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Schweiz, mineral, petrogr. Mitt. 55, 167—190, 1975

Berechnung der Goldschmidtschen (q>, p)-Werte
für beliebige Flächen und Zonen

aus dem kristallographischen Achsenverhältnis

Dem Andenken an Leonhard Weber (1883—1968) gewidmet

Von Conrad Burri*)

Mit 4 Figuren im Text

Zusammenfassung

Ausgehend von Leonhard Webers vektorieller Behandlung der geometrischen
Kristallographie werden einfache Formeln abgeleitet, welche die Berechnung der (y, />)-

Werte nach Goldschmidt, bei bekannten Indizes, direkt aus dem Achsenverhältnis
ermöglichen, und zwar sowohl für Kristallflächen wie für Kanten. Damit lässt sich der
komplizierte und heute kaum mehr gebräuchliche Goldschmidtsche Algorithmus
vermeiden.

Summary

Following Leonhard Weber's vector approach to geometrical crystallography, simple
formulas for the calculation of Goldschmidt 's (rp, p) values from the axial ratio are
developed for crystal faces, as well as for edges of known indices. Thus, Goldschmidt's
rather complicated and currently little used algorithm can be avoided.
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Â. Einleitung

Die durch V. Goldschmidt eingeführten Positionswinkel cp (Azimut) und p
(Zentraldistanz) sind Polarkoordinaten zur Definition der Lage von Kristallflächen.

Sie werden auch heute noch vielfach benützt, besonders beim Arbeiten
mit dem zweikreisigen Goniometer und in Verbindung mit den bekannten
Winkeltabellen dieses Autors (Goldschmidt 1897). Sie gestatten die Darstellung der
Formenmannigfaltigkeit einer Kristallart durch einfache und übersichtliche
Winkeltabellen, wobei immer die Möglichkeit besteht, beliebige, interessierende
Flächenwinkel auf einfache Weise aus den gegebenen (<p, p)-Werten nach dem
Cosinussatz zu berechnen. Ein weiterer Vorteil der GoLDSCHMiDTschen
Positionswinkel besteht darin, dass sie das Entwerfen von Stereogrammen sehr
einfach gestalten. Hiervon wird gelegentlich auch zur Darstellung optischer Ver-
hâltnissè Gebrauch gemacht, so zum Beispiel bei der Behandlung von
Problemen im Zusammenhang mit der optischen Orientierung der Plagioklase oder
anderer niedrigsymmetrischer Kristallarten.

Wenn sich die (<p, p)-Werte aus diesen Gründen auch heute noch einer weiten
Verbreitung erfreuen, so kann dies jedoch von der Gesamtheit der durch
Goldschmidt entwickelten Methoden der Kristallberechnung kaum behauptet
werden. Der Grund hierfür dürfte u. a. darin liegen, dass sie in engem
Zusammenhang mit der heute kaum mehr gebrauchten gnomonischen Projektion
konzipiert wurden (Goldschmidt 1887, 1897). Es dürfte jedenfalls feststehen, dass
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heute nur noch wenige Kristallographen mit dem GOLPSCHMiDTschen
Algorithmus in seinem vollen Umfange vertraut sind1).

Aus diesen Gründen ist es vielleicht von einigem Nutzen, wenn hier gezeigt
wird, wie sich die GoLDSCHMiDTschen (<p,p)-Werte auf einfache Weise direkt aus
dem kristallographischen Achsenverhältnis erhalten lassen, ohne dass eine
Einarbeitung in das GoLDSCHMiDTsche System der Berechnung notwendig wird,
und zwar sowohl für Flächen, wie für Zonen (Kanten), deren MiLLERsche, bzw.
BRAVAissche Indizes bekannt sind.

B. Methodik der Berechnung und Ableitung der grundlegenden Beziehungen

Das gestellte Problem liesse sich ohne weiteres sphärisch-trigonometrisch,
lösen, unter Befolgung der in den klassischen Anleitungen zur Kristallberechnung

behandelten Methoden. Der hierfür benötigte Rechenaufwand wäre allerdings

teilweise recht bedeutend. Es soll daher im folgenden gezeigt werden, wie
sich die Aufgabe auf sehr elegante und anschauliche Weise durch die Anwendung

elementarer Vektormethoden behandeln lässt. Vektormethoden wurden
zum ersten Male durch L. Weber (in Niggli, 1924, 107-120) in der phänomenologischen

Kristallographie zur Anwendung gebracht, nachdem sie schon früher
in der Kristallstrukturlehre Eingang gefunden hatten. Die hier gemachten
Ausführungen erfolgen denn auch in enger Anlehnung an die Ansätze dieses Autors,
wie sie auch durch P.Niggli in seinen «Kristallographischen und
strukturtheoretischen Grundbegriffen» (1928) benützt wurden. Der Autor hofft damit
auch dazu beizutragen, dass den Gedankengängen des von ihm als äusserst
anregenden Lehrer hochgeschätzten und in bester Erinnerung gehaltenen
Leonhard Weber (1883-1968), mehr als dies bis jetzt der Fall war, die ihnen
gebührende Beachtung geschenkt werde. Ein erneuter Hinweis darauf dürfte
auch deshalb angezeigt sein, weil sowohl die Originaldarstellung, wie auch das
erwähnte Buch von Niggli, seit langem vergriffen und antiquarisch nur sehr
schwer erhältlich sind, sowie auch, weil der Abschnitt über die vektorielle
Kristallberechnung in der dritten Auflage des Lehrbuches von Niggli (1941) nur

1) In diesem Zusammenhange ist vielleicht eine Bemerkung von P. Terpktra von
Interesse: «Victor Goldschmidt (1853-1933) may rightly be considered one of the great
crystallographers. Unfortunately he made use of a special terminology of his own which
has found little general acceptance except among some of his American pupils. By present-
day standards this terminology possesses no advantages in principle, although at the time
it drew attention to some hitherto neglected truths. It has the great practical disadvantage
that a modern investigator, when consulting the works of Goldschmidt, must first make
a extensive, though unrewarding, study of the peculiarities of Goldschmidt's terminology.»

Aus P. Terpstra u. L. W. Codd, Crystallometry (1961), 62-63. London, Longmans,

Green and Co., Ltd.
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noch in sehr reduziertem Umfange Aufnahme fand. Aus diesen Gründen wurden

denn auch hier einige der grundlegenden Ableitungen von Weber in
extenso übernommen. Im Unterschied zu seinen Ausführungen wurde jedoch
hinsichtlich der reziproken Yektorsysteme der heute allgemein üblichen Definition
und Symbolisierung Rechnung getragen. Auf die Endergebnisse bleibt dies
selbstverständlich ohne Einfluss.

Als Zentraldistanz p wird definitionsgemäss der Winkel zwischen der kri-
stallographischen c-Achse und der Normalen der betrachteten Kristallfläche
bezeichnet, während der Positionswinkel <p (Azimut) in der Zone der c-Achse

von (010) bzw. (1010) im trigonalen und hexagonalen System gezählt wird.
Eine gewisse Inkonsequenz in bezug auf die heute geltenden Konventionen
resultiert dabei daraus, dass <p bei Goldschmidt im Uhrzeigersinn gezählt wird,
während heute Winkel ganz allgemein im positiven, das heisst im Gegen-
unrzeigersimi gemessen werden. Angesichts der sehr zahlreichen in der Literatur,

nicht nur in den GoLDSCHMiDTschen Tabellenwerken, enthaltenen Daten,
erscheint es nicht als zweckmässig, hier eine Änderung zu treffen. Eine solche
würde nur Verwirrung stiften.

Ganz allgemein erhält man somit p als Winkel zwischen einer Zonenachse
und einer Elächennormale. In denjenigen Systemen, für welche die Basis normal
zur c-Achse steht, kann p auch als Elächenwinkel gegenüber der Basis berechnet
werden. Für diesen Fall erscheinen in der stereographischen Projektion die
durch die c-Achse verlaufenden Zonen als Kreisdurchmesser, so dass <p(hki),
bzw. <p(hMi) vereinfacht als Winkel (010)/(hk0), bzw. (I010)/(hki0) berechnet
werden können.

Was die (99', p') -Werte für die Zonenachsen (Kanten) anbelangt, so handelt es

sich für sie um die Berechnung des Winkels zwischen zwei Zonenachsen oder
zwischen Zonenachse und Flächennormalen.

Es handelt sich somit darum, vorerst allgemein gültige Ausdrücke zur
Lösung folgender Aufgaben abzuleiten:

1. Winkel zwischen zwei Zonenaehsen (Kanten);
2. Winkel zwischen zwei Flächennormalen;
3. Winkel zwischen Zonenachse und Flächennormalen.

Die allgemeinen Ausdrücke gelten für das trikline System. Aus ihnen lassen
sich durch Spezialisierung gemäss der jeweils vorhandenen Symmetrieverhältnisse

die Ausdrücke für die weiteren Kristallsysteme ableiten. Dies gilt vorerst
für die Systeme mit drei kristallographischen Achsen bzw. dreigliedrigen
Flächensymbolen (hkl) sowie dreigliedrigen Zonensymbolen \uvw~\. Die
Systeme, welche auf das vierachsige BRAVAissche Achsenkreuz bezogen werden
(hexagonales und trigonales bzw. rhomboedrisches System) und welche vier-
gliedrige Flächensymbole (hkil) bzw. Zonensymbole \uv<x>w~] benötigen, müssen
gesondert behandelt werden.
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I. Kristallsysteme mit dreigliedrigen Flächen- und Zonensymbolen

1. Allgemeines und Winkel zweier Zonen

Die Gesamtheit aller Kanten (Zonenachsen) eines Kristalls, durch einen
Punkt verlaufend gedacht, ergibt nach Weber (1924) das Zonenbündel 3 für
diesen. Wählt man willkürlich drei, nicht komplanare, dieser Kantenrichtungen
zu kristallographischen Achsen a, 6, c (wobei konventionell 6 1 gesetzt wird),
welche ihrerseits die Winkel a, ß, y einschliessen, und ordnet man ihnen die
Vektoren a, b, c zu, so ist die Vektorfigur des Zonenbündels, sofern das
Verhältnis w.v.w rational ist, gegeben durch:

3 ±ua±vï) ±wc. (1)

Den Absolutwert eines bestimmten Vektors |g| erhält man durch skalare
Multiplikation mit sich selbst. Da im hier vorerst betrachteten allgemeinen
(triklinen) Fall a, b, c kein orthogonales, sondern ein schiefwinkliges (affines)
System bilden, für welches die drei Basisvektoren von 90° verschiedene Winkel
einschliessen, und auf welchen mit verschiedenen Massstäben gemessen wird,
weist das skalare Produkt nicht die einfache, dreigliedrige Form der
Orthogonalsysteme auf.

Bildet man | j21 (u a + v 6 + w c)2 nach den Regeln der gewöhnlichen Algebra,
jedoch unter Berücksichtigung, dass für die skalare Multiplikation gilt, dass:

(aa) a2, (b c) 6 c cosa,
(bb) 62, (cü) caoosß,
(cc) =c2, (ab) =a6cosy,

so erhält man:

|j2| _ u2a2 + v2b2-\-w2c2 + 2uvabcosy + 2vvjbccosix + 2wucacosß. (2)

Den gesuchten Winkel zweier Zonen und g2 erhält man aus dem skalaren
Produkt:

cos (5,5,) Arn-, (3)
lailI92I

worin (gx j2) ux u2 a2 + v1 v2 62 + wx w2 c2 + (ux v2 + u2v1)ab cos y
+ {vx w2 + v2w1)bc cos a, + (wxu2 + w2ux)ca cosß (4)

und |§!! bzw. |j2| gemäss (2) zu bilden sind.

2. Winkel zweier Flächennormalen

Um von den Zonen zu den Flächen zu gelangen, geht man davon aus, dass
eine Fläche F durch einen doppelten Zonenverband bestimmt ist, dass somit
ihre Normale $ auf den beiden Zonenachsen fa und j2 normal steht, das heisst
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dass $ [^y. Aus

u1a + vxb + w1 c,

j2 «2a+vab+wac

erhält man durch vektorielle Multiplikation, unter Berücksichtigung, dass

hierfür
[a a] [b b] [c c] 0,

$ Iii h] %v2[a6] + 'Miw2[ic] + w1'M2[&a] + w1w2[bc] + t,1w2[ca] + M>1«;2[c£>].

Weil das vektorielle Produkt, im Gegensatz zum skalaren, nicht kommu-
tativ ist, sondern vielmehr gilt, dass:

[ab] -[ba], [bc] -[cb], [ca] -[ac]
folgt:

g (v1 w2 — wxv2) [b c] + (wxu2 — uxw2) [c a] + (uxv2 — vxu2) [ab]

oder in Determinantenform:

vx wx

v2 w2
[b c] + wx M]

U'o U,
[C0] + Ml Vx

u2 v2
[ab]. (5)

Vektorielle Berechnungen in affinen Systemen lassen sich oft entscheidend
vereinfachen, wenn vom vorliegenden Grundsystem zum sog. reziproken
System übergegangen wird. Setzt man hierfür definitionsgemäss:

a*
[be] |bc]

[abc] V ' b* [ca] c* [ab]
V ' (6)

wobei V [abc] das Volumen des von den Vektoren a, b, c aufgespannten
Spates bedeutet, dann sind a*, b*, C* drei Vektoren, welche auf den durch je
zwei Vektoren des ersten Systems aufgespannten Ebenen normal stehen.
Umgekehrt lässt sich auch zeigen, dass

a
[b*cH

b
[c* a*]

y* '
[a* b*]

y* ' (7)

das heisst dass die drei Vektoren a, b, c auch ihrerseits auf den durch je zwei der
Vektoren des Systems a*, b*, c* aufgespannten Ebenen normal stehen, wobei
V* das Volumen des von diesen aufgespannten Spates darstellt, sowie, dass

VV* — 1 ist. Man nennt die beiden Systeme a, b, c und a*, b*, C* reziprok
zueinander. Für die skalare Multiplikation ihrer Vektoren gilt folgendes Schema:

a* b* c*

a l 0 0

b 0 l 0

c 0 0 1

(8)
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und für die absoluten Werte von 0*, 6*, c*:

* bc • u* ca o * ab /n\fl* =ysma, b*=^-smß, c* =ySiny. (9)

Ersetzt man in (5) nach dem bekannten Schema der «Zonenrechnung» die
Determinanten durch die Flächenindizes (hkl) sowie die Vektorprodukte
gemäss (6) durch die reziproken Vektoren, so erhält man den einfachen Ausdruck

0f V (ha* + &b* +lc*) (10)

und, in Analogie zu (2) wird im reziproken System:

|g2| V2{h2a*2 + k2b*2 + l2 c*2

+ 2 (A& a*b* cosy*+ &£b*c*cosa* + ZAc*(X* cos/?*)}.

Kehrt man zum ursprünglichen System a, b, c zurück, so erhält man, unter
Berücksichtigung von (9), sowie der (im Anhang abgeleiteten) Beziehungen
zwischen den Winkeln a, ß, y, (Kantenwinkeln) und a*, ß*, y* (Pinakoidwinkeln)
des durch 0, b, C aufgespannten Spates:

cos ß cos y — cos a cosy cos a —cos ß
COS a* COSÖ* — : -,smßsmy smysma

« (n)cos a cos a—cosy
COSy* : 7;—-sm a sm ß

den allgemein gebräuchlichen, jedoch wesentlich komplizierteren Ausdruck:
] 0r21 b2 c2 sin2 a • h2 + c2 a2 sin2 ß-k2 + a2b2 sin2 yl2 + 2abc2 (cos a cos ß — cos y) h k

+ 2 a2bc (cos ß cos y — cos a)kl + 2ab2c (cos y cos a — cos ß)lh. (12)

Den Winkel zweier Flächen Fl und F2 erhält man aus dem skalaren Produkt

00B(»1'®')-m (13)

wobei ($i?f2) b2c2sm2oc-h1h2 + c2a28m2ß-k1k2 + a2b2sm2yl1l2

+ c2ab (cos a cos ß — cos y) (ht k2 + h2 kj)
+ a2bc (cos ß cos y — cos a) (&x l2 + k2 l-ß

+ b2ca (cos y cos a — cos ß) (Zx h2 +12 hj). (14)

10^1 und l^a! berechnen sich gemäss (12).

3. Winkel zwischen Zonenachse und Flächennormale

Der gesuchte Winkel S zwischen Zonenachse und Flächennormale ergibt sich
aus dem skalaren Produkt

cosS=Jm (15)
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durch Multiplikation von (10) und (1). Unter Berücksichtigung von (8) wird

(3a) F(Aa* + £b* + ?c*) (ua + v'b + wz.) V (hu + kv + lw)
(hu + kv + lw)und cosö=F- -. (16)

ISIIal

|5| und |j| berechnen sich gemäss (12) und (2). Das Volumen F des von a, 1), c

aufgespannten Spates ergibt sich im allgemeinen Fall zu

F œôc/l—cos2a —cos2(8 —cos2y + 2cosacos^cosy. (17)

Die Ableitung des Ausdruckes erfolgt im Anhang.

II. Kristallsysteme mit viergliedrigen Flächen- und Zonensymbolen

1. Allgemeines und Winkel zweier Zonen

Die Forderung, dass die Indizes gleichwertiger Flächen einer Form sich nur
in der Permutation ihrer Glieder unterscheiden sollen, führt notgedrungen dazu,
dass für das hexagonale und trigonale bzw. rhomboedrische System eine
Achsenkombination von entsprechender Symmetrie eingeführt werden muss. Diesem
Postulat genügen die durch Miller und Bravais eingeführten Achsensysteme,
von welchem sich das letztere fast ausschliesslich durchgesetzt hat. Es weist
bekanntlich drei gleichwertige, in einer Ebene liegende und sich unter Winkel
von 120° schneidende Achsen auf, normal zu welchen die ungleich wertige
c-Achse steht. Es ist somit:

ax a2 a3 1 c; a.x a2 œ3 120°, y 90°.

Konsequenterweise resultieren für diese Achsenwahl viergliedrige Flächensymbole

vom Typus (hkil). Da eine Fläche durch vier Punkte überbestimmt ist,
muss zwischen den vier Indizes eine Beziehung bestehen. Sie lautet h + Jc + i 0.

In analoger Weise lassen sich auch die Zonen durch viergliedrige Indizes
symbolisieren, wobei es, angesichts der Wichtigkeit des Themas, merkwürdig lange
gedauert hat, bis die den Flächenindizes konforme Formulierung gefunden
wurde. Diese gelang erst L. Weber (1922) mit der Einführung von viergliedrigen

Zonensymbolen vom Typus \uva>w\, für welche, in vollkommener Analogie

zu den dreigliedrigen, die Beziehunghu + kv + ico+lw 0 Gültigkeit hat.
Für den Umgang mit diesen viergliedrigen Symbolen gilt dabei folgender Satz

von Weber (1922):
«Um aus zwei viergliedrigen Flächen- (oder Zonen-) Symbolen das viergliedrige

Zonen- (oder Flächen-) Symbol abzuleiten, verwandelt man die
betreffenden Symbole zuerst in dreigliedrige, indem man den dritten Index vom ersten
und zweiten subtrahiert, im übrigen aber unterdrückt. Die reduzierten Symbole
werden dem gewöhnlichen Algorithmus unterworfen. Im Resultat ist als dritter
Index die negative Summe der beiden ersten einzusetzen. »
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Diese Symbolik lässt sich auch auf die vektorielle Darstellung anwenden.
Sie gestattet, die zu den bereits gegebenen Ausdrücken analogen Formeln für
das hexagonale und trigonale bzw. rhomboedrische System herzuleiten.

Nach der gegebenen Regel entspricht somit der Zone \uva>w~] der Vektor

l (u — tu) ax + (r — u>)a2 + wt. (18)

Dessen Absolutwert wird, in Analogie zu (3), durch skalare Multiplikation
mit sich selbst erhalten, wobei zu beachten ist, dass cos (a1; a2) cos 120°

— J. Es wird somit

| g2 [ U2 + V2 +CO2 — UV — V CO — CoU + C2W2

f (U2 + V2 + CO2) — ^ (u2 + V2 + a>2 + 2 UV + 2 V O) + 2 CO u) + c2 w2

f (U2 + V2 + tu2) — \{u + V + tu)2 + c2 w2.

Da jedoch nach Definition u + v + co 0 ist, folgt:
I â21 f (u2 + v2 + a>2) + c2 w2.

Für das skalare Produkt (j1j2) erhält man, in Analogie zu (4):

(foh) f {u1u2 + v1v2 + œ1a>2) + c2w1w2

und für den Winkel zweier Zonen gx und g2:

(âi h)

(19)

(20)

cos(j!j2)
foWfol

wobei (§!§2) und | 2| gemäss (20) und (19) zu berechnen sind. Nach Kürzung
folgt:

2c2
112 "f" V2 CO2 "1 ö~~ W-^

cos (èi h) —,— ^=f- (21)

i(< 2c2
+ v2 + tu2 H—g- wfj |w2 + v2 + tu2 4—g- m/2 i

2 c2
-Wo

2. Winkel zweier Flächennormalen

Der Normalvektor einer Fläche Qf, welche durch die zwei Zonen g, und g2

bestimmt ist, ergibt sich als Qr [g^ g2], in Analogie zu (5), als

3" — Diifo] ~ (Vi-wj wJ
{v2-œ2) W2\

[a2 c] + wi (ui~œi)
^2 (^2 ^2)

[c aj + (ui œi) wi)
(v2 — a>2) (u2 a>2)

[ai a2],

woraus sich, in Analogie zu (10), durch Einführung der Flächenindizes und
Einführung der reziproken Vektoren ergibt:

3r V(ha* + 'lcai + h*). (22)

Durch Quadrierung erhält man daraus als Absolutwert von g im reziproken
System:
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|g2| _ F2{(Aa* + & af + ?c*)2} F2{A2a*2 + A;a|!2 + Z2c*2 — 2 A&(af a^)}

und nach Übergang zum ursprünglichen System 0, 6, C, unter Berücksichtigung,
dass

c* ^2sin 120° l /3 und (dxC^) u1a2cos 120° — \a1a2 isG
V V Z Z

|£Ç2| h2a\c2 + k2a\c2 + \a\a\l2jrTikaxa2c2,

oder, weil ax a2 — 1 ist,

|g«| h2c2 + k2c2 + ll2 + hkc2 c2(h2 + k2 + hk) + ^l2

~[(h* + k2) + (h + k)2] + %l2,

bzw. weil (h + k)2 i2, unter Wiedereinführung des unterdrückten, dritten
Index:

|g*| =^(h2 + k2 + i2) + il2. (23)

Für das skalare Produkt zweier Flächennormalen ^ und ^2 erhält man:

(SfiSf») c2{h1h2+k1k2+}^±h^ + ii1i2,

oder, wenn, entsprechend h + k + i 0, wieder zum viergliedrigen Symbol
übergegangen wird:

/ Ji 1t I Tt \ _I_ /1* _1_ i \ Z* \
h(g, g,) s' (m,+h t. - +'*+*»'*)+H

- c, h h,+h h- <*.+*.>H+, ^2 '

(f?i Sa) Y (K K + KK + H H) + ihh- (24)

Für den Winkel zweier Flächennormalen ^ und %2 erhält man in Analogie
zu (13):

^(gxg.)-^^,. (25)

wobei sich (3ti3?2) gemäss (24) und (Qhj bzw. |§2| nach (23) berechnen. Gekürzt
ergibt sich:

h2 + k1k2 + i2 + ^ l2

cos^L^a) =-jj=~ _ — -• (26)

f(hî + kî + iî + £jî)(h2 + k22 + i2 +^lï)
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3. Winkel zwischen Zonenachse und Flächennormale

Der Winkel § zwischen Zonenachse 5 und Flächennormale berechnet sich,
in Analogie zu (15), aus dem skalaren Produkt:

—"-M- (2,)

Nach (18) und (22), sowie unter Berücksichtigung von (8) wird:

(3$) {(u — œ) ax + (v—u>) a2 + w c}{V (haf + ka£+lc*)}
=- V(uh + vJc + wi + wl)

und unter Benutzung von (19) und (23) erhält man explicite:

ç V (uh + vk + œi + wl)
cos o — _ —— —, (28)

|/| (u2 + v2 + œ2) + c2 {h2 + k2 + P)+^P

wobei V I /3.

C. Berechnung der (<jp, p)-Werte für die Flächen in den einzelnen Kristallsystemen

I. Systeme mit dreigliedrigen Flächensymbolen (hkl)

a Trilclines System: a + (b 1) # c; <x 4= j8 4= y 4= 90°

<x) Berechnung von p [001]/(hkl)
Nach (16) ist für u v 0 und w 1

1/
1

cos p V Tum
Nach (17) ist für 6 1

V ac /l—cos2 a —cos2/! —cos2 y+ 2 cos a cos/3 cosy.

Nach (12) ist für 6 1

I I _
-,/c2 sin2 a • h2 + c2 a2 sin2 ß-Jc2 + a2 sin2 y • I2 + 2 c2 a (cos a cos ß — cos y) h le

II f + 2a2c(cos/J cosy — cosa)£Z + 2ca (cosy cos a. —cosß)lh.

Nach (2) ist für u v 0 und w 1

5 /c2 c.
Somit wird:

_ a cl y 1 — cos2 a — cos2 ß — cos2 y + 2 cos a cos ß cos ycos'' 48] '
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COSp al
cos2 ß — cos2 y + 2 cos a cos ß cos y

c2 sin2 a • h2 + c2 a2 sin2ß •k2 + a2 sin2 y • I2 + 2 c2a (cos a cos ß — cos y) h k

+ 2 a2 c (cos ß cos y — cos a)kl+2ca (cos y cos a — cos ß) I h
(29a)

ß) Berechnung von 9
Man berechnet zuerst den Hilfswinkel e (Fig. 1). e (hkl)/(010) (jy1: jy2)

gemäss (13),

l(OIO)=F?

Fig. 1.

wobei h1 h, kx k, lx l,
h2 0, k2 1, l2 — 0.

($1^2) berechnet sich nach (14), |gj| und |^2| nach (12)

I _
Jc2sin2a-h2 + c2a2sin2ß-k2 + a2sin2yl2 + 2c2a(cosacosß — cosy)hk

11 f + 2a2c(cosßcosy — cosa) kl + 2ca (cosy cos a — cos ß)lh,
|0f2| ic2a2 sin2 ß casinß,

c2 a (cos a cos ß — cos y)h+ c2a2 sin2 ß-k + a2c (cos ß cos y — cos a) l
cose

j^1| casinß

Nach dem Cosinussatz ist jedoch cos e cosp cos 90° + sinp sin 90° cos 9 und
cos 9 cose/sinp

c2a cosa cos ß —cos y)h + c2 a2 sin2 ß-k + a2c (cos ß cos y — cosa) l
COS 9 ^ ^ c r >_

|oi|casinPsmP
oder, explicite:

COS 9
c (cos a cos ß — cos y)h + ca sin2 ß-k + a (cos ß cos y — cos a) l

' ß ' -ijc2&in2a-h2 + c2a2sin2ß-k2 + a2sin2yl2 + 2c2a(cosacosß — cosy)hk
r +2a2c(cosßcosy — cosa) kl+2ca (cosy cosa — cos/3) Ih

(29b)
Durch geeignete Umformung lässt sich p in (29 b) eliminieren. Setzt man,

zur Vereinfachung, vorübergehend den Radikanden im Nenner

/c2sin2 a-h2 + c2 a2 sin2 ß-k2 + c2 sin2 y l2 + 2c2a (cos acosß — cosy) hk\
\ + 2 a c2 (cos ß cos y — cos a)kl + 2ca (cos y cos a — cos ß) Ih f ~ '
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so erhält man aus (29a)

5— ,/, a2 l2 (1 — cos2a — cos2 ß — cos2y + 2 cosa cosß cosy)
smp yl —cos2p y 1 -—^— —

/T — a2l2( 1 — eos2 a — cos2 ß — cos2 y + 2 cos a cos ß cos y
T

und aus (29b)

_
c (cos a cosß — cosy)h + casin2ßJc + a(cosß cosy — cos a) l

COS (p —
sin ß sin p y T

bzw. explicite:

COS 95

c (cos a cos ß — cos y)h + ca sin2 ß-k + a (cos ß cos y — cos a) l
c2 sin2 a-h2 + c2a2 sin2 ß-k2 + a2 sin2 y • l2 + 2 c2 a (cos a cos ß — cos y)hk
+ 2a2c (cos ß cos y — cos oc)kl + 2ca (cos y cos a — cos ß)lh
— a2l2( 1 — cos2a —cos2j8 —cos2y + 2cosacosj8cosy) (29c)

Diese, für den allgemeinen Fall des triklinen Systems abgeleiteten Ausdrücke
spezialisieren sich für die höhersymmetrischen Systeme mit dreigliedrigen
Flächenindizes (hkl) wie folgt:

b) Monoklines System: a =t= (b 1) 4= c; a y 90° 4= ß

al i 1 — cos2ß
cosp —

/c2 h2 + c2a2 sin2 ß-k2 + a2l2 — 2ca cos ß-lh

_ l sin ß

/g)2 h2 + c2sm2ß-k2 + l2-2~cosß-lh

Isinß
cos p ——=— —— -, (30a)

cy4 +sin2ß-k2 + ~ ——cosß-lhfa* «c '

c a sin2 ß k
cos 99 —

sin ß sin p yc2 A2 + c2a2 sin2ß -k2 + a2l2 — 2ac cos ß-lh'

ksinß ,„AUCOS99
' (30b)

sinpl/-^ + sin2i3-fc2 + -^ ——cos/3-lh' r a2 ' c2 sc '

Auch hier lässt sich, durch Eliminierung von p, 99 allein durch das
Achsenverhältnis ausdrücken. Setzt man den Radikanden in (30b)

lb2 /2 2 \
(—s + sin2ß-A2 +^ cos ß-lh) Î1,
\u2 c2 a c J
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I sin S ,/, Z2sin2ß -./c2 T — Pein2 ß
so wird cosP -~j=^ und sinp jl c?T

Je sin ß Je sin ßund cos 95

t-T/r*ß iT iT~{csinßf
Je sin ß

COS93 - (30c)
y ^ + sin2ß -Je2 — — cosß-lh + ^r cos2 ßla! r ac r c2 r

Der Ausdruck folgt auch aus (29c) für œ y 90° gesetzt.

c) Orthorhombisches System: a 4= (b 1) 4= c; oc ß y 90°

cos p=—
^

(31a)
1M2 72

12

«Vsr^ + S

Da im orthorhombischen System (001) J_ [001] steht, ist <p(hki) <P(hko)- Das
Azimut irgend einer Fläche (hkl) kann daher nach (13) als (010)/(hk0) berechnet
werden, ohne dass p in die Rechnung eingeht.

Es ist: h1 h, Jex Je, 0 und h2 0, Je2 1, l2 0.

Nach (14) ist (3;1^2) ~c2a2Je und nach (12) |= /c2h2 + c2a2Je2 und
|$2| /c2«2 ca.

Somit wird:
c2a2Jc a Je Je

cos w -7=. (31b)
ca ic2Ji2 + c2a2Je2 }Ji2 + a2 Je2 JK ^2

F a2

d) Tetragonales System: a b 1 4= c; a ß y — 90°

cos p
^ —==L=. (32a)

/«•(*»+*•)+? „yh,+t,+<
C4

Auch hier ist ç>(kki) <P(hko) (010)/(hk0), so dass

C°S9 7=fi- (32b)
iJP + Je2

e Kubisches System: a b c l;<x=ß y 90°

l Je

cos p — (33a) cosm (33b)
ih2 + Je2 + P r ih2 + Je2



Berechnung der Goldschmidtschen (<p, p)-Werte 181

II. Systeme mit viergliedrigen Flächensymbolen (hkil)

a) Berechnung von p [0001]/(hkil)

Nach (28) wird für u v œ 0 und w 1

VI
COS p lallSI"

Nach (17) wird V - /3.

Nach (19) wird |$| fc2w2 c.

Nach (23) wird

g /|(Ä2 + fe2 + i2) + ^2= )/|(Ä2 + F-H2 + ~Z2).

Z/l
Somit cos/s — —, —• (34a)

cf~{hZ + k* + i* + ^l*) c|/^2 + p + i2 + _L/2j

(8) Berechnung von <p

Da im hexagonalen und trigonalen bzw. rhomboedrischen System ebenfalls
(0001) J_ [0001] steht, kann çs/hkïi) als Winkel (10TO)/(hkiO) berechnet werden,
das heisst als Winkel zweier Flächen und F2, gemäss (26).

Setzt man hx b, kt k, ix — i,lx 0, sowie h2 1, k2 0, i2 1, l2 0,

so hat man gemäss (24)

(3ri&)=2-(Ä + i)

und gemäss (23)

|0fi| /|(Ä2 + ^2 + i2) und |3fa|
r2

'4=c,
"lh + i)* (h + i)

COS93 ——== (34b)

c^^ + ]£2 + i2) /2 (A2 + k2 + i2)

D. Berechnung der (<//, ß')-Verte für Zonenachsen in den einzelnen Systemen

/• Systeme mit dreigliedrigen Zonensymbolen [uvw]

a) Triklines System: a 4= (b — 1) 4= c; oc ß #= y 4= 90°

Die Poldistanz p' [uvw~]j[001] berechnet sich als Winkel zweier Zonenachsen

nach (3), wobei % u, vx v, w und u2 v2 0, w2 — 1.



182 C. Burri

Nach (4) ist j2) wc2 + vccosx + ucacosß.

Nach (2) ist, für 6=1 gesetzt,

|ji| iu2a2 + v2 + w2c2 + 2uvacosy + 2vwccosa. + 2wucacosß

und |j2| /c2 c,

wc2 + vc cos oc + uca cos ß
cos p

cos p'

c iu2a2 + v2 + w2c2 + 2vwc cos oc + 2wuca cos ß + 2 uva cos y
wc + v cos oc + ua cos ß

iu2a2 + v2 + w2c2 + 2 (vwccos a + wucacosß + uvacosy)
(35a)

Zur Berechnung von 93' führt man (Fig. 2) den Hilfswinkel 6 \uvw\j(010)
ein.

(010)= F

Fig. 2.

Für u u, v v, w w sowie h 0, k 1 und 1 0 wird nach (16)

v
COS e V

alisr
wobei nach (2)

I j I y u2 a2 + v2 + w2 c2 + 2 (v w c cos a + wuca cos ß + uva cos y)

und nach (12)

|$| /c2a2sin2ß casin/3,

sowie nach (17)

V acy 1 — cos2a — cos2/? — cos2y + 2cosacos/3cosy,

somit wird

cose
vac il— cos2 a — cos2 ß — cos2 y+ 2 cos a cos ß cos y

c a sinß\%\

Nach dem Cosinussatz ist cose cosp'cos90° + sinp'sin90°cos<p' und
cos 99' cose/sinp'
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o,
y J L

sin p' sin ß f u2a2 + v

- cos2 a — cos2/? — cos2 y+ 2 cos a cos ß cos y^ sin p' sin ß f u2a2 + v2 + w2c2 + 2(vwc cos a + witcs cos ß + uva cos y
'

(35b)

Eine leichte Umformung ermöglicht auch hier das Azimut 93' durch das
Achsenverhältnis allein auszudrücken. Setzt man hierzu den Radikanden
von (35a)

u2a2 + v2 + w2c2 + 2{vwc cos a + wuca cos ß + uva cos y) T,

so erhält man aus (35a)

/(w c + v cos a + u cos ß)2 ,/T-(wc + vcostx + uccosß)2
1 _ y _ 1+

und aus (35b)

_ v -, /T— cos2 œ — cos2 ß — cos2 y + 2 cos a cos ß cos y^ sin/? f T — (wc + vcosa + uacosß)2 '

woraus durch Ausrechnen des Nenners des Radikanden nach weiterer Umformung

folgt:
v ,/ 1 —cos2 a — cos2 ß — cos2 y + 2 cos a cos ß cos y^ sin/S f it2 a2 sin2/? + v2 sin2a — 2uva (cos a cos/? — cosy)'

Für die höhersymmetrischen Systeme mit dreigliedrigen Zonensymbolen
[mdw] spezialisieren sich diese Ausdrücke wie folgt:

b) Monoklines System: a + (b 1) + c; cc y 90° =|= ß

wc + uacos/?
cos p (36a)

yw2 a2 + w2 + w2 c2 + 2 w u c a cos ß

cosç9'
V

(36b)
sin p' ym2 a2 + w2 + w2 c2 + 2 w u c a cos /?

Auch hier lässt sich das Azimut y' durch das Achsenverhältnis allein
ausdrücken, unter Eliminierung von p'. Setzt man den Radikanden in (36a)

m2 a2 + v2 + w2 c2 + 2 wu c a cos ß T,

so erhält man:

/{wc + ua cosß)2 -,/T — w2c2 — 2wcuacosß — u2a2cos2ß
1 _ y _ £

COS 93'
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und nach leichter Umformung:

cos <p' -===== (36c)
•o- +* |/^a2sin2/S+1

Der Ausdruck geht auch aus (35c), für a y 90° gesetzt, hervor,

c) Ortkorhomhisches System: a+(b l)=^c;x—ß=y 90°

WC /OfT \cosp (37 a)
in2 a2 + v2 + w2 c2

Da im orthorhombischen System (001) _j_ [001] steht, kann <piuvw] als

Winkel [uv 0]/[010] nach (3) berechnet werden.
Es ist % w, vx v, w 0 und u2 0, w2 1, w2 0.

Nach (2) wird hierfür:

lârl iu2a2 + v2, |ä2| 1 und (jxj2) v,

cos 9/ — (37 b)
iu2a2 + v2

Der Ausdruck geht auch aus (36b) für p' 90° und w 0 bzw. aus (36 c)

für ß 90° gesetzt hervor.

d) Tetragonales System: a b 1 3= c; oc ß — y 90°

wp' =,/ 2 2- (38a)
yu2 + vi + w2c2

Auch hier ist <p\uvw) durch <p(„„o) [010]/[-mw0] gegeben, so dass

COS93'
V

(38b)
iu2+v2

e) Kubisches System: a b c l;<x ß y 90°

W V
cosp' (39a) cos a>' (39b)

iu2 + v2 + w2 iu2 + V2

Die Ausdrücke (39a) und (39b) sind mit denjenigen für die Flächen des

kubischen Systems (33a) und (33 b) identisch, wenn man \uvw~\ (hkl) setzt.
Dies besagt, dass im kubischen System Flächen und Zonen mit numerisch
gleichlautenden Indizes normal zueinander stehen.
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II, Systeme mit viergliedrigen Zonensymbolen [uvco wj

Hexagonales und trigonales bzw. rhomboedrisches System:

dy d2 ®3 1 4s C

a.-y a.2 <x3 120°, y 90°.

Die Poldistanz p' berechnet sich als Winkel zweier Zonen, [u v w w]/[()001]
gemäss (21) (Fig. 3). Es ist ux u, vx v, œx co, wx w und u2= v2 cu2 0,
w2 1. Somit wird :

2 c2
-w cw

COS p —

^u2 + v2 + w>2 + ^-w2^^- u2 + v2 + w>2 +
2 c2

ur
(40a)

[uvwo]

(1010)
Dolo]

Fig. 3.

q>' wird von der auf (1010) normal stehenden Zonenachse [1010] aus gezählt und
kann somit, weil auch hier (0001) auf [0001] normal steht, nach (21) als Winkel
[uva> o]/[1010] berechnet werden. Es wird somit:

(u — œ) (u — to)
cos 93

iu2 + v2 + œ2 i1+1 i2 (u2 + v2 + co2)
(40b)

E. Zusammenstellung der Umrechnungsformeln

I, (<p9 p)- Werte der Flächen

a) Triklines System,

j 1 — cos2 a — cos2 ß — cos2 y+ 2 cos a cos ß cos y
cos /> a Z1 / c2 sin2 ct.-h2 + C2a2 sin2 ß • k2 + a2sin2y • l2 + 2 c2a (cos a cos ß — cos y)hlc

» +2a2c(cosßcosy — cos<x)kl + 2ac(cosycostx — cosß)lh
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COS y
c (cos a cos ß — cos y)h + ca sin2/3 • k + a (cos ß cos y — cos a) I

ß • Jc2sin2oc-h2 + c2a2sin2ß-k2 + a2sin2yl2 + 2c2a(cosxcosß — cosy)hk
sm/5smp|/ _^2a2c(cosßoosy — cos<x.)kl+2ca(cosycosoc — cosß)lh

(29b)
cos y

c (cos a cos /3 — cos y)fi + ca sin2 ß-k + a (cos ß cos y — cos a) I

jc2 sin2 a -h2 + c2a2 sin2ß-k2 + a2 sin2 y • I2 + 2 c2 a (cos a cosß — cos y)hk
sin/? 1/ 4-2 a2 c (cos/? cos y — cos a) kl + 2 ca (cos y cos a — cos /?) I h

' — a2l2(l — cos2a — cos2/? — cos2y + 2cosacos/?cosy) (29c)

b) Monoklines System

I sin ß

ci\—t + sin2/? -Jc2 + -- —— cos/? • Ih
a2 ~ c2 a c r

(30a)

&sin/?
cosy (30b)

sinp/-^r- + sin2/?-A:2 + -^ —^-cosß-lhr I a2 r c2 a c r
Je sin ß

cos y —. (30c)
V+ sin2 /? • k2—-cosß-lh + ~cos2ßla2 ~ ac r c2 r

c) Orthorhombisches System

I k
C0SP=^TÏ (31a) COS(P lrr=- (31b)

cll~ + k2 + l~ i\ + k2
1 a2 c2 ' a2

d) Tetragonales System

I 1c

cos p -~= (32a) cosy (32b)
cyÄ2+&2+g iw+k2

e) Hexagonales und trigonales bzw. rhomboedrisches System

cosp —
2

(34a) cosy
(^ + t)

^ (34b)
c"jh2 + k2 + i2 + ~l2 ]/2(h2 + k2 + i2)

f) Kubisches System

I k
coso —===, (33a) cosy —==. (33b)

/h2 + k2 + l2 ih2 + k2
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II. (tp, p)- Werte der Zonenachsen (Kanten)

a) Trildines System

wc + vcosx + uacosß
cos p —==- r —— —, (35 a)

yu2a2 + v2 + w2 c2 + 2 (vwccosx + wucacosß + uvacosy)

v ,/ 1 — cos2 a — cos2/3 — cos2 y + 2 cos a cos/3 cos y
^ sin p sin ß F u2a2 + v2 + w2c2 + 2 (vwc cos x + wuca cos ß + uva cos y) '

(35b)
v J 1 — cos2a —cos2/3 —cos2y + 2cosacos/3cosy

^ sin/3 F M2a2sin2/8 + w2sin2a — 2uva(cosxcosß — cosy)'

6^ Monoklines System

(35c)

wc + uacosß lnncosp —=. : (36a)
yu2 a2 + v2 + w2c2 + 2wuca cos ß

V
COS93' : - (36b)

sinp yu2a2 + v2 + w2c2 + 2wuca cosß

V
cos w' _ (36c)

iu2 a2 sin2 ß + v2

c) Orthorhombisches System

Ii) C 1)

cosp' — (37a) cosy/ (37b)
iu2 a2 + v2 + w2 c2 /w2a2 + w2

d) Tetragonales System

11) C V
cos p' — (38a) cos m' —, (38b)

iu2 + V2 + W2C2 iu2 + V2

eJ Hexagonales und trigonales bzw. rhomboedrisches System

2

cosp'
3

(40a) cos93' (40b)
P + vt+^ + ïfw2 i2(u2 + v2 + œ2)

f Kubisches System

W V
cosp'

1 —i> (39a) cos<p' ~T~~o—:>• (39b>
yu2 + v2 + w2 yu2 + v2
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F. Anhang

I. Berechnung der Pinakoidwinkel a*,ß*,y* aus den Kantenwinkeln a,ß,y

Bezeichnet man in einem schiefwinkligen Vektortripel a, 6, C die von a, 6

aufgespannte Ebene mit G (Fig. 4), die durch 6, c aufgespannte mit A und die

oC *[u A]

Xr =[r a]

Fig. 4.

durch c, a aufgespannte mit B, sowie die entsprechenden Normalvektoren mit
©, 91, 93, so ist:

© [ab], |©| aôsiny,
91 [be], |91| besiny,
93 [c a], 1931 c a sin ß.

Für cosa* cos (93,©) erhält man, wenn man das auftretende skalare
Produkt zweier Vektorprodukte gemäss der sog. Identität von Lagrange erledigt:

cosar
(93©) [ca] [ab]

(ac) (bc)
(aa) (ab)

accosß bccos a
a2 a 6 cos y

|93||©| |<ö||©| |SB||®I acsinßabsiny
a2bc cos ß cos y — a2bc cos a cos ß cos y — cos a

a2 b c sin ß sin y sin ß sin y

Die analogen Ausdrücke für cosß* und cosy* werden durch zyklische
Vertauschung erhalten:

cosa^
cos ß cos y — cos £

sin ß sin y
cosy cosa — cos ß

COSÖ* : -,sin y sm a

cos a cos ß — cos ycosy* sin a sin ß
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Das Vektortripel a, b, C kann auch als Dreikant aufgefasst werden. Dann ist
das Tripel 31, 33, © dessen Polardreikant. Da jedes Dreikant selbst polar zu
seinem Polardreikant ist, können die Kantenwinkel aus den Pinakoidwinkeln nach
den gleichen Formeln berechnet werden, wenn die Bezeichnungen entsprechend
vertauscht werden.

II. Berechnung des Volumens des von den drei Vektoren a, b, C aufgespannten Spates

Bei Annahme eines beliebigen, rechtwinkligen Koordinatensystems XYZ
ist das Volumen des von den drei Vektoren a, b, c aufgespannten Spates durch
das sog. Volumprodukt gegeben:

V [ab c]
ax dy as

bx by bz

Für die hier verfolgten Ziele erweist es sich jedoch als vorteilhaft, sich vom
System X Y Z unabhängig zu machen. Hierfür wird der obenstehende
Ausdruck, unter Anwendung des Multiplikationssatzes für Determinanten ins
Quadrat erhoben:

F2 [abc]2
(aa) (ab) (ac)
(ba) (bb) (bc)
(ca) (cb) (cc)

a2 ab cos y ac cos ß
a b cos y b2 bc cos a.

accosß bc cos a c2

Die so erhaltene Determinante (sog. Gramsche Determinante), unter
Ausklammerung des gemeinsamen Faktors a2b2c2 nach der ersten Zeile entwickelt:

F2 a2 62 c2 1 — cos2 a — cos2 y + cos a cos ß cos y + cos a cos ß cos y — cos2 ß).

Geordnet und nach F aufgelöst:

F ab ci 1 — cos2 a — cos2 ß — cos2 y + 2 cos a cos ß cos y.

Für die einzelnen Kristallsysteme spezialisiert sich der Ausdruck wie folgt:

Triklin: a=|=(5 l)=j=c;«=t=|3 + yt 90°.

F ac j/l — cos2a — cos2/? — cos2y + 2cosacos/3cosy.

Monoklin: a (b 1) =t= c; a y 90° =# ß.

V ac j/l —cos2ß ac sin ß.

Orthorhombisch: a 4= (b 1) 4= c; a ß y 90°.

V ac.

Tetragonal: a b l=)=c;a=/5 y 90°.

F c.
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Kubisch: a b c=l;<x=ß y 90°.

F 1.

Hexagonal und trigonal bzw. rhomboedrisch:

ai a2 a3 1 4= c; a2 a3 120°, y 90°.

v=cii~(lf=cil=f ^ °der:
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