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Eine Methode zur genauen Einmessung der optischen
Achsen bei U-Tischuntersuchungen

Von Conrad Burri (Zürich) *)

Mit 9 Figuren und 6 Tabellen im Text

Zusammenfassung

Die Doppelbrechung optisch-zweiachsiger Kristalle wird für in der Achsenebene
liegende Wellennormalenrichtungen in Abhängigkeit des Richtungswinkels gegenüber [w ]
für eine Reihe von 2 F berechnet und graphisch dargestellt. Die Kurven für die verschiedenen

2 F verlaufen identisch, sind jedoch in Richtung der Ordinate gegeneinander
verschoben. Sie weisen für x w/d einen Wendepunkt auf. Ihre Schnittpunkte mit der
Abszisse (Doppelbrechung 0) entsprechen den Positionen der optischen Achsen. Für
2 V > 62° fallen die Schnittpunkte mit der Abszisse für Kurve und Wendetangente innerhalb

der Messgenauigkeit zusammen. Da die Wendetangente als Gerade durch zwei
Punkte eindeutig bestimmt ist, genügen daher zwei Gangunterschiedsmessungen in
Nachbarschaft der optischen Achse zu deren genauen Lokalisierung und damit zur
Bestimmung von 2 F. Die Methode ist auch für Achsenwinkel 2 V < 62° anwendbar
wenn eine entsprechende Korrektur angebracht wird, wofür ein Diagramm gegeben
wird. Die gesamten Betrachtungen haben Gültigkeit im Rahmen der Mallardschen
Annäherung.

English Summary

The birefringence for wavenormal directions within the axial plane of optically biaxial
crystals is calculated for various values of the axial angle 2 F in function of the direction
angle to [n ] and is represented graphically. The resulting curves for the various axial
angles are identical in shape but differ in their ordinates. They show a point of inflexion
for the value x it/4. Their point of intersection with the abszyssa (corresponding to
double refraction zero) indicate the positions of the optic axes. For 2 F > 62° the points
at which curve and inflexion tangent intersect the abszyssa are, within the limits of
experimental error, coincident. The tangent, being a straight line, is fully determined
by two points. Therefore the measurement of two path differences near the optic axis is
sufficient for its precise location and the determination of 2 F. The method can be used
also for 2 F < 62° if an appropriate correction be made, for which a diagram is given.
The method here proposed holds good within the limits of the Mallard approximation.

*) Adresse des Autors: Prof. Dr. C. Burri, Institut für Kristallographie und
Pétrographie ETH, Sonneggstrasse 5, CH-8006 Zürich.
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I. EINLEITUNG UND PROBLEMSTELLUNG

Der wahre Winkel der optischen Achsen 2 V bildet seit Einführung der
U-Tischmethoden eines der wichtigsten Kennzeichen zur Charakterisierung
optisch-zweiachsiger Kristallarten. Im Gegensatz zu den konoskopischen
Methoden, welche in ihrer Anwendbarkeit an bestimmte Schnittlagen gebunden

sind, erlauben die U-Tischmethoden die Bestimmung von 2 F in sozusagen
allen Fällen, sofern sie überhaupt anwendbar sind. Die Bestimmung erfolgt
entweder direkt, wozu mindestens eine optische Achse der Einmessung zugänglich

sein muss, oder indirekt aus der Messung von Auslöschungsschiefen oder
Gangunterschieden. Auf der Messung von Auslöschungsschiefen beruht die
theoretisch äusserst ingeniöse «Methode der charakteristischen Auslöschung»
(Bkrek 1924), später in «Charakteristische Funktion der Auslöschung»
umbenannt (Rinne-Berek 1953). Sie ergibt sich aus einer erschöpfenden
trigonometrischen Auswertung der Fresnelschen Konstruktion. Sie liefert jedoch in
der Praxis nur unter günstigen Bedingungen brauchbare Resultate. Unerläss-
lich ist die völlige Homogenität des betreffenden Kristalls, sowie eine
zweckmässige Wahl der Versuchsbedingungen. Die Methode wird daher, auch in
ihrer Modifikation durch Dodge (1934) nur selten angewandt.

Sehr gute Resultate, und zwar im allgemeinen solche, welche den durch die
direkte Methode erhaltenen überlegen sind, erreicht man durch die Anwendung

der Mallardschen Formeln, was allerdings verlangt, dass zwei
Hauptschwingungsrichtungen einmessbar sind. Ist nur eine solche zugänglich, so

muss das Nikitinsche Verfahren unter Benützung des Gangunterschiedes in
einer Hilfsrichtung innerhalb einer optischen Symmetrieebene angewandt werden,

oder, weitaus besser, die ebenfalls von Berek angegebene «Methode des
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charakteristischen Gangunterschiedverhältnisses» (Berek 1924), später in
«Charakteristische Funktion der Doppelbrechung» umbenannt (Rinne-Bebek
1953). Sie stellt die ergiebigste und wohl auch genaueste Methode zur Ermittlung

von 2 V bei Dünnschliffuntersuchungen dar.
Bei Routineuntersuchungen wird überwiegend die direkte Methode

angewandt, zumal sie sich direkt mit der Einmessung der optischen Symmetrieebenen

verbinden lässt, welche ihrerseits die grundlegende Ausgangsoperation
für alle U-Tischuntersuchungen darstellt. Sie verlangt auch kein zusätzliches
Instrumentarium, wie z. B. Kompensator oder besondere Beleuchtungseinrichtung.

Leider wohnt ihr jedoch die jedem U-Tischpraktiker hinlänglich
bekannte Schwierigkeit inne, dass sich die Position der optischen Achse innerhalb

der normal zui4 (Berek, Kontrollachse von Reinhard) stehenden Achsenebene

sehr oft nicht mit der an sich wünschenswerten Genauigkeit einstellen lässt.
Auch bei sorgfältiger Regelung der Beleuchtung und Kontrolle der
Aperturverhältnisse mit Hilfe der Bertrandlinse, ist die Stellung der maximalen
Dunkelheit, welche dem Durchgang der optischen Achse entspricht, oft so
schlecht definiert, dass für deren Position eine Unsicherheit von 1°—2°

bestehen bleibt. Da sich dieser Fehler im ungünstigsten Fall für die Angabe von
2 V verdoppeln kann, ist ohne weiteres klar, dass es von grösstem Interesse
ist, ihn möglichst klein zu halten. Gewisse Kunstgriffe gestatten zwar oft, die
Lage der optischen Achse etwas zu präzisieren. Für den Fall, dass der Grund
für die Schwierigkeit der Festlegung der Achsenposition nur durch das
Auftreten einer Achsendispersion bedingt ist, hilft die Verwendung homogenen
Lichtes bzw. eines entsprechenden Filters. In andern Fällen wird etwa
angeraten, beim Arbeiten im weissen Licht das Rot I einzuschalten und den
Mikroskoptisch zu drehen. Weil das menschliche Auge auf leichte Abweichungen

des Rot I gegen blau oder belb besser anspricht als auf geringe Abweichungen

von der maximalen Dunkelheit, mag es auf diese Weise, unter günstigen
Umständen, gelingen, die Achsenposition genauer zu erhalten. Trotz dieser
Hilfsmittel bleibt das Problem jedoch bestehen. Unter Umständen lässt sich
eine genauere Einstellung der Achse auch durch die Verwendung konvergenten
Lichtes erreichen (sog. «Drehkonoskop»). Hierzu benötigt man allerdings
Spezialobjektive höherer Apertur, sowie einen Spezialkondensor bzw. eine
Verrichtung, welche erlaubt ein dem zur Beobachtung benützten Objektiv
analoges System als Kondensor zu verwenden.

Da es sich bei der Festlegung der Achsenrichtung im Prinzip darum handelt,

eine Richtung vom Gangunterschied Null aufzufinden, liegt es nahe,
diese aus Messungen von Gangunterschieden in ihrer unmittelbaren Umgebung
zu interpolieren. Hierzu bedarf es jedoch als notwendige Voraussetzung, ganz
allgemein, einer Kenntnis der Doppelbrechung für Wellennormalenrichtungen
innerhalb der optischen Achsenebene in Abhängigkeit von ihrer speziellen
Lage. Dieses Problem soll daher in einem ersten, theoretischen Abschnitt
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näher untersucht werden. Die praktische Anwendung der gewonnenen
Erkenntnisse hinsichtlich der Auffindung der Position der optischen Achsen soll
daran anschliessend behandelt werden.

II. EINE NEUE METHODE ZUR EINMESSUNG DER OPTISCHEN ACHSEN

1. Zur Theorie der Methode

Es handelt sich vorerst darum, die Doppelbrechung für in der Achsenebene
liegende Wellennormalenrichtungen in Abhängigkeit von deren speziellen Lage
zu berechnen. Für die normal zur Achsenebene schwingende Welle ist der
Brechungsindex bekannt, er ist konstant und gleich riß. Für die parallel zur
Achsenebene schwingende Welle ist er jedoch variabel und muss berechnet
werden um die Doppelbrechung zu erhalten. Hierzu kann man von einem
Ansatz Gebrauch machen, wie er schon von Berek anlässlich der Herleitung
seiner «Methode des charakteristischen Gangunterschiedsverhältnisses» (Berek
1924) benutzt wurde. Aus Symmetriegründen genügt die Betrachtung eines

einzigen Quadranten.

Y

X

Fig. 1. Indikatrixschnitt parallel zur
optischen Achsenebene.

Die Gleichung des Indikatrixhauptschnittes mit den Halbachsen na und ny,
d. h. der optischen Achsenebene, lautet in kartesischen Koordinaten (Fig. 1):

/v2 <9/2

~ + 1=0. (1)
n\ n\

Gemäss der Problemstellung ist die betrachtete Wellennormalenrichtung W
durch einen Richtungswinkel in bezug auf eine feste Bezugsrichtung festzulegen,

welcher als Parameter betrachtet werden kann. Ist nw ein beliebiger
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Ellipsenradius, entsprechend der Schwingungsrichtung [n(,.]1 einer Welle mit
dem Brechungsindex nw und bildet [/?.„.] mit der X-Achse \n.y\ den Winkel
\nw,ny\, so ist x nwcos[nw,ny] und y nu.sm [«,,,, ,ny], Durch Substitution in
(1) erhält man die Ellipsengleichung in Parameterform:

-f cos2 [nw, n] + -f sin2 [nw,n]~ 1=0. (2)
,by na

Die Fortpflanzungsrichtung der betrachteten Welle (Wellennormale) W vom
Brechungsindex nw steht normal zu ihrer Schwingungsrichtung | nw\ und bildet
ihrerseits mit \ny\ den Winkel 99. Da jedoch 99 90° — \nw, ny\ ist, so wird weiter :

tyi 2 in2
—f sin2 tp +-f cos2 W - 1 0. (3)n2 n\

Ersetzt man den cos durch den sin, so folgt hieraus nach Umformung :

n2 — w,2 n2 — n2
(4)n2 nsin2 99

Da die linke Seite von (4) für eine gegebene Ellipse eine Konstante ist, muss
auch die rechte in bezug auf 99 bzw. W eine Invariante sein. Es gilt daher,
wenn W' eine zweite in der Achsenebene liegende Wellennormale darstellt,
welche mit [% ] einen Winkel <p' bildet:

woraus weiter folgt: ^ < 1^=4- (6)nl, sm2 99 nj1 sin2 99
0 sin 99 nw r

Aus der rechten Seite von (5) lässt sich, in Analogie zur Mallardschen Annäherung

ein Faktor F

F K-JüF + n«
n„, n'„ + na

absondern, dessen Wert für alle petrographisch in Betracht fallenden Mineralarten

so wenig von 1 abweicht, dass der dadurch begangene Fehler immer
innerhalb der Genauigkeitsgrenzen der U-Tischmethoden liegt. Es genügt
daher im folgenden die vereinfachte Beziehung

(6)
s\n<p 1 nw — na

zu betrachten. Setzt man darin 99'=77/2 und entsprechend n'w n so erhält
man

r n.. — n„
Slïlœ

ny

Hier und im folgenden steht [nj immer für die Schwingungsrichtung einer Welle
vom Brechungsindex nx. Das Symbol nx (ohne Klammer) bleibt für den numerischen
Wert des Brechungsindexes reserviert.
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und nach nw aufgelöst, für den gesuchten Brechungsindex der Welle, welche
sich in Richtung W mit Schwingungsrichtung parallel zur Achsenebene
fortpflanzt :

nw na + (ny -nJ sin2 <P- (7)

Da der Brechungsindex der andern, sich in Richtung W fortpflanzenden Welle,
mit Schwingungsrichtung normal zur Achsenebene, unabhängig von <p, den
konstanten Wert nß aufweist, ist die Doppelbrechung in Richtung W somit:

\nw~nß\= (n0L-nß) + (ny-na)sm2cp,
\nw~nß\ -(nß-na) + (nY-na)sm2(p,

wobei nw nß ist, je nachdem <p Vy.

Führt man für die drei Hauptdoppelbrechungen besondere Symbole nach
folgendem Schema ein:

Aa (ny-nß),
Aß (ny-na), (9)

Ay (nß-na)

und bezeichnet man ganz allgemein die Doppelbrechung A für eine Richtung
W, welche mit [w ] den Winkel <p einschliesst mit Av, so folgt aus (8):

Ag, — Ay + Aß sin2<p (10)

bzw. unter Berücksichtigung, dass Aß Aa+A ist,

-Ay + {A<x + Ay) sin29>.

Für gewisse Zwecke empfiehlt sich folgende Umformung :

Av Ay (sin29-1)+^ct sin2^,

Av -Ay (1 -sin2<p)+da sin29, (11)

Av Aasin2<p-Aycos2(p.

Auf Grund von (11) berechnen sich für eine Reihe von speziellen Wellen-
normalenrichtungen im Abstand von 77/12=15° die Doppelbrechungen von
Tabelle 1. Von Bedeutung ist auch der Fall, dass 93= Vy, d.h. dass W mit
einer optischen Achse zusammenfällt. Da nach den Mallardschen Formeln gilt,
dass sin2 Vy AyfAß, sowie dass cos2 Vy — AJAß, so erhält man aus (11):

A A ^ ~A ^ 0
<»

aAß yAß

Der Schnittpunkt der Kurve A =/(<p) mit der Abszissenachse entspricht somit
der optischen Achse und seine Abszisse dem Achsenwinkel F. Dies folgt auch
aus (11) durch Nullsetzung:
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a a o ^ > ^ Av sin2 95 x „Av Jctsm2<P-/lycos2«?3 0, 2f ^^ tg<)3-

Da nach Mallard jedoch dy/da tg2 Vy ist, wird <p Vy (ir/2 — T^).

Tabelle 1

9 Aa sin2 <?—Ay cos2 90

0 0° —Ay
77 12 15° i [2 (Aa-Ar)-V3 (Aa+Ay)]
7r/6 30° i (Aa-3Ar)
77/4 45° i y)

7T/3 60° i(3 4a-Ay)
5 77/12 75° i[2 (Aa-Ay) + V3 (A^+Ay)]

77/2 II CO0 0 +Aa

Das Kurvenbild der Funktion d =f{<p) erhält man auf anschauliche Weise
indem man die beiden Terme y1 Aa sin2<p und y2 Ay cos2cp vorerst gesondert
betrachtet. Da für beide die trigonometrische Funktion im Quadrat steht, sind
sämtliche Ordinaten positiv und man erhält in beiden Fällen sinoidenartige
Kurvenbilder, welche gänzlich auf der positiven Seite der Abszisse liegen.

-400
-A =A«sin2<?-AjCos2<f

Fig. 2. Variation der Doppelbrechung für in der optischen Achsenebene liegende Wellen-
normalenrichtungen in Funktion des Richtungswinkels.
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Durch Bildung der Differenz y1 — y2, erhält man, auf ähnliche Weise wie man
die Resultante zweier interferierender Wellen für einen gegebenen
Gangunterschied konstruiert, das gesuchte Kurvenbild der Funktion y=A0l shindy

cos2 9. Fig. 2 gibt diese Konstruktion für die willkürliche Annahme Aa
600 nm, Ay 400 nm, somit Aß= 1000 nm2).

Die resultierende Kurve ist in ihrem Verlauf ebenfalls der sin- bzw. cos-
Kurve ähnlich. Sie hat wie diese die Periode tt und liegt z. T. oberhalb, z. T.
unterhalb der Abszisse, wobei die maximalen Amplituden durch die beiden
Hauptdoppelbrechungen Aa und Ay gegeben sind. Für die gewählten Annahmen

ergibt sich folgende Wertetabelle :

<p 0° 15° 30° 45° 60° 75° 90°

Av -400 -333 -150 +100 +350 +533 +600

Für y=A(p — 0 wird <p=Vy 39,2°. Aus Symmetriegründen genügt, wie schon
früher erwähnt, die Betrachtung des Intervalles 0 ^ <p ^ tt/2, d. h. eines einzigen
Quadranten.

Um eine Übersicht über den Verlauf der Kurven für verschiedene
Bedingungen zu erhalten, empfiehlt es sich statt der Hauptdoppelbrechungen den
Achsenwinkel 2 V einzuführen und diesen als unabhängige Variable zu betrachten.

Dies wird durch die Mallardschen Formeln ermöglicht, welche bekanntlich
den Achsenwinkel durch das Verhältnis zweier Hauptdoppelbrechungen
auszudrücken gestatten. Setzt man willkürlich Aß= 1, so berechnen sich aus

Aa+Ay= 1 und tg2 Vy A JA y cotg2 Vri für eine Reihe von verschiedenen 2 F
die Werte von Tabelle 2 für die Hauptdoppelbrechungen Aa und Ay.

Tabelle 2

+ )2 V 4* Ay —) 2 V 4* dy
0° 1 0 90° 0,5 0,5

30° 0,933 0,067 70° 0,329 0,671
50° 0,821 0,179 50° 0,179 0,821
70° 0,671 0,329 30° 0,067 0,933
90° 0,5 0,5 0° 0 1

V wird hierbei immer spitz genommen, d. h. von 0° bis 45° gezählt und für
optisch-positive Kristalle auf [« ], für optisch-negative auf |»a] bezogen.

Auf Grund von (12) erhält man aus den Werten von Tabelle 2 für eine Reihe
von 9 die in Tabelle 3 aufgeführten Doppelbrechungen :

2) In der Kristalloptik war es bisher allgemein üblich, Gangunterschiede in Mikio-
millimetern, abgekürzt m/u, oder (ip anzugegen, wobei 1 m/x 10~6 mm 10 9 m entspricht.
Neuerdings werden Gangunterschiede jedoch mehrheitlich in Metern ausgedruckt, wobei
dem Faktor 10~9 das Präfix «nano» entspricht, abgekürzt «n». Einem Gangunterschied
von 1 m/u entspricht somit ein solcher von 1 Nanometer 1 nm.
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Tabelle 3

2 V <*0 A. ^30 -^60 41,5 4^ 90

0° 0 + 0,067 + 0,250 + 0,500 + 0,750 + 0,933 + 1,000
+ 30° -0,067 0 + 0,183 + 0,433 + 0,683 + 0,861 + 0,933
-r 50° -0,179 -0,112 + 0,714 + 0,321 + 0,571 + 0,754 + 0,821
+ 70° -0,329 -0,262 -0,079 + 0,171 + 0,421 + 0,604 + 0,671
+ 90° -0,500 -0,432 -0,250 0 + 0,250 + 0,432 + 0,500
-70° -0,671 -0,604 — 0,421 -0,171 + 0,079 + 0,262 + 0,329
-50° -0,821 -0,754 -0,571 -0,321 -0,071 + 0,112 + 0,179
-30° -0,933 -0,861 -0,683 -0,433 — 0,183 0 + 0,067

0° -1,000 -0,933 -0,750 -0,500 -0,250 -0,067 0

Fig. 3. Variation der Doppelbrechung fur m der optischen Achsenebene liegende Wellennormalen-
richtungen m Funktion des Richtungswinkels fur verschiedene 2 V. Die fur <p 45° vorhandenen

Wendepunkte mit den zugehörigen Wendetangenten sind eingezeichnet.
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Auf Grund von Tabelle 3 lässt sich Fig. 3 zeichnen, in welcher auch die später

zu erwähnenden Wendepunkte und Wendetangenten der einzelnen Kurven
eingezeichnet sind. Da die Schnittpunkte der Kurven von Fig. 3 mit der
Abszisse den Positionen der optischen Achsen entsprechen, ist es notwendig
diese zu berechnen, wie dies schon im Anschluss an die Ableitung von (12)
geschah.

Bezeichnet man 9s für A 0 mit <p0, so erhält man <p0 Vy für optisch-positiv
und <p0 Va (77/2 — Vy) für optisch negativ. Der Zusammenhang zwischen 2 V
und <p0 ist aus Tabelle 4 ersichtlich.

Tabelle 4

2 V 0° +10° +30° +50° +70° ±90° -70° -50° -30° -10° 0°
tpo 0° 5° 15° 25° 35° 45° 55° 65° 70° 85° 90°

Weitere Eigenschaften der Doppelbrechungskurven ergeben sich aus einer
eingehenderen Diskussion. Hierfür ist die Funktion f(<p)=Aip Aasin2ip —

A
y

cos2 <p nach cp zu differenzieren.
Man erhält /' (<p) 2 Aa sin cp cos 95 — 2 Ay cos 93 sin 93 Aa sin 2 93 + Ay sin 2cp

Aß sin 2 93

/' (93) sin 2 93, (13)

/"(?>)= 2 Aß cos 2 cp, (14)

/"' (93) =—4^08^293. (15)

Setzt man /' (93) 0, so erhält man als Wurzeln 93x 0 und <p2 7i/2. Es müssen
somit für diese Abszissen Extrema vorhanden sein. In (14) eingesetzt ergibt
sich /" (93j) > 0 und /" (932) < 0, für 9^ 0 existiert somit ein Minimum, für 9>2 7t/2

jedoch ein Maximum auf. Durch Einsetzen von <p1 und 932 in (11) ergeben sich
diese Extrema zu Amin — Ay und Amax= +Aa.

Aus /"(9>) 0 folgt 93 77/4. Diesen Wert in (15) eingesetzt ergibt f"{cp)
— 4:Aß^0. Da /'" (93) # 0 ist, hat die Kurve einen Wendepunkt mit der Abszisse

x„. 77/4. Die zugehörige Ordinate folgt durch Einsetzen dieses Wertes in (11)
zu yw \{A0l—Ay). Die Koordinaten des Wendepunktes sind somit:

Xw 77/4,

yw i(Aa-Ay) \{Aß-2Ay) i(2Aa-Aß).
(16)

Die Abszisse des Wendepunktes ist somit bemerkenswerter Weise unabhängig
vom Achsenwinkel. In Fig. 3 sind die Wendepunkte mit den zugehörigen
Wendetangenten eingezeichnet.

Die Ordinate des Wendepunktes ist positiv oder negativ, je nachdem
ist. Da aus der Mallardschen Formel tg2 Vy AyjAa folgt, dass für

optisch-positive Kristalle Aa>Ay ist, für optisch-negative jedoch Aa< Ay,
weil für optisch-neutrale tg2 J^ tg2 I^ tg277/4 1 ist, so ist somit yw für
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optisch-positive Kristalle positiv und für optisch negative negativ. Für optischneutral

wird yw 0, d. h. der Wendepunkt fällt in die Abszissenachse.
Die näheren Beziehungen zwischen yw und V erhält man wiederum durch

Anwendung der Mallardschen Formeln. Auch hier ist es von Vorteil, den
Achsenwinkel immer spitz zu nehmen und für optisch-positiv auf [ny], für
optisch-negativ auf [rta] zu beziehen.

Betrachtet man vorerst den optisch-positiven Fall, so folgt aus der Mallardschen

Formel für die tg-Funktion Ay Aa tg2 Vy. Anderseits ist gemäss (16)
Ay Aa — 2yw, so dass Aa — 2yw Aa tg2 Vy, woraus weiter folgt:

yw =~(i~tg2vy), (17)

tgFy=/l-^. (18)

Für den optisch-neutralen Fall erhält man aus (17) für Vy 7t/4 und yw 0,
sowie aus (18) für yw 0, tg2 Vy= 1 und Vy 77/4.

Für den optisch-negativen Fall ergibt sich auf analoge Weise aus cotg2 Vy

tg2 Va AJAy. dass Aa — Ay tg2 Va ist, während anderseits aus (16) folgt, dass

Aa 2yw + Ay, so dass Ay + 2yw Ay tg2 Va wird, und

yw =^(tg*va-i), (i9)

tgFa j/l+-^. (20)
y

Für den optisch-neutralen Fall ergibt sich aus (19) für Va 777 4 wiederum
yw 0 und aus (20) für yw 0 folgt tg Va 1 bzw. Va tt/4.

Die Steigung der Wendetangente y erhält man aus (13) durch Einsetzen
von x — TT/4 zu

y Aßsin^ Aß (Aa + Ay). (21)

Die Steigung der Wendetangente ist somit gleich der maximalen
Doppelbrechung und daher unabhängig vom Achsenwinkel.

Die Gleichung der Wendetangente lautet:

y~yw Aß(x~xw),

(Aa-Ay) (Aa + Ay)(x-^
(22)

oder, nach Auflösung nach y, in Descartescher Form :

2/ (Zla +dy)x+^^-^±^|, (22a)

bzw. umgeformt: y {Aa + Ay)x-Aa{*^^-Ay\~^. (22b)
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Den Schnittpunkt der Wendetangente mit der A-Achse x(, welcher für spätere
Betrachtungen von Bedeutung ist, erhält man aus (22b) durch Nullsetzung
und Auflösen nach x zu :

aA^\+A ln+2
4 I y \ 4

xt -JTÂl A Ï (23)' (A« + Ay)

Für den optisch-neutralen Fall (Jct dy) folgt hieraus xf 77/4.

Auch hier ist es für gewisse Zwecke von Vorteil, an Stelle der Hauptdoppelbrechungen

wiederum den Achsenwinkel als unabhängige Variable einzuführen.

Aus (22) erhält man für y 0

Aß(x~ 0

und unter Berücksichtigung von (17), für optisch-positive Kristalle,

=0,

A 2(*-ï)

-Vo.cos2 F, 1 — tg2 Fy) + 2 |ar — (h -
Drückt man den tg durch den cos aus, so folgt nach weiterer Umformung für
den Schnittpunkt der Wendetangente mit der Abszisse, in Funktion des

Achsenwinkels :

xt l"!"! -cos2 Vy 1,2854 —cos2 Vy. (24)

Für den optisch-neutralen Fall resultiert hieraus wiederum, da cos2 ist,
X, 7r/4.

Für optisch negative Kristalle erhält man auf analoge Weise, unter
Berücksichtigung von (19)

2Aß(x--^+Ar(tS2Voc-1) °>

Av 4 2T7
A ~ vhf 1

COSV<x-
Aß tg2Fa-l

Den tg wiederum durch den cos ausgedrückt und weiter umgeformt:

I + cos2 Va 0,2854 + cos2 Va (25)

Auch aus (25) folgt für optisch-neutral wiederum x( 7t/4.

m
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Durch Elimination von xt erhält man aus (24) und (25) cos2 J^ + cos2 Vy=l
und, weil Va + Vy 77-/2, weiter sin2 Va + cos2 Va 1 bzw. sin2 Vy + cos2 Vy=l.

2. Zur Praxis der Methode

a) Verfahren bei 2 V > 62°

Gemäss den eben erfolgten theoretischen Ausführungen entsprechen die
optischen Achsen als Wellennormalenrichtungen mit dem Gangunterschied
Null den Schnittpunkten der Doppelbrechungskurven mit der Abszissenachse.
Da sich diese Kurven experimentell bestimmen lassen, kann ihr Schnittpunkt
mit der Abszisse konstruiert werden. Dass, wegen der bekannten Schwierigkeiten,

welche einer exakten Dickenbestimmung von Dünnschliffen innewohnen,

eine Bestimmung der Doppelbrechungen, welche die Grundlagen für die
gemachten theoretischen Überlegungen bildeten, an sich im allgemeinen nicht
möglich ist, spielt keine Rolle. Die in den gemessenen Gangunterschieden
R dA enthaltene Präparatendicke d stellt einen konstanten Faktor dar, welcher

bei der Bildung von Verhältnissen, wie sie z. B. bei Anwendung der
Mallardschen Formeln erfolgt, herausfällt und der natürlich auch für die
Konstatierung der Doppelbrechung Null ohne Bedeutung ist. Man kann also
für die hier verfolgten Zwecke die Doppelbrechungskurven ohne weiteres
durch Gangunterschiedskurven ersetzen, wie sie experimentell durch
Gangunterschiedsmessungen für ausgewählte Wellennormalenrichtungen innerhalb
der Achsenebene leicht erhalten werden.

Zu ihrer Bestimmung stellt man die optische Achsenebene, welche nicht
mehr als 25°-30° zur Schliffnormale geneigt sein sollte, normal zur Achse A 4

(Berek, entsprechend der Kontrollachse von Reinhard) und misst für eine
Reihe von Wellennormalenrichtungen, welche durch die eingestellten Winkel
a4 definiert sind, vermittelst eines Kompensators die Gangunterschiede. Um
vergleichbare Werte zu erhalten, besonders, wenn man diese auch für andere
Methoden, z. B. für die direkte Anwendung der Mallardschen Formeln oder
für die Methode der Achsenwinkelbestimmung aus der charakteristischen
Funktion der Doppelbrechung nach Berek benützen will, reduziert man alle
Messungen auf die (an und für sich unbekannte) Schliffdicke, was durch
Multiplikation der Messwerte mit cosa2cosa4 erfolgt. Von den beiden in der Achsenebene

enthaltenen Extremwerten des Gangunterschiedes Ra und Ry, welche
den Bisektrizenrichtungen entsprechen, ist immer mindestens eine einmessbar.
In günstigen Fällen können es auch beide sein. Trifft dies zu, so lässt sich 2 V
nach einer der Mallardschen Formeln berechnen und eine weitere Methode
erübrigt sich.

Die aus den reduzierten Messwerten konstruierte Kurve der Variation des
Gangunterschiedes innerhalb der Achsenebene ist jedoch, abgesehen vom Ein-
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fluss des konstanten Faktors der Dicke, nicht genau mit der theoretisch ermittelten

identisch, indem ihr Verlauf im Gebiet der Extrema nicht genau
symmetrisch ist. Der Grund hierfür liegt im Lichtbrechungsunterschied von
Kristall und Segment, welcher infolge der Anisotropie des Präparates prinzipiell
nur angenähert berücksichtigt werden kann. Diese Abweichungen bedingen
auch, was an sich sehr bedauerlich ist, dass sich die genaue Lage der Extrema
nicht aus dem Kurvenverlauf ermitteln lässt und man hierfür auf die Resultate
der Einmessung der optischen Symmetrieebenen angewiesen bleibt. Ein
Verfahren, welches erlaubt die Position der durch normale Einmessung erhaltenen
Bisektrizen mit Hilfe von Gangunterschiedmessungen durch systematisches
Probieren zu verbessern, hat Berek im Anschluss an seine Methode der
Charakteristischen Funktion der Doppelbrechung gegeben (Berek 1925),
worauf hiermit verwiesen sei.

Im Gegensatz zur Lage der Extrema, d. h. der Hauptschwingungsrichtungen
[»J und [riy] lässt sich jedoch die Position der optischen Achsen mit erheblicher
Genauigkeit bestimmen. Es genügt hierfür, den Verlauf der Gangunterschiedkurve

in unmittelbarer Nachbarschaft der optischen Achse auf Grund einiger
Gangunterschiedmessungen zu zeichnen und ihren Schnittpunkt mit der
Abszisse zu bestimmen. Ist dieser ermittelt, so lässt sich der Achsenwinkel in
bezug auf die benachbarte Bisektrix ablesen. Hierfür genügen im allgemeinen
je zwei Gangunterschiedmessungen zu beiden Seiten des Achsenaustrittspunktes.

Man wählt diese etwa + 10° und + 20° von der Achse entfernt, wobei die
betreffenden a4-Koordinaten genau zu beachten sind, da die Gangunterschiede
in unmittelbarer Nachbarschaft der optischen Achse stark richtungsabhängig
sind, ganz im Unterschied zur Nachbarschaft der Bisektrizen. Bei den
Gangunterschiedmessungen ist zu beachten, dass das Vorzeichen der Doppelbrechung
beim Durchgang der optischen Achse wechselt, dass somit der Mikroskoptisch
nach Durchgang der optischen Achse um 90° gedreht werden muss, es sei denn,
dass man die Messungen auf der einen Seite der optischen Achse in der
Subtraktionsstellung, diejenigen auf der andern jedoch in der Additionsstellung
durchführt3).

Für diese Methode ergibt sich nun auf Grund der im vorhergehenden
Abschnitt gemachten Überlegungen eine wesentliche Vereinfachung, ohne dass

dadurch der Messgenauigkeit Abbruch getan würde. Eine Betrachtung von
Fig. 3 zeigt nämlich, dass die Doppelbrechungs- bzw. Gangunterschiedskurven
in der Nachbarschaft des Wendepunktes auf grössere Erstreckung annähernd
geradlinig verlaufen, so dass sie mit der Wendetangente praktisch zusammenfallen.

Erfolgt nun der Schnitt mit der Abszisse für einen Kurvenabschnitt,
für welchen dies zutrifft, so kann an Stelle der Kurve die Tangente betrachtet
werden. Diese ist jedoch als Gerade durch zwei Punkte eindeutig bestimmt,

3) Man vergleiche die diesbezüglichen Ausführungen im Anhang.
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so dass nur zwei Gangunterschiedsmessungen zu ihrer Definition genügen und
die Lage der optischen Achsen als Schnittpunkt zweier Geraden festgelegt ist.
Um diese vereinfachte Variante der Methode jedoch anwenden zu können,
muss vorerst untersucht werden, welches die Bedingungen sind, unter welchen
der Schnitt der Kurve mit der Abszisse derart erfolgt, dass an ihrer Stelle die
Tangente betrachtet werden darf.

Man kann hierfür so vorgehen, dass man einerseits aus (11) durch
Nullsetzung die Schnittpunkte x0 der Kurven in Funktion von 2 F berechnet und
anderseits aus (24) bzw. (25) die Schnittpunkte der Wendetangenten xt, ebenfalls

in Funktion des Achsenwinkels. Durch Vergleich der beiden Werte für
gegebene 2 F erhält man die Differenz S=|x0 — xt\, worauf sich, je nach dem
Fehler, welchen man zuzulassen gewillt ist, der Anwendungsbereich abschätzen
lässt. Man erhält auf diese Weise für den optisch-positiven Fall die Werte von
Tabelle 5.

Tabelle 5

+ 20° +30° +40° +50° +60° +65° +70° +80° ±90°
18,5 20,2 23,1 26,6 30,6 32,9 35,2 40,03 45,0
10 15 20 25 30 32,5 35 40 45

+ 8,1 +5,2 +3,1 +1,6 +0,6 +0,4 +0,2 +0,03 0

Für den optisch-negativen Fall erhält man auf analoge Weise die Werte
von Tabelle 6.

Tabelle 6

(-) 2 V +90° -80° -70° — 65° -60° -50° -40° -30° -20° -10° -5° 0°

xt<> 45,0 49,97 54,8 57,1 59,4 63,4 66,9 68,8 71,9 73,2 73,5 73,7
V 45 50 55 57,5 60 65 70 75 80 85 87,5 90

S xt-x0 0 -0,03 -0,2 -0,4 -0,6 -1,6 -3,1 -5,2 -8,1 -11,8 -14,0 -16,3

Fig. 4 gibt das Bild der Abhängigkeit der Differenz S von 2 F. Lässt man
einen Fehler von § 0,5° zu, was einem solchen von maximal 1° für 2 F
entsprechen würde, so folgt, dass die Methode der Ersetzung der Gangunterschiedkurve

durch ihre Wendetangente für Kristallarten mit 62,5° < 2 Vy < 117,5°
bzw. 117,5° > 2 Va > 62,5° anwendbar ist. Sie ist somit für die überwiegende
Anzahl wichtiger gesteinsbildender Mineralien brauchbar, z. B. Plagioklase,
Alkalifeldspäte mit Ausnahme der Sanidine und Anorthoklase mit kleinem 2 F,
Olivine, Pyroxene mit Ausnahme der Pigeonite, Hornblenden etc. Man hat
somit, um die Achsenpositionen zu erhalten, nur die Gangunterschiede in zwei
in der Achsenebene liegenden Richtungen zu messen. Diese sind durch ihre
a4-Koordinaten definiert und müssen auf verschiedenen Seiten der optischen
Achse liegen und mit dieser Winkel von 10° bis 15° einschliessen. Bezeichnet
man die in Graden ausgedrückten a4-Koordinaten mit xy und x2 und die beiden

+ 2 V 0°

xt0 16,3
x0° 0

h xt—xo +16,3

+ 5° +10°
16,5 16,8
2,5 5

+ 14,0 +11,8
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[nf] +10° +30° +50° +70°
H 1 h

(-) 2 V —

-70° -50° -30° -io° rn i
I I I I I I I L"«J

±90e

(+) 2V —= H-
ANWENDUNGSBEREICH

DER METHODE1

62.5° <2Vf< 117.5°

117.5° > 2 Vw > 62.5°
5

Fig. 4. Graphische Darstellung der Differenz S zwischen den Abszissenschnittpunkten der Doppel¬
brechungskurven und denjenigen ihrer Wendetangenten in Funktion des Achsenwinkels.

auf die Schliffdicke reduzierten Gangunterschiede R1 und R2 mit y1 und v/2, so

lautet die Gleichung der Wendetangente

(y-yi) (z~xi) (2/1-2/2)-

Setzt man y 0 und löst man nach x auf, erhält man die gesuchte
Achsenposition, und unter Berücksichtigung der benachbarten Bisektrix, den Achsenwinkel.

Eine rechnerisch einfachere Lösung folgt aus dem Umstand, dass die beiden
durch Abszisse, Ordinate (Gangunterschied) und Wendetangente gebildeten
Dreiecke ähnlich sind, da sie zwei gleiche Winkel aufweisen (Fig. 5). Es gilt
daher d1/d2=R1/R2 und (d1-srd^jd1 {R1 +R^jR^, woraus weiter folgt:

Ri
d1

R1 + Ri
- (dx + d2 (26)

Die Summe d1 + d2 ergibt sich aus den entsprechenden a4-Koordinaten.
Die Methode ist auch für den Fall anwendbar, dass eine optische Achse

zwar der direkten Einmessung nicht mehr zugänglich ist, jedoch nur knapp
ausserhalb der grösstmöglichen Tischneigung liegt. Man misst hierzu die
Gangunterschiede für zwei Richtungen auf derselben Seite der optischen Achse

(Fig. 6) und erhält wiederum d1jd2 — R1!R2 und (d2 — d1)/d1 (R2 — R1)/R1,

woraus folgt:
Ei

d4
R2-Rx

(d2 d4). (26a)

Die Differenz (d2 — d^) ergibt sich ebenfalls aus den entsprechenden ^-Koordinaten.
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Obwohl grundsätzlich zwei Gangunterschiede zur eindeutigen Bestimmung
der Wendetangente ausreichen, empfiehlt es sich in der Praxis zur Kontrolle
mindestens einen dritten zu berücksichtigen. Die gegenüber den entsprechenden

a4-Koordinaten als Ordinate aufgetragenen Gangunterschiede müssen auf
einer Geraden hegen, wie z. B. in Fig. 9. Man kann als dritten Gangunterschied
denjenigen in der dem Wendepunkt der Gangunterschiedskurve entsprechende
Richtung verwenden. Diese ist leicht auffindbar, da sie den Winkel \na, -ny\
halbiert.

Die Kontrolle, ob die drei Messpunkte kollinear sind, erfolgt am einfachsten
und mit genügender Genauigkeit graphisch, kann aber auch rechnerisch
durchgeführt werden. Sind die Koordinaten des dritten Punktes P3(xa, y3), so müssen

sie die oben gegebene Gleichung der Geraden durch die Punkte Pt (x1, ?/t)
und I\ (sc2. y2) erfüllen, d. h. es muss

(y3 -Vi) («1 - »2) - (x3 - xi) (Vi - y3) 0
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sein bzw. in zweckmässiger Umformung :

oo3{yi-y1)-y3{^-x1)+xiy1-yix1
^3 y-.i 1

x2 y2 i
Xi y1 1

0. (27)

In besonders delikaten Fällen, wenn die Messung der Gangunterschiede z. B.
infolge innerer Reflexe oder einer Trübung mit Schwierigkeiten verbunden ist
und die Messwerte streuen, kann ein Ausgleich nach der Methode der kleinsten
Quadrate vorgenommen werden um den wahrscheinlichsten Verlauf der
Wendetangente zu erhalten. Es handelt sich um das gleiche Verfahren, wie es in der
Statistik zur Bestimmung der Regressionsgeraden angewandt wird, so dass

für Einzelheiten auf die Darstellung in den Lehrbüchern der Statistik bzw.

Korrelationsrechnung verwiesen werden kann, wie z. B. Ezekiel (1950),
Linder (1960), Yule und Kendall (1950), Weber (1956) etc.

Beispiel : Optisch-positive Hornblende aus Amphibolit, Val d'Arbedo, Tes-

sin. + )2F 86°±1° (direkte Messung). Obwohl für die hier angewandte
Methode zur Bestimmung der Position der optischen Achse prinzipiell zwei

Gangunterschiedsmessungen genügen und sich die Zeichnung der
Gangunterschiedskurve erübrigt, soll diese hier, zum besseren Verständnis der Methode

berücksichtigt werden. Zu diesem Zwecke wurden für eine Reihe von Wellen-
normalenrichtungen innerhalb der um 20° gegen die Schliffnormale geneigten
Achsenebene vermittelst eines MgF2-Kompensators der Firma Leitz-Wetzlar
die Gangunterschiede für die D-Linie gemessen und auf die Schliffdicke reduziert.

Für die graphische Darstellung wurden die a4-Koordinaten derart auf
neue Abszissenwerte transformiert, dass [ny] mit a4= —31° in den Ursprung
(x 0) zu liegen kommt. Die reduzierten Gangunterschiede mit ihren Koordinaten

sind die folgenden, wobei die Transformation lautet: x oe4 + 31°:

Xi _40° -31° -20° -10° 0° + 5° +20° +30° +40°
x _ 9° o° +11° +21° +31° +36° +51° +61° +71°
Rnm -458,5 -476,3 -436,5 -349,1 -202,4 -116,1 +130,6 +309,1 +427,4

Dabei wurden willkürlich das Extremum [ny] als negativ, das (ausserhalb
des Messbereiches liegende) |na] jedoch als positiv angenommen, in
Übereinstimmung mit den bisher gemachten Ausführungen. Auf Grund dieser
Messwerte erhält man das Kurvenbild Fig. 7. Da [ny] bei x 0 liegt und die Kurve
die A-Achse bei ca. x 43° schneidet, ergibt sich Vy 43° und entsprechend
+ 2 V 86°. Der Wendepunkt der Kurve liegt nach den gemachten

Ausführungen bei x 45° und es ist deutlich ersichtlich, wie die Wendetangente
in dessen Nachbarschaft von ca. x 30° bis ca. x 60° innerhalb der
Messgenauigkeit mit der Kurve zusammenfällt. Es genügt daher, innerhalb dieses

Intervalles die Tangente durch zwei Gangunterschiedsmessungen festzulegen
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Fig. 7. Bestimmung der Position der optischen Achse und des Achsenwinkels für eine optisch¬
positive Hornblende mit Fy — 43,1° aus Amphibolit (Val Arbedo, Tessin).

und ihren Schnitt mit der Abszisse festzulegen um die optische Achse zu
lokalisieren.

Geht man von den beiden Gangunterschieden R1(x1 31°, y1 —202,4 nm)
und ß2 (x2 51 °, y2 130,6 nm) aus, erhält man als Gleichung der
Wendetangente y= 16,65 x — 717,35. Für y 0 folgt daraus x 43,08° Vy und
+ 2 F 86,2°.

Nach der Methode der ähnlichen Dreiecke erhält man auf Grund von (26)
dy 12,16° und Fy 31° +12,16° 43,16°, somit + )2F 86,3°.

Benützt man die Gangunterschiede R2(x2 51°, y2 =+130,6 nm) und
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Ji.A(x:i 36°, y3 =— 116,1 nm), so resultiert auf gleiche Weise ^ 7,06 und
Fy 36° + 7,06° 43,06°, woraus + )2F 86,1°.

Zur Kontrolle wurde eine Bestimmung des Achsenwinkels mit Hilfe der
charakteristischen Funktion der Doppelbrechung nach Berek vorgenommen.
Sie ergab unter Verwendung des Gangunterschiedes Ry 476,3 nm und
desjenigen einer Hilfsrichtung (x 61°, y 427,4 nm) + )2F 86,0°, in befriedigender

Übereinstimmung mit den eben erhaltenen Werten.

Für kleine 2 F fällt der Schnittpunkt der Gangunterschiedskurve mit der
Abszissenachse wegen der Krümmung der Kurve nicht mehr mit demjenigen
der Wendetangente zusammen, wie aus Fig. 3 anschaulich hervorgeht. Trotzdem

lässt sich die Position der optischen Achse festlegen und der Achsenwinkel
bestimmen, denn nach Tabelle 6 und 7 sind die Differenzen der Schnittpunkte
x0 und xt in Funktion des Achsenwinkels, wie sie sich aus (24) und (25) ergeben,
bekannt. Es kann somit die Korrektur angebracht werden, welche notwendig
ist, damit von xt auf x0 geschlossen werden darf. Zur Bestimmung der
Wendetangente benötigt man wiederum zwei Punkte derselben, welche man durch
die Messung von zwei Gangunterschieden in dem, dem Wendepunkt unmittelbar

benachbarten Kurvenabschnitt erhält, für welchen sich die Kurve praktisch

als Gerade verhält. Die Lage des Wendepunktes ist bekannt, da dessen

Abszisse nach (16), unabhängig von 2 F, bei x — tt^ liegt. Man bestimmt daher

IW «£U" OU' HU" OU" t>U~ (U~ ÖU" »U"

Fig. 8. Korrekturdiagramm zur Ermittlung von Vy aus dem Abszissenschnitt der Wendetangente
xt bei kleinem 2 V.

b Verfahren bei 2V < 62°

80° —
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in der stereographischen Projektion die Winkelhalbierende von [na,ny] und
liest deren a4-Koordinate ab. Ist diese a4tc, so misst man die Gangunterschiede
für die beiden Richtungen a4w+15° und reduziert sie durch Multiplikation
mit cos a2 cos a4 auf die Schliffdicke. Bei sehr kleinem 2 V muss vermieden
werden, dass die gewählten Richtungen in unmittelbarer Nachbarschaft einer
optischen Achse zu liegen kommen. Auf Grund der beiden Gangunterschiede
kann die Wendetangente konstruiert und ihr Schnittpunkt mit der Abszisse,
xt abgelesen werden. Um aus xt den Schnittpunkt der Gangunterschiedskurve
mit der Abszisse x0 zu erhalten, kann man sich des Diagrammes Fig. 8 bedienen,

welches auf Grund von Tabelle 6 und 7 gezeichnet wurde. Es ist so angelegt,

dass mit x( als Ordinate eingegangen wird und auf der Abszisse Vy abgelesen

werden kann.
Genauere Resultate erhält man auf rechnerischem Wege. Man bestimmt,

wie für 2 F > 62° angegeben, die Gleichung der Wendetangente und erhält
daraus xt indem man y 0 setzt und nach x auflöst. Den Achsenwinkel erhält
man durch Auflösen von (24) bzw. (25) zu

cos Vy /l,2854 — xt bzw. cos Va /x, —0,2854. (28)

xt ist hierbei im Bogenmass auszudrücken.
Da es wichtig ist, die Bestimmung der Wendetangente möglichst genau

vorzunehmen, empfiehlt es sich auch hier, wie für den Fall 2 V > 62° erwähnt,
mindestens einen weiteren Punkt der Kurve zu bestimmen, wofür sich in
erster Linie der Wendepunkt eignet. Des weiteren gilt auch, was über das
Kriterium für die Kollinearität der drei Punkte, sowie über einen eventuellen
Ausgleich gesagt wurde.

Beispiel: Wollastonit aus Wollastonit-führendem Granat-Diopsid-Vesuvian-
fels von Claro, Tessin4).

An einem Kristall, dessen Achsenebene 18° gegen die Schliffnormale geneigt
war, konnte 2 V durch direkte Einmessung beider Achsen zu — 2 V — 40° + 2°
bestimmt werden, wobei die Einstellung auf maximale Dunkelheit für beide
Achsen relativ unsicher war. Zur Festlegung der Wendetangente wurden die
Gangunterschiede für die beiden Richtungen gemessen, welche je 15° mit der
Winkelhalbierenden [ïta,7&y] bilden und auf die Schliffdicke reduziert:

Rx (x4 30°, y1 338,9 nm), B2 (x2 — 60°, y2 — 65,5 nm).

Zur Kontrolle wurde auch der Gangunterschied für den Wendepunkt der
Kurve gemessen: Rw(xw 4:5°, yw 202,5 nm). Zur Prüfung, ob die drei
eingemessenen Punkte der Tangente kollinear sind, wurde das Kriterium (27)

4) Der Autor dankt auch an dieser Stelle Herrn Kollegen V. Trommsdorff, Zürich,
bestens für die freundliche Überlassung von Schliffen dieses Gesteins.
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angewandt. Es ist :

xw Vw 1 45 202,5 1

D x2 y* 1 60 65,5 1

xx Vi 1 30 338,9 1

D 0 würde sich ergeben für yw 201,1. Die Abweichung liegt innerhalb der
Messgenauigkeit und es darf angenommen werden, dass die Wendetangente
durch die beiden Gangunterschiede R1 und R.2 mit genügender Genauigkeit
festgelegt ist. Für die graphische Darstellung ist zu beachten, dass, im Gegensatz

zum vorhergehenden Beispiel, R1 und R2 gleiches Vorzeichen haben, somit
auf derselben Seite der V-Achse abzutragen sind. Ob sie beide positiv oder

negativ gerechnet werden, ist an sich ohne Bedeutung und ohne Einfluss auf
das Resultat. Wenn sie hier negativ genommen werden, so geschieht dies in
Befolgung der hier bisher eingehaltenen Konvention (Fig. 3). Aus Fig. 9 lässt
sich für den Schnittpunkt der Wendetangente mit der Abszisse ablesen x( 67°,

woraus mit Hilfe des Korrekturdiagramms Fig. 8 folgt, dass Vy 70,5,
entsprechend Va 19,5° und — 2 V 39°.

Zur rechnerischen Lösung bestimmt man die Gleichung der Wendetangente :

y 273,4 ce-19369

(Claro, Tessin).
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aus welcher man durch Nullsetzung erhält x xt &l,\9°. Da diesem Winkel im
Bogenmass 1,1726 rad entspricht, wird nach (25) cost^= /1,1726 — 0,2854
0,94192, woraus Va 19,6° und — 2 V 39,2°.

3. ANHANG

a) Bemerkungen zur Messung der Gangunterschiede

Zur Messung von Gangunterschieden in Verbindung mit den U-Tisch-
methoden werden heute ausschliesslich Drehkompensatoren benutzt. An Stelle
des bekannten und weitverbreiteten Kalkspathkompensators nach Berek,
der Firma Leitz-Wetzlar, dessen Fertigung kürzlich eingestellt wurde, ist der
nach demselben Prinzip arbeitende MgF2-Kompensator der gleichen Herstellerfirma

getreten. Im Gegensatz zum Calcit erlauben die schleiftechnischen
Eigenschaften von MgF2 die Herstellung von Kompensatorplättchen einheitlicher
Dicke, so dass die Gangunterschiede in Funktion des Kippwinkels tabelliert
werden können und sich die Einschaltung einer instrumentenabhängigen
Kompensatorkonstante erübrigt. Ein weiterer Vorteil des MgF2 gegenüber
dem Calcit ist dessen normale Dispersion der Doppelbrechung. Tabellierung
der Gangunterschiede und normale Dispersion der Doppelbrechung weist auch
der Quarzplattenkompensator nach Ehringhaus der Firma Zeiss auf.

Alle Drehkompensatoren weisen einen gewissen Fertigungsfehler auf. Um
ihre Genauigkeit voll auszunützen ist es daher unumgänglich, für jedes Instrument

eine Fehlerkurve in Funktion des Gangunterschiedes aufzunehmen, wie
dies zuerst von Mosebach (1948) vorgeschlagen wurde, und aus welcher für
jeden gemessenen Gangunterschied die entsprechende Korrektur, welche positiv

oder negativ sein kann, zu entnehmen ist. Für weitere diesbezügliche
Untersuchungen und Ausführungen sei auf Rath (1958, 1958a) verwiesen.

Drehkompensatoren haben allgemein den Nachteil, dass Messungen von
Gangunterschieden < A/2 wenig zuverlässig sind, da die diesbezüglichen
Kompensationsstreifen breit und verwaschen erscheinen. Durch diesen Umstand
waren lange Zeit eine Reihe wichtiger und ergiebiger polarisationsmikroskopischer

Methoden, welche auf der Messung von Gangunterschieden beruhen,
auf niedrig doppelbrechende Kristallarten, wie z. B. Feldspäthe, nicht, oder
nur beschränkt anwendbar, zum mindesten, wenn nicht besonders angefertigte,
dickere Schliffe verwandt wurden. Erst die systematischen Untersuchungen
und Vorschläge von Mosebach (1949, 1949 a) haben diese Einschränkung
behoben und es ermöglicht, auch kleine Gangunterschiede genau zu messen.
Da solche bei der vorgeschlagenen Methode gelegentlich auftreten, sowie, weil
die MosEBACHschen Methoden vielfach nicht die ihnen gebührende Beachtung
gefunden haben, soll hier anhangsweise kurz auf sie aufmerksam gemacht
werden.
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Bezeichnet man den zu messenden Gangunterschied im Präparat mit Rx
und den im Kompensator erzeugten, von bekanntem Betrag, mit Rk, so besteht
das allgemein übliche Verfahren zur Messung von Gangunterschieden bekanntlich

darin, dass man in Subtraktionsstellung «auf Null kompensiert», d. h.
Rk Rr macht und aus dem bekannten Rk auf das unbekannte Rx schliesst.
Nach Mosebach kompensiert man nun für kleine Gangunterschiede nicht auf
Rx, sondern auf Rx + kX, wodurch es möglich wird, die Kompensation in höhere

Ordnungen mit grösserer Messgenauigkeit zu verschieben. Praktisch geht man
dabei so vor, dass man zuerst im weissen Licht auf Rx kompensiert, was am
Erscheinen des schwarzen Kompensationsstreifen erkannt wird. Man geht nun
zu homogenem Licht von bekannter Wellenlänge über. Beim Weiterdrehen
des Kompensators erscheinen dann weitere dunkle Streifen, welche den
Gangunterschieden -R^+lA, Rr + 2À, Rr + kX entsprechen. Beim Erscheinen des

/,:-ten Streifens ist somit Hk R, + k X und daher Rx Rk — kA. Man hat somit
vom Messwert k A abzuziehen um das gesuchte Rx zu erhalten.

Weniger bekannt dürfte sein, dass die Kompensation für homogenes Licht
auch in Additionsstellung vorgenommen werden kann. Beim Erscheinen des

ersten dunkeln Streifens ist dann Rx + Rk 1A und beim Uten ist Rs + Rk kX.

so dass Rx kX — Rk ist. Dieses Verfahren kann unter Umständen von Vorteil
sein, z. B. wenn bei kleinen Objekten Zentrierschwierigkeiten bestehen. Der
Mikroskoptisch braucht nach dem Durchgang einer optischen Achse nicht um
45° gedreht zu werden.

Da bei diesen Methoden öfters vom weissen Licht zu homogenem von
bekannter Wellenlänge gewechselt werden muss und umgekehrt, ist der
Gebrauch eines geeigneten Lichtfilters5) einer Spektrallampe oder einem
Monochromator vorzuziehen.

b) Die Mallardschen Formeln

In den vorhergehenden Ausführungen wurde verschiedentlich von den
Mallardschen Formeln Gebrauch gemacht. Es scheint daher vielleicht
angebracht, diese hier anhangsweise in ihrer Gesamtheit aufzuführen, um so mehr,
als sie in den einschlägigen Lehrbüchern kaum je vollständig behandelt werden.
Es handelt sich bei Ihnen bekanntlich um vereinfachte Näherungsausdrücke

5) Der Verfasser hat sehr gute Erfahrungen mit einem Interferenzfilter für die D-Linie
vom Typ «Filtraflex» B-20 der Firma Balzers AG fur Hoehvakuumtechnik und dünne
Schichten, in FL-9496 Balzers, Fürstentum Liechtenstein, gemacht. Als Beleuchtung
eignet sich eine Halogenlampe, welche wegen ihrer hohen Intensität ohne weiteres die
notige Einschränkung der Apertur erlaubt. Breitbandfilter, wie sie fur manche Zwecke

genügen und eine grossere Durchlässigkeit aufweisen, so dass auf eine intensive Beleuchtung

verzichtet werden könnte, sind fur Gangunterschiedmessungen nicht geeignet, da
bei ihrem Gebrauch an den Kompensationsstreifen farbige Saume auftreten.
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für die exakten Formeln zur Berechnung von 2 F aus den drei Hauptbrechungsindizes.

Eine Ableitung der exakten Ausdrücke findet man verschiedentlich,
u. a. bei Bixeei (1950, p. 47), oder in den Lehrbüchern der analytischen
Geometrie des Raumes, wo das entsprechende Problem der Berechnung des Winkels

der Kreisschnittnormalen bzw. der Kreisschnittebenen eines dreiachsigen
Ellipsoides aus dessen drei Halbachsen interessiert. Es gibt im ganzen 12

Möglichkeiten diesen Winkel auszudrücken, entsprechend der Tatsache, dass
die Kreisschnittnormalen (optische Achsen) zwei Winkel miteinander bilden,
welche durch die grösste bzw. kleinste Ellipsoidachse halbiert werden, sowie
dass sechs trigonometrische Funktionen zur Verfügung stehen um diese Winkel
auszudrücken.

Unter Benützung der cos-Funktion z. B. lautet die exakte Beziehung für
den auf \ny] bezogenen Achsenwinkel :

Nach Mallard kann man nun für kleine Doppelbrechungen (und somit für den
grössten Teil der wichtigen gesteinsbildenden Mineralien) einen Faktor F

absondern, da sein Wert in diesem Falle nur wenig von l abweicht. Das ist
die sog. Mallardsche Näherung, welche auf die nach diesem Autor benannten
Näherungsausdrücke führt. Entsprechende Möglichkeiten bestehen natur-
gemäss auch für die übrigen elf Formeln.

Setzt man gemäss (9) wiederum vereinfachend:

so lassen sich die 12 Mallardschen Formeln, da V!Y+Vy rrji ist, wie folgt in
6 Gruppen zusammenfassen :

Die Mallardschen Formeln gestatten somit die angenäherte Berechnung des
Achsenwinkels aus zwei Hauptdoppelbrechungen. Ihre Bedeutung beruht
jedoch besonders auch darauf, dass an Stelle der nur selten genau bekannten
Hauptdoppelbrechungen Ax, die mit dem Kompensator leicht zu bestimmenden

(ny~nß) Aa, (ny-n0l)=Aß, (nß-na) Ay,
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Hauptgangunterschiede Rx dAx verwendet werden können, da die
unbekannte und nur angenähert zu bestimmende SchlifFdicke zufolge der
Verhältnisbildung herausfällt.
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