen einer
ihrer Schwingungsrichtungen S12, charakterisiert durch einen Vektor @12

gegenüber einer Bezugsrichtung R, welcher der Spur einer weiteren Kristallfläche

E mit dem Normalvektor @0 auf F entspricht. Fig. 2 a und 2b haben
somit ebenfalls Gültigkeit, wie auch die Beziehungen (1), (2) und (3). Die
Vektoren der Schwingungsrichtungen 2 werden auch hier aufGrund der Fresnel-
schen Konstruktion erhalten, welche jedoch eine gewisse Spezialisierung er-

-x

Fig. 7. Anwendung der Fmsn Büschen Konstruktion auf einen optisch einachsigen Kristall.
Projektion auf die Basis, Bestimmung der Auslösehungsschiefe für eine Fläche F (hkl) in bezug auf die

Spuren der Prismenflächen (hkO) und (100).
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fährt. Einachsige Kristalle lassen sich als Grenzfall zweiachsiger mit dem
optischen Achsenwinkel 2 V 0 auffassen. Wie die beiden optischen Achsen
fallen auch die beiden Konstruktionsebenen K12 in eine einzige zusammen.
Diese verläuft durch die Flächennormale zu F und die optische Achse und
entspricht somit einem Hauptschnitt der Indikatrix (Fig. 7). Von den beiden
Schwingungsebenen Hx 2 liegt die eine in diesem Hauptschnitt, die zweite steht
normal dazu. Die erstere entspricht der ausserordentlichen Welle mit dem
Brechungsindex e, die zweite der ordentlichen mit dem Brechungsindex cd Für
die Vektoren der beiden Schwingungsrichtungen erhält man:

S„-[Sxffl] uii'l ®,«®x©J, (8)

l°\
wobei 91 I 0 j der Vektor der optischen Achse ist.

w
Im zweiten Ausdruck von (8) kann SM mit Hilfe des ersten eliminiert werden:

©e 2rXßfx8l], (8a)

wobei wiederum darauf zu achten ist, dass die Reihenfolge der Vektoren einem
Rechtssystem entspricht. Durch Anwendung des Entwicklungssatzes erhält
man:

($-81) $-($•$) 81 (3r-8l)gf-|3f I22l (9)
\ -

oder, wenn man zu den Einheitsvektoren übergeht,

©£ (&>-21o)&>-91o- (9a)

7. Beispiele

Skapolith (131) F, 99 18,4°, p 54,3° (Goldschmidt, Winkeltabellen,
319).

Gesucht : Auslöschungsschiefen auf F gegen Spuren der Spaltbarkeiten nach
den Prismen I. und II. Stellung.

Im speziellen Falle hängt es von der Schnittlage ab, ob die Spuren der
beiden gleichwertigen Flächenlagen (110) und (110) bzw. (100) und (010) beide
mit gleicher Deutlichkeit sichtbar sind oder nicht. Am deutlichsten tritt die
Spaltbarkeit hervor, wenn die Spaltfläche normal zur Schliffebene steht. Je
mehr sie von dieser Lage abweicht, um so undeutlicher wird sie, um bei sehr
flacher Lage entweder gänzlich zu verschwinden oder zum mindesten ihre
Eignung als Bezugsrichtung zu verlieren. Im folgenden wird auf diesen Umstand
keine Rücksicht genommen und die Auslöschungsschiefen berechnet, wie wenn
ihre experimentelle Nachprüfung in jedem Falle möglich wäre.
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a) Berechnung des Vektors der o. Schwingungsrichtung

/0,256333\
Aus <p 18,4° und p 54,3° erhält man gemäss (4) I 0,770567 1

\0,583541/
/ 0,770567\

Nach (8) ist [^0X^o] - 0,256333 \

/ 0,948876\ _10o,o
normiert: <3^ -0,315648 j 9 ~

gQ'0

b) Berechnung des Vektors der a.o. Schwingungsrichtung

Ebenfalls nach (8) ist

/ — 0,149581\ j — 0,184194\
_

©<r j -0,449657 normiert: <Beo -0,553708 j
9 ~ '

\ 0,659480/ \ 0,812084/
P

oder gemäss (9 a), ohne Kenntnis von (Bw:

/0\ /0\ /0,149581\ / — 0,14958l\
<3e= W0-(W0-g0)$o 0 1-0,583541-g0 0 - 0,449657 ]= -0,449657

\1 / \1/ \0,340520/ \ 0,659480/

/ — 0,184194\
und, normiert: 3eo I —0,553708 ] in Übereinstimmung mit oben.

\ 0,812084/

c) Auslöschungsschiefe in bezug auf die Spaltbarkeit nach dem Prisma
I. Stellung

(110) =Ej /0,707107\ (lT0) E2 / 0,707107\
<p 45° ®lo 0,707107 I 9=135° g2o -0,707107 ]

p =90° \0 p 90° \ 0 /
Für die a.o. Welle erhält man:

sine 0,687559 G0, cosct(110) ~ 0,651231, woraus o-(110) 49,4°.

Vo [®i03fo@J 0,447760, (©lo-&>) 0,726128 cos e, e 43,4°,

G0

V0 [©2o&)©J 0,894154 (®2o. &,) - 0,363618 cos e, e= 111,3°,

sine 0,931548 G0, cosct(1j0) ~ 0,959858, woraus o-(1j0) 16,3°.
(jTq
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Für die Auslöschung in bezug auf die ordentliche Welle erhält man in
analoger Weise aM 40,6° bzw. 73,7°.

Es ergibt sich somit, dass für die betrachtete Fläche allgemeiner Lage (131)
von Skapolith die Auslöschung in bezug auf die Spuren der beiden Flächen des
Prismas I. Stellung schief und nicht symmetrisch ist. Die in vielen elementaren
Anleitungen zum Gebrauch des Polarisationsmikroskopes enthaltene Aussage,
dass «einachsige Kristalle entweder gerade oder symmetrisch auslöschen»,
bedarf somit (wie dem Kenner der Materie natürlich schon, längst bekannt ist)
einer Ergänzung, dahingehend, dass Schnitte allgemeiner Lage (hkl) schief
und nicht symmetrisch auslöschen. Das Verhalten einachsiger Kristalle
hinsichtlich ihrer Auslöschung kann auch so formuliert werden, dass gerade oder
symmetrische Auslöschung nur für Schnittlagen bzw. Flächen auftritt, auf
welchen eine kristallographische SE normal steht oder für welche sich eine
solche einstellen würde, wenn ein Symmetriezentrum hinzugefügt wird.

d) Auslöschungsschiefe in bezug auf die Spaltbarkeit nach dem Prisma
II. Stellung

(100) E3 /1\ (010) E4 / o\
<p 90° @30 0 9> 0° @40= 1

p 90° \0 p 90° \ô./

Für die a.o. Welle erhält man:

V„ ®o©c„@80] 0,948876, (g3o-g0) 0,256333 cos e, e 75,2°,

ysine 0,966589 G0, cosa(100) ~ 0,981676, woraus (t(100) 11,0°,
G0

V0 [&, ®4.©J 0,315649, ((SvS0) 0,770567 cos e, e 39,6°,

sine 0,637359 G0, coso-(010) ^ 0,495245, woraus o-(010) 60,3°.
v*o

In bezug auf die ordentliche Welle erhält man analogerweise aœ 79,0°
bzw. 29,7°. Auch in bezug auf die Spaltbarkeit nach dem Prisma II. Stellung
ist somit die Auslöschung schief und nicht symmetrisch.

Zwischen den vier Auslöschungswinkeln in bezug aufzwei Bezugsrichtungen,
welche ihrerseits die Winkel ^ und </r2 einschliessen, ergeben sich, weil die
Winkelsumme in einem Viereck 360° beträgt, eine Reihe von Beziehungen,
welche, da sich ift leicht berechnen lässt, willkommene Kontrollmöglichkeiten
für berechnete oder gemessene Auslöschungswinkel bieten (Fig. 8). Sie gelten
natürlich in gleicher Weise für optisch-zweiachsige Kristalle wie für die hier
betrachteten optisch-einachsigen.



394 C. Burri

S,

Fig. 8. Winkelbeziehungen zwischen den Schwingungsrichtungen Slf2 einer Kristallfläche und den
Spuren zweier Spaltbarkeiten.

Wie aus Fig. 8 hervorgeht, ist z.B. Ox + ^i' >p1 und ct2 + a2 i//2, woraus
folgt, dass die Summe der vier Auslöschungswinkel >fi1 + tp2 180° sein muss.
Der spitze Winkel ^rl5 den die Spuren der beiden Spaltbarkeiten auf der
betrachteten Fläche F einschliessen, ergibt sich zu:

cos ifl1
[goX(SU-[goX(S2„]
|3foX@J-|3roX@J ' (10)

Erledigt man das auftretende skalare Produkt zweier Vektorprodukte nach
der sogenannten Identität von Lagrange, so erhält man für das behandelte
Beispiel von Skapolith (Auslöschung in bezug auf Prisma I):

cos

(So-So) (&>-©2o)
(go-GÊio) (iy(s2t,

1 -0,363618
0,726128 0

0,687559-0,931548
0,412233,

&>X@i0H$OX@20

woraus i= 65,7°.

Die w. o. angeführten Beziehungen sind erfüllt, denn es gilt z. B.

für die a.o. Welle ct(11o) + <7(xîo) 49,4° + 16,3° 65,7° ipi

für die o. Welle o'dxo) + °"(iïo) 40,6° +73,7° 114,3° 180° —^ usw.
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