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On Calcic Amphiboles and Amphibolites
from the Lepontine Alps

By E. Wenk, H. Schwander and W. Stern (Basel)*)

With 24 figures in the text and 14 tables in appendix I

Summary

Spectrographic, XF- and microprobe-analyses of 56 calcic amphiboles from amphibo-
lites and related rocks of the Central Alps, 15 coexisting biotites and 35 host rocks are
presented. In the area considered mainly rocks in amphibolite facies are exposed ; transi-
tions to greenschist facies occur in the marginal parts. The metamorphic grade of amphi-
bolites is judged in accordance with the anorthite content of the coexisting plagioclase.
Fabric criteria and parageneses of amphibolite facies rocks indicate close approach to
equilibrium conditions during the main phase of Tertiary regional metamorphism.

In amphibolite facies rocks common hornblende, rarely associated with actinolite,
shows limited chemical variation, in spite of the considerable and regular compositional
change of the coexisting plagioclase from high to low grade metamorphic zones. Mg
increases in amphiboles as well as in amphibolites with higher grade and there is clear
interdependence between the Mg/Fe ratios of hornblende, biotite and host rock. The
mean values for FesO3, NasO and H20 of the amphibole appear to decrease with higher
grade, but the standard deviations are considerable. The bulk of common hornblendes
is concentrated between Altet 1.75 and 2.4. Our data for amphibolite facies hornblendes
indicate a compositional gap in the range Altot 1 to Al 1.75. In greenschist facies rocks,
however, a miscibility gap is not evident. Tschermakitic hornblendes with Altot> 2.5 are
of common occurrence in the schist-belt south of Gotthard and Lukmanier passes.

In amphibolite facies rocks the pronounced increase in anorthite content, reflecting
progressive metamorphism, is performed mainly by modal variation. The quantities of
Na, Ca, Si and Al remain fairly constant in the system (though not in greenschists).
Plagioclase has to consume the major part of Na, hornblende the minor part. With rising
anorthite content of plagioclase the balance can only be preserved by the formation of
more feldspar, mainly at the expense of epidote-clinozoisite, chlorite and biotite, and in
later stages also at the expense of hornblende. Modal analyses and calculations from rock
and mineral analyses both show that andesine-amphibolites contain twice as much
plagioclase as albite-amphibolites.

*) Authors address: Mineralogisch-Petrographisches Institut, Bernoullianum, CH-4056
Basel.
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1. Introduction

During the past twelve years many authors have investigated the regional
distribution of rock-forming minerals, their physical and chemical properties
and parageneses in the Central Alps, especially in the Canton Ticino and
adjacent parts of Italy and in the Cantons Valais and Grisons. In this wide
area of the Lepontine Alps, covering about 7500 km?2, rocks mainly in the
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amphibolite facies are exposed; transitions to greenschist facies occur in the
marginal part of the area. The whole region is by now well subdivided by
isograds of different types which form a concentric system, imprinted during
various phases of Alpine regional progressive metamorphism, culminating in
the Oligocene-Miocene.

Metamorphic carbonate-rocks, aluminous schists and ultramafic rocks have
been studied extensively, and this highly rewarding research is still in progress.
It appeared desirable to extend these investigations to the basic rocks after
which the metamorphic facies are named: amphibolites and greenschists.
These usually form extended zones of moderate thickness and, although minor
in importance in comparison to gneisses and micaschists, they serve as geo-
logical key horizons. Amphibolites should be useful also as indicators of meta-
morphic grade. Often they are composed of only two main constituents and
a few accessories, and they show a regular equidimensional fabric indicating
close approach to equilibrium conditions.

Paragenetic studies require rich and representative collections. The first
author started sampling in the Central Alps many years ago, and in 1969
E. Wenk and F. KELLER reported on the results of modal anorthite deter-
minations in 700 different amphibolites, listed in the appendix of the cited
paper. These investigations outlined concentric zones of albite-, oligoclase-,
andesine- and labradorite-amphibolites indicating progressive metamorphism.
The highest grade rocks are confined to structural steep zones, especially to
the so called root zone in the south and to the Maggia zone in the centre. The
general pattern of these plagioclase isograds is in good agreement with the
plagioclase isograds observed in silicate-marbles and calc-schists of the same
area. The zones of highest and of lowest metamorphic grade coincide, only
the absolute An-values differ. This indicates that there are no profound differ-
ences between the patterns of plagioclase isograds developed in CO,-free rocks
and those found in series strongly influenced by CO, partial pressure.

The present study is mainly concerned with questions of hornblende com-
position, modal and chemical variation of the host rock. It relies upon the
collections described by WENK and KELLER (1969), augmented by further
sampling (see sample maps Fig. 1). The responsibility for the extraction of
mineral concentrates, for the chemical analyses and for parts 2 to 4.2 of the
text rests with the second and third authors and their collaborators. The cell
parameters of most of the analysed amphiboles, and a discussion of their
variation with chemical composition, have been published by H. R. WENK
(1971).

A review of existing literature reveals little compositional variation of
common hornblende in amphibolites of different grade, in spite of the given
possibilities of complex crystallochemical substitution. The variation is con-
trolled mainly by rock composition (especially Mg/Fe-ratio). Published evidence
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ascribing minor variations in hornblendes to metamorphic grade is in part
consistent, in part conflicting. Also our contribution dealing with this complex
subject leaves room for further discussion. We have the feeling that scientists
often ask questions that nature does not pose, or to which our instrumental
possibilities cannot reply. Obviously it seems more promising to concentrate
upon those topics where clear statements can be made. Our discussion also
deals with the arising difficult problem: How does plagioclase manage to
change its anorthite content so well in response to metamorphic grade, even
in rocks of similar bulk composition and without compensating change in
hornblende composition ?

Reference samples of the rocks and minerals described are in the collections
of the Department of Mineralogy of the University of Basel (Switzerland).
Research on these materials is still in progress by A. Steck (Lausanne, ore
minerals), R. Steiger (Ziirich, age determination of hornblendes) and H. Ulbrich
(Basel, tschermakitic hornblendes of the Gotthard road-tunnel).

2. Methodological considerations

2.1. CHEMICAL INVESTIGATIONS
2.1.1. X-ray microprobe

Polished thin sections of amphibolites were investigated with a Jeol probe
(for excitation conditions see table 1). Sample preparation was carried out
with special care:

First grinding up to a gradation of emery-1000 and a slide thickness of 30 microns,
subsequently polishing by hand on Metcloth 40-7158 support with one micron diamond
paste, or on a Depiereux apparatus. Certain rocks had to be hardened prior to polishing
with epoxy resins (araldite or Z 70 C).

After cleaning with brush and detergents, the thin section was coated first with a few
angstroms of carbon, thereon with approximately 200 A of gold (evaporation of a constant
quantity of Au).

The use of different silicate minerals as reference samples causes generally
different interelemental effects; working with low excitation conditions (as
low as possible for an old type instrument) these elemental interactions may
be reduced, and sample contamination as well. The lower limit of those excita-
tion conditions is given by the counting statistics.

The overall reproducibility of our measurements has been checked by
testing chemically homogeneous plagioclase and amphibole samples (e. g. Cal
21). The variation found corresponds reasonably well with the expected error
of the probe. Thus, the quality of our thin sections seems to be sufficient.
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2.1.2. Analysis of main constituents with X-ray fluorescence

Details of sample preparation and analyzing techniques have been described
in a previous paper (STERN, 1972). Most of the analyses listed below have been
executed according to these procedures, a few by means of light optical emis-
sion spectrometry (SCHWANDER et al., 1968).

Mineral separation was performed mainly according to STERN (1966). Due
to frequent intergrowths of amphiboles, especially from low grade amphi-
bolites, minerals became separated out of small siftings (grain diameter 0.1
to 0.2mm).

In certain cases, no pure hornblende concentrates could be obtained ; these
samples with 2 to 109, of inclusions and intergrowths were labelled as ‘“‘con-
centrates’’.

2.1.3. Spectrographical trace element analysis

Some trace elements were analyzed by means of light optical emission spec-
trography according to SCHWANDER et al. (1968).

2.2. PHYSICAL INVESTIGATIONS

2.2.1. Density

The density of the hornblende samples was determined using a 10 ml bottle,
Gay-Lussac type, with a mixture of 109, alcohol in distilled water.

2.2.2. Index of refraction

The refractive indices of amphiboles have been determined on grains
oriented with the aid of an Eulerian cradle. The microgoniometer/cuvette
assemblage, developed and described by STECK and GLAUSER (1968), was used
for the determinations listed in this paper.

2.2.3. Modal analyses

The mineral modes have been determined mainly with a point counter on
the base of 2000 grains per thin section, step width 0.25 mm. Each slide was
scanned in the two main directions; the accuracy of these determinations is
approximatively + 29 rel.

The modes of some amphibolite samples were estimated ; the accuracy may
be assumed to reach + 59 rel.
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3. Results

The bulk of analytical data is listed below, in tables 2—4, 6 and the evalua-
tion follows in chapter 4.

Part of the analytical information had to be recalculated: structural
formulae of minerals, QLM values of rocks, etc., have been computed by a
Diehl Combitron calculator (program input with punch tape). Part of the
programs had been obtained as software from Diehl Litd. (regression calcula-
tions, student t test), another part has been set up by us.

3.1. CALCIC AMPHIBOLES (Tables 2, 6, Figures 2, 3)

With one exception (Bni 258) all analyses presented in tables 2 and 6 belong
to the group of calcic amphiboles. Most of these monoclinic amphiboles from
the Central Alps fit the conditions (Na+K)s<0.5 and Ti<0.5, only in 13
cases is (Na + K)4 > 0.5. In fig. 21 the common hornblendes from amphibolites
are concentrated in the field Altot 1,75-2.4, while actinolites and tremolites
from silicate-marbles and mafic lenses found in the same area, occupy the
corner Altot < 1. Accordingly our analyses have been grouped in the two tables
2a and 2b. Hornblendes with high alumina contents tending towards tscher-
makite, occur in a schist belt (garnet-hornblende-Garbenschiefer) which includes
also some true amphibolites and which is localised in a zone south of the Gott-
hard massif (rock group III, Tremola, Frodalera). For these tschermakitic
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Fig. 2a. Calcic amphiboles, plotted after LEAkE (1968): Ca+ Na-+K < 2.50; Ti<0.50. New data:
big circles; literature: small circles.

I Tremolite II Tremolitic hornblende
IIT Actinolite IV Actinolitic hornblende

V Mg-hornblende VI Tschermakitic hornblende
VII Tschermakite VIII Ferro-actinolite
IX Ferro-actinolitic hornblende X Ferro-hornblende

XTI Ferro-tschermakitic hornblende XII Ferro-tschermakite
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Fig. 2b. Calcic amphiboles, plotted after LEARE (1968): Ca+ Na-+K>2.50; Ti<0.50.
I Edenite IT Edenitic hornblende
IIT Pargasitic hornblende IV Pargasite
V Ferroan pargasitic hornblende VI Ferroan pargasite
VII Ferro-edenite VIII Ferro-edenitic hornblende
IX Mg-hastingsitic hornblende X Magnesian hastingsite
X1 Hastingsitic hornblende XII Hastingsite

amphiboles which are included in tables 2a and 6, ANGEL (1967) proposed
the name “gotthardite”.

L

Fig. 3a. QLM-plot of calcic amphiboles and amphibolites. New data: small dots = calcic amphi-
boles; black rectangles = actinolitic/tremolitic hornblendes; big dots = amphibolites/horn-
blende bearing rocks. Literature: open circles = amphibolites/hornblende bearing rocks.
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Kp

Ne Cal
Fig. 3b. Kp-Ne-Cal plot; for explanation of symbols see fig. 3a.

Fo

Fa Fs Ru Cs

Fig. 3c. Fo-Fa-Cs plot; for explanation of symbols see fig. 3a.

While in the Ticino area proper, a clear miscibility gap exists between
tremolite and common hornblende, the data presented by WETZEL et al. (1973)
from lower grade metamorphic series adjacent to the W indicate miscibility
(actinolitic hornblendes) and a trend toward edenitic and pargasitic composi-
tions with (Na + K)a > 0.5.
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The analyzed calcic amphiboles are graphically presented on Figs. 2 and 3;
some crystal chemical data are plotted on Figs. 4, 5 showing the distribution
of octahedral sums (mean approximatively 5.00, probably more than one
normal distribution) and of alkali sums (mean + 2.25, normal distribution).

The chemical homogeneity of the amphiboles was tested by microprobe.
Spot analyses were taken along lines perpendicular and parallel to ¢ of selected
hornblende crystals; line scanning was not possible due to low sensitivity and

°/e cases M
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O new data
O literature
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Fig. 4. Octahedral sum of calcic amphiboles; N = 60 new data, 90 from literature (triangles).
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Fig. 5. Alkali sum of caleic amphiboles: normal distribution; N = 65.
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the probable influence of topographical effects. Amphiboles from high grade
amphibolites with well developed mosaic structure, showed a homogeneity
corresponding with the relative error of the probe — point analyses along the
mentioned lines showed the same variability as the respective averages of
different mineral grains in the same slide:

1 to 29, rel. in case of SiO,, 3 to 59, rel. in case of Al,O;, FeOyo, MgO and
Ca0, 5 to 109, rel. in that of Na,0, K,O, see table 6. In these amphibolites it
seems, that from the chemical standpoint, only one type of amphibole exists.

In the zone of low grade metamorphism however, especially in the marginal
part of the Lepontine Alps, rather inhomogeneous hornblende patterns occur;
spot analyses on one and the same crystal prove a better homogeneity — though
being zoned — than the averages of different grains of the same thin section.
Thus certain amphibolites of the lower metamorphic margin seem to contain
at least two types of calcic amphiboles showing especially high variations of
Si and Al and having high Si/Al-ratios. Whether the possible chemical varia-
bility of those amphiboles could even be greater or not, may not be decided
on the base of the present data. If there exists furthermore an interdependence
between chemical composition and casual zonality or domain texture should
be tested with these chemically inhomogeneous amphiboles. This investigation
should however be done by means of a new type microprobe with high geo-
metrical resolution.

Microprobe analyses of calcic amphiboles and their structural formulae
are listed on Table 6, the octahedral cations are plotted on Fig. 6.

Mg

3
5/

calcic

'so.\t amphiboles

'gotthardltlc hornblendes

Fe VMBS §

Fig. 6. Microprobe analyses of calcic amphiboles; tie lines between corresponding spot analyses
on one crystal. Mg-Fe-AlVI plot of octahedral cations.
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The number of analyses being rather high — 106 amphibolites including
literature values, and 86 calcic amphiboles of the Central Alps — a statistical
evaluation of the data seemed to be of interest. The analyses were grouped
according to petrographical criteria, i.e. to the optically determined An
content of plagioclase in amphibolites (see Table 10), and the respective
averages, standard deviations and variations of every main constituent were
calculated (Table 11a, b).

From these data, student — t values were computed and the probabilities
estimated for the chemical difference of the respective petrographical groups
(see Fig. 7). It is obvious that the analyzed calcic amphibcles show clearer
differences than the corresponding amphibolite groups: sodium, magnesium,
aluminum, silicon (the latter in groups I, III only) in the case of calcic amphi-
boles, and calcium and H,O+ only in the case of amphibolites seem to have
a certain diagnostic meaning in the Lepontine Alps, if any. Considering the
often large variances in between these petrographical groups, one should not
exaggerate the meaning of a single criterion.

Amphibolites Amphiboles
o1 N v VvV VI [ R (VAR VARV
X X
50 1—1[ 50
45 45 )
w_

:I :Alzos
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FeQO——
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10 10 "'l_r—
e
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Fig. 7a. Mean values of chemical components (amphiboles, amphibolites), for comparison see
table 11.
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For roman ciphers see p. 144. Sources of chemical data: DE QUERVAIN et al. 1956, LEAKE 1968,
STEIGER 1961, DiETRICH 1969, WEIBEL 1964; and analyses listed on tables.

3.2. TRIOCTAHEDRAL MICAS (Table 3, Fig. 8a—c)

From some amphibolites trioctahedral micas have been separated and
analyzed as well. Moreover, published data (WENK et al., 1963) have been
added on micas coexisting with hornblendes discussed in this paper.

] Kp

+ trioctohedral mica

e hornblende s. 1.

M —>L Ne Cal
Fig. 8a. QLM plot hornblende-mica. Fig. 8b. Kp-Ne-Cal hornblende-mica.
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Fig. 8c. Fo-Fa-Cs/Fo-Fa-C plot of coexisting trioctohedral micas and calcic amphiboles.

3.3. HOST ROCKS; NEW AND LITERATURE DATA OF SOME LEPONTINE
AMPHIBOLITES (Table 4, Figures 9a—c)

Only for 21 of the analyzed amphiboles can we present analytical data of
the respective host rocks; on the other hand, we list a number of amphibolite
analyses without corresponding data on hornblendes.

Recent published data on amphiboles and amphibolites from the Lepontine
Alps are rather scarce. It seems moreover necessary to omit most of the early
analyses collected and published by DE QUERVAIN et al. (1956), because of
their questionable sodium values.

4. Discussion

4.1. CORRELATION BETWEEN CHEMICAL AND PHYSICAL DATA

The ratio Mg/Mg + Fe +Mn represents not only the basis of classification
of the structural formulae (Table 5), but shows positive correlation with some
physical parameters, such as density and refractive index (Fig. 10-12). Insofar
as both specific weight and index of refraction are related to the chemical
character of a calcic amphibole, density itself seems to be connected linearly
with the optic parameters (see Fig. 13).

The optic parameters show a similar trend for n, and n,, both rising par-
allelly, whereas 2V decreases at the same time. This phenomenon may be
explained by the fact, that ng-n, increases generally with higher values,
whereas n,—ng diminishes (see Fig. 10).
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Fig. 9a/bjc. QLM plots of calcic amphiboles and host rocks. Small black dots = calcic amphi-
boles; big black dots = host rocks.

4.2. CHEMICAL RELATIONS BETWEEN COEXISTING MINERALS
AND HOST ROCKS

From the two coexisting minerals hornblende s. 1. and trioctahedral mica,
only one main chemical constituent — magnesium — shows a clear interdepen-
dence between not only the two mineral phases (Fig. 14), but between horn-
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Fig. 10. Optical parameters of calcic amphiboles; grouping according to rising values of ngy.

Feggy + Mn AV 4 T

Fig. 12. Density of calcic amphiboles. Mg-Fe-AlVI plot of octohedral cations.

1 D<3.00 2 3.01-3.05
3 3.06-3.10 4 3.11-3.15
5 3.16-3.20 6 3.21-3.25
7 3.26-3.30 8 >3.31
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“gottharditic”” hornblendes. Calculated regressions: full lines for common and trem./act. horn-
blendes, broken lines for “‘gottharditic’’ hornblendes.
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Fig. 14. mg (Mg/Mg-+Fe'”’+Fe’’4Mn) of coexisting calcic amphiboles and trioctohedral micas.
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Fig. 16. Al,04 and MgO (wt-9%) of calcic amphiboles s. 1. (new data). Black dots: microprobe
analyses; circles and triangles: XFA.,

blende and host rock as well (Fig. 15). All other elements participate in other
mineral phases occurring in variable modes. Consequently, the chemical cor-
relation of these hornblendes with their host rocks is rather poor, except for
Mg. It may be noted, however, that the total of analyzed amphibole/host rock
pairs is still fairly limited.

From Fig. 7 chemical differences between rock groups of different meta-
morphic grade can be estimated: calcic amphiboles of group III differ from
all other groups especially with respect to Al and Mg. Fig. 16 with Al,O5 vs MgO
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Fig. 17. Wt-9, FeO vs Fe,0, of coexisting calcic amphiboles and trioctohedral micas.

(wt- %) shows consequently a well defined group of ‘““gottharditic’’ hornblende
corresponding with group III, whereas common amphiboles and actinolitic/
tremolitic hornblendes are not separated by a clear gap.

Fig. 17 informs about oxidation relations of calcic amphiboles and coexisting
trioctahedral micas: the tie-lines between mineral pairs show two distinct
trends: the ratio wt-9%, Fe,O;/wt-%, FeO of hornblendes s. 1. is in 709, of the
cases higher than the one of coexisting trioctahedral micas. Note, however,
that the vertical Fe,O; scale is enlarged 2.5 times; thus, the analytical error
of wet chemical FeO determinations appears enlarged as well.

The relations of coexisting micas and amphiboles are plotted on Fig. 8.
Common and actinolitic/tremolitic hornblendes occupy distinct fields on the
QLM plot, whereas most of the trioctahedral micas — biotites and phlogopites
as well — are situated in a single, rather narrow field. Consequently, there are
two different slopes of tie-lines between coexisting mineral pairs.

Obviously, trioctahedral micas can not be plotted on a Fo-Fa-Cs diagram
(8¢) because of their high aluminum and low calcium content. Their M rela-
tions were, therefore, calculated in a Fo-Fa-C triangle and connected — in a
slightly unusual way — with their respective coexisting amphiboles.
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4.3. RELATIONSHIP BETWEEN GRADE OF METAMORPHISM, FABRIC, MODE,
An-CONTENT OF PLAGIOCLASE AND COMPOSITION OF AMPHIBOLITE AND
CALCIC AMPHIBOLE

The following discussion concentrates upon common amphibolites with
calcic hornblende and plagioclase as predominant constituents (75-959%, vol),
and with clinopyroxene, epidote-clinozoisite, biotite, chlorite or quartz as
additional components. Sphene, rutile, iron ore, and rarely calcite are accessory
minerals. Orthopyroxene is absent. Scapolite-, anthophyllite- and alkali-
amphibole-bearing rocks are excluded. Also garnet-amphibolites and eclogites,
both of which are rare in the Lepontine Alps, are not considered. This con-
centration upon the main rock types which form more than 959, of the total
basic rocks occurring in the region investigated, infers that our conclusions
pertain only to amphibolites, with a range of plagioclase from albite to
labradorite.

Hornblende-rich rocks with plagioclases more calcic than An 60 are rare
and our data insufficient. The transition zone from albite-amphibolites to
hornblende-bearing greenschists (prasinites in the definition of KALKOWSKY
1886) is discussed by WETzEL (1973) and will be mentioned only occasionally.

At the western and northeastern margin of the area investigated (see Fig. 1)
there is clear evidence that several zones of the Mesozoic ophiolitic suite in
greenschist facies change into amphibolite facies rocks. However, in the higher
grade central part of the Lepontine Alps few geological facts, e. g. the associa-
tion of amphibolites with long stretched bands of silicate-marbles and calc-
schists (Mesozoic Biindnerschiefer) indicate an ophiolitic parentage. The origin
of all those amphibolites which are intercalated in the vast gneiss complexes
is not known (Mesozoic ophiolites, older basic rocks, or restites in Alpine
migmatites). The only proven fact is that all these Lepontine rocksrecrystallized
and were deformed during the Alpine orogenesis. Whatever the early history
of these rocks of basaltic composition may be, they now form a correlated
metamorphic series.

4.3.1. Fabric

With rising grade of metamorphism the fabric of the basic rocks becomes
more regular with regard to grain size, shape and grain boundaries (compare
Fig. 4 in WENK and KELLER 1969). Sieve-structured porphyroblasts and
diablastic intergrowths disappear, and a mosaic results, made up of polygonal
or interlocking crystals of hornblende and plagioclase of approximately equal
size. In these advanced stages of progressive regional metamorphism the
recrystallization is often accompanied by mineral sorting, producing com-
positional layering parallel to the foliation; but the individual layers show
regular equidimensional structure. All amphibolites show distinct foliation
and lineation parallel to the Alpine fold axes.



118 E. Wenk, H. Schwander and W. Stern

4.3.2. Number of mineral phases

From the zone of albite — to the zone of andesine — amphibolites the number
of mineral phases decreases. Thus, often in the latter, only two main consti-
tuents, viz. a homogeneous hornblende and zoned andesine occur. With the
appearance of clinopyroxene at higher metamorphic grade a new phase is

added.

4.3.3. Mode and anorthite content of plagioclase

The results of modal analyses and of anorthite determinations in 85 plagio-
clase-amphibolites from the Central Alps (65 sets of data refer to our samples,
20 are taken from the literature) were plotted in a large scale diagram, with
modal composition as the vertical and An-range as the horizontal axis. In this
detailed master diagram each mineral component of the 85 rocks was repre-
sented by a straight line at the modal amount given, the length of the line
indicating the An-variation of the feldspar. From this original diagram average
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Fig. 18. Average modes of amphibolites with plagioclase ranging from An 0 to An 60. The
diagram shows that the amount of plagioclase increases with rising anorthite content.
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modes were derived for the An-intervals listed in Table 12, and represented
in Fig. 18. The evidence offered in this diagram is well founded in the albite
range and from An 20 to 60; it is less reliable within the peristerite gap and
at An > 60 (dotted lines). The modal averages considered refer to rock-types
of similar composition, and the mean values give rough information on the
variable volumes of the mineral phases in relation to changing An-content of
plagioclase.

Fig. 18 shows that from the peristerite gap on, the amount of plagioclase
increases, concomitant with the rise in anorthite content, indicating higher
metamorphic grade. Andesine-amphibolites carry on average twice as much
feldspar as albite-amphibolites, mainly at the expense of clinozoisite-epidote.
The quantity of hornblende remains almost constant in this range: from An 40
on it decreases in favour of pyroxene and plagioclase. At An-values higher
than 60 our evidence is insufficient. Such calcic rocks have compositions
different from common amphibolites. Our Fig. 18 agrees well with Fig. 2 in
ExGEL et al. (1964) and includes additional information on lower-grade rocks.

The main result of the modal analyses is the considerable increase of the
volume of feldspar with rising anorthite content of the plagioclase. This fact demands
a critical discussion of possible variations in mode and mineral composition
of isochemical rocks as a function of prograde metamorphism. Rapid checks
on this topic are facilitated by P. NiceLI’s (1936a) efficient method of equi-
valent norms. The equivalent weights of the main constituents of amphibolites
closely agree: albite 52.4, anorthite 55.6, zoisite 56.8, tremolite 54.1, tscher-
makite 54.5 and diopside 54.1. Therefore, the calculated cation percentages
of plagioclase, hornblende, clinopyroxene and clinozoisite do not differ much
from the actual mode. Only minor components, such as sphene 65.3, rutile 79.9
or magnetite 77.2, show considerably higher equivalent weights (see also the
compilation of Burri, 1958). Table 13 shows the change in quantitative and
qualitative mineral composition of three amphibolites with rising anorthite
content of their plagioclase. Cation percentages were calculated from rock
and hornblende analyses published in this paper. The amount of feldspar
increases with rising anorthite content, and the results in Table 13 can be
interpreted as representing approximate quantitative mineral reactions in a
rock undergoing prograde metamorphism.

Increase of the amount of feldspar with rising anorthite content sheds also
some light on the important Na balance of the host rock. In amphibolites
plagioclase is the main, hornblende the minor consumer of sodium, so that in
first approximation the sodium balance of hornblende can be disregarded.

Assuming that the total amount of Na present in the plagioclase of the rock
remains constant and that Ca, Al and Si are freely available in the rock system,
a calculation in cation percentages gives the data for An-content of plagioclase
and for the total cation percentages of feldspar specified in Table 14 and
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Fig. 19. Relations between total cation 9, plagioclase and anorthite content, assuming that Na
remains constant and is equivalent to 1, 2, 3, 4, 5 or 6 cation 9.

Fig. 19. This simplified model shows that under those conditions the volume
of plagioclase doubles from albite to An 50. This is in good agreement with the
observed facts. This theoretical approach which does not consider the role of
the hornblende, makes also clear why bytownites and anorthites can only be
formed in rocks very low in Na, if other mineral components consume appre-
ciable amounts of Natl), or if sodium escapes.

4.3.4. Rock composition

Table 11b gives information on the average chemical composition of amphi-
bolites of different metamorphic grade. Data from recent literature on Alpine
greenstones (diabases etc.) and hornblende-bearing greenschists (prasinites)
are added for comparison.

From albite- to andesine-amphibolites the mean values for SiO, increase
distinctly, those for Al,O, very slightly, while Fe,O; and H,O decrease. The

1) In this respect the joint occurrence of alkali-feldspar and anorthite in silicate-
marbles of the Lepontine Alps may be mentioned.

Fig. 20. Na,0-CaO diagram for greenstones (diabase ete.), hornblende-bearing greenschists

(prasinites), amphibolites with different An content of plagioclase, and for hornblendes occurring

in these rocks. Tielines connect hornblende and host rock of the same sample. The diagram

shows the wide range of rock composition, contrasting with the limited chemical variation of
hornblende.
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other oxides show either no consistent trend or no significant variation. In
particular, the average content in Na,O remains almost constant in these
amphibolite groups, a fact which is important for the discussion of the feld-
spar problem. The data for the small group of labradorite-bytownite-amphi-
bolites have to be judged with reserve, as mentioned above; they show higher
ALO;, MgO, CaO, lower Fe,O;, Na,0O and H,0O than andesine-amphibolites.
The basic rocks in low-grade greenschist facies differ considerably in composi-
tion from the amphibolites. Their mean values for SiO,, FeO, MgO and CaO
are lower, those for Al,O,, Fe,O;, Na,O and H,0 distinctly higher.

Within the different groups of compared basic metamorphic rocks (see
Table 11b), the individual members show wide compositional scatter. But,
astonishingly, the mean values for albite-amphibolites, oligoclase-amphibolites
and andesine-amphibolites agree fairly well. These amphibolites can be regarded
as a rock-series of similar composition. Chemically they fit a gabbroic magma-
type after P. Nicarr (1936), and high-alumina basalt after Kuxo (1968). The
average values for ophiolitic rocks in greenschist facies, however, assemble in
the field of alkali olivine basalt.

The differences between greenstones-greenschists (rocks with alkali-amphi-
bole are excluded!) and amphibolites are well born out also by the Na,O-CaO
diagram of Fig. 20. Alpine ophiolitic rocks termed “diabase’ in the literature
show the highest Na,O and lowest CaO contents. Sodium metasomatism may
have played an important role in greenschist facies environment, not so in
amphibolite facies series.

In the same diagram the projections for hornblendes are also entered and
tie-lines connect corresponding rock and mineral analyses. Hornblendes con-
tain generally more CaO and less Na,O than their host rocks. The discussion
will be continued in the next section (p. 125); but here we must emphasize
the main impression given by the Na,0-CaO diagram: The wide range of tndi-
vidual rock composition contrasts with the limited chemical variation of hornblende,
concentrated near Na,O 1.1, CaO 11.9 weight 9%,. This compact field com-
prises the calcic amphiboles from low- and high-grade amphibolites. Only in
some albite-epidote-amphibolite and in greenschist facies rocks do the amphi-
boles scatter in direction of higher Na,O and lower CaO contents.

4.3.5. Composition of calcic amphibole

In metamorphic basic rocks in greenschist facies and in albite-epidote-
amphibolites from the Alps a fairly broad range of amphibole composition is
observed, leading from tremolite and actinolite to common hornblende and
extending to pargasitic, edenitic and barroisitic types (WETZEL et al. 1973).
In these low-grade rocks with strongly zoned amphiboles a miscibility gap
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between actinolite and magnesian hornblende is not evident, though it may
be confined to a small part of the series; rather a concentration in the field of
actinolitic hornblendes is found. In amphibolite facies rocks, with plagioclase
> An 5, tremolites and actinolites still occur in rocks of appropriate composi-
tion, but there is a broad gap in the tremolite-tschermakite series between
Altot 1.0 and 1.75 (Fig. 21). Not one analysis of a hornblende fits in this space.
The bulk of common hornblendes is concentrated between Altot 1.75 and 2.4.
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Fig. 21. AIVL.A1IV Si diagram for caleic hornblendes from the Central Alps, showing the fields

of tschermakitic hornblendes from schists and amphibolites of the Gotthard-Tremola-Frodalera

area, of Mg- and Fe-hornblendes from amphibolites of the Lepontine Alps, of actinolitic horn-

blendes and actinolites-tremolites. Circles and dots refer to amphibolite facies rocks, crosses to
greenschist facies rocks.
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In this compact field no distinction relative to metamorphic grade can be
made, except for the fact, reported from rocks all over the world, that amphi-
boles from labradorite-pyroxene-amphibolites are arranged in the AlVI-poor
corner.

As mentioned above (p.103), truly tschermakitic end members with
Altot > 2.5 and AIVI>0.9 are confined to the meta-sedimentary belt south of
the Gotthard massif (e. g. biotite-chlorite-garnet-oligoclase-hornblende-garben-
schiefer of the Tremola series). The high AIV! content is here hardly related
to high pressure. Such tschermakitic hornblendes do not occur in the deeply
eroded part of the Lepontine Alps and offer a special problem that needs
further research.

The statistical data presented in Table 11a have been calculated from the
new hornblende analyses contained in Table 2 of this paper and in the study
of WETZEL et al. (1973); moreover the analyses of Alpine hornblendes included
in the compilation of LEaAkE (1968), and data published by FrEY (1969) have
been incorporated.

The studied section of the Central Alps is by now probably one of the
regions best covered by hornblende analyses, though the number of analyses
is still insufficient. The dominant first impression is the great homogeneity of
the hornblendes from amphibolites (Gotthard-Tremola excluded). The mean
values for Fe,O;, Na,0O and H,0 appear to decrease with rising anorthite
content of the coexisting plagioclase, while MgO increases, but the standard
deviations are considerable.

Other oxides vary little or inconsistently, unfortunately also TiO,, which
is only significantly lower in greenschist hornblendes. The hornblendes of
greenschists differ irregularly from those of albite-amphibolites, but we are
here in the poorly documented field of the strongly zoned actinolitic horn-
blendes, where the meaning of a chemical analysis of a mineral concentrate
becomes uncertain.

Much more significant than the minor variability of hornblendes from
amphibolites of different metamorphic grade is the clearly distinct chemical
composition of the tschermakitic hornblendes of the Gotthard-Tremola-Froda-
lera group. Their mean value for Al,O5 is much higher, FeO higher and MgO
much lower than the averages of all other hornblende groups. The rocks with
tschermakitic hornblende occur in the zone of oligoclase-amphibolites and
inside the kyanite and staurolite isograds. Most of the rocks from which these
Al-rich amphiboles originated are aluminous schists or gneisses and a few are
oligoclase-amphibolites proper. But as is now well displayed by the new out-
crops in the Gotthard road tunnel, the hornblende-rich rocks are interlayered
with a series of garnet-schists and gneisses. The significant differences between
the hornblendes of the Tremola group and those of common oligoclase-amphi-
bolites from other parts of the Lepontine Alps should make us cautious: rock
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composition and the environment within a layered series can influence the
mineral composition more strongly than does changing metamorphic grade.

The Na,0-CaO diagram (Fig. 20) supports graphically some conclusions,
drawn from statistical data: the hornblendes of oligoclase-amphibolites (small
dots), andesine-amphibolites (medium dots) and labradorite-bytownite-amphi-
bolites (large dots) are crowded in a narrow field. Half of the hornblendes from
albite-amphibolites occupy the same position; the other half scatter, as do the
hornblendes of prasinites, as they approach higher Na,O, lower CaO values
(pargasitic and edenitic hornblendes). A significant change in hornblende
composition is indicated only in these lower-grade rocks, not in the amphi-
bolite facies series which forms the bulk of the material studied in this paper.

4.3.6. Distribution of Or Ab An between coexisting plagioclase and hornblende

In the examined amphibolite series of the Central Alps the proportion

___An of plagioclase increases with progressive regional metamorphism
Or+Ab+An )

This fact is well established (WENK and KELLER, 1969) and, in fact, is still
the best indicator of metamorphic grade. The cations substituting in the
plagioclase series are distributed between the following mineral components
of the rocks:

St Al Ca Na

quartz — = —
plagioclase plagioclase plagioclase plagioclase
hornblende hornblende hornblende hornblende
pyroxene — pyroxene —
epidot-clinozoisite  epidote epidote —

chlorite chlorite — —

biotite biotite — (biotite)
muscovite muscovite — (muscovite)
sphene — sphene —

— — apatite —

zircon — calcite —

— — dolomite —

This list shows that Si, Al and Ca can be apportioned to several major and
minor mineral components, depending upon the paragenesis, but that Na
occurs essentially only in the two main constituents plagioclase and horn-
blende. Thus the sodium balance is critical, but the role of the other cations
should be considered as well. The balance Or Ab An in the rock system and
the partitioning of these feldspar ‘“molecules’” among the mineral components
are discussed with the aid of the feldspar triangle. This procedure is justified
also by the fact that 1. in the analysed amphibolites the sum of normative
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feldspar components amounts to 55-68 cation percent, 2. in the hornblendes
35 to 459, and 3. in plagioclase 100%,. Normal plagioclase-amphibolites are
made up of 2/; hornblende and 1/, feldspar; therefore, commensurable amounts
of feldspar components are present in these two main constituents.

Following the methods introduced by P. N1geLI (1936) the weight percen-
tages of the rock and hornblende analyses were transformed into cation per-
centages and then Or Ab and An were calculated. In our rocks which carry
neither alkali hornblende nor jadeite, Al is always in excess after the forma-
tion of Or and Ab. However, there never remains enough Al to form anorthite
from the total of Ca present. In all our amphibolites and hornblendes
(Na+K +2Ca)> Al, and after the formation .of normative feldspar Wo can
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Fig. 22. Or Ab An diagrams for four different amphibolites:

a) Biotite-albite-hornblende-schist MF 147 (M. FrEY, 1969), Val Casatscha.

b) Biotite-epidote-albite/oligoclase-amphibolite Cal. 25, Alpe Alogna, Calanca.
_¢) Epidote-biotite-oligoclase-amphibolite Hu 1170a,, Val di Campo.

d) Andesine/labradorite-amphibolite 20.7.69.01, Monti Laura.

Open circles represent the rock composition.
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be calculated from the surplus Ca. The bottle-neck in these calculations is Al,
not Si2).

Fig. 22 represents the projections of four different amphibolites with two
or more of the components hornblende, plagioclase, biotite and epidote, ranging
from albite- to andesine-amphibolite. It shows at first sight that — judged
from the rock composition — none of these amphibolites should contain a
plagioclase more acid than andesine. Furthermore, it demonstrates that with
rising An-content the volumes of feldspar also increase (shorter distance
between the projections of plagioclase and rock).

For technical reasons it proved impossible to assemble all the data for the
studied rocks in one single diagram Or Ab An. Therefore, only the data for
amphibolite and hornblende could be entered in Fig. 23. The rocks (open

N/
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Fig. 23. Or Ab An diagram showing hornblende composition (dots) and rock composition (open
circles).
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circles) occupy the sector An 40 to 70, less than half of the range of the plagio-
clases found in these amphibolites. Except for biotite-bearing varieties the
Or content of the rocks is low. The amphiboles (dots) group in a still narrower
field, concentrated between An 60 and 80. If some epidote- and garnet-bearing
varieties are disregarded, the amphiboles are always richer in An, poorer in
Or and Ab than their host rocks.

In Fig. 24a the normative An content of the hornblende is related to the
modal An of the coexisting plagioclase. In hornblende An varies much less
than in plagioclase and, except for two cases, the normative An of the horn-
blende is higher than the modal anorthite content, but a positive correlation
is indicated. Thus, in spite of the numerous ionic substitutions possible in
amphibole structures, the variability Or Ab An is limited in our calcic horn-
blendes. Fig. 24b represents the relation between modal and normative anor-

2) In garnet-bearing hornblende rocks too high normative An values result from this
calculation scheme.
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Fig. 24a. Relation between modal An content of plagioclase and normative An content of the
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Fig. 24b. Relation between modal An content of plagioclase and normative An content of the
host rock.
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thite content in the rock-series. This diagram is instructive in showing that
the modal An content is not dictated by rock composition. Albite and oligo-
clase are not confined to sodium-rich rocks. In Fig. 24b the rocks lowest and
those highest in normative An both contain albite! Once the peristerite gap is
passed, a vague positive correlation between An mode and norm may be read
from the diagram. Bytownite, though, is restricted to calcic rocks.

4.3.7. Conclusions

In the studied plagioclase-amphibolite series the pronounced increase in
modal anorthite content, reflecting progressive metamorphism, takes place
without appreciable change in rock composition and without compensating
substitution in the coexisting hornblende. It is performed mainly by modal
variation. The quantities of Na, Ca, Si and Al remain fairly constant in the
system (though not in greenschists and greenstones). Plagioclase has to con-
sume the major part of Na, hornblende the minor part. With rising anorthite
content of plagioclase the balance can only be preserved by the formation of
more feldspar, mainly at the expense of epidote-clinozoisite, chlorite and
biotite, and in later stages also at the expense of hornblende. Modal analyses
and calculations from rock and mineral analyses both show that andesine-
amphibolites contain twice as much plagioclase as albite-amphibolites.

This implies that for each rock-type of given normative Or Ab An ratio
and of known paragenesis the maximum mean anorthite content of plagioclase
and the maximum normative feldspar content, reached at high-grade meta-
morphism, can be deduced. In the high-grade metamorphic zone of the Lepon-
tine Alps the highest modal An values observed in plagioclase amphibolites
reach An 50 to 60, as can be calculated also from chemical analyses. The An
content rarely exceeds An 60; bytownites occur only in hornblendic rock of
more calcic composition.

In the same metamorphic zone bytownites/anorthites are common in silicate-marbles,
while andesines occur in aluminous schists and oligoclase in the gneiss complexes. In
alternating series of these rock-types irregularities in An-content, due to metasomatic
processes may be observed, but they are usually confined to the em-range.

The poor correlation between hornblende composition and metamorphic
grade within the different groups of plagioclase-amphibolites confirms obser-
vations made in other parts of the world. Therefore, it is really surprising that
plagioclase shows such strong compositional variation just in this range of
metamorphism.
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Appendix I

Table 1. Analyzing conditions

Jeol JIXA-3A Analyzing crystals Line
Si, A1 10kV, 0.14 A RAP, KAP Kol
Fe, Ca, K 15kV, 0.09 pA Quartz Kol
Mg, Na 10 kV, 0.09 p A KAP Kal

1 to 5 microns diameter

30 seconds.

point analysis; at least 3 spots per crystal.
standardization with different silicate minerals of known
composition e. g. hornblendes, pyroxenes, garnets.
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Table 6. Microprobe analyses of calcic amphiboles, structural formulae (basis 23 O)

Si0,
AlLO,
FeO
MgO
CaO
Na,O
K,O
TiO,

Si
AlLV
AlVI
Fe+2
Mg
Ca

Ti

Okt.
Alk.

R+3
Fet2

Mg

Si0,
Al,O4
FeO
MgO
CaO
Na,O
K,0
TiO,

AlTV
AlVI
Fe2+
Mg
Ca,
Na

Ti

Okt.
Alk.

R+3
Fe+2
Mg

Ad 36e AS 907 AS 90711
47.5 49.7 51.0 47.5 51.5 49.8 51.5 45.7 46.8
11.9 11.5 11.3 12.0 9.1 8.8 6.3 13.1 13.8
8.9 8.9 7.4 13.8 12.5 12.5 13.9 15.0 14.2
14.6 15.2 16.7 12.0 11.1 13.9 10.2 9.8 9.8
11.0 8.6 9.4 12.9 12.7 12.6 12.5 12.8 12.5
1.6 2.5 1.8 0.9 1.5 1.5 1.2 0.8 1.3
0.4 0.4 0.4 0.4 0.4 0.4 0.9 0.7 0.8
0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.6
95.9 96.8 98.0 99.7 99.0 100.1 97.0 98.4 99.8
6.88 7.07 7.10 6.79 7.33 7.05 7.55 6.68 6.71
1.12 0.93 0.90 1.21 0.67 0.95 0.45 1.32 1.29
0.91 1.00 0.96 0.81 0.85 0.52 0.64 0.93 1.04
1.08 1.06 0.86 1.65 1.49 1.48 1.70 1.83 1.70
3.15 3.22 3.47 2.56 2.35 2.93 2.23 2.13 2.09
1.70 1.31 1.40 1.98 1.94 1.91 1.96 2.00 1.92
0.45 0.69 0.49 0.25 0.41 0.41 0.34 0.23 0.36
0.07 0.07 0.07 0.07 0.07 0.07 0.17 0.13 0.15
0.0 0.0 0.0 0.02 0.02 0.06 0.06 0.05 0.06
5.14 5.28 5.29 5.04 4.71 5.00 4.63 4.96 4.89
2.23 2.07 1.96 2.30 2.42 2.39 2.47 2.36 2.43
17.7 18.9 18.1 16.6 18.5 11.7 15.1 20.0 22.5
21.0 20.1 16.3 32.7 31.6 29.6 36.8 37.0 34.8
61.3 61.0 65.6 50.7 49.9 58.7 48.1 43.0 42.7
Bi 22 Cal 21 Frod.
48.5 47.9 54.0 45.5 45.1 44.0 43.3 43.5 43.3
13.0 13.0 5.5 13.6 13.2 14.4 18.1 18.4 18.0
12.4 12.4 9.7 12.9 13.9 14.7 15.5 15.8 14.8
12.5 11.8 16.8 11.2 11.2 10.6 8.8 8.5 9.3
11.6 11.9 13.1 12.7 12.7 12.7 10.4 10.5 11.2
1.2 1.0 0.9 1.1 1.2 1.1 1.4 1.4 1.4
0.3 0.3 0.3 0.4 0.4 0.4 0.0 0.0 0.0
0.2 0.2 0.2 0.6 0.3 0.3 0.4 0.4 0.4
99.7 98.5 100.2 98.0 98.0 98.2 98.0 98.6 98.5
6.84 6.85 7.48 6.51 6.59 6.45 6.31 6.31 6.28
1.16 1.15 0.52 1.49 1.41 1.55 1.69 1.69 1.72
1.00 1.04 0.38 0.86 0.87 0.94 1.42 1.45 1.35
1.46 1.48 1.12 1.70 1.70 1.80 1.89 1.91 1.79
2.63 2.51 3.47 2.44 2.44 2.31 1.91 1.83 2.01
1.75 1.82 1.94 1.99 1.99 1.99 1.69 1.63 1.74
0.33 0.28 0.24 0.31 0.34 0.31 0.40 0.39 0.39
0.05 0.05 0.0 0.07 0.07 0.07 0.0 0.0 0.0
0.02 0.02 0.02 0.07 0.03 0.03 0.04 0.04 0.04
5.11 5.05 4.99 5.07 5.04 5.09 5.27 5.25 5.21
2.13 2.15 2.18 2.38 2.40 2.38 2.02 2.02 2.13
20.0 20.9 8.0 18.2 17.8 19.1 27.7 28.4 26.8
28.6 29.3 22.5 33.6 33.7 354 36.1 36.7 34.7
51.4 49.7 69.5 48.2 48.4 45.5 36.2 34.9 38.6



Si0O,
AlLO,4
FeO
MgO
CaO
Na,O
K,0
TiO,

Si
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AlVI
Fet2
Mg

Na
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Alk.

R+3
Fe+2

Mg

Sio,
Al O,
FeO
MgO
CaO
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Frod. 2 Jo 545 Seci 123 Spl 104b
43.2  41.7 50.0 51.8 48.8 47.1 46.7  46.7 55.56 54.7 51.9
18.8 18.1 9.8 7.6 11.0 8.9 9.4 8.9 4.0 5.2 6.2
15.1 18.4 6.5 6.5 7.5 14.3 154 154 10.1  10.1  10.7
7.9 6.3 18.7 17.0 17.0 11.9 11.9 11.2 149 14.9 148
10.9 10.1 12.6 12.2 127 11.8 12.3 117 1.3 10.3 10.5
1.4 1.2 0.8 1.2 1.0 1.0 0.8 1.3 1.4 1.2 1.4
0.0 0.0 0.4 0.4 0.4 0.1 0.1 0.1 0.3 0.3 0.3
0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.6 0.0 0.0 0.0
96.3  95.7 99.1 97.0 98.7 954 96.9 95.9 97.5 96.7 95.8
6.27  6.30 6.95 732 6.85 7.06 6.93 7.00 7.86 7.78 17.53
1.73 1.70 1.05 0.68 1.15 095 1.07 1.00 0.14 0.22 0.47
1.54 1.53 0.55 0.59 0.67 0.62 0.57 0.57 0.53 0.66 0.59
1.87 2.33 0.75 0.77  0.88 1.79 191  1.93 1.20 1.20 1.30
1.74  1.42 3.87 3.58 3.65 2.65 2.63 2.50 3.14 3.16 3.20
1.73 1.64 1.87 1.85 1.91 1.89 1.95 1.88 1.71 1.57 1.63
0.4 0.35 0.22 0.33 0.27 0.29 0.23 0.38 0.38 0.33 0.39
0.0 0.0 0.07 0.07 0.07 0.02 0.02 0.02 0.05 0.05 0.06
0.0 0.0 0.03 0.03 0.03 0.03 0.03 0.07 0.0 0.0 0.0
5.17  5.27 520 497 5.13 5.09 5.14 5.07 4.87 5.02 5.09
2.13  1.99 2.16 2.25 2.25 2.20 2.20 2.27 2.15 196 2.08
29.8 29.0 11.2 125 13.6 128 11.7 12.6 10.9 13.1 11.6
36.4 44.1 14.5 155 17.2 351 37.1 38.1 24.6 239 255
33.8  26.9 74.3 72.0 69.2 52.1 51.1 49.3 64.5 62,9 62.9
Spl 119 Toce 82a Trem. 4
43.3 45.0 42.5 42.7 42.7 44.8 42.3 43.8 43.9 44.6
12.3 12.5 12.7 11.6 12.8 11.5 17.2 17.5 17.7 17.2
17.4 17.4 17.6 18.0 18.0 18.2 18.2 18.0 18.7 18.6
9.5 9.8 9.6 9.2 9.2 9.3 7.1 6.6 6.8 7.0
12.5 12.5 12.0 12.8 12.4 12.8 10.6 10.6 10.4 10.7
1.2 1.1 1.4 1.2 1.0 1.0 1.6 1.9 1.8 1.4
0.8 0.8 0.9 1.1 1.1 1.0 n.d. n.d. n.d. n.d.
0.5 0.5 0.5 0.6 0.5 0.5 0.4 0.4 0.4 0.4
97.5 99.6 97.2 97.2 97.7 99.1 97.4 98.8 99.7 99.9
6.52 6.59 6.43 6.50 6.44 6.65 6.30 6.40 6.37 6.45
1.48 1.41 1.57 1.50 1.56 1.35 1.70 1.60 1.63 1.55
0.70 0.75 0.70 0.58 0.72 0.66 1.32 1.41 1.40 1.38
2.19 2.13 2.23 2.29 2.27 2.26 2.27 2.20 2.27 2.25
2.13 2.14 2.16 2.09 2.07 2.05 1.58 1.44 1.47 1.51
2.01 1.96 1.94 2.09 2.00 2.03 1.69 1.66 1.62 1.66
0.35 0.31 0.41 0.35 0.29 0.29 0.46 0.54 0.51 0.39
0.15 0.15 0.17 0.21 0.21 0.19 0.0 0.0 0.0 0.0
0.06 0.06 0.06 0.07 0.06 0.06 0.04 0.04 0.04 0.04
5.07 5.08 5.14 5.02 5.11 5.02 5.22 5.12 5.20 5.19
2.52 2.42 2.53 2.65 2.51 2.51 2.15 2.20 2.12 2.05
14.8 15.9 14.6 12.9 15.1 14.2 26.2 28.5 27.7 27.4
43.2 42.0 43.3 45.6 44 .4 44.9 43.7 43.4 44.1 43.6
42.0 42.1 42.1 41.5 40.5 40.9 30.1 28.1 28.2 29.0
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Trem. 6 Trem. 8 Trem. 9 Wurz 121e
41.4 41.0 43.6 43.3 44.0 43.8 43.4 43.2 42.8 409 42.1
17.8 18.0 15.7 15.8 16.7 17.3 17.2 17.2 13.0 13.1 13.3
24.6 24.3 16.2 17.8 17.7 20.3 20.5 21.1 15.1 16.1 15.7

3.6 3.7 8.0 8.0 8.0 6.1 6.5 5.6 9.6 10.0 9.9
10.0 10.0 10.2 10.5 11.3 10.0 10.2 9.9 12.3 11.8 11.9
1.4 1.4 1.8 1.9 1.7 1.9 1.8 1.9 1.7 1.7 1.5
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.4 1.5 1.4
0.3 0.3 0.5 0.5 0.4 0.3 0.3 0.4 1.2 1.4 1.3
99.1 98.7 96.0 97.8 99.8 99.7 99.9 99.3 97.1 96.5 97.1
6.23 6.19 6.51 6.41 6.37 6.40 6.35 6.37 6.43 6.24 6.34
1.77 1.81 1.49 1.59 1.63 1.60 1.65 1.63 1.57 1.76 1.66
1.38 1.40 1.27 1.17 1.23 1.38 1.31 1.36 0.74 0.60 0.71
3.09 3.10 2.02 2.20 2.14 2.48 2.51 2.60 1.90 2.05 1.98
0.81 0.83 1.78 1.76 1.73 1.33 1.42 1.23 2.15 227 2.22
1.61 1.62 1.63 1.67 1.75 1.57 1.60 1.56 1.98 1.93 1.92
0.41 0.41 0.52 0.55 0.48 0.54 0.51 0.54 0.50 0.50 0.44
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.27 029 0.27
0.03 0.03 0.06 0.06 0.04 0.03 0.03 0.04 0.14 0.16 0.15
5.34 5.35 5.16 5.22 5.16 5.24 5.28 5.25 4.92 5.09 5.05
2.02 2.03 2.15 2.21 2.23 2.10 2.11 2.11 2.74 272 2.63
26.5 26.8 25.8 23.5 24.6 27.0 255 26.8 17.7 15.0 16.9
58.4 57.6 39.7 42,7 42,0 47.6  47.7 49.8 38.6 404 39.1
15.1 15.6 34.5 33.8 334 254 26.8 234 43.7 446 44.0
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Sample
Ad 36e

AS 907
Bi 22
Cal 21
Frod 1
Frod 2
Jo 545

Seci 123
Spl 104b

Spl 119

Toce 82a
Trem 4
Trem 6

Trem 8

Trem 9

Group

II
v

VI
II1

E. Wenk, H. Schwander and W. Stern

Table 9b. Amphiboles, analyzed by microprobe (Table 6)

Rock type

albite amphibolite, chlor. biot. muse. rut.
ore bearing

clinoz. oligoel. amphibolite, tit. biot. bearing
biot. epid. oligocl. amphibolite, rut. bearing
andesine, amphibolite, epid. tit. bearing
kyanite biotite garnet hornblende-schist
hornblende garnet biot. schist

biot. andes./labrad. amphibolite, tit. rut.
epid. bearing

andesine amphibolite, ore bearing

chlor. epid. albite/oligocl. amphibolite, tit.
bearing

albite/oligocl. epid. amphibolite, biot. tit.
bearing

oligocl. amphibolite, tit. bearing

garnet, biotite chlor. hornblende-schist

biot. chlor. garnet hornblende-schist,
staurolite bearing

chlor. hornblende plagiocl. gneiss epid.
bearing

garnet hornblende schist, carbonate bearing

Locality

Hinterrhein

Merezenbachtal
Alp Freiche

W Santa Domenica
Frodalera
Frodalera

N Lago Devero

Table 10. Grouping according to metamorphic grade

Type

greenstones (diabase a. 0.)
hornblende-bearing greenschists, prasinites
albite-amphibolites

albite-plus oligoclase-, or
oligoclase-amphibolites

andesine-amphibolites
labradorite/bytownite-amphibolites

Garbenschiefer and oligoclase-amphibolites
(Gotthard, Frodalera)

Coordinates

728.2 /151.1

666.4 /145.8
662.7 [136.45
728.7 [134.8
706.7 [154.2
706.7 [154.2
671.27/134.75

Forno 774.45/136.65
S Alpe Straciugo 652.6 /108.0
below Lago di Paione 658.0 /113.2
quarry SE Croppo 667.8 [106.8
Motto Bartola 687.9 /154.4
Motto Bartola 687.9 /154.4
Motto Bartola 687.9 [154.4
Lago Ritom 695.5 [155.3
Analyses
An content Rock  Mineral
29 —
10 6
0—5 9 8
(0-5)+(10-25) or
17—30 17/37 18
30—50 25 18
>50 8 6
20—-30 8 30
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Table 12. Average modes of plagioclase-amphibolites with changing An-content, deduced from
the modes of 85 amphibolites from the Central Alps

An 9% O
Vol-9,
Plagioclase 17
Hornblende 60
Clinopyroxene —
Chlorite,

Biotite 7
Klinozoisit/

Epidote 13
Quartz 1
Accessories 2

10

18
60

6

11
2
3

20 25
23 31
60.5 60

5 4

7 3.5

2.5 0.5

2 1

30

32
60

3.5

.5

M|N>

35 40 45 50 55
33 34 35 36.5 38
59.5 58.5 55.5 53.5 50
05 15 4 6 7.5
3 2 1 1 0.5
1 1 1 05 0.5
1 1 1 05 1
2 2 25 2 2.5

60

38
50
8

5

WO

5

65 70 75 80 90
data less reliable

34 30 30.5 29 285
55 567 57 56 56.5
7.5 7 6 85 5
05 1.5 35 25 3
1 1.5 1 1.5 4
2 3 2 25 3

Table 13. Approximate modal variation with rising metamorphic grade, calculated in cation 9,
for 3 different amphibolites

1. Si 45.8, Al 15.7, Felll 1.6, Fell 7.4, Mg 13.6, Ca 10.2, Na 4.6, K 0.2, Ti 0.9 (approximate com-
position of average albite-amphibolite in Table 12).

An Plag.

9% Plag.
Ho
Chlor.
Biot.
Clzt
Clpx
Opx
Ru
Tit
Ore

Qz

Metamorphic grade
33

2. Si 45.3, Al 19.0, Felll 1.6, Fell 6.1, Mg 10.8, Ca 12.4, Na 3.1, K 0.5, Ti 1.2 (sample Wurz. 177b)

An Plag.
9% Plag.

Ho
Clzt
Clpx
Opx
Ru
Ore

Qz

0

9.5
66.5
18.5

O
o

26

1

3.5

66.5
14

50

19
66.5

60

30
55

lP)—ll—-llwf

68
56.5

— o
| m=®O |
o

3. Si 45.0, Al 19.0, Felll 3.0, Fell 4.9, Mg 9.8, Ca 14.1, Na 3.0, K 0.2, Ti 1.0 (sample Wurz. 179)

An Plag.
Plag.

%

Ho
Clzt
Clpx
Opx
Tit
Ore
Qz

0

11.5
60.5
21.5

5

50

23
60
13

67

36.5
56

=)
&

71
55.5

21
16

3
4.5
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Table 14. Quantitative variation of plagioclase with constant Na content, but changing
anorthite proportion. Calculations in cation percentages. Na = 2 cation 9,

Si Al Ca Na > eat. 9%, An 9%
6 2 — 2 10 0
1 1 0.5 —

6 2 — 2 12.5 20
1.33 1.33 0.67 —

6 2 — 2 13.3 25
2.67 2.67 1.33 —

6 2 — 2 16.7 40
4 4 2 -

6 2 — 2 20 50
6 6 3 —

6 2 — 2 25 60
12 12 6 —

6 2 — 2 40 75
16 16 8 —

6 2 — 2 50 80
36 36 18 —

6 2 — 2 100 90
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