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Eine Methode zur genauen Einmessung der optischen
Achsen bei U-Tischuntersuchungen

Von Conrad Burri (Ziirich) *)

Mit 9 Figuren und 6 Tabellen im Text

Zusammenfassung

Die Doppelbrechung optisch-zweiachsiger Kristalle wird fiir in der Achsenebene lie-
gende Wellennormalenrichtungen in Abhéngigkeit des Richtungswinkels gegeniiber [ny]
fiir eine Reihe von 2 ¥V berechnet und graphisch dargestellt. Die Kurven fur die verschie-
denen 2 V verlaufen identisch, sind jedoch in Richtung der Ordinate gegeneinander ver-
schober. Sie weisen fiir & = n/4 einen Wendepunkt auf. Thre Schnittpunkte mit der Ab-
szisse (Doppelbrechung = 0) entsprechen den Positionen der optischen Achsen. Fuar
2T > 62° fallen die Schnittpunkte mit der Abszisse fiir Kurve und Wendetangente inner-
halb der Megsgenauigkeit zusammen. Da die Wendetangente als Gerade durch zwel
Punkte eindeutig bestimmt ist, geniuigen daher zwei Gangunterschiedsmessungen in
Nachbarschaft der optischen Achse zu deren genauen Lokalisierung und damit zur
Bestimmung von 2 V. Die Methode ist auch fir Achsenwinkel 2V <« 62° anwendbar
wenn eine entsprechende Korrektur angebracht wird, wofiir ein Diagramm gegeben
wird. Die gesamten Betrachtungen haben Giltigkeit im Rahmen der Mallardschen
Annéherung.

English Summary

The birefringence for wavenormal directions within the axial plane of optically biaxial
crystals is calculated for various values of the axial angle 2 7 in function of the direction
angle to [ny] and is represented graphically. The resulting curves for the various axial
angles are identieal in shape but differ in their ordinates. They show a point of inflexion
for the value x = »/4. Their point of intersection with the abszyssa (corresponding to
double refraction zero) indicate the positions of the optic axes. For 2V > 62° the points
at which curve and inflexion tangent intersect the abszyssa are, within the limits of
experimental error, coincident. The tangent, being a straight line, is fully determined
by two points. Therefore the measurement of two path differences near the optic axis is
sufficient for its precise location and the determination of 2V, The method can be used
also for 2V < 62° if an appropriate correction be made, for which a diagram is given.
The method here proposed holds good within the limits of the Mallard approximation.

*) Adresse des Autors: Prof. Dr. C. Burri, Institut fiir Kristallographie und Petro-
graphie ETH, Sonneggstrasse 5, CH-8006 Ziirich.
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I. EINLEITUNG UND PROBLEMSTELLUNG

Der wahre Winkel der optischen Achsen 2V bildet seit Einfithrung der
U-Tischmethoden eines der wichtigsten Kennzeichen zur Charakterisierung
optisch-zweiachsiger Kristallarten. Im Gegensatz zu den konoskopischen
Methoden, welche in ihrer Anwendbarkeit an bestimmte Schnittlagen gebun-
den sind, erlauben die U-Tischmethoden die Bestimmung von 2 V in sozusagen
allen Féllen, sofern sie tiberhaupt anwendbar sind. Die Bestimmung erfolgt
entweder direkt, wozu mindestens eine optische Achse der Einmessung zugéing-
lich sein muss, oder indirekt aus der Messung von Ausléschungsschiefen oder
Gangunterschieden. Auf der Messung von Ausléschungsschiefen beruht die
theoretisch dusserst ingenitse «Methode der charakteristischen Ausloschung»
(BEREK 1924), spiter in «Charakteristische Funktion der Ausloschung» um-
benannt (RINNE-BEREK 1953). Sie ergibt sich aus einer erschépfenden trigono-
metrischen Auswertung der Fresnelschen Konstruktion. Sie liefert jedoch in
der Praxis nur unter giinstigen Bedingungen brauchbare Resultate. Unerléss-
lich ist die vollige Homogenitéit des betreffenden Kristalls, sowie eine zweck-
miéssige Wahl der Versuchsbedingungen. Die Methode wird daher, auch in
ihrer Modifikation durch DopGe (1934) nur selten angewandt.

Sehr gute Resultate, und zwar im allgemeinen solche, welche den durch die
direkte Methode erhaltenen iiberlegen sind, erreicht man durch die Anwen-
dung der Mallardschen Formeln, was allerdings verlangt, dass zwei Haupt-
schwingungsrichtungen einmessbar sind. Ist nur eine solche zugénglich, so
muss das Nikitinsche Verfahren unter Beniitzung des Gangunterschiedes in
einer Hilfsrichtung innerhalb einer optischen Symmetrieebene angewandt wer-
den, oder, weitaus besser, die ebenfalls von BEREK angegebene «Methode des
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charakteristischen Gangunterschiedverhiltnissesy (BEREK 1924), spiter in
«Charakteristische Funktion der Doppelbrechung» umbenannt (RINNE-BEREK
1953). Sie stellt die ergiebigste und wohl auch genaueste Methode zur Ermitt-
lung von 2V bei Diinnschliffuntersuchungen dar.

Bei Routineuntersuchungen wird itberwiegend die direkte Methode ange-
wandt, zumal sie sich direkt mit der Einmessung der optischen Symmetrie-
ebenen verbinden ldsst, welche ihrerseits die grundlegende Ausgangsoperation
fir alle U-Tischuntersuchungen darstellt. Sie verlangt auch kein zusitzliches
Instrumentarium, wie z. B. Kompensator oder besondere Beleuchtungsein-
richtung. Leider wohnt ihr jedoch die jedem U-Tischpraktiker hinldnglich
bekannte Schwierigkeit inne, dass sich die Position der optischen Achse inner-
halb der normal zu 4, (BEREK, Kontrollachse von REINHARD) stehenden Achsen-
ebene sehr oft nicht mit der an sich wiinschenswerten Genauigkeit einstellen lasst.
Auch bei sorgfiltiger Regelung der Beleuchtung und Kontrolle der Apertur-
verhdltnisse mit Hilfe der Bertrandlinse, ist die Stellung der maximalen
Dunkelheit, welche dem Durchgang der optischen Achse entspricht, oft so
schlecht definiert, dass fiir deren Position eine Unsicherheit von 1°-2° be-
stehen bleibt. Da sich dieser Fehler im ungiinstigsten Fall fir die Angabe von
2V verdoppeln kann, ist ohne weiteres klar, dass es von griosstem Interesse
ist, ihn moglichst klein zu halten. Gewisse Kunstgriffe gestatten zwar oft, die
Lage der optischen Achse etwas zu prézisieren. Fur den Fall, dass der Grund
fiir die Schwierigkeit der Festlegung der Achsenposition nur durch das Auf-
treten einer Achsendispersion bedingt ist, hilft die Verwendung homogenen
Lichtes bzw. eines entsprechenden Filters. In andern Féllen wird etwa ange-
raten, beim Arbeiten im weissen Licht das Rot I einzuschalten und den
Mikroskoptisch zu drehen. Weil das menschliche Auge auf leichte Abweichun-
gen des Rot I gegen blau oder belb besser anspricht als auf geringe Abweichun-
gen von der maximalen Dunkelheit, mag es auf diese Weise, unter giinstigen
Umsténden, gelingen, die Achsenposition genauer zu erhalten. Trotz dieser
Hilfsmittel bleibt das Problem jedoch bestehen. Unter Umstidnden ldasst sich
eine genauere Kinstellung der Achse auch durch die Verwendung konvergenten
Lichtes erreichen (sog. «Drehkonoskop»). Hierzu benétigt man allerdings
Spezialobjektive hoherer Apertur, sowie einen Spezialkondensor bzw. eine
Verrichtung, welche erlaubt ein dem zur Beobachtung beniitzten Objektiv
analoges System als Kondensor zu verwenden.

Da es sich bei der Festlegung der Achsenrichtung im Prinzip darum han-
delt, eine Richtung vom Gangunterschied Null aufzufinden, liegt es nahe,
diese aus Messungen von Gangunterschieden in ihrer unmittelbaren Umgebung
zu interpolieren. Hierzu bedarf es jedoch als notwendige Voraussetzung, ganz
allgemein, einer Kenntnis der Doppelbrechung fiir Wellennormalenrichtungen
innerhalb der optischen Achsenebene in Abhingigkeit von ihrer speziellen
Lage. Dieses Problem soll daher in einem ersten, theoretischen Abschnitt
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niher untersucht werden. Die praktische Anwendung der gewonnenen Er-
kenntnisse hinsichtlich der Auffindung der Position der optischen Achsen soll
daran anschliessend behandelt werden.

II. EINE NEUE METHODE ZUR EINMESSUNG DER OPTISCHEN ACHSEN

1. Zur Theorie der Methode

s handelt sich vorerst darum, die Doppelbrechung fiir in der Achsenebene
liegende Wellennormalenrichtungen in Abhédngigkeit von deren speziellen Lage
zu berechnen. Fiir die normal zur Achsenebene schwingende Welle ist der
Brechungsindex bekannt, er ist konstant und gleich ng. Fiir die parallel zur
Achsenebene schwingende Welle ist er jedoch variabel und muss berechnet
werden um die Doppelbrechung zu erhalten. Hierzu kann man von einem
Ansatz Gebrauch machen, wie er schon von BEREK anlisslich der Herleitung
seiner « Methode des charakteristischen Gangunterschiedsverhéaltnisses» (BEREK
1924) benutzt wurde. Aus Symmetriegriinden geniigt die Betrachtung eines
einzigen Quadranten.

Fig. 1. Indikatrixschnitt parallel zur
optischen Achsenebene.

Die Gleichung des Indikatrixhauptschnittes mit den Halbachsen #, und .,
d. h. der optischen Achsenebene, lautet in kartesischen Koordinaten (Fig. 1):
x? g

- + o e
2 2
ng = ni

1=0. (1)
Gemaiss der Problemstellung ist die betrachtete Wellennormalenrichtung W
durch einen Richtungswinkel in bezug auf eine feste Bezugsrichtung festzu-
legen, welcher als Parameter betrachtet werden kann. Ist n, ein beliebiger
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Ellipsenradius, entsprechend der Schwingungsrichtung [n,]!) einer Welle mit
dem Brechungsindex n,, und bildet [n,] mit der X-Achse [n,] den Winkel
(7, 7,]; s0 Ist x=mn,co8[n,,n,] und y=n,sin[n,,n,]. Durch Substitution in
(1) erhdlt man die Ellipsengleichung in Parameterform:
2 2
%wcosg[nw,n]—i—n sin?[n,,, n,j—1=0. (2)
Y o
Die Fortpflanzungsrichtung der betrachteten Welle (Wellennormale) W vom
Brechungsindex n,, steht normal zu ihrer Schwingungsrichtung [n,,] und bildet
ihrerseits mit [n, | den Winkel ¢. Da jedoch ¢ =90° —[n,,, n,] ist, so wird weiter:
2 2

Wi s 2 L) 2
—2sinfp+—Ycoslp—1=0. (3)
nZ ng

Exrsetzt man den cos durch den sin, so folgt hieraus nach Umformung:

2__ 0 2 __ g2
ny—ny Mg — N (4)
2 nfeind
n n2 sin®¢

Da die linke Seite von (4) fiir eine gegebene Ellipse eine Konstante ist, muss
auch die rechte in bezug auf ¢ bzw. W eine Invariante sein. Es gilt daher,
wenn W’ eine zweite in der Achsenebene liegende Wellennormale darstellt,
welche mit [n,] einen Winkel ¢’ bildet:

2 __ 2 12 __ 52
Ny — Py _ Ny Ny

s, woraus weiter folgt:

Sin n2 —n2
.¢_vV . (5)

n2sin?gp  m.2sing
Aus der rechten Seite von (5) ladsst sich, in Analogie zur Mallardschen Annahe-

rung ein Faktor ¥
ﬁ,zﬁ@Vnw+na
Ty + Ty,

absondern, dessen Wert fiir alle petrographisch in Betracht fallenden Mineral-
arten so wenig von 1 abweicht, dass der dadurch begangene Fehler immer
innerhalb der Genauigkeitsgrenzen der U-Tischmethoden liegt. KEs geniigt
daher im folgenden die vereinfachte Beziehung

sin g _ ]/nw—na (6)

sin g Ny — My

zu betrachten. Setzt man darin ¢’ =7/2 und entsprechend n/,=n,, so erhilt

man
5 "n,,—n
sing = }/M
n,—n,

Y

y?

1) Hier und im folgenden steht [#.] immer fiir die Schwingungsrichtung einer Welle
vom Brechungsindex n.. Das Symbol »,; {ohne Klammer) bleibt fiir den numerischen
Wert des Brechungsindexes reserviert.
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und nach n,, aufgelost, fiir den gesuchten Brechungsindex der Welle, welche
sich in Richtung W mit Schwingungsrichtung parallel zur Achsenebene fort-
pflanzt:

Ny = Ny + (n, —n,)sin @. (7)

Y

Da der Brechungsindex der andern, sich in Richtung W fortpflanzenden Welle,
mit Schwingungsrichtung normal zur Achsenebene, unabhéingig von ¢, den
konstanten Wert ng aufweist, ist die Doppelbrechung in Richtung W somit:

]nw—nﬁf = (ng—ng) +(n,—n,)sin’p,

(8)

¥
[nw —ng| = — (g —n4) + (1, —m,)sin’e,

e
Fithrt man fiir die drei Hauptdoppelbrechungen besondere Symbole nach
folgendem Schema ein:

wobei n,, % ng ist, je nachdem ¢ % |4

Aa = (ny_nﬂ):
A,@ = (ny——ncx)’ (9)
Ay = (ng—ny)

und bezeichnet man ganz allgemein die Doppelbrechung 4 fiir eine Richtung
W, welche mit [n,] den Winkel ¢ einschliesst mit 4,,, so folgt aus (8):
A(p =_A7’+AB sin2<p (10)
bzw. unter Beriicksichtigung, dass dg=4,+4,, ist,
4, =-4,+(4,+4,)sin?p.

Fiir gewisse Zwecke empfiehlt sich folgende Umformung:

4, = 4, (sinfp—-1)+4,sin*p,
4, =-4, (1-sin?¢)+4, sin®e, (11)
4, = d,sin*p—4, cos?p.

Auf Grund von (11) berechnen sich fiir eine Reihe von speziellen Wellen-
normalenrichtungen im Abstand von #/12=15° die Doppelbrechungen von
Tabelle 1. Von Bedeutung ist auch der Fall, dass p=V,, d. h. dass W mit
einer optischen Achse zusammenfillt. Da nach den Mallardschen Formeln gilt,
dass sin? ¥, =4, /4g, sowie dass cos? V, =4,/4g, so erhilt man aus (11):

A‘)’ Aon

it 0.
Z Ag

Der Schnittpunkt der Kurve 4 =f(¢) mit der Abszissenachse entspricht somit
der optischen Achse und seine Abszisse dem Achsenwinkel V. Dies folgt auch
aus (11) durch Nullsetzung:
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4, =4,sinp—4 cos?p =0,

@

Da nach Mallard jedoch 4,/4,=tg?V, ist, wird =V, =(x/2— V).

4,  sinfg
4,

cos? @

Tabelle 1

dg = dysin? -4, cos? g

T
0 =0°
712 = 15°
w6 = 30°
w4 = 45°
w3 = 60°
512 = 75°
72 = 90°

_A)/

12 (4,—4,)—V3(4,+4,)]
1(4,-34,)

% (Aa—dy)

$(34,—-4,) )
1[2d,—4,)+V3 (4, +4,)]
+4,

= = tgg.

(12)

Das Kurvenbild der Funktion 4 =f(¢) erhilt man auf anschauliche Weise
indem man die beiden Terme y, =4, sin® und y, =4, cos®*¢p vorerst gesondert
betrachtet. Da fiir beide die trigonometrische Funktion im Quadrat steht, sind
sdmtliche Ordinaten positiv und man erhélt in beiden Fillen sinoidenartige
Kurvenbilder, welche génzlich auf der positiven Seite der Abszisse liegen.

+AA
+600+¢

+400]

+200+¢

+600

l+400

0 ' o=
60° 90° ¢
-200 L-200
=A,(Sln2(f +
'4OOV A :Ax_cosaq '400
-A y

=A «Sin’g Ay cos?y

Fig. 2. Variation der Doppelbrechung fiir in der optischen Achsenebene liegende Wellen-
normalenrichtungen in Funktion des Richtungswinkels.
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Durch Bildung der Differenz y; — y, erhilt man, auf dhnliche Weise wie man
die Resultante zweier interferierender Wellen fiir einen gegebenen Gang-
unterschied konstruiert, das gesuchte Kurvenbild der Funktion y =4, sin2¢ —
4, cos?p. Fig. 2 gibt diese Konstruktion fiir die willkiirliche Annahme 4,=
600 nm, 4, =400 nm, somit 4g=1000 nm2).

Die resultierende Kurve ist in ihrem Verlauf ebenfalls der sin- bzw. cos-
Kurve dhnlich. Sie hat wie diese die Periode = und liegt z. T. oberhalb, z. T.
unterhalb der Abszisse, wobei die maximalen Amplituden durch die beiden
Hauptdoppelbrechungen 4, und 4, gegeben sind. Fiir die gewéhlten Annah-
men ergibt sich folgende Wertetabelle:

@ 0° 15° 30° 45° 60° 75° 90°
4, —400 —333 —150 +100 4350 +533  +600

@

Fir y=4,=0 wird ¢=V,=39,2°. Aus Symmetriegriinden geniigt, wie schon
frither erwidhnt, die Betrachtung des Intervalles 0 <@ < 7/2, d. h. eines einzigen
Quadranten.

Um eine Ubersicht iiber den Verlauf der Kurven fiir verschiedene Bedin-
gungen zu erhalten, empfiehlt es sich statt der Hauptdoppelbrechungen den
Achsenwinkel 2 V einzufiihren und diesen als unabhéngige Variable zu betrach-
ten. Dies wird durch die Mallardschen Formeln erméglicht, welche bekanntlich
den Achsenwinkel durch das Verhéltnis zweier Hauptdoppelbrechungen aus-
zudriicken gestatten. Setzt man willkiirlich dg=1, so berechnen sich aus
4,+4,=1 und tg?V,=4,/4,=cotg?V, fiir eine Reihe von verschiedenen 2 V
die Werte von Tabelle 2 fiir die Hauptdoppelbrechungen 4, und 4,,.

Tabelle 2
(+-)2V 4, 4, (—)2V 4, Ay
0° 1 ] 90° 0,5 0,5
30° 0,933 0,087 70° 0,329 0,671
50° 0,821 0,179 50° 0,179 0,821
70° 0,671 0,329 30° 0,067 0,933
90° 0,5 0,5 0° 0 1

V wird hierbei immer spitz genommen, d. h. von 0° bis 45° gezéhlt und fir
optisch-positive Kristalle auf =], fiir optisch-negative auf [n,] bezogen.

Auf Grund von (12) erhilt man aus den Werten von Tabelle 2 fiir eine Reihe
von ¢ die in Tabelle 3 aufgefithrten Doppelbrechungen:

2) In der Kristalloptik war es bisher allgemein uiblich, Gangunterschiede in Mikro-
millimetern, abgekiirzt mp oder uu anzugegen, wobei 1 mu = 10-8mm = 10-% m entspricht.
Neuerdings werden Gangunterschiede jedoch mehrheitlich in Metern ausgedriickt, wobei
dem Faktor 10-% das Prafix «nano» entspricht, abgekiirzt «n». Einem Gangunterschied
von 1 my entspricht somit ein solcher von 1 Nanometer = 1 nm.
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2V 4, A
0° 0 14-0,067
4-30° — 0,087 0
-+ 50° —0,179 —0,112
4708 —0,329 —0,262
1-90° — 0,500 —.0,432
—70° 0,671 —0.6804
—50° —0,821 — 0,754
—30° —0,933 —0,861
0° — 1,000 —0,933
+[?‘ ¢
O - ot
[“g] I5° 30°
- 0_2__
-04+ .q0°
k—»\ zv = 9
= 0.6"‘ _{Oo
o
-0.84 59
4 30°
00
- 1.0-

Tabelle 3
ASO A45

-- 0,250 -+ 0,500
-+ 0,183 —+0,433
+0,714 -+ 0,321
— 0,079 40,171
— 0,250 0
— 0,421 - 0,171
— 0,571 —{0,321
— 0,683 —0,433
— 0,750 — 0,500

-+0,750
—+ 0,683
+90,571
+ 0,421
-+ 0,250
—+0,079
—0,071
—0,183
— 0,250

435 ¥ PP
+0,933 -+ 1,000
-+0,861 +0,933
+0,754 +0,821
40,604 +0,671
+0,432 -1 0,500
-+0,262 +0,329
-+0,112 +0,179

0 + 0,067
—0,067 O

w2210

75°

— e (?
90°__[n°,]

Fig. 3. Variation der Doppelbrechung fiir in der optischen Achsenebene liegende Wellennormalen-
richtungen in Funktion des Richtungswinkels fiir verschiedene 2 V. Die fiir ¢ = 45° vorhandenen
Wendepunkte mit den zugehoérigen Wendetangenten sind eingezeichnet.
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Auf Grund von Tabelle 3 ldsst sich Fig. 3 zeichnen, in welcher auch die spa-
ter zu erwidhnenden Wendepunkte und Wendetangenten der einzelnen Kurven
eingezeichnet sind. Da die Schnittpunkte der Kurven von Fig. 3 mit der
Abszisse den Positionen der optischen Achsen entsprechen, ist es notwendig
diese zu berechnen, wie dies schon im Anschluss an die Ableitung von (12)
geschah.

Bezeichnet man ¢ fiir 4 =0 mit ¢, so erhélt man ¢, =V, fiir optisch-positiv
und @, =V, = (=/2—V)) fiir optisch negativ. Der Zusammenhang zwischen 2 ¥
und ¢, ist aus Tabelle 4 ersichtlich.

Tabelle 4
2V 0° +10° -+ 30° -+ 50° -+ 70° +90° —70° —50° —30° —10° 0°
®0 0° 5° 15° 25° 356° 45° 55° 65° 70° 85° 20°

Weitere Eigenschaften der Doppelbrechungskurven ergeben sich aus einer
eingehenderen Diskussion. Hierfiir ist die Funktion f(¢)=4,=4,sin*p—
4, cos?g nach ¢ zu differenzieren.

Man erhilt f'(p) = 24, sinp cosp—24, cospsing = 4,8in2¢+4,8n2¢ =
Vi | B sin 2 107]

f'lp) = dgsin2g, (13)
["(@) = 24dgcos 2o, (14)
" (@) =—4Aﬁsin2q>. (15)

Setzt man ' (p) =0, so erhilt man als Wurzeln ¢, =0 und ¢, ==/2. Es miissen
somit fir diese Abszissen Extrema vorhanden sein. In (14) eingesetzt ergibt
sich f" (¢;) > 0 und " (¢,) < 0, fiir ¢, = 0 existiert somit ein Minimum, fiir g, =#/2
jedoch ein Maximum auf. Durch Einsetzen von ¢, und ¢, in (11) ergeben sich
diese Extrema zu 4,,, = -4, und 4,,,,= +4,.

Aus " (p)=0 folgt p=m/4. Diesen Wert in (15) eingesetzt ergibt " (p)=
—44g#0. Da [”(¢) #0 ist, hat die Kurve einen Wendepunkt mit der Abszisse
x,,=m/4. Die zugehorige Ordinate folgt durch Einsetzen dieses Wertes in (11)
zu y,, =} (4, —4,). Die Koordinaten des Wendepunktes sind somit:

xz,, = 77/4,

16
Yo = §d,=4) = H(d3—24,) = §(24,~4p). v

Die Abszisse des Wendepunktes ist somit bemerkenswerter Weise unabhingig
vom Achsenwinkel. In Fig. 3 sind die Wendepunkte mit den zugehorigen
Wendetangenten eingezeichnet.

Die Ordinate des Wendepunktes ist positiv oder negativ, je nachdem
4,5 4, ist. Da aus der Mallardschen Formel tg®V, =4, /4, folgt, dass fiir
optisch-positive Kristalle 4,>4, ist, fiir optisch-negative jedoch 4,<4,,
weil fir optisch-neutrale tg?V, =tg?V, =tg*n/4=1 ist, so ist somit y, fiir
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optisch-positive Kristalle positiv und fiir optisch negative negativ. Fiir optisch-
neutral wird ¢,,=0, d. h. der Wendepunkt fillt in die Abszissenachse.

Die nidheren Beziehungen zwischen y,, und V erhélt man wiederum durch
Anwendung der Mallardschen Formeln. Auch hier ist es von Vorteil, den
Achsenwinkel immer spitz zu nehmen und fiir optisch-positiv auf [n,], fiir
optisch-negativ auf [n,] zu beziehen.

Betrachtet man vorerst den optisch-positiven Fall, so folgt aus der Mallard-
schen Formel fiir die tg-Funktion 4,=4, tg®V,. Anderseits ist gemiss (16)
4,=4,-2y,, so dass 4,—2y,,=4, tg?V,, woraus weiter folgt:

4
Yo =2(1-tg*V), (17)
tgV, = ]/1— ZAyW. (18)

Fir den optisch-neutralen Fall erhdlt man aus (17) fur V,==/4 und y,,=0,
sowie aus (18) fir y,,=0, tg?V,=1 und V,==/4.

Fiir den optisch-negativen Fall ergibt sich auf analoge Weise aus cotg? V, =
tg?V,=4,/4,, dass 4,=4,tg*V, ist, wihrend anderseits aus (16) folgt, dass
4,=2y,+4d,, so dass 4, + 2y, =4, tg*V, wird, und

Y =-%(tgzva—l), (19)

tegV, = ]/1 + 2% (20)
4y
Fiir den optisch-neutralen Fall ergibt sich aus (19) fir V,=n/4 wiederum
Y, =0 und aus (20) fur y,, =0 folgt tg V, =1 bzw. V, ==/4.
Die Steigung der Wendetangente u erhélt man aus (13) durch Einsetzen

von z =4 zZu
& ks
#=ABSIH§=AB=(Aa+Ay)- (21)
Die Steigung der Wendetangente ist somit gleich der maximalen Doppel-

brechung und daher unabhingig vom Achsenwinkel.
Die Gleichung der Wendetangente lautet:

Y—Yy = Aﬁ (x_xw):

(22)
-
v=3da=d,) = Ay + 4 (2-F)
oder, nach Auflosung nach y, in Descartescher Form:
_ 4,-4, 4,+4, =
y=otd)r+—25—" =22 5, (22a)
bzw. umgeformt: y=(4,+4,)x~4, (32—2) -4, (ﬂ—}g) (22b)
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Den Schnittpunkt der Wendetangente mit der X-Achse x,, welcher fiir spétere
Betrachtungen von Bedeutung ist, erhdlt man aus (22b) durch Nullsetzung

und Auflésen nach x zu:
(") 4, ()

(Acx'l_Ay)

Fiir den optisch-neutralen Fall (4,=4.) folgt hieraus x,=w/4.

Auch hier ist es fiir gewisse Zwecke von Vorteil, an Stelle der Hauptdoppel-
brechungen wiederum den Achsenwinkel als unabhéngige Variable einzufiih-
ren. Aus (22) erhalt man fiir y =0

(23)

X, =

a

und unter Beriicksichtigung von (17), fiir optisch-positive Kristalle,

ZAﬁ(x—g +4,(1—tg?V,) =0,
' A
éﬁ: ——LTQZCOS2V,
AB 1—~tg V.y 4

. 'z
cos? V, (1 —tg? Vy)—i-Z(a:—Z) = 0.

Driickt man den tg durch den cos aus, so folgt nach weiterer Umformung fiir
den Schnittpunkt der Wendetangente mit der Abszisse, in Funktion des
Achsenwinkels:

2
X, = (”I )_0032 V,=1,2854—cos?V,. (24)

Fiir den optisch-neutralen Fall resultiert hieraus wiederum, da cos?w/4 =1 ist,
x,=m/4.

Fiir optisch negative Kristalle erhdlt man auf analoge Weise, unter Beriick-
sichtigung von (19)

ZAB(x—%) +4,(tg?V,—1) = 0,

ﬂ_ Q(x—g) _
4g otV -1

Den tg wiederum durch den cos ausgedriickt und weiter umgeformt:
T2 5 .
¥y = (| +cos V, = 0,2854 4+ cos? V,. (25)

Auch aus (25) folgt fiir optisch-neutral wiederum x,=n=/4.
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Durch Elimination von z, erhdlt man aus (24) und (25) cos? V,+cos? V, =1
und, weil 1, + ¥, =m/2, weiter sin® I +cos® I, =1 bzw. sin®V, +cos? V, = 1.

2. Zur Praxis der Methode

a) Verfahren ber 2V >62°

Gemiss den eben erfolgten theoretischen Ausfithrungen entsprechen die
optischen Achsen als Wellennormalenrichtungen mit dem Gangunterschied
Null den Schnittpunkten der Doppelbrechungskurven mit der Abszissenachse.
Da sich diese Kurven experimentell bestimmen lassen, kann ihr Schnittpunkt
mit der Abszisse konstruiert werden. Dass, wegen der bekannten Schwierig-
keiten, welche einer exakten Dickenbestimmung von Diinnschliffen innewoh-
nen, eine Bestimmung der Doppelbrechungen, welche die Grundlagen fiir die
gemachten theoretischen Uberlegungen bildeten, an sich im allgemeinen nicht
moglich ist, spielt keine Rolle. Die in den gemessenen (Gangunterschieden
R =dA4 enthaltene Priaparatendicke d stellt einen konstanten Faktor dar, wel-
cher bei der Bildung von Verhéltnissen, wie sie z. B. bei Anwendung der
Mallardschen Formeln erfolgt, herausfillt und der natirlich auch fir die
Konstatierung der Doppelbrechung Null ohne Bedeutung ist. Man kann also
fiir die hier verfolgten Zwecke die Doppelbrechungskurven ohne weiteres
durch Gangunterschiedskurven ersetzen, wie sie experimentell durch Gang-
unterschiedsmessungen fiir ausgewihlte Wellennormalenrichtungen innerhalb
der Achsenebene leicht erhalten werden.

Zu ihrer Bestimmung stellt man die optische Achsenebene, welche nicht
mehr als 25°-30° zur Schliffnormale geneigt sein sollte, normal zur Achse 4,
(BerEK, entsprechend der Kontrollachse von REINHARD) und misst fiir eine
Reihe von Wellennormalenrichtungen, welche durch die eingestellten Winkel
a, definiert sind, vermittelst eines Kompensators die Gangunterschiede. Um
vergleichbare Werte zu erhalten, besonders, wenn man diese auch fiir andere
Methoden, z. B. fir die direkte Anwendung der Mallardschen Formeln oder
fiir die Methode der Achsenwinkelbestimmung aus der charakteristischen
Funktion der Doppelbrechung nach BEREK beniitzen will, reduziert man alle
Messungen auf die (an und fiir sich unbekannte) Schliffdicke, was durch Multi-
plikation der Messwerte mit cos «, cos «, erfolgt. Von den beiden in der Achsen-
ebene enthaltenen Extremwerten des Gangunterschiedes R, und R,, welche
den Bisektrizenrichtungen entsprechen, ist immer mindestens eine einmessbar.
In giinstigen Féllen konnen es auch beide sein. Trifft dies zu, so ldsst sich 2V
nach einer der Mallardschen Formeln berechnen und eine weitere Methode
eriibrigt sich.

Die aus den reduzierten Messwerten konstruierte Kurve der Variation des
Gangunterschiedes innerhalb der Achsenebene ist jedoch, abgesehen vom Ein-
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fluss des konstanten Faktors der Dicke, nicht genau mit der theoretisch ermit-
telten identisch, indem ihr Verlauf im Gebiet der Extrema nicht genau sym-
metrisch ist. Der Grund hierfiir liegt im Lichtbrechungsunterschied von Kri-
stall und Segment, welcher infolge der Anisotropie des Priaparates prinzipiell
nur angendhert beriicksichtigt werden kann. Diese Abweichungen bedingen
auch, was an sich sehr bedauerlich ist, dass sich die genaue Lage der Extrema
nicht aus dem Kurvenverlauf ermitteln ldsst und man hierfiir auf die Resultate
der Einmessung der optischen Symmetrieebenen angewiesen bleibt. Ein Ver-
fahren, welches erlaubt die Position der durch normale Einmessung erhaltenen
Bisektrizen mit Hilfe von Gangunterschiedmessungen durch systematisches
Probieren zu verbessern, hat BEREK im Anschluss an seine Methode der
Charakteristischen Funktion der Doppelbrechung gegeben (BEREK 1925),
worauf hiermit verwiesen sei.

TIm Gegensatz zur Lage der Extrema, d. h. der Hauptschwingungsrichtungen
[7,] und [n,] ldsst sich jedoch die Position der optischen Achsen mit erheblicher
Genauigkeit bestimmen. Es geniigt hierfiir, den Verlauf der Gangunterschied-
kurve in unmittelbarer Nachbarschaft der optischen Achse auf Grund einiger
Gangunterschiedmessungen zu zeichnen und ihren Schnittpunkt mit der
Abszisse zu bestimmen. Ist dieser ermittelt, so ldsst sich der Achsenwinkel in
bezug auf die benachbarte Bisektrix ablesen. Hierfiir geniigen im allgemeinen
je zwei Gangunterschiedmessungen zu beiden Seiten des Achsenaustrittspunk-
tes. Man wahlt diese etwa + 10° und + 20° von der Achse entfernt, wobei die
betreffenden «,-Koordinaten genau zu beachten sind, da die Gangunterschiede
in unmittelbarer Nachbarschaft der optischen Achse stark richtungsabhingig
sind, ganz im Unterschied zur Nachbarschaft der Bisektrizen. Bei den Gang-
unterschiedmessungen ist zu beachten, dass das Vorzeichen der Doppelbrechung
beim Durchgang der optischen Achse wechselt, dass somit der Mikroskoptisch
nach Durchgang der optischen Achse um 90° gedreht werden muss, es sei denn,
dass man die Messungen auf der einen Seite der optischen Achse in der Sub-
traktionsstellung, diejenigen auf der andern jedoch in der Additionsstellung
durchfiihrt?),

Fiir diese Methode ergibt sich nun auf Grund der im vorhergehenden
Abschnitt gemachten Uberlegungen eine wesentliche Vereinfachung, ohne dass
dadurch der Messgenauigkeit Abbruch getan wiirde. Eine Betrachtung von
Fig. 3 zeigt ndmlich, dass die Doppelbrechungs- bzw. Gangunterschiedskurven
in der Nachbarschaft des Wendepunktes auf gréssere Erstreckung anndhernd
geradlinig verlaufen, so dass sie mit der Wendetangente praktisch zusammen-
fallen. Erfolgt nun der Schnitt mit der Abszisse fiir einen Kurvenabschnitt,
fiir welchen dies zutrifft, so kann an Stelle der Kurve die Tangente betrachtet
werden. Diese ist jedoch als Gerade durch zwei Punkte eindeutig bestimmt,

3) Man vergleiche die diesbeziiglichen Ausfihrungen im Anhang.
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so dass nur zwei Gangunterschiedsmessungen zu ihrer Definition geniigen und
die Lage der optischen Achsen als Schnittpunkt zweier Geraden festgelegt ist.
Um diese vereinfachte Variante der Methode jedoch anwenden zu konnen,
muss vorerst untersucht werden, welches die Bedingungen sind, unter welchen
der Schnitt der Kurve mit der Abszisse derart erfolgt, dass an ihrer Stelle die
Tangente betrachtet werden darf.

Man kann hierfiir so vorgehen, dass man einerseits aus (11) durch Null-
setzung die Schnittpunkte x, der Kurven in Funktion von 2V berechnet und
anderseits aus (24) bzw. (25) die Schnittpunkte der Wendetangenten x,, eben-
falls in Funktion des Achsenwinkels. Durch Vergleich der beiden Werte fiir
gegebene 2V erhilt man die Differenz 8 =|x,—«,|, worauf sich, je nach dem
Fehler, welchen man zuzulassen gewillt ist, der Anwendungsbereich abschéitzen
lisst. Man erhiilt auf diese Weise fiir den optisch-positiven Fall die Werte von
Tabelle 5.

Tahelle 5

(+)2V 0° +5°  +10°  4-20° +30° +40° +50° 4+60° +65° +T70° +80° £90°

x° 16,3 16,5 16,8 18,5 20,2 23,1 26,6 30,6 32,9 352 40,03 45,0
x,° 0 2,5 5 10 15 20 25 30 32,5 35 40 45

d=apmx 16,3 +14,0 +11,8 +8,1 +52 +31 +1.6 06 404 +02 3003 0

Fiir den optisch-negativen Fall erhdlt man auf analoge Weise die Werte
von Tabelle 6.

Tabelle 6

(—)2V F90° —80° —-70° —65° —60° —50° —40° —30° —20° —10° —5° 0°

0 45,0 49,97 548 57,1 594 634 66,9 688 71,9 73,2 73,5 73,7
xt 45 50 55 57,5 60 65 70 75 80 85 87,56 90

d=xp2x9 0O -—-0,03 —02 —04 —06 16 -—-31 -52 —81 —11,8 —14,0 —16,3

Fig. 4 gibt das Bild der Abhingigkeit der Differenz & von 2 V. Lésst man
einen Fehler von 6 =0,5° zu, was einem solchen von maximal 1° fiir 2V ent-
sprechen wiirde, so folgt, dass die Methode der Ersetzung der Gangunterschied-
kurve durch ihre Wendetangente fiir Kristallarten mit 62,5°<27,<117,5°
bzw. 117,5°>27V, > 62,5° anwendbar ist. Sie ist somit fiir die iiberwiegende
Anzahl wichtiger gesteinsbildender Mineralien brauchbar, z. B. Plagioklase,
Alkalifeldspéte mit Ausnahme der Sanidine und Anorthoklase mit kleinem 2 V,
Olivine, Pyroxene mit Ausnahme der Pigeonite, Hornblenden etc. Man hat
somit, um die Achsenpositionen zu erhalten, nur die Gangunterschiede in zwei
in der Achsenebene liegenden Richtungen zu messen. Diese sind durch ihre
a,-Koordinaten definiert und miissen auf verschiedenen Seiten der optischen
Achse liegen und mit dieser Winkel von 10° bis 15° einschliessen. Bezeichnet
man die in Graden ausgedriickten o,-Koordinaten mit x; und x, und die beiden
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+|5H°
+10°- <— (-)2v—
+ 59+
- -] - (-] - (-] - -]
I /A A A A L3
[N¢] +10°  +30° +50° +70° $90°
@ 1-5°
—(+) 2V — b= =] +-10°

ANWENDUNGSBEREICH
DER METHODE:

62.5°(2Vp <(117.5° -§V
117.5°22 Vx> 62.5°

Fig. 4. Graphische Darstellung der Differenz 8 zwischen den Abszissenschnittpunkten der Doppel-
brechungskurven und denjenigen ihrer Wendetangenten in Funktion des Achsenwinkels,

auf die Schliffdicke reduzierten Gangunterschiede R, und R, mit ¥, und y,, so
lautet die Gleichung der Wendetangente

( —11) (X1 —23) = (B—21) (Y1 —Ys)-

Setzt man y =0 und 16st man nach x auf, erhilt man die gesuchte Achsen-
position, und unter Beriicksichtigung der benachbarten Bisektrix, den Achsen-
winkel.

Eine rechnerisch einfachere Losung folgt aus dem Umstand, dass die beiden
durch Abszisse, Ordinate (Gangunterschied) und Wendetangente gebildeten
Dreiecke ahnlich sind, da sie zwei gleiche Winkel aufweisen (Fig. 5). Es gilt
daher d,/d,= R,/R, und (d,+d,)/d,= (L, + R,)/R,, woraus weiter folgt:

R,

h=RE

(dy+dy). (26)
Die Summe d, +d, ergibt sich aus den entsprechenden o«,-Koordinaten.

Die Methode ist auch fiir den Fall anwendbar, dass eine optische Achse
zwar der direkten Einmessung nicht mehr zuginglich ist, jedoch nur knapp
ausserhalb der grosstmoglichen Tischneigung liegt. Man misst hierzu die Gang-
unterschiede fiir zwei Richtungen auf derselben Seite der optischen Achse
(Fig. 6) und erhdlt wiederum d,/d,=R,/R, und (d,—d,)/d;=(Ry— R,)/R,,
woraus folgt:

‘Rl

Ll

(dy—dy). (26a)

Die Differenz (d,—d,) ergibt sich ebenfalls aus den entsprechenden o,-Koordi-
naten.



Methode zur genauen Einmessung der optischen Achsen 17

Fig. 5. Bestimmung der Position der op-

tischen Achse aus zwei auf verschiedenen

Seiten derselben gelegenen Gangunter-
schieden.

Fig. 6. Bestimmung der Position der op-
tischen Achse aus zwei auf derselben Seite
der Achse gelegenen Gangunterschieden.

Obwohl grundsétzlich zwei Gangunterschiede zur eindeutigen Bestimmung
der Wendetangente ausreichen, empfiehlt es sich in der Praxis zur Kontrolle
mindestens einen dritten zu beriicksichtigen. Die gegeniiber den entsprechen-
den «,-Koordinaten als Ordinate aufgetragenen Gangunterschiede miissen auf
einer Geraden liegen, wie z. B. in Fig. 9. Man kann als dritten Gangunterschied
denjenigen in der dem Wendepunkt der Gangunterschiedskurve entsprechende
Richtung verwenden. Diese ist leicht auffindbar, da sie den Winkel [rn,,n,]
halbiert.

Die Kontrolle, ob die drei Messpunkte kollinear sind, erfolgt am einfachsten
und mit geniigender Genauigkeit graphisch, kann aber auch rechnerisch durch-
gefiihrt werden. Sind die Koordinaten des dritten Punktes Py(x;, y;), so miis-
sen sie die oben gegebene Gleichung der Geraden durch die Punkte P (%, ¥,)
und P, (z,, y,) erfiillen, d. h. es muss

(Us =) (X1 —23) — (T3 —2,) (y; —¥5) = O
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sein bzw. in zweckmaissiger Umformung:

r3 Yz 1
g (Yo — Y1) —Ys (X — X)) + ZoYy — Yoy = | Tz Yy 1| =0, (27)
ry Yy 1

In besonders delikaten Fillen, wenn die Messung der Gangunterschiede z. B.
infolge innerer Reflexe oder einer Triibung mit Schwierigkeiten verbunden ist
und die Messwerte streuen, kann ein Ausgleich nach der Methode der kleinsten
Quadrate vorgenommen werden um den wahrscheinlichsten Verlauf der Wende-
tangente zu erhalten. Es handelt sich um das gleiche Verfahren, wie es in der
Statistik zur Bestimmung der Regressionsgeraden angewandt wird, so dass
fiir Einzelheiten auf die Darstellung in den Lehrbiichern der Statistik bzw.
Korrelationsrechnung verwiesen werden kann, wie z. B. Kzekien (1950),
Linper (1960), YULE und KENDALL (1950), WEBER (1956) ete.

Beispiel . Optisch-positive Hornblende aus Amphibolit, Val d’Arbedo, Tes-
sin. (+)2V =86°+1° (direkte Messung). Obwohl fiir die hier angewandte
Methode zur Bestimmung der Position der optischen Achse prinzipiell zwei
Gangunterschiedsmessungen geniigen und sich die Zeichnung der Gangunter-
schiedskurve eriibrigt, soll diese hier, zum besseren Verstindnis der Methode
berticksichtigt werden. Zu diesem Zwecke wurden fiir eine Reihe von Wellen-
normalenrichtungen innerhalb der um 20° gegen die Schliffnormale geneigten
Achsenebene vermittelst eines MgF,-Kompensators der Firma Leitz-Wetzlar
die Gangunterschiede fur die D-Linie gemessen und auf die Schliffdicke redu-
ziert. Fiir die graphische Darstellung wurden die «,-Koordinaten derart auf
neue Abszissenwerte transformiert, dass [n,] mit oy = —31° in den Ursprung
(x =0) zu liegen kommt. Die reduzierten Gangunterschiede mit ihren Koordi-
naten sind die folgenden, wobei die Transformation lautet: x =o, +31°:

oty —40° —31° —20° —10° 0° + 5B° + 20° + 30° + 40°
xz — 9° 0° +11° +21° +31° 4+36° 451° +61° +71°
R, —4585 —476,3 —436,5 —349,1 —202,4 —116,1 +130,6 +309,1 +427,4

Dabei wurden willkiirlich das Extremum [n,] als negativ, das (ausserhalb
des Messbereiches liegende) [n,] jedoch als positiv angenommen, in Uberein-
stimmung mit den bisher gemachten Ausfithrungen. Auf Grund dieser Mess-
werte erhilt man das Kurvenbild Fig. 7. Da [n,] bei =0 liegt und die Kurve
die X-Achse bei ca. x=43° schneidet, ergibt sich V,=43° und entsprechend
(+)2V =86°. Der Wendepunkt der Kurve liegt nach den gemachten Aus-
fithrungen bei z=45° und es ist deutlich ersichtlich, wie die Wendetangente
in dessen Nachbarschaft von ca. x=30° bis ca. x=60° innerhalb der Messge-
nauigkeit mit der Kurve zusammenféllt. Es geniigt daher, innerhalb dieses
Intervalles die Tangente durch zwei Gangunterschiedsmessungen festzulegen
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N+ R
+400+
+300 |-
+200
+ 100
LY
O |
-10°
- 100 |-
-200}
A 476,3nm
-300}F
- 400+
S|
-500
V-Rim

Fig. 7. Bestimmung der Position der optischen Achse und des Achsenwinkels fiir eine optisch-
positive Hornblende mit. V,, = 43,1° aus Amphibolit (Val Arbedo, Tessin).

und ihren Schnitt mit der Abszisse festzulegen um die optische Achse zu
lokalisieren.

Geht man von den beiden Gangunterschieden R, (x;=31°, ;= —202,4 nm)
und R, (xy,=51°, y,=130,6 nm) aus, erhdlt man als Gleichung der Wende-
tangente y=16,652—717.35. Fir y=0 folgt daraus x=43,08°=V, und
(+)2V=86,2°

Nach der Methode der dhnlichen Dreiecke erhilt man auf Grund von (26)
dy=12,16° und ¥, =31°+12,16° = 43,16°, somit (+)2 V =86,3°.

Beniitzt man die Gangunterschiede R, (x, = 51°, y, = +130,6 nm) und



20 C. Burri

Ry(x;=36° yy= —116,1 nm), so resultiert auf gleiche Weise d,=7,06 und
V,=36°+7,06°=43,06°, woraus (+)2V =86,1".

Zur Kontrolle wurde eine Bestimmung des Achsenwinkels mit Hilfe der
charakteristischen Funktion der Doppelbrechung nach BEREK vorgenommen.
Sie ergab unter Verwendung des Gangunterschiedes R,=476,3 nm und des-
jenigen einer Hilfsrichtung (x=61° y=427.4nm) (+)2V =86,0°, in befriedi-
gender Ubereinstimmung mit den eben erhaltenen Werten.

b) Verfahren bei 2V < 62°

Fiir kleine 2V fillt der Schnittpunkt der Gangunterschiedskurve mit der
Abszissenachse wegen der Krimmung der Kurve nicht mehr mit demjenigen
der Wendetangente zusammen, wie aus Fig. 3 anschaulich hervorgeht. Trotz-
dem lasst sich die Position der optischen Achse festlegen und der Achsenwinkel
bestimmen, denn nach Tabelle 6 und 7 sind die Differenzen der Schnittpunkte
x, und z, in Funktion des Achsenwinkels, wie sie sich aus (24) und (25) ergeben,
bekannt. Es kann somit die Korrektur angebracht werden, welche notwendig
ist, damit von x; auf x; geschlossen werden darf. Zur Bestimmung der Wende-
tangente benétigt man wiederum zwei Punkte derselben, welche man durch
die Messung von zwei Gangunterschieden in dem, dem Wendepunkt unmittel-
bar benachbarten Kurvenabschnitt erhdlt, fir welchen sich die Kurve prak-
tisch als Gerade verhilt. Die Lage des Wendepunktes ist bekannt, da dessen
Abszisse nach (16), unabhéngig von 2V, bei x =m/4 liegt. Man bestimmt daher

Xt
80°1-

70°

60° e

50°

40°

30°

20°

10°4

Ko™ Vg

o° I0° 20° 30° 40° 50° 60° 70° 80° 90°

Fig. 8. Korrekturdiagramm zur Ermittlung von V., aus dem Abszissenschnitt der Wendetangente
¢ bei kleinem 2 V.
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in der stereographischen Projektion die Winkelhalbierende von [n,,n,] und
liest deren o,-Koordinate ab. Ist diese «,,,, so misst man die Gangunterschiede
fir die beiden Richtungen «,, +15° und reduziert sie durch Multiplikation
mit cos «, cos o, auf die Schliffdicke. Bei sehr kleinem 2V muss vermieden
werden, dass die gewihlten Richtungen in unmittelbarer Nachbarschaft einer
optischen Achse zu liegen kommen. Auf Grund der beiden Gangunterschiede
kann die Wendetangente konstruiert und ihr Schnittpunkt mit der Abszisse,
x, abgelesen werden. Um aus x; den Schnittpunkt der Gangunterschiedskurve
mit der Abszisse x, zu erhalten, kann man sich des Diagrammes Fig. 8 bedie-
nen, welches auf Grund von Tabelle 6 und 7 gezeichnet wurde. Es ist so ange-
legt, dass mit z, als Ordinate eingegangen wird und auf der Abszisse V, abge-
lesen werden kann.

Genauere Resultate erhalt man auf rechnerischem Wege. Man bestimmt,
wie fiir 2V >62° angegeben, die Gleichung der Wendetangente und erhalt
daraus z, indem man y =0 setzt und nach x auflost. Den Achsenwinkel erhilt
man durch Auflosen von (24) bzw. (25) zu

cosV, = ¥1,2854—x, bzw. cosV, = yx,—0,2854. (28)

x, ist hierbei im Bogenmass auszudriicken.

Da es wichtig ist, die Bestimmung der Wendetangente moglichst genan
vorzunehmen, empfiehlt es sich auch hier, wie fir den Fall 2V > 62° erwdhnt,
mindestens einen weiteren Punkt der Kurve zu bestimmen, wofiir sich in
erster Linie der Wendepunkt eignet. Des weiteren gilt auch, was iiber das
Kriterium fiir die Kollinearitdt der drei Punkte, sowie iiber einen eventuellen
Ausgleich gesagt wurde.

Beispiel: Wollastonit aus Wollastonit-fithrendem Granat-Diopsid-Vesuvian-
fels von Claro, Tessin?).

An einem Kristall, dessen Achsenebene 18° gegen die Schliffnormale geneigt
war, konnte 2 17 durch direkte Einmessung beider Achsen zu (—)2 V =40° + 2°
bestimmt werden, wobei die Einstellung auf maximale Dunkelheit fiir beide
Achsen relativ unsicher war. Zur Festlegung der Wendetangente wurden die
Gangunterschiede fiir die beiden Richtungen gemessen, welche je 15° mit der
Winkelhalbierenden [r,,n,] bilden und auf die Schliffdicke reduziert:

Ry (x, = 30°, y, = 3389nm), R, (x, = 60°, y, = 65,5nm).

Zur Kontrolle wurde auch der Gangunterschied fiir den Wendepunkt der
Kurve gemessen: R, (x,=45° y,=202,5 nm). Zur Priifung, ob die drei ein-
gemessenen Punkte der Tangente kollinear sind, wurde das Kriterium (27)

4) Der Autor dankt auch an dieser Stelle Herrn Kollegen V. Trommsdorff, Ziirich,
bestens fiir die freundliche Uberlassung von Schliffen dieses Gesteins.
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angewandt. Es ist:

Ty Y 1 45 202,56 1
D=|2z, y, 1| =160 655 1 =90.
x, Yy 1 30 3389 1

D =0 wiirde sich ergeben fiir y,=201,1. Die Abweichung liegt innerhalb der
Messgenauigkeit und es darf angenommen werden, dass die Wendetangente
durch die beiden (Grangunterschiede R, und R, mit geniigender Genauigkeit
festgelegt ist. Fiir die graphische Darstellung ist zu beachten, dass, im Gegen-
satz zum vorhergehenden Beispiel, B, und R, gleiches Vorzeichen haben, somit
auf derselben Seite der X-Achse abzutragen sind. Ob sie beide positiv oder
negativ gerechnet werden, ist an sich ohne Bedeutung und ohne Einfluss auf
das Resultat. Wenn sie hier negativ genommen werden, so geschieht dies in
Befolgung der hier bisher eingehaltenen Konvention (Fig. 3). Aus Fig. 9 lasst
sich fiir den Schnittpunkt der Wendetangente mit der Abszisse ablesen z, =677,
woraus mit Hilfe des Korrekturdiagramms Fig. 8 folgt, dass ¥, =70,5, ent-
sprechend V,=19,5° und (—)2V =39°.

Zur rechnerischen Losung bestimmt man die Gleichung der Wendetangente:

y = 273,4 v — 19369

Xy Xw Xg Xu=87°
(ny 1?° 20°  30° 410: 5?° 6i0° &7?*’ gg" Ei«]}x
-IOO:
Lzoo:
-3oo:
V-_,an

Fig. 9. Zur Bestimmung des Achsenwinkels (—) 2V = 39,2° von Wollastomit aus Kalksilikatfels
(Claro, Tessin).
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aus welcher man durch Nullsetzung erhélt x =x,=67,19°. Da diesem Winkel im
Bogenmass 1,1726 rad entspricht, wird nach (25) cosV, = Y1,1726 —0,2854 =
0,94192, woraus V,=19,6° und (—)2V =39,2°

3. ANHANG

a) Bemerkungen zur Messung der Gangunterschiede

Zur Messung von Gangunterschieden in Verbindung mit den U-Tisch-
methoden werden heute ausschliesslich Drehkompensatoren benutzt. An Stelle
des bekannten und weitverbreiteten Kalkspathkompensators nach BEREX,
der Firma Leitz-Wetzlar, dessen Fertigung kiirzlich eingestellt wurde, ist der
nach demselben Prinzip arbeitende MgF,-Kompensator der gleichen Hersteller-
firma getreten. Im Gegensatz zum Calcit erlauben die schleiftechnischen Eigen-
schaften von MgF, die Herstellung von Kompensatorpldattchen einheitlicher
Dicke, so dass die Gangunterschiede in Funktion des Kippwinkels tabelliert
werden konnen und sich die Einschaltung einer instrumentenabhéngigen
Kompensatorkonstante eriibrigt. Ein weiterer Vorteil des MgF, gegeniiber
dem Calcit ist dessen normale Dispersion der Doppelbrechung. Tabellierung
der Gangunterschiede und normale Dispersion der Doppelbrechung weist auch
der Quarzplattenkompensator nach EHRINGHAUS der Firma Zeiss auf.

Alle Drehkompensatoren weisen einen gewissen Fertigungsfehler auf. Um
ihre Genauigkeit voll auszuniitzen ist es daher unumgéanglich, fiir jedes Instru-
ment eine Fehlerkurve in Funktion des Gangunterschiedes aufzunehmen, wie
dies zuerst von MosEBACH (1948) vorgeschlagen wurde, und aus welcher fiir
jeden gemessenen Gangunterschied die entsprechende Korrektur, welche posi-
tiv oder negativ sein kann, zu entnehmen ist. Fir weitere diesbeziigliche
Untersuchungen und Ausfiihrungen sei auf Ratr (1958, 1958a) verwiesen.

Drehkompensatoren haben allgemein den Nachteil, dass Messungen von
Gangunterschieden < A/2 wenig zuverlassig sind, da die diesbeziiglichen Kom-
pensationsstreifen breit und verwaschen erscheinen. Durch diesen Umstand
waren lange Zeit eine Reihe wichtiger und ergiebiger polarisationsmikrosko-
pischer Methoden, welche auf der Messung von Gangunterschieden beruhen,
auf niedrig doppelbrechende Kristallarten, wie z. B. Feldspédthe, nicht, oder
nur beschrénkt anwendbar, zum mindesten, wenn nicht besonders angefertigte,
dickere Schliffe verwandt wurden. Erst die systematischen Untersuchungen
und Vorschlige von MosesacH (1949, 1949a) haben diese EKinschrinkung
behoben und es ermdiglicht, auch kleine (Gangunterschiede genau zu messen.
Da solche bei der vorgeschlagenen Methode gelegentlich auftreten, sowie, weil
die MosEBacHschen Methoden vielfach nicht die ithnen gebithrende Beachtung
gefunden haben, soll hier anhangsweise kurz auf sie aufmerksam gemacht
werden.
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Bezeichnet man den zu messenden Gangunterschied im Préparat mit R,
und den im Kompensator erzeugten, von bekanntem Betrag, mit K, , so besteht
das allgemein iibliche Verfahren zur Messung von Gangunterschieden bekannt-
lich darin, dass man in Subtraktionsstellung «auf Null kompensiert», d. h.
R, =R, macht und aus dem bekannten R, auf das unbekannte R, schliesst.
Nach MosEBacH kompensiert man nun fiir kleine Gangunterschiede nicht auf
R, , sondern auf R, + kA, wodurch es moglich wird, die Kompensation in hohere
Ordnungen mit grosserer Messgenauigkeit zu verschieben. Praktisch geht man
dabei so vor, dass man zuerst im weissen Licht auf R, kompensiert, was am
Erscheinen des schwarzen Kompensationsstreifen erkannt wird. Man geht nun
zu homogenem Licht von bekannter Wellenldnge iiber. Beim Weiterdrehen
des Kompensators erscheinen dann weitere dunkle Streifen, welche den Gang-
unterschieden R, + 1A B, +2A,... R, +kA entsprechen. Beim Erscheinen des
k-ten Streifens ist somit R, =R, + kX und daher R =R, —LA. Man hat somit
vom Messwert kA abzuziehen um das gesuchte R, zu erhalten.

Weniger bekannt diirfte sein, dass die Kompensation fiir homogenes Licht
auch in Additionsstellung vorgenommen werden kann. Beim Erscheinen des
ersten dunkeln Streifens ist dann R, + R, =1A und beim k-ten ist B, + R, =kA,
so dass R, =kA— R, ist. Dieses Verfahren kann unter Umstédnden von Vorteil
sein, z. B. wenn bei kleinen Objekten Zentrierschwierigkeiten bestehen. Der
Mikroskoptisch braucht nach dem Durchgang einer optischen Achse nicht um
45° gedreht zu werden.

Da bei diesen Methoden o6fters vom weissen Licht zu homogenem von
bekannter Wellenldnge gewechselt werden muss und umgekehrt, ist der Ge-
brauch eines geeigneten Lichtfilters®) einer Spektrallampe oder einem Mono-
chromator vorzuziehen.

b) Die Mallardschen Formeln

In den vorhergehenden Ausfithrungen wurde verschiedentlich von den
Mallardschen Formeln Gebrauch gemacht. Es scheint daher vielleicht ange-
bracht, diese hier anhangsweise in ihrer Gesamtheit aufzufithren, um so mehr,
als sie in den einschligigen Lehrbiichern kaum je vollstindig behandelt werden.
Es handelt sich bei Ihnen bekanntlich um vereinfachte Niherungsausdriicke

5} Der Verfasser hat sehr gute Erfahrungen mit einem Interferenzfilter fiir die D-Linie
vom Typ «Filtraflex» B-20 der Firma Balzers AG fiir Hochvakuumtechnik und dinne
Schichten, in FL-9496 Balzers, Firstentum Liechtenstein, gemacht. Als Beleuchtung
eignet sich eine Halogenlampe, welche wegen ihrer hohen Intensitit ohne weiteres die
notige Einschrinkung der Apertur erlaubt. Breitbandfilter, wie sie fur manche Zwecke
genugen und eine grossere Durchlissigkeit aufweisen, so dass auf eine intensive Beleuch-
tung verzichtet werden koénnte, sind fiir Gangunterschiedmessungen. nicht geeignet, da
bei ihrem Gebrauch an den Kompensationsstreifen farbige Saume auftreten.
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fiir die exakten Formeln zur Berechnung von 2 V aus den drei Hauptbrechungs-
indizes. KEine Ableitung der exakten Ausdriicke findet man verschiedentlich,
u. a. bei Burri (1950, p. 47), oder in den Lehrbiichern der analytischen Geo-
metrie des Raumes, wo das entsprechende Problem der Berechnung des Win-
kels der Kreisschnittnormalen bzw. der Kreisschnittebenen eines dreiachsigen
Ellipsoides aus dessen drei Halbachsen interessiert. Es gibt im ganzen 12
Moglichkeiten diesen Winkel auszudriicken, entsprechend der Tatsache, dass
die Kreisschnittnormalen (optische Achsen) zwei Winkel miteinander bilden,
welche durch die grosste bzw. kleinste Ellipsoidachse halbiert werden, sowie
dass sechs trigonometrische Funktionen zur Verfiigung stehen um diese Winkel
auszudriicken.

Unter Beniitzung der cos-Funktion z. B. lautet die exakte Beziehung fiir
den auf [n.] bezogenen Achsenwinkel:

cosV, =-2* — .
4 ng n?,—ng

Nach Mallard kann man nun fiir kleine Doppelbrechungen (und somit fir den
grossten Teil der wichtigen gesteinsbildenden Mineralien) einen Faktor F

7 Zﬂ]/ny-i—nﬁ
ng 1 n,+n,

absondern, da sein Wert in diesem Falle nur wenig von 1 abweicht. Das ist
die sog. Mallardsche Néherung, welche auf die nach diesem Autor benannten
Niherungsausdriicke fiihrt. Entsprechende Moglichkeiten bestehen natur-
geméss auch fiir die tibrigen elf Formeln.

Setzt man gemass (9) wiederum vereinfachend:

(n,—mng) = 4,, (n,—n,) =4dg, (ng—m,) =4

yﬁ
so Jassen sich die 12 Mallardschen Formeln, da V, +V,=/2 ist, wie folgt in
6 Gruppen zusammenfassen :

) A
sin ¥, = A—; =cos V,,

th}, =|/:%=cotg1/;, COthy =V£ﬁ=thO“

cos V, = }/ﬂ =sinV,,
¥ dg

secV, = ]/Zié = cosecV,, cosecV, =} —==secl.

Die Mallardschen Formeln gestatten somit die angendherte Berechnung des
Achsenwinkels aus zwei Hauptdoppelbrechungen. Thre Bedeutung beruht
jedoch besonders auch darauf, dass an Stelle der nur selten genau bekannten
Hauptdoppelbrechungen 4, , die mit dem Kompensator leicht zu bestimmenden
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Hauptgangunterschiede RB,=d4, verwendet werden koénnen, da die unbe-
kannte und nur angenédhert zu bestimmende Schliffdicke zufolge der Verhalt-
nisbildung herausfallt.
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