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Berechnung der Goldschmidtschen (¢, p)-Werte
fiir beliebige Flichen und Zonen
aus dem kristallographischen Achsenverhiiltnis

Demn Andenken an Leonhard Weber (1883—1968) gewidmet

Von Conrad Burri*)

Mit 4 Figuren im Text

Zusammenfassung

Ausgehend von Leonhard Webers vektorieller Behandlung der geometrischen Kri-
stallographie werden einfache Formeln abgeleitet, welche die Berechnung der (¢, p)-
Werte nach Goldschmidt, bei bekannten Indizes, direkt aus dem Achsenverhiltnis er-
moglichen, und zwar sowohl fiir Kristallflichen wie fiir Kanten. Damit lisst sich der
komplizierte und heute kaum mehr gebriéuchliche Goldschmidtsche Algorithmus wver-
meiden.

Summary

Following Leonhard Weber’s vector approach to geometrical crystallography, sitnple
formulas for the calculation of Goldschmidt’s (¢, p) values from the axial ratio are de-
veloped for crystal faces, as well as for edges of known indices. Thus, Goldschiidi’s
rabher complicated and currently little used algorithm can be avoided.
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A. Einleitung

Die durch V. GoLpscumipT eingefiihrten Positionswinkel ¢ (Azimut) und p
(Zentraldistanz) sind Polarkoordinaten zur Definition der Lage von Kristall-
flichen. Sie werden auch heute noch vielfach beniitzt, besonders beim Arbeiten
mit dem zweikreisigen Goniometer und in Verbindung mit den bekannten Win-
keltabellen dieses Autors (GoLpscHMIDT 1897). Sie gestatten die Darstellung der
Formenmannigfaltigkeit einer Kristallart durch einfache und iibersichtliche
Winkeltabellen, wobei immer die Moglichkeit besteht, beliebige, interessierende
Flachenwinkel auf einfache Weise aus den gegebenen (@, p)-Werten nach dem
Cosinussatz zu berechnen. Ein weiterer Vorteil der GoLpscamiprschen Posi-
tionswinkel besteht darin, dass sie das Entwerfen von Stereogrammen sehr ein-
fach gestalten. Hiervon wird gelegentlich auch zur Darstellung optischer Ver-
haltnisse Gebrauch gemacht, so zum Beispiel bei der Behandlung von Pro-
blemen im Zusammenhang mit der optischen Orientierung der Plagioklase oder
anderer niedrigsymmetrischer Kristallarten.

Wenn sich die (@, p)-Werte aus diesen Griinden auch heute noch einer weiten
Verbreitung erfreuen, so kann dies jedoch von der Gesamtheit der durch
GorLpscHMIDT entwickelten Methoden der Kristallberechnung kaum behauptet
werden. Der Grund hierfiir diirfte u. a. darin liegen, dass sié in engem Zusam-
menhang mit der heute kaum mehr gebrauchten gnomonischen Projektion kon-
zipiert wurden (GoLpscHMIDT 1887, 1897). Es diirfte jedenfalls feststehen, dass
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heute nur noch wenige Kristallographen mit dem GorLpscamMipTschen Algo-
rithmus in seinem vollen Umfange vertraut sind?).

Aus diesen Griinden ist es vielleicht von einigem Nutzen, wenn hier gezeigt
wird, wie sich die GoLpscHMIDTschen (o, p)-Werte auf einfache Weise direkt aus
dem kristallographischen Achsenverhiltnis erhalten lassen, ohne dass eine Ein-
arbeitung in das GorLDsSCcHMIDTsche System der Berechnung notwendig wird,
und zwar sowohl fiir Flachen, wie fiir Zonen (Kanten), deren MiLLERsche, bzw.
Bravaissche Indizes bekannt sind.

B. Methodik der Berechnung und Ableitung der grundlegenden Beziehungen

Das gestellte Problem liesse sich ohne weiteres sphérisch-trigonometrisch
losen, unter Befolgung der in den klassischen Anleitungen zur Kristallberech-
nung behandelten Methoden. Der hierfiir benstigte Rechenaufwand wire aller-
dings teilweise recht bedeutend. Es soll daher im folgenden gezeigt werden, wie
sich die Aufgabe auf sehr elegante und anschauliche Weise durch die Anwen-
dung elementarer Vektormethoden behandeln lisst. Vektormethoden wurden
zum ersten Male durch L. WEBER (in NicaL1, 1924, 107-120) in der phénomeno-
logischen Kristallographie zur Anwendung gebracht, nachdem sie schon frither
in der Kristallstrukturlehre Eingang gefunden hatten. Die hier gemachten Aus-
fithrungen erfolgen denn auch in enger Anlehnung an die Anséitze dieses Autors,
wie sie auch durch P.NIGGLI in seinen «Kristallographischen und struktur-
theoretischen Grundbegriffen» (1928) beniitzt wurden. Der Autor hofft damit
auch dazu beizutragen, dass den Gedankengiingen des von ihm als dusserst
anregenden Lehrer hochgeschitzten und in bester Erinnerung gehaltenen
LeoxaarRD WEBER (1883-1968), mehr als dies bis jetzt der Fall war, die ihnen
gebiihrende Beachtung geschenkt werde. Ein erneuter Hinweis darauf dirfte
auch deshalb angezeigt sein, weil sowohl die Originaldarstellung, wie auch das
erwahnte Buch von NiceLr, seit langem vergriffen und antiquarisch nur sehr
schwer erhéltlich sind, sowie auch, weil der Abschnitt iiber die vektorielle Kri-
stallberechnung in der dritten Auflage des Lehrbuches von Nicerr (1941) nur

1) In diesem Zusammenhange ist vielleicht eine Bemerkung von P. TErRpPsTRA von.
Interesse: «VicTor GoLpScHMIDT (1853-1933) may rightly be considered one of the great
crystallographers. Unfortunately he made use of a special terminology of his own which
has found little general acceptance except among some of his American pupils. By present-
day standards this terminology possesses no advantages in principle, although at the time
it drew attention to some hitherto neglected truths. It has the great practical disadvantage
that a modern investigator, when consulting the works of GornscaMIDT, must first make
a extensive, though unrewarding, study of the peculiarities of GOLDSCHMIDT’s termino--
logy.» Aus P. TerrsTRA u. L. W. Copp, Crystallometry (1961), 62-63. London, Long-
mans, Green and Co., Ltd.
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noch in sehr reduziertem Umfange Aufnahme fand. Aus diesen Griinden wur-
den denn auch hier einige der grundlegenden Ableitungen von WEBER in ex-
tenso Ubernommen. Im Unterschied zu seinen Ausfiithrungen wurde jedoch hin-
sichtlich der reziproken Vektorsysteme der heute allgemein iiblichen Definition
und Symbolisierung Rechnung getragen. Auf die Endergebnisse bleibt dies
selbstverstindlich ohne Einfluss.

Als Zentraldistanz p wird definitionsgeméss der Winkel zwischen der kri-
stallographischen c-Achse und der Normalen der betrachteten Kristallfliiche
bezeichnet, wihrend der Positionswinkel ¢ (Azimut) in der Zone der c-Achse
von (010) bzw. (1010) im trigonalen und hexagonalen System gezihlt wird.
Eine gewisse Inkonsequenz in bezug auf die heute geltenden Konventionen re-
sultiert dabei daraus, dass ¢ bei GoLpscHMIDT im Uhrzeigersinn gezéhlt wird,
wihrend heute Winkel ganz allgemein im positiven, das heisst im Gegen-
uhrzeigersinn gemessen werden. Angesichts der schr zahlreichen in der Litera-
tur, nicht nur in den GoLpscHMIDTschen Tabellenwerken, enthaltenen Daten,
erscheint es nicht als zweckmiissig, hier eine Anderung zu treffen. Eine solche
wiirde nur Verwirrung stiften. '

Ganz allgemein erhilt man somit p als Winkel zwischen einer Zonenachse
und einer Flichennormale. In denjenigen Systemen, fiir welche die Basis normal
zur c-Achse steht, kann p auch als Flachenwinkel gegeniiber der Basis berechnet
werden. Fiir diesen Fall erscheinen in der stereographischen Projektion die
durch die c-Achse verlaufenden Zonen als Kreisdurchmesser, so dass gk,
bzw. @mkiy vereinfacht als Winkel (010)/(hk0), bzw. (1010)/(hki0) berechnet
werden konnen.

Was die (¢', p’)-Werte fiir die Zonenachsen (Kanten) anbelangt, so handelt es
sich fir sie um die Berechnung des Winkels zwischen zwei Zonenachsen oder
zwischen Zonenachse und Flichennormalen.

Es handelt sich somit darum, vorerst allgemein giiltige Ausdriicke zur
Losung folgender Aufgaben abzuleiten:

1. Winkel zwischen zwei Zonenachsen (Kanten);
2. Winkel zwischen zwei Flichennormalen;
3. Winkel zwischen Zonenachse und Fliachennormalen.

Die allgemeinen Ausdriicke gelten fiir das trikline System. Aus ihnen lassen
sich durch Spezialisierung geméss der jeweils vorhandenen Symmetrieverhilt-
nisse die Ausdriicke fiir die weiteren Kristallsysteme ableiten. Dies gilt vorerst
fir die Systeme mit drei kristallographischen Achsen bzw. dreigliedrigen
Flichensymbolen (hkl) sowie dreigliedrigen Zonensymbolen [uvw]. Die Sy-
steme, welche auf das vierachsige Bravarssche Achsenkreuz bezogen werden
(hexagonales und trigonales bzw. rhomboedrisches System) und welche vier-
gliedrige Flichensymbole (hkil) bzw. Zonensymbole [u v w w] benstigen, miissen
gesondert behandelt werden.
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I. Kristallsysteme mit dreigliedrigen Flichen- und Zonensymbolen

1. Allgemeines und Winkel zweier Zonen

Die Gesamtheit aller Kanten (Zonenachsen) eines Kristalls, durch einen
Punkt verlaufend gedacht, ergibt nach WEBER (1924) das Zonenbiindel 3 fiir
diesen. Wihlt man willkiirlich drei, nicht komplanare, dieser Kantenrichtungen
zu kristallographischen Achsen a, b, ¢ (wobei konventionell b = 1 gesetzt wird),
welche ihrerseits die Winkel «, 8, ¢ einschliessen, und ordnet man ihnen die
Vektoren a, b, ¢ zu, so ist die Vektorfigur des Zonenbiindels, sofern das Ver-
héltnis «: v: w rational ist, gegeben durch:

J=tuatvbtwe. (1)

Den Absolutwert eines bestimmten Vektors |3| erhdlt man durch skalare
Multiplikation mit sich selbst. Da im hier vorerst betrachteten allgemeinen
(triklinen) Fall a, b, ¢ kein orthogonales, sondern ein schiefwinkliges (affines)
System bilden, fiir welches die drei Basisvektoren von 90° verschiedene Winkel
einschliessen, und auf welchen mit verschiedenen Massstdben gemessen wird,
weist das skalare Produkt nicht die einfache, dreigliedrige Form der Ortho-
gonalsysteme auf.

Bildet man |32| = (v a+vD +wc)?nach den Regeln der gewshnlichen Algebra,
jedoch unter Beriicksichtigung, dass fiir die skalare Multiplikation gilt, dass:

(aa) = a?, (bc) =becosa,
(bb) = b2, (ca) =cacosf,
(cc) =c,, (ab) =abcosy,

so erhilt man:

132 = u2a?+ 0202+ w?ct+ 2uvabeosy+2vwbecosa+2wucacosf.  (2)

Den gesuchten Winkel zweier Zonen 3, und 3, erhilt man aus dem skalaren
Produkt:

(3152)
cos ( = 5 3
61%2) |6‘1H52\ ( )
worin (3132) = Uy U A%+ 0,0y 02 + Wy wy e+ (u vy +Usv ) abcosy
+ (v Wy 4 vy w1) b c cos o+ (W Uy + Wy uy) € @ cOS B (4)

und [3,| bzw. |3,] gemiss (2) zu bilden sind.

2. Winkel zweier Fliichennormalen

Um von den Zonen zu den Flichen zu gelangen, geht man davon aus, dass
eine Fliche F durch einen doppelten Zonenverband bestimmt ist, dass somit
ihre Normale & auf den beiden Zonenachsen 3, und 3, normal steht, das heisst
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dass ¥ = [3132)- Aus

51 e= u1a+vlb+WICy

62 = u2a+vzb +w2c
erhidlt man durch vektorielle Multiplikation, unter Berticksichtigung, dass
hierfiir

[aa} =[bb] = [cc] =0,
& = [3132] = wyva[ab] +uy wyac]+vyuy [bal+v, wy[bc]+2uy[cal+w, v [ch].
Weil das vektorielle Produkt, im Gegensatz zum skalaren, nicht kommu-
tativ ist, sondern vielmehr gilt, dass:
[ab] =—[ba],  [bc]=—[ch], [ca]l = ~[ac]
folgt:
F = (vywy —w; v,) [b el + (wy up —uy wy) [ca] + (2 v, — v, %,) [aD]

oder in Determinantenform:

Uy Wy
Uy Wy

[be]l+

Wy Uy
Wy Uy

[ab]. (5)

[cal+

% — Uy M
Uy Vg

Vektorielle Berechnungen in affinen Systemen lassen sich oft entscheidend
vereinfachen, wenn vom vorliegenden Grundsystem zum sog. reziproken

System tibergegangen wird. Setzt man hierfiir definitionsgeméss:

_ [be] _ [bc] . [cal _ [ab]
" [abe] T VO b =" =" (6)

a*

wobei ¥V =[abc] das Volumen des von den Vektoren a, b, ¢ aufgespannten
Spates bedeutet, dann sind a*, b*, ¢* drei Vektoren, welche auf den durch je
zwei Vektoren des ersten Systems aufgespannten Ebenen normal stehen. Um-
gekehrt lidsst sich auch zeigen, dass

das heisst dass die drei Vektoren q, b, ¢ auch ihrerseits auf den durch je zwei der
Vektoren des Systems a*, b*, ¢* aufgespannten Ebenen normal stehen, wobei
V* das Volumen des von diesen aufgespannten Spates darstellt, sowie, dass
VV* = 1 ist. Man nennt die beiden Systeme a, b, ¢ und a*, b*, ¢* reziprok zu-
einander. Fiir die skalare Multiplikation ihrer Vektoren gilt folgendes Schema:

|a* b* ¢*

(8)

oS oo
S =D
-0 O

1
0
0
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und fiir die absoluten Werte von a*, b*, c*:

Cc . ca . ab .
a* = —-sine, b* = —sginf, c* = —-siny. (9)

V 4 V

Ersetzt man in (5) nach dem bekannten Schema der «Zonenrechnung»y die
Determinanten durch die Flichenindizes (hkl) sowie die Vektorprodukte ge-
miss (6) durch die reziproken Vektoren, so erhilt man den einfachen Ausdruck

T =Vha*+kb*+1c*) (10)
und, in Analogie zu (2) wird im reziproken System:
|52| = V2{h2a*2 4 k2b*2 4 [2c*?2
+2(hka*b*cosy*+klb*c*cosa®*+1hAc*a*cosB*)}.
Kehrt man zum urspriinglichen System a, b, ¢ zuriick, so erhélt man, unter Be-
riicksichtigung von (9), sowie der (im Anhang abgeleiteten) Beziehungen zwi-

schen den Winkeln «, g, v, (Kantenwinkeln) und «%*, 8%, * (Pinakoidwinkeln)
des durch a, b, ¢ aufgespannten Spates:

CO8y oS o — o8 8
sin v sin o

cos Bcosy —cosa
sin Bsiny

cosa® = 5 cos B* =

(11)

cOoS o COS B — cosy
sin a sin 8

cosy* =

den allgemein gebrduchlichen, jedoch wesentlich komplizierteren Ausdruck:

|F?3| = b%c?sin?a-h2+c2a?sin?B- k2 +a?b?sin?y- 124+ 2abc? (cosxcos f—cosy) h k

+2a%be(cosBeosy—cosa)kl+2ab?c(cosycosa—cosB)lh. (12)
Den Winkel zweier Fliachen F} und F, erhilt man aus dem skalaren Produkt
(1 )
Ccos s = . 13
B89 =15 13 e
wobei (F1F2) = b2e?sin?a-hyhy+c*a?sin? 8-k, ky+a?b?siny -1, 1,

+c2ab(cosacosB—cosy)(hyky+hsky)
+a?bc(cosBeosy —cosa) (b, ls+ k1)
+b2ca(cosycosa—cosf) (I hy+lshy). (14)

|&1| und |&F,| berechnen sich gemiiss (12).

3. Winkel zwischen Zonenachse und Flichennermale

Der gesuchte Winkel 8 zwischen Zonenachse und Flichennormale ergibt sich
aus dem skalaren Produkt
(3 3)
(15)
15113

cosSd =
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durch Multiplikation von (10) und (1). Unter Beriicksichtigung von (8) wird

(F3) =V (ha*+kb*+ic*)(uwatvbt+we) =V (hutko+lw)
(hutko+lw)
RIET .

|| und || berechnen sich gemiss (12) und (2). Das Volumen V des von a, b, ¢
aufgespannten Spates ergibt sich im allgemeinen Fall zu

(16)

und cosd =V

V =abcyl—cos?a—cos?B—cos?y+2cosxcosBcosy. (17)

Die Ableitung des Ausdruckes erfolgt im Anhang.

II. Kristallsysteme mit viergliedrigen Flichen- und Zonensymbolen

1. Allgemeines und Winkel zweier Zonen

Die Forderung, dass die Indizes gleichwertiger Flichen einer Form sich nur
in der Permutation ihrer Glieder unterscheiden sollen, fiihrt notgedrungen dazu,
dass fiir das hexagonale und trigonale bzw. rhomboedrische System eine Achsen-
kombination von entsprechender Symmetrie eingefiihrt werden muss. Diesem
Postulat geniigen die durch MiLLER und BravaIs eingefiithrten Achsensysteme,
von welchem sich das letztere fast ausschliesslich durchgesetzt hat. s weist
bekanntlich drei gleichwertige, in einer Ebene liegende und sich unter Winkel
von 120° schneidende Achsen auf, normal zu welchen die ungleichwertige
c-Achse steht. Es ist somit:

ay =08y =a3=1F¢; o =0y =o0y3=120° y=090°

Konsequenterweise resultieren fiir diese Achsenwahl viergliedrige Flidchen-
symbole vom Typus (hkil). Da eine Fliche durch vier Punkte iiberbestimmt ist,
muss zwischen den vier Indizes eine Beziehung bestehen. Sie lautet A +k+¢ = 0.
In analoger Weise lassen sich auch die Zonen durch viergliedrige Indizes symbo-
lisieren, wobei es, angesichts der Wichtigkeit des Themas, merkwiirdig lange
gedauert hat, bis die den Fléchenindizes konforme Formulierung gefunden
wurde. Diese gelang erst L. WEBER (1922) mit der Einfiilhrung von vierglie-
drigen Zonensymbolen vom Typus [#v ww], fiir welche, in vollkommener Ana-
logie zu den dreigliedrigen, die Beziehung A u + kv +1w + 1w = 0 Giiltigkeit hat.
Fiir den Umgang mit diesen viergliedrigen Symbolen gilt dabei folgender Satz
von WEBER (1922):

«Um aus zwei viergliedrigen Flichen- (oder Zonen-) Symbolen das vierglie-
drige Zonen- (oder Flichen-) Symbol abzuleiten, verwandelt man die betref-
fenden Symbole zuerst in dreigliedrige, indem man den dritten Index vom ersten
und zweiten subtrahiert, im iibrigen aber unterdriickt. Die reduzierten Symbole
werden dem gewohnlichen Algorithmus unterworfen. Im Resultat ist als dritter
Index die negative Summe der beiden ersten einzusetzen.»
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Diese Symbolik ldsst sich auch auf die vektorielle Darstellung anwenden.
Sie gestattet, die zu den bereits gegebenen Ausdriicken analogen Formeln fiir
das hexagonale und trigonale bzw. rhomboedrische System herzuleiten.

Nach der gegebenen Regel entspricht somit der Zone [#vww] der Vektor

= (u—w)o+v—w)ag+wec. (18)

Dessen Absolutwert wird, in Analogie zu (3), durch skalare Multiplikation
mit sich selbst erhalten, wobei zu beachten ist, dass cos(a,,a,) = cos120°
= — 1. Es wird somit

132 = w2+ v+ w?—uv—vw—wu+ciw?
=3 (u+v*+ ) —F(u+ P+ w2+ 2uv+ 20w+ 2wu) +c2w?
3

fWP+vP+ o) - (utvtw)+cu
Da jedoch nach Definition w+v+w = 0 ist, folgt:
132] = § (u2 4+ v2 4+ w?) +c2ui. (19)
Fiir das skalare Produkt (3;3,) erhilt man, in Analogie zu (4):
(3132) = (U1 uy+ 0,05+ wy ) + Py w, (20)

und fir den Winkel zweier Zonen 3, und 3,:

o (3132)
costonde) = )

wobei (3,3,) und |31, 2] gemiiss (20) und (19) zu berechnen sind. Nach Kiirzung
folgt:

202
u1u2+v1’v2+w1wz+%wlw2
oS (31 32) = ‘ = (21)

2 2 2, 2¢% N[, 2. .2 g 2% o

2. Winkel zweier Fliichennormalen

Der Normalvektor einer Fliche §§, welche durch die zwei Zonen 3; und 3,
bestimmt ist, ergibt sich als § = [3;3.], in Analogie zu (5), als

wy (uy—wy)

(v1— wy) wy (g —wq) (v —wy)
2y Wy (Uy — wy) vy —

(Vs — wy) (V3 — wy) Uy~ wy)

woraus sich, in Analogie zu (10), durch Einfithrung der Flichenindizes und Ein-
fithrung der reziproken Vektoren ergibt:

F=VhaF+kaF+ic*). (22)

Durch Quadrierung erhilt man daraus als Absolutwert von % im reziproken
System:

[ca;]+ I [a; az],

T = [3132] = [agc] -+
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|52 = VE{(haf +kaF+1c*)?2 = V2{h2af2+kaF2+12c¥2 - 2Rk (af af)}
und nach Ubergang zum urspriinglichen System a, b, ¢, unter Beriicksichtigung,

dass

) 1 : 1 .
et = 1% 1900 = TP - Y3 und (a;a,) = a,a,cos120° = —5 %1% ist,

14 V 2

2| = hrade? + k2a2 e+ Fadad P+ hha asc?,

oder, weil a, = a, =1 ist,

%2 = R+ A2+ 3Rt hkc? = o2 (B2 -+ K2+ B ) + 3 12

2
= S0+ B0+ (h+ B2 +4 2,

bzw. weil (A+£)? =42, unter Wiedereinfiihrung des unterdriickten, driften

Index:

2
32 = (B k%) + 1 2. (23)

Fiir das skalare Produkt zweier Flichennormalen ¥, und ¥, erhdlt man:

hikoy+hok
(F:F0) = 2 [t by #2200 g,

oder, wenn, entsprechend 4 + & +¢ = 0, wieder zum viergliedrigen Symbol Gber-
gegangen wird:

hy (o +ho) 4+ (ko +1,) K
(F1F2) =02(h1h2+k1k2_ 1(t2 2)2( 2+ 4s) 1)+%l1l2
:cz(h1h2+k1k2—-(k1+k1)7’2-;h1k2+k1k2)+gl1l2,
c? ..
(F1a) = E(hlh2+k1k2+?’1 o)+ 24, 1,. (24)

Fiir den Winkel zweier Flachennormalen &, und $, erhdlt man in Analogie
zu (13):

o5~ B

wobei sich (¥, §») geméss (24) und |F,| bzw. |§,| nach (23) berechnen. Gekiirzt
ergibt sich:
Sl

2c?

Byhg+ ey kg +i,iy+ :
(26)

cos (1, F2) =

V(h%+k%+i?+2iczl%)(h§+k§+ig+%lg).
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3. Winkel zwischen Zonenachse und Flichennormale

Der Winkel 6 zwischen Zonenachse 3 und Flichennormale ¥ berechnet sich,
in Analogie zu (15), aus dem skalaren Produkt:

(33)
3151 (27)

Nach (18) und (22), sowie unter Beriicksichtigung von (8) wird:

GF) ={(u—w)a+v-—w)a+wcH{V(haf +kaF+1c*)}
=V@wht+tvk+witwl)

cosd =

und unter Benutzung von (19) und (23) erhélt man explicite:
Viuh+vk+wi+wl)

§ u2+'U2+w2 +02w2 0_2 h2+k2+i2 +§12
2 2 4

cosd = 3 (28)

wobei V = §V§

C. Berechnung der (@, 0)-Werte fiir die Flichen in den einzelnen Kristallsystemen

I. Systeme mit dreigliedrigen Flichensymbeolen (hkl)

a) Triklines System: a £+ (b=1) +¢; a = B %y + 90°

o) Berechnung von p = [001]/(hkl)
Nach (16) ist fiiru =v=0und w =1
l

Cosp = VW.

Nach (17) ist fiir 6 = 1

V =acV1—cos?«—cos2f—cos?y+2cosacosfcosy.

Nach (12) ist fiir b = 1

1% = ]/czsin%c-lﬁ+02a2sin2}8-k2+a2sin2y-lz+2cza(COSacosB—co‘sy)hk
I +2a2c(cosBoosy—cosa)kl+2ca(cosycosa—cosB)lh.

Nach (2)istfiru =v=0und w =1

3= Ve =c.

Somit wird:

acl V1 —cos?a—cos?f —cos?y+ 2 cosacos B cosy

o[&| ’

cosp =



178 C. Burri

c?sin?«-ht+c2a?sin?B - k2 +a?sin?y -2+ 2c%a (cosacosf—cosy) h k

1 —cos?a—cos?B —cos?y+ 2cosacosfcosy
cosp = al
+2a%c(cosBecosy—cosx)kl+2ca(cosycosa—cosB)lh (202)

B) Berechnung von ¢

Man berechnet zuerst den Hilfswinkel € (Fig. 1). € = (hkl)/(010) = (¥4, F2)s
gemiss (13),

Fig. 1.

wobei hy=~F, Ei=Fk, L =1,
By =1, by =1, I, = 0.

(&1 Fs) berechnet sich nach (14), || und |F,| nach (12)

1%, | = ]/C2Sin2oc'h2+Czazsinzﬁ-kz—i—azsina‘y'lz—i—2020,(COSocCOS,B—COS‘y)hk
UV +2a%c(cosfeosy—cosa)kl+2ca(cosycosa—cosfB)lE,

X, = Ve2a2sin2B = casing,

c?a(cosocosf —cosy)h+c?a?sin?B-k 4+ a?c (cosBcosy —cos«)!

[Flcasing

Nach dem Cosinussatz ist jedoch cos e = cos P cos 90° +sin p sin 90° cos ¢ und
cosS@ = COs €/sinp

COS e =

2g (cosacos B —cosy) b+ c2a®sin?fB-k+a?c (cosBcosy —cosa)l
|F1lcasinBsinp

cosp =

3

oder, explicite:

coSqp =
c(cosacosB—cosy)h+casin2fB-k+a(cosBcosy—cosa)l

sin B sin }/02811120& h®+c?a?sin?B k2 +a?sin?y- l2+262a(COSaCOSB——OOS’}/)hk
P +2a?c(cosBcosy—cosa)kl+2ca(cosycosa—cosB)lh (29b)

Durch geeignete Umformung lédsst sich p in (29b) eliminieren. Setzt man,
zur Vereinfachung, voritbergehend den Radikanden im Nenner

(czsinza'hz+c2a2sinzﬁ-k2+czsin2y-l2+202a(cosOccosﬁ—cosy)hk _p
+2ac?(cosBcosy—cosa)kl+2ca(cosycosa—cosB)lh -
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so erhdlt man aus (29a)

i = I e l/l_azlg(1~coszoc-cos2/3~;os2y+2cos«xcosﬁcosy)
]/T—aﬁlz(l—oos2a—ooszﬁ—cos2y+2003acosﬁcos~y)
T

und aus (29b)

¢ (cosxcosf—cosy)h+casin®f-k+a(cosBcosy—cosa)l
sinBsinp VT

cosp =

2

bzw. explicite:
cos @ =
c{cosaxcosB—cosy)h+casin®B-k+a(cosBcosy—cosa)l
/c2sin2oc-hz—!—62a2sin2ﬁ-k2+azsin2'y-l2+202a(OOSacosB—cosy)kk
Sinﬁl +2a%c(cosfeosy—cosa)kl+2ca(cosycosa—cosB)lh
' —a212 (1 —cos®a—cos? B — cos?y + 2 cos o cos B cos y) (29¢)

Diese, fiir den allgemeinen Fall des triklinen Systems abgeleiteten Ausdriicke
spezialisieren sich fiir die hohersymmetrischen Systeme mit dreigliedrigen
Flachenindizes (hkl) wie folgt:

b) Monoklines System: a &= (b=1) £ ¢; a =y = 90° £ B
alyl—cos?f

COS = ==
P Ve2h? + c2a’sin2f.-k* 4+ a2l2—2cacosB-1h
_ Isinf3
]/(g)zhz—f—c‘ﬂ’sinzﬁ-kz—klz—2»gcosﬁ-lh
cosp = {5 (30a)
ot o s BB 2 ’
¢)-s+sin B-k +?—Rcos;6’-lh
cos @ — casin?f-k
v Sinﬁsinp]/czh2+czazsin26-k2+a,2lz—ZaocosB-lh’
CoOs @ = kpin (30b)

: B o e B2 )
sinpy-z4sin?B-k2+ -5 — ——cosf-lh

Auch hier ldasst sich, durch Eliminierung von p, ¢ allein durch das Achsen-
verhdltnis ausdriicken. Setzt man den Radikanden in (30b)

h? iz 2
iM2RQ. ke — & e
(a2+sm B-k +3 aceos[o’ lh) T,
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. __lsinf b ]/ PPsin?B /2T —[*sinB
so wird cosp = VT und sinp= {1— Y oYL
und COs P = —=s k;mBzﬂ ksin B
(o4 — (481N
V—T VT ]/T ( s1n,8)
L
COS¢p = = Zlnﬁ 7 . (300)
V2 1 sin®B- 2 — = cos B-Uh +-4 cos? B
Der Ausdruck folgt auch aus (29¢) fir « =y = 90° gesetzt.
¢) Orthorhombisches System: a £ (b=1) f¢c;a =B =y = 90°
cosp == h__m_l (31a)
T o
Gl/aﬁ“"”zﬁz

Da im orthorhombischen System (001) | [001] steht, ist @mk1) = @(nko). Das
Azimut irgend einer Fliche (hkl) kann daher nach (13) als (010) /(hk0) berechnet
werden, ohne dass p in die Rechnung eingeht.

Nach (14) ist (F,Fs) = c*a?k und nach (12) [§F,| = Ve2h2+c?a?k? und

IFe] = Ve2a? =ca.
Somit wird:

c2ak ak k
cosSp = _— = = — . (31Db)
cayeh®+calk? Vh2+a? k2 1@3+k2
a2

d) Tetragonales System: a =b=1+c¢c; a =B =1y = 90°

cosp = Z i #_l_,__ (32a)

VOB ey ey D

Auch hier ist @uk)) = pmro) = (010)/(hk0), so dass

k
COSQp = ——, 32b
T Rtk )
e) Kubisches System: a =b=c=1; a =B =y = 90°
{ k
CO8p = m, (333.) Cosp = l/m (33b)
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II. Systeme mit viergliedrigen Flichensymbolen (hkil)

«) Berechnung von p = [0001]/(hkil)

Nach (28) wird fir u =v=w=0 und w=1

PTRRITST
Nach (17) wird 14 =§V§.
Nach (19) wird 3] = Ye2w? = c.

Nach (23) wird

e 62 2 2 y 2 ?2_ V_C_Z(Z 2 2 __:_3__2
%_]/—z—(h pRri i r e PO (kb +2621).

FEL W3
Somit cosp = = ' (34a)
R (e

B) Berechnung von ¢

Da im hexagonalen und trigonalen bzw. rhomboedrischen System ebenfalls
(0001) | [0001] steht, kann @iy als Winkel (1010)/(hki0) berechnet werden,
das heisst als Winkel zweier Flichen £ und F,, geméss (26).

Setzt man hy =4, ky =k, ¢, =1, 1, =0, sowie by =1, by = 0,3, =1, 1, = 0,
so hat man gemdiss (24)

(F1F0 = S (i)

und geméiss (23)

c? . 2
|Fal = ]/3 (B2 +E2+14%) und |, = 2§ —c,

c? ;
Fh+) )
c ]/—GzE Brregiy V2R

CoS @ = (34D)

D. Berechnung der (¢’, 0')-Werte fiir Zonenachsen in den einzelnen Systemen

I. Systeme mit dreigliedrigen Zonensymbolen [uvw]

a) Triklines System: a + (b =1) +c¢; a £ B £y + 90°

Die Poldistanz p’ = [ vw]/[001] berechnet sich als Winkel zweier Zonen-
achsen nach (3), wobei u; = u, v, = v, w; =wund uy = v, = 0, w, = 1.
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Nach (4) ist (3132) = weP+vccosa+ucacosf.

Nach (2) ist, fur b = 1 gesetzt,

31| = Vu?a?+v2+w?c?+2uvacosy+2vwecosa+2wucacosf
und |3 = Ve2 =c,

. wel+vecosa+ucacosp
cosp’ =

¢ VuZa+ i+ wict+2vwecoso-+2wucacosB+2uvacosy

cosp’ = wc+vceosa+uacosf . (35a)

Yula?+v2 +wlc?+2 (vwecosx+wucacos B+ uvacosy)

Zur Berechnung von ¢’ fithrt man (Fig. 2) den Hilfswinkel € = [uvw]/(010)
ein.

Fig. 2.

Firu=u,v=v, w=wsowie h =0, £k =1 und ! = 0 wird nach (16)

COS e =

ani

wobei nach (2)

3] = Yu?a?+ vt +w?ct+2 (vwecosa+wucacos B+uvacosy)
und nach (12)

3] = Ye2a2sin?f = casinf,

sowie nach (17)

V =acVl—cos®a—cos?B—cos®y -+ 2cosacosBcosy,
Y Y

somit wird

vac {1 —cos?o—cos2f —cos?y + 2 cos x cos B cosy

cose = casin 3]

Nach dem Cosinussatz ist cose = cosp’ cos90° +sinp’sin90°cose’ und
cosg’ = cosefsinp’



[
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]/ 1 —cos?a —cos?2f—cos?y + 2 cos xcosBcosy
sinp’ sin B F u?a?+v?*+w?c?+ 2 (vwecosx+wucacos Bruvacosy)
(35Db)

cos¢’ =

Eine leichte Umformung ermdglicht auch hier das Azimut ¢’ durch das
Achsenverhiltnis allein auszudriicken. Setzt man hierzu den Radikanden
von (35a)

wral+ v+ wicd+2(vwecosat+wucacosftruvacosy) =T,

so erhilt man aus (35a)

., V (we+wveos o+ ucos B)? T—(we+vcosa+uccosf)?
Sinp = 1— =
T T
und aus (35b)

H

080’ = ]/ 008205—0082[3— cos?y + 2 cos o cos 8 cos y
v smB —(wc+veosa+uacospf)?

woraus durch Ausrechnen des Nenners des Radikanden nach weiterer Umfor-
mung folgt:

v 1 —cos?a—cos?B—cos?y+ 2 cosacosfBcosy

cosg’ = — . - .
¥ sinf I u?a®sin? B+ v?sin®a — 24 va (cos x cos B — cosy)

(35¢)

Fir die hohersymmetrischen Systeme mit dreigliedrigen Zonensymbolen
[# v w] spezialisieren sich diese Ausdriicke wie folgt:

b) Monoklines System:a ¢ (b=1) +¢c; 0 =y =90° + 8

we+uacosf
2
Yu2a? + 92 +w?c? + 2wuca cos B

cosp’ = (36a)

cosgp’ = — v . (36D)
sinp’ Yu2a?+ v +w?c® +2wucacosf

Auch hier lasst sich das Azimut ¢’ durch das Achsenverhiltnis allein aus-
driicken, unter Eliminierung von p’. Setzt man den Radikanden in (36a)

uta?+v?+wic?+2wucacosB =171,

g0 erhalt man:

. (we+ua cos B)? T~wc?*~2wcuacosB—u?a?cos?f
smp = | 1— T = 7 ,
v
T—w?c?—2wcecuacosB—u?a? cos?
A

cosp’ =
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und nach leichter Umformung:

1
COS(p' = - = (360)

Yu? a?sin2 B + v? ]/_@g a?sin? B+ 1
v

Der Ausdruck geht auch aus (35¢), fiir « = y = 90° gesetzt, hervor.

¢) Orthorhombisches System: a + (b=1) +¢; a =B =y = 90°

we
}/u2a2+1)2+w202

cosp’ = (37a)

Da im orthorhombischen System (001) | [001] steht, kann ¢p,,,) als
Winkel [« »0]/[010] nach (3) berechnet werden.

Esistu, =%, v, =v,w=0und u, =0, wy, =1, wy = 0.

Nach (2) wird hierfiir:

'31' = YuPa® +¢2, |32 =1 und (313) = v,
(37hb)

Der Ausdruck geht auch aus (36b) fiir p’ = 90° und w = 0 bzw. aus (36¢)
fiir 8 = 90° gesetzt hervor.

d ) Tetragonales System: a =b=1+c; a =8 =y = 90°

wce

cosp’ = ; 38a)

P T Vet rure (

Auch hier ist ¢, ,.,) durch ¢, ,q, = [010]/[xv 0] gegeben, so dass
o :
cosp’ = ———. (38b)
P Yurte
e) Kubisches System:a =b=c=1;a =8 =y = 90°

cosp’ = . — (39a) cosp’ = v (39b)

Vaud + 0%+ w? Vut+ o2

Die Ausdriicke (39a) und (39b) sind mit denjenigen fiir die Flichen des
kubischen Systems (33a) und (33Db) identisch, wenn man [uvw] = (hkl) setzt.
Dies besagt, dass im kubischen System Flichen und Zonen mit numerisch
gleichlautenden Indizes normal zueinander stehen.
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II. Systermne mit viergliedrigen Zonensymbolen [uvoww]

Hexagonales und trigonales bzw. rhomboedrisches System:
0y =ay=a3=13%c¢;
al = a2 = a3 - 12005 'y _— 900-

Die Poldistanz p’ berechnet sich als Winkel zweier Zonen, [« v ww]/[0001]
gemiss (21) (Fig. 3). Esistu; = %, v, = v, 0; = w,w; =wund 4, = v, = w, = 0,

w, = 1. Somit wird:
2 cw]/g
3 3
2

2 9 02 = ‘ 9
]/u2+v2+w2+2§nw2]/%c— ]/u2+vz+w2+Tcw2

cosp’ = (40a)

(1010) - Fig. 3.
[1010] =%,

¢’ wird von der auf (1010) normal stehenden Zonenachse [1010] aus gezihlt und
kann somit, weil auch hier (0001) auf [0001] normal steht, nach (21) als Winkel
[4v @ 0]/[1010] berechnet werden. Es wird somit:

(=) __ __ (@-w)
Vu2+02+ w2 Y1+ 1 1/2(u2+v2+w2).

cosg’ = (40Db)

E. Zusammenstellung der Umrechnungsformeln

L. (¢,p)-Werte der Flichen

a) Triklines System

c®sin® - h2 +c2a?sin?B- k2 +a®siny 12+ 2¢2a (cosacos B—cosy) h k

1 —cos?e—cos?f —cos?y + 2 cosxcos S cosy
cosp =al
+2a%c(cosBcosy—cosa)kl+2ac(cosycosa—cosf)lh (29a)
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cos @ =
c(cosacosB—cosy)h+casin?B-k+a(cosBeosy—cosa)l
; : ]/02 sinZo-h2+c2a?sin®B-k2+alsin?y 124 2c2a(cosxcosfB—cosy)h k
sin8sinp 5
+2a2c(cosBeosy—cosa)kl+2ca(cosycosa—cosfB)lh (29D)
cosp =

c(cosxcosB—cosy)h+casin?B-k+a(cosBcosy— cosa)l
I/czsinzoc-hz+c‘3azsin2/9-k2+azsin2y-l2—I—202a(cosacosﬁ—008y)hk
sin

+2a%c(cosBcosy—cosa)kl+2ca(cosycosa—cosB)lh
—a?l?(1 —cos? « — cos2 B —cos?y + 2 cos « cos B cos y) (29¢)

b) Monoklines System

7si
QOB = —p e smlﬁ; 5 : (30a)
c}/a5+sm2}3~k2+§—a—ceosﬁ-lh
cos g = e el , (30b)
LAY Ta 2
s1np]/a+31n2[3-lc2+gé—a—gcosﬁ-lh
cosp = ksin f (30¢)

R aog e 2 b eos2g
oz Tein?B-k2——cosB-lh+-; cos?B

¢) Orthorhombisches System

[ k
Cosp = ]/hz—l—c2—l—z-’ (313’) Cosp = hT; (31 b)
C d—2+ ; +E GL_2+
d ) Tetragonales System
cos ! (32a) cos k (32b)
p = s P = =y
el e
e) Hexagonales und trigonales bzw. rhomboedrisches System
3
Y~ .
COSP = 1/2 3 N (34:34) COS(p = —'——(_—zh%. (34:]0)
YRkt V2 (B4 2 +2)
f) Kubisches System
cosp = ——Z———_ (33a) coOs@ = k (33b)
R ey Y P Ve
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II. (p,p)-Werte der Zonenachsen (Kanten)
a) Triklines System

, we+veosa+uacosf ~
cosp’ = , (35a)
Vuta?+v2+uw?c?+2 (vwecosa+wucacosB+uvacosy)

v ]/ 1 —cos? o — cos? B — cos?y + 2 cos a cos B cos y
sinp’sinB f u2a?+vt+w?ct+2 (vwecosat+wucacosB+uvacosy)
(35Db)

cosp’ =

1 —cos?2a—cos2B —cosy -+ 2cos acos B cos
id Y

v
f= : . . 35c
cose sin 8 Vu%zzsm?/i’ +v2sin?a —2uva (cosacos B —cosy) (35¢)

b) Monoklines System

we+uaco
cosp’ = °F 5P e, (36a)
Yuta®+v%+wic? + 2wucacos B

cosg’ = — Y 5 (36b)
sinp’ Yu2a? 4+ o2 +w?c2 +2wuca cos B
v

cos g = . 36¢c

¢ Yu?a®sin® B + v? (36¢)
¢) Orthorhombisches System
we v

cosp’ = , (37a cosp’ = e, 37b

P Vu?a? + 02+ w? c? ( ) v _ ]/u2a2+v2 ( )
d ) Tetragonales System
we v

cosp = ——ru 38a Cos @ = ————u, 38b

R NS (38a) P (38b)
e) Hexagonales und trigonales bzw. rhomboedrisches System
]/5
cwl %
cosp’ = i ———, (40a) cosgp’ = {4~ ) . (40b)
Yoo+ w20 w? V2 (u?+0 4 o)
f) Kubisches System

cosp’ = - ; (39a) cosgp’ = S (39b)

Vu2 -+ v
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F. Anhang

I. Berechnung der Pinakoidwinkel «*,8%,y* aus den Kantenwinkeln o, 8,y

Bezeichnet man in einem schiefwinkligen Vektortripel a, b, ¢ die von a, b
aufgespannte Ebene mit C (Fig. 4), die durch b, ¢ aufgespannte mit A und die

Fig. 4.

&

durch ¢, a aufgespannte mit B, sowie die entsprechenden Normalvektoren mit
¢, A, B, so ist:

€ =[ab], €| = absiny,

A =[be], | Al = besiny,

B =[ca], |B| = casinp.

Fir cosa™* = cos (B, €) erhidlt man, wenn man das auftretende skalare Pro-
dukt zweier Vektorprodukte gemiss der sog. Identitat von Lagrange erledigt:

t{ac) (be)| accosB becosa
cosa® — (BE) _ [ca]lab] _ i(aa) (ab)i _ |a® abcosy _
1B €| |B||€| 1B]| €| acsinBabsiny
afbccosfeosy—a?becosa cos B cosy —cos o
- a?bcsin Bsiny B sin Bsiny ’

Die a,nélogen Ausdriicke fiir cos 8* und cosy* werden durch zyklische Ver-
tauschung erhalten:

COS y COS ¢ — 08 B
siny sin «

cosBeosy —cosa
sin B siny

cosa® = : cos B* =

cOs % COS 8 — CoSy
sin asin 8

cosy* =
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Das Vektortripel a, b, ¢ kann auch als Dreikant aufgefasst werden. Dann ist
das Tripel A, B, € dessen Polardreikant. Da jedes Dreikant selbst polar zu sei-
nem Polardreikant ist, konnen die Kantenwinkel aus den Pinakoidwinkeln nach
den gleichen Formeln berechnet werden, wenn die Bezeichnungen entsprechend
vertauscht werden.

II. Berechnung des Volumens des von den drei Vektoren ¢,b, ¢ aufgespannten Spates

Bei Annahme eines beliebigen, rechtwinkligen Koordinatensystems X Y Z
ist das Volumen des von den drei Vektoren a, b, ¢ aufgespannten Spates durch
das sog. Volumprodukt gegeben:

) a’a: v %
V=[abc]l= b, b, b,].

&€ Y 2

Fir die hier verfolgten Ziele erweist es sich jedoch als vorteilhaft, sich vom
System X Y Z unabhiingig zu machen. Hierfiir wird der obenstehende Aus-
druck, unter Anwendung des Multiplikationssatzes fiir Determinanten ins
Quadrat erhoben:

(aa) (ab) (ac) a? abcosy accosf
V2=1Tlabcl2=(ba) (bb) (bc)| = |abcosy b2 bcecosel.
(ca) (cb) (cc) accosfB bceosa c?

Die so erhaltene Determinante (sog. Gramsche Determinante), unter Aus-
klammerung des gemeinsamen Faktors a?b2c¢? nach der ersten Zeile entwickelt:

V2 = a?2b?c?(1 —cos? « —cos?y -+ cos « cos B cos y + cos e cos S cos y — cos? B).

Geordnet und nach V aufgelost:

V=abcyl—cos?a—cos®>B —~cos?y+2cosacosScosy.
Fir die einzelnen Kristallsysteme spezialisiert sich der Ausdruck wie folgt:

Triklin: @ = (b =1) £ c¢; « =+ y £+ 90°.

V =acyl—cos?a—cos?f—cos?y-+2cos«cosBcosy.
Monoklin: @ = (b = 1) F¢; a =y = 90° & 8.
V =acyl—cos?B = acsinf.
Orthorhombisch: a = (b=1) £ ¢; a =8 =y = 90°.
V=ac.
Tetragonal: a =b=1F¢; a=8=1y = 90°.
V=c.
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Kubisch: a =b=c=1; a = =y = 90°.
V=1.

Hexagonal und trigonal bzw. rhomboedrisch:

]/ 1\? 3 ¢ = c
V=c¢ 1—(5) =CVZ=‘2‘]/3 oder: V=c[a102]=§l/—?:.
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