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Zur Definition und Berechnung der optischen Orientierung
von Plagioklasen

Von Conrad Burri (Zürich)*)

Mit 8 Figuren im Text

Zusammenfassung

Das Problem der Definition der optischen Orientierung der Plagioklase wird unter
besonderer Berücksichtigung seiner Lösung mit Hilfe der Euler-Winkel diskutiert. Ein
vollständiges Schema zu deren Berechnung durch elementare Vektormethoden, welches
auch die optischen Achsen berücksichtigt, wird gegeben. Die Methode wird am Beispiel
des HT-Labradorites von Khuchiré (Iran) illustriert, fur welchen die optische Orientierung

bereits früher trigonometrisch berechnet wurde (diese Mitt. 48, 1968, 782-801). Es
ergibt sich somit eine Vergleichsmöglichkeit der beiden Methoden.

English Summary

The problem of the Optical Orientation of the plagioclases is discussed, particular
emphasis being laid on its solution by the method of the Eulerian Angles. A complete
scheme for their calculation by elementary vector methods is given, which also includes
the consideration of the optical axes. As an example the HT-labradorite of Khuchiré
(Iran) is dealt with, the optical orientation of which has already been worked out by the
usual trigonometrical methods. (This Bulletin 48, 1968, 781-801.) The reader is thus
enabled to compare the two different methods of solving the problem.
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498 C. Burri

I. EINLEITUNG

Unter der optischen Orientierung einer Kristallart versteht man definitions-
gemäss die räumliche Lage ihrer optischen Indikatrix in bezug auf das
morphologische Kristallgebäude. Dieses kann (L. Weber, 1926) entweder durch
das Flächennormalenbündel % oder durch das Zonenbündel Q dargestellt
werden, wobei in beiden Fällen drei geeignete, nicht komplanare Richtungen als
Achsen eines räumlichen Koordinatensystems zu wählen sind. Die beiden
Systeme sind reziprok zu einander. Für welches man sich in einem bestimmten
Falle entscheidet, hängt von den besonderen Gegebenheiten bzw. von der
Problemstellung ab. In der klassischen, phänomenologischen Kristallographie
überwiegt bekanntlich seit langem eine Betrachtungsweise, welche sich
einseitig und sozusagen ausschliesslich auf das Zonenbündel 3 stützt, obwohl sich
für eine Reihe von Problemen unter Benützung des Flächennormalenbündcls
einfachere und elegantere Lösungen ergäben. Diese Situation ist historisch
bedingt und ist eine Folge des überragenden Einflusses, welcher Christian
Samuel Weiss (1780-1856) auf die Entwicklung der Kristallographie ausübte.
Erst die Strukturforschung stellte durch Einführung des reziproken Gitters
(Ewald, 1921) wiederum ein gewisses Gleichgewicht für die kristallographische
Betrachtungsweise her.

Bei höherer Symmetrie gelingt es die Bezugssysteme rechtwinklig zu wählen,

während sie für die niedriger symmetrischen monoklinen und triklinen
Kristalle notgedrungen schiefwinklig resultieren. Die Frage der optischen
Orientierung ist jedoch gerade für sie von besonderem Interesse, weil durch
die niedrige Symmetrie die Möglichkeit einer Lagendispersion der Indikatrix
in Abhängigkeit von Temperatur, Wellenlänge und chemischer Zusammensetzung

in Mischkristallreihen besteht. Dabei ist der letzterwähnte Fall von
besonderer Wichtigkeit, denn er eröffnet bei quantitativer Kenntnis der
gegenseitigen Lagebeziehungen die Möglichkeit einer Bestimmung der
chemischen Zusammensetzung von Mischkristallen auf Grund rein optischer
Untersuchungen. Das wichtigste Beispiel in dieser Hinsicht ist die mikroskopische
Plagioklasbestimmung in Gesteinsdünnschliffen, wie sie ja für den Petro-
graphen von grundlegender Bedeutung ist. Da jedoch für niedrigsymmetrische
Kristalle, besonders für trikline, das morphologische Bezugssystem, stütze es

sich nun auf das Zonen- oder das Flächennormalenbündel, schiefwinklig ist,
und sich zudem dessen Parameter in Mischkristallreihen in Abhängigkeit vom
Chemismus ebenfalls ändern können, wie z. B. im Falle der Plagioklase, ergeben

sich für die Definition der optischen Orientierung in bezug auf das
Kristallgebäude erhebliche Schwierigkeiten. Glücklicherweise ergibt sich jedoch gerade
für die so wichtigen triklinen Plagioklase (und für die triklinen Feldspate
überhaupt) die Möglichkeit der Einführung eines rechtwinkligen Bezugssystems.
Dessen Achsen entsprechen zwar, bezogen auf das konventionelle trikline
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kristallographische Achsenkreuz, z. T. irrationalen Richtungen, sie sind aber
als Zwillingsachsen dreier häufig realisierter Zwillingsgesetze gut definiert und
experimentell als solche auch gut feststellbar. Diese Achsen sind die folgenden
(Fig. 1):

A-Ach se : die Normale auf [001] in der Fläche (010), somit eine irrationale
Kantennormale, welche als Zwillingsachse des Albit-Karlsbad-Kom-
plexgesetzes (Roc-Tourné-Gesetz) bekannt ist.

F-Achse : die Normale auf die Fläche (010), welche in bezug auf das konven¬
tionelle Q-System ebenfalls irrational ist, jedoch rational in bezug
auf das ^-System. Sie ist Zwillingsachse des häufigen Albit-Gesetzes.

Z-Achse: [001], die konventionelle c-Achse, eine rationale Richtung in bezug
auf das 3-Systenb jedoch irrational im ^-System. Sie ist Zwillingsachse

des verbreiteten Karlsbad-Gesetzes.

+ z [001]

Fig. 1. Das rechtwinklige morphologische System
XYZ. (X ZA des Albit-Karlsbad-Komplex-
Roc-Tourné-Gesetzes, Y ZA des Albit-Gesetzes,

Z ZA des Karlsbad-Gesetzes.) + X

+ Y= 1 (OIO)

; i [ooi]
(010)

Das so definierte System ergibt sich auch fast zwangsläufig, wenn man die
stereographische Projektion auf die (irrationale) Ebene J_ c benutzt, wie dies
schon durch Fedorow. Michel-Lévy u. a. geschah, während Becke vielfach
(010) als Projektionsebene vorzog. Das so definierte Achsenkreuz ist nun zwar
rechtwinklig, es verstösst aber gegen das Prinzip, wonach als kristallographische

Bezugsrichtungen ausschliesslich entweder Elemente des Flächennormalen-

oder des Zonenbündels gewählt werden sollen. Es ist daher nicht homogen
in seinem Aufbau und eignet sich nicht zur Definition (Indizierung) von
Flächen oder Zonen. Es ist jedoch in hervorragendem Masse für die Definition
der optischen Orientierung geeignet, wofür es schon früh durch Michel-Lévy,
Fedokow, Becke, Nikitin u. a. verwendet wurde. Es ist immer dann ein-
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deutig definiert, sobald mindestens zwei der drei obgenannten Zwillingsgesetze
realisiert sind, da sich die dritte Achse immer als Normale zu der durch die
beiden andern aufgespannten Ebene konstruieren lässt. Es eignet sich in
hervorragendem Masse für U-Tischuntersuchungen, da sich die genannten
Zwillingsachsen mit grosser Genauigkeit einmessen bzw. konstruieren lassen.

Was nun die Definition der Lage der optischen Indikatrix in bezug auf das

eben eingeführte System anbelangt, so wurde hierfür bis vor kurzem fast
ausschliesslich die Lage der optischen Achsen in bezug auf das eben definierte
System X YZ benutzt, wie dies von Michel-Lévy und Becke vorgeschlagen
worden war. Hierzu wird um seinen Ursprung eine Lagenkugel geschlagen,
auf welcher die Achsenausstichpunkte durch Kugelkoordinaten festgelegt werden.

Ist zusätzlich noch der optische Charakter bekannt, so ist die Lage der
Indikatrix durch die Angabe der Achsenpositionen vollständig und eindeutig
definiert: die beiden Achsen bestimmen die Achsenebene, zu welcher die

optische Normale normal steht, während die beiden Bisektrizen definitions-
gemäss die Winkelhalbierenden der Achsen sind. Deren relativer Charakter
folgt aus der Angabe des optischen Charakters. Die Positionen der drei
Hauptschwingungsrichtungen lassen sich somit sphärisch-trigonometrisch berechnen
und können in Kugelkoordinaten angegeben werden. Besonders einfach und
anschaulich gestalten sich diese Beziehungen in vektorieller Betrachtung.
Ordnet man den beiden optischen Achsen A und B zwei Vektoren 91 und 93

zu, so erhält man die beiden Bisektrizen als 910 ± 930, während sich die optische
Normale als Vektorprodukt [91 93] ergibt. Da man zur Festlegung der
Achsenpositionen auf der Lagenkugel je zwei Koordinaten benötigt, braucht es somit
zur Charakterisierung der Indikatrixlage durch diese Methode 4 Zahlenwerte,
wozu noch die Angabe des optischen Charakters kommt.

Zur experimentellen Feststellung der optischen Orientierung von Plagio-
klasen nach dieser Methode benötigt man grössere, homogene und frische,
gut ausgebildete Kristalle, welche die Anfertigung orientierter Präparate
gestatten, an welchen die Achsenlagen nach den Methoden von Becke oder

Wülfing konoskopisch ermittelt werden können. Solche sind jedoch, wie die

Erfahrung zeigt, nur in beschränktem Masse erhältlich. Es drängen sich somit
andere Methoden auf, wenn unsere Kenntnisse von der optischen Orientierung
der Plagioklase in Abhängigkeit von deren chemischen Zusammensetzung
erweitert werden sollen. Dies ist jedoch, ganz abgesehen vom rein
wissenschaftlichen Interesse, welches die Kenntnis der optischen Eigenschaften von
Mischkristallreihen an sich bietet, auch deshalb sehr wünschenswert, weil sie

die Unterlage für die für den Petrographen so wichtigen mikroskopischen
Plagioklasbestimmungsmethoden darstellen.

Eine Methode, welche in dieser Hinsicht geradezu als prädestiniert erscheint,
ist die Fedorow- oder U-Tischmethode. Sie liefert jedoch, im Gegensatz zu
den konoskopischen Methoden, die Positionen der optischen Achsen nur ganz
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ausnahmsweise mit einer Genauigkeit, welche für die Definition der Indikatrix-
lage ausreichend ist. Sehr oft können die optischen Achsen überhaupt nicht
eingemessen werden, nämlich immer dann, wenn sie gegenüber der
Schliffnormale zu stark geneigt sind. In diesem Falle hilft oft die Messung des Achsenwinkels

mit Hilfe einer indirekten Methode, z. B. derjenigen der
«Charakteristischen Funktion der Doppelbrechnung» von Berek (Berek 1924, Rin ve-
Berek 1953). Da die Plagioklase jedoch niedrig doppelbrechend sind, muss,
bei Verwendung von Dünnschliffen normaler Dicke, die Messung der
Gangunterschiede gemäss den Vorschlägen von Mosebach (1948, 1949, 1949a)
vorgenommen werden. Hierzu benötigt man allerdings Beleuchtung mit homogenem

Licht von einer gewissen Intensität, verbunden mit der Möglichkeit
eines raschen Wechsels zwischen weissem und homogenem Licht. Dies stellt
jedoch angesichts der heute zur Verfügung stehenden Interferenzfilter weiter
kein Problem dar. Wenn auch die Einmessung der optischen Achsen mit Hilfe
der U-Tischmethoden verschiedentlich Schwierigkeiten bereitet, so liefern
diese dafür, im Gegensatz zu den konoskopischen Methoden von Becke und
Wülfing, die Lage der optischen Symmetrieebenen und der Symmetrieachsen
der Indikatrix (Hauptschwingungsrichtungen), welche normal dazu stehen
bzw. sich als deren Schnittgeraden konstruieren lassen, mit relativ grosser
Genauigkeit. Die heute üblichen U-Tischmethoden basieren deshalb auf der
Einmessung der Symmetrieebenen der Indikatrix. Diese Operation steht am
Ausgang aller U-Tischuntersuchungen. Historisch ist vielleicht von Interesse,
dass auch Fedorow mit seinem ersten U-Tischmodell, welches nur zwei
Drehachsen aufwies, zuerst darauf ausging, die Positionen der optischen Achsen
zu erfassen, um aus diesen nach dem w. o. geschilderten Verfahren die Lage
der Indikatrix abzuleiten. Er tat dies, und zwar im parallelen Licht, indem
er die erste Achse als Schnittpunkt einer Schar von Kurven gleicher
Auslöschung bestimmte, während die zweite, wenn sie nicht auf gleiche Weise
ermittelt werden konnte, aus der Auslöschungsschiefe des Präparates unter
Verwendung der Position der ersten Achse mit Hilfe der FRESNELschen
Konstruktion erhalten wurde. Da diese Methode jedoch eher mühsam und auch
nicht sehr genau war, wurde sie von Fedorow bald aufgegeben. Durch
Einführung einer dritten Drehachse wurde die Möglichkeit zur direkten
Einmessung der optischen Symmetrieebenen bzw. der dazu normal stehenden
Hauptschwingungsrichtungen geschaffen, womit die U-Tischmethode ihre
heutige Gestalt erhielt.

Wie die drei Achsen XYZ des früher beschriebenen morphologischen
Bezugssystems, bilden auch die drei Symmetrieachsen der Indikatrix ein
rechtwinkliges System. Das Problem der optischen Orientierung der Plagioklase
reduziert sich somit auf dasjenige der gegenseitigen Orientierung zweier
rechtwinkliger, kartesianischer Systeme mit gemeinsamem Ursprung, ein Problem
für welches die analytische Geometrie des Raumes schon lange verschiedene
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Lösungen kennt. Als besonders geeignet erweist sich für den vorliegenden Fall
die Methode der sog. Euler-Winkel (Leonhard Euler 1748). Die Achsen der
beiden Systeme bilden zusammen insgesamt 9 Winkel, welche jedoch nicht
unabhängig von einander sind. Es bestehen vielmehr zwischen ihren cos
6 Systeme von Gleichungen und es genügen daher zur Festlegung der
gegenseitigen Orientierung der beiden Systeme 3 Winkel. Statt nun aus den 9 Winkeln,

welche die beiden Systeme mit einander bilden, drei beliebige
auszuwählen, wählt man nach Euler drei spezielle, welche wie folgt definiert sind.
Sind die beiden Systeme (Fig. 2) XYZ und X'Y'Z', und definiert man die

+z
+ z'

* +0
<T

\ ^ /- A-\ \ /\\

+y
/

/
/

+Y

1 0

t >0. + T

*+x;

+x
Fig. 2. Zur Definition der

Euler-Winkel.

Schnittgerade der Ebene XY (Z 0) des ersten Systems mit der Ebene X' Y'
{Z' 0) des zweiten als Knotenlinie T, welcher man in willkürlicher Weise eine

Richtung zuschreibt, so sind die drei sog. Euler-Winkel wie folgt bestimmt:
<P + T, + X), W + T, +X') und © (Z, Z'). Die drei Winkel entsprechen
drei Drehungen, durch welche das eine System in das andere übergeführt wird.
Für Einzelheiten sei auf die Lehrbücher der analytischen Geometrie des
Raumes oder der Mechanik, oder auch auf Burri (1956) oder Burri, Parker
und Wenk (1967) verwiesen. Nimmt man das früher definierte morphologische
Bezugssystem, dessen Achsen den Zwillingsachsen der Gesetze Roc Tourné,
Albit und Karlsbad entsprechen als XYZ und die drei Symmetrieachsen der
Indikatrix (Hauptschwingungsrichtungen) als X' Y' Z', so ergeben sich für
das letztere drei Möglichkeiten der Zuordnung der Hauptschwingungsrichtungen

zu den drei Koordinatenachsen X' Y' Z', wie das folgende Schema zeigt.
Die entsprechenden Euler-Winkel werden als Euler-Winkel I-III unterschieden.
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Euler-Winkel I II III
X' [ny] K]
Y' [ny] K] lnßl
Z' [nj [n,s] [ny]

Fig. 4, 6 und 7 zeigen die entsprechenden Verhältnisse für einen Labrador in
stereographischer Projektion auf die Ebene _L [001]. Von Bubbi (1956) wurde
anlässlich der erstmaligen Anwendung dieser Betrachtungsweise nur Fall I
berücksichtigt, während die Fälle II und III in der Folge durch Paekee
(Pabkee 1961, Bubbi, Paekeb, Wenk 1967) erstmals in Betracht gezogen
wurden. Besonders Fall II erwies sich als wichtig, da es Pabkeb auf diesem
Wege gelang, auch die optischen Achsen mit zu berücksichtigen. Diese waren
von Bubbi zuerst vernachlässigt worden, da das Problem der Darstellung der
optischen Orientierung der Plagioklase mit Hilfe der Euler-Winkel I auch
ohne deren Berücksichtigung gelöst werden konnte. Ihre Einbeziehung wird
jedoch unumgänglich, sobald die FBESNELsche Konstruktion zur Bestimmung
von Auslösungsschiefen angewandt werden soll. Auf Grund der Euler-Winkel II
wurde von Pabkeb auch eine elegante Ausgleichsmethode gegeben, für den
Fall, dass die eingemessenen Schwingungsrichtungen nicht genau normal zu
einander stehen. Im folgenden soll gezeigt werden, wie sich die optischen
Achsen auch bei alleiniger Verwendung der Euler-Winkel I berücksichtigen
lassen.

Von Bubbi wurden seinerzeit für die Berechnung der Euler-Winkel I
elementare Vektormethoden vorgeschlagen, welche vor allem den Vorteil
grosser Anschaulichkeit besitzen (Bubbi 1957). Durch Pabkeb wurde in der
Folge (Pabkeb 1961, Bubbi, Pabkeb und Wenk 1967) die sphärisch-trigonometrische

Berechnung vorgezogen, wobei ein detailliertes Formelsystem zur
Berechnung der Euler-Winkel I-III, sowie zu ihrer gegenseitigen Umrechnung
aufgestellt wurde. Die den Vektormethoden innewohnende Anschaulichkeit,
sowie der Umstand, dass sie im Mathematikunterricht für Naturwissenschafter
an den Hochschulen in zunehmendem Masse berücksichtigt werden,
rechtfertigt es jedoch nach Ansicht des Verfassers, dass sie in vermehrtem Masse
auch für kristalloptische Berechnungen herangezogen werden. Es soll daher
im folgenden gezeigt werden, wie sich auch die Euler-Winkel II und III auf
sehr einfachem Wege durch Vektormethoden ergeben, sowie, wie auch die
optischen Achsen durch sie mitberücksichtigt werden können. Es soll auch
gezeigt werden, wie der notwendige Ausgleich bei nichterfüllter Orthogonalität
der Hauptschwingungsrichtungen mit elementaren Vektormethoden ebenfalls
sehr einfach bewerkstelligt werden kann, sowie dass auch gewisse durch Pabkeb
eingeführte Hilfswinkel, welche wertvolle Kontrollmöglichkeiten bieten, ebenfalls

auf einfache Weise erhältlich sind.
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II. VEKTORIELLE METHODIK ZUR BERECHNUNG DER OPTISCHEN
ORIENTIERUNG VON PLAG IOKLASEN

1. Die Ausgangsdaten und ihr Ausgleich

Zur Formulierung der für die optische Orientierung massgebenden
Richtungen als Vektoren benötigt man die Kenntnis ihrer Richtungswinkel bzw.
Richtungscosinus in bezug auf das System XYZ. Die Richtungswinkel sind
identisch mit den Fedorow-Winkeln Fx, Fy, Fs (Kleinkreiskoordinaten auf
der Lagenkugel), wie sie sich bei U-Tischuntersuchungen ergeben, und wie sie

auf besonders einfache Weise, ohne jede Einmessung von morphologischen
Bezugselementen wie Spaltbarkeiten etc. durch die Halbierung der über die
Zwillingsachse gemessenen KÖHLER-Winkel für die Hauptschwingungsrichtungen

von Zwillingen nach den Gesetzen Roc Tourné, Älbit und Karlsbad
erhalten werden. Man kann sie auch aus eventuell gegebenen (95, p)-Werten
nach Goldschmidt berechnen.

Die Richtungswinkel müssen, wenn erforderlich, auf 2 cos2 Ft 1

ausgeglichen werden. Hierzu wird der Winkelwert, welcher der Differenz ihrer cos2-

Summe gegen 1 entspricht gleichmässig, auf die drei Winkel aufgeteilt und zu
ihnen addiert bzw. von ihnen subtrahiert (Burri, Parker, Wenk 1967, p. 143).
Da die Richtungscosinus den Komponenten des betreffenden Einheitsvektors
entsprechen, kann dieser für eine beliebige Richtung E wie folgt geschrieben
werden :

9f0 (cos Fx) i + (cos Fy) j + (cos Fs)

Der diesem Ortsvektor auf der Lagenkugel (Einheitskugel) entsprechende Pol
kann sofort in eine stereographische Projektion eingetragen werden, indem
man die Richtungswinkel Fx,Fy,Fz einer Funktionstabelle1) entnimmt. Diese

entsprechen Kleinkreiskoordinaten in bezug auf die X-, Y-, bzw. Z-Achse,
wobei das Vorzeichen zu beachten ist. Die Kleinkreise müssen sich in einem
Punkte schneiden.

Man kann aus den Fi auch die (<p, p)-Werte des der Richtung R auf der
Einheitskugel zugeordneten Pols bestimmen. Man bildet hierzu, zunächst ohne

Berücksichtigung des Vorzeichens, cos Fx/cos Fy tg A, wobei A ein
Hilfswinkel, eingeschlossen von F-Achse und radius vector ist. cp ergibt sich dann
wie folgt:

B Empfehlenswert sind die Tafeln von C. A. Attwood, Six-Figure Trigonometrical
Functions of Angles in Hundreths of a Degree. Practical Tables Series No. 2, Pergamon
(1965).
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X Y 9

+
+

+ A

180°-d
180° + A

+ 360° — A

Die Zentraldistanz p arc cos Fz.

Mit dem U-Tisch lassen sich immer mindestens zwei Symmetrieachsen der
Indikatrix direkt einmessen. Falls die dritte der direkten Einmessung nicht
zugänglich ist, lässt sie sich konstruieren. Liegen nun die Positionen der drei
Symmetrieachsen (Hauptschwingungsrichtungen) vor, so muss zunächst
geprüft werden, ob sie normal zu einander stehen. Diese Prüfung ist besonders
immer auch dann vorzunehmen, wenn Literaturdaten verwendet werden.
Man bildet hierzu die skalaren Produkte von je zwei der drei Vektoren, welche
sämtlich den Wert Null ergeben müssen. Ist dies nicht der Fall, so muss ein
Ausgleich erfolgen, da die Berechnung der Euler-Winkel die Orthogonalität beider
Systeme voraussetzt. Eine Ausgleichsmethode, welche den drei Symmetrieachsen

das gleiche Gewicht zuteilt, wurde von Parker beschrieben (Burri,
Parker und Wenk 1967, p. 135), Da es jedoch eine jedem U-Tischpraktiker
wohl bekannte Erfahrungstatsache ist, dass die Einmessung der optischen
Achsenebene mit einem grösseren Fehler behaftet ist als die beiden andern
Symmetrieebenen, empfiehlt es sich nach Burri (1968, p. 798) die beiden
Bisektrizen bevorzugt zu berücksichtigen und die optische Normale rein
rechnerisch durch das Vektorprodukt der beiden Bisektrizen festzulegen. Auf diese
Weise erreicht man, dass die Winkel ([na], [n^]) und ([ny], [n^]) 90° betragen,
so dass sich für sie ein Ausgleich erübrigt. Für den Winkel ([na], [ny]) muss
jedoch nachgeprüft werden, ob dies ebenfalls der Fall ist, was am besten durch
Bildung des skalaren Produktes geschieht. Weicht der Winkel von 90° ab, so

muss ein Ausgleich erfolgen, indem die Differenz gleichmässig auf beide
Bisektrizen verteilt wird.

Hierzu bestimmt man zunächst die Winkelhalbierenden H und K der beiden

schief zu einander stehenden Richtungen. Bezeichnet man die \n(x\ und
[» ] zugeordneten Vektoren vorerst mit a' und c' (indem man die ungestrichenen

Symbole für die definitiven, ausgeglichenen Richtungen reserviert), so ist
(Fig. 3 a) !q öq + Cq bzw. ü ûq — Cq wobei H und K normal zueinander
stehen. Bestimmt man nun erneut die Winkelhalbierenden von H und K
(Fig. 3b), so stehen diese wiederum normal zueinander und entsprechen den
gesuchten, ausgeglichenen Lagen der Hauptschwingungsrichtungen [nj und
[wy], wobei die ursprüngliche Abweichung vom rechten Winkel gleichmässig
auf die beiden Richtungen aufgeteilt ist. Es ist somit §0 + c bzw. .£)() — Vq

a, woraus durch Normierung a0 und c0 erhalten werden.
Das skalare Produkt (a0 c0) bietet eine Kontrolle über das Bestehen der
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Fig. 3. Ausgleich der niehl normal zu einander stehenden Schwingungsrichtungen a' und c'
hinsichtlich Orthogonalität.

a) Konstruktion der Winkelhalbierenden § und S der beiden Schwingungsrichtungen. Diese
stehen normal zu einander.

b) Die Winkelhalbierenden von § und S stehen ihrerseits ebenfalls normal zu einander und
entsprechen den gesuchten ausgeglichenen Schwingungsrichtungen a und c.

angestrebten Orthogonalität und das Vektorprodukt [a0 c0] 60 liefert die
Position von \n^\. Damit verfügt man über das hinsichtlich Orthogonalität
ausgeglichene System X' Y' Z' der drei Hauptschwingungsrichtungen, bezogen

auf das morphologische System XYZ und es kann an die Berechnung der
Euler-Winkel herangetreten werden.

2. Die Berechnung der Euler-Winkel

a) Euler-Winkel I
Die Knotenlinie t (Fig. 4) ist Schnittgerade der Ebene _L [«J mit der Ebene

J_ Z (Projektionsebene). Bezeichnet man die Einheitsvektoren in Richtung
von X, Y, Z mit t, j, ï, so ist t [o0 Ï], woraus durch Normierung der Einheitsvektor

t„ folgt. Die gesuchten Euler-Winkel I erhält man aus den skalaren
Produkten :

cos 0 (t0 i), cos W= (t0 b0), cos 0 (a0

Positionen der optischen Achsen.
Wie Fig. 5 zeigt, erhält man die beiden den optischen Achsen A und B

entsprechenden Vektoren 91 und 93 als a0 a + £, wobei £ C0 tg Va ist. V ist der
Achsenwinkel in bezug auf die entsprechende Bisektriz. Durch Normierung
erhält man die Einheitsvektoren 910 und 930, aus welchen die (<p, p)-Werte oder
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-X

M

die sphärischen Koordinaten nach Becke berechnet werden können. Das
skalare Produkt (9ï0 SJ30) cos 2 F dient zur Kontrolle.

Es ist somit möglich, die vollständige optische Orientierung eines Plagio-
klases durch 4 Zahlenwerte eindeutig auszudrücken, nämlich durch die drei
Euler-Winkel I, <P, W, © und den Achsenwinkel F.
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b) Euler-Winkel II
Die Knotenlinie u (Fig. 6) ist Schnittgerade der Ebene _L \nß\ mit der

Ebene J_ Z. Es ist somit u [b0 !], woraus durch Normierung u0 folgt.

-X

Fig. 6. Optische Orientierung von HT-Labradorit An62. Stereographische Projektion auf die
Ebene _L [001] mit Angabe der Euler-Winkel II.

Die gesuchten Euler-Winkel II erhält man aus den skalaren Produkten:

cos B (u„ i), cos I (b0 ï), cos La (u0 a0).

In bezug auf die optischen Achsen wird wie unter a) angegeben verfahren.

c) Euler-Winel III
Die Knotenlinie w (Fig. 7) ist Schnittgerade der Ebene _L \ny\ mit der

Ebene J_ Z. Es ist somit tu [c0 Ï], woraus durch Normierung li)0 folgt.
Die gesuchten Euler-Winkel III folgen aus den skalaren Produkten:

cos D (tn0 i), cosAr (c0!), cos Ka tu0 a0).

In bezug auf die optischen Achsen wird wie unter a) angegeben verfahren.

d) Hilfswinkel

Von Parker wurden (Burri, Parker, Wenk 1967, p. 124) gewisse
Hilfswinkel eingeführt und von ihm einheitlich mit A bezeichnet. Sie treten in der
stereographischen Projektion (Fig. 8) am Grundkreis als Seiten von Scheitel-
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Fig. 7. Optische Orientierung von HT-Labradorit An62. Stereographische Projektion auf die
Ebene J_ [001] mit Angabe der Euler-Winkel III.

-X

Fig. 8. Zur Berechnung der Parkerschen Hilfswinkel A, E und H für HT-Labradorit An62.

dreiecken zum Grunddreieck [/Ra]-[ auf. Sie treten zugleich als Seiten
in Dreiecken auf, deren beide andere Seiten durch je zwei der drei Knotenlinien

gebildet werden. Die Hilfswinkel spielen eine Rolle bei der Umrechnung
der Euler-Winkel I-III nach den von Parker gegebenen sphärisch-trigono-
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metrischen Formeln und können auch sehr gut zu Kontrollzwecken verwendet
werden. Ihre Berechnung gestaltet sich sehr einfach durch Bildung der
entsprechenden skalaren Produkte. Nennt man die Winkel gemäss Fig. 9 A, E, H,
so gilt :

cos A (i0 it0), cos E (t0 rt>0), cos H (u0 ft>0) •

Von Turner (1947) und unabhängig davon durch Dbbenedetti (1960) wurde
vorgeschlagen, die Winkel zwischen den Symmetrieachsen der Indikatrix und
den Zwillingsachsen häufiger Zwillingsgesetze bzw. zwischen Symmetrieebenen
und Zwillingsebenen zur Bestimmung des An-Gehaltes zu verwenden. Von
beiden Autoren wurden diesbezügliche Diagramme gegeben. Auch diese Winkel

lassen sich im Anschluss an die hier benützte Darstellung der optischen
Orientierung sehr einfach gewinnen. Die cos der Winkel zwischen den
Hauptschwingungsrichtungen [na], [riß] und [ny] und den Zwillingsachsen ergeben
sich für die Zwillingsgesetze Roc Tourné (RT) Albit (AB) und Karlsbad (KB)
als skalare Produkte gemäss folgendem Schema :

RT AB KB

[»*] (<*o i) (Ooi) (M)
[»/}] M (M) (K l)
Lnv] (Co i) (c0 i) (coD

III. BEISPIEL

Zur Illustrierung der eben dargelegten Methode soll die optische Orientierung

des HT-Labradorites An62 von Khuchiré (Iran) auf Grund von U-Tisch-
messungen berechnet werden. Es handelt sich um das gleiche Vorkommen,
welches bereits früher (Burri 1968) untersucht wurde. Da die Berechnungen
damals sphärisch-trigonometrisch durchgeführt wurden, können somit die
beiden Methoden schrittweise miteinander verglichen werden. Die bereits w. o.

gegebenen stereographischen Projektionen Fig. 4, 6, 7 und 8 beziehen sich auf
dieses Beispiel und dienen daher auch zur Erläuterung der folgenden
Ausführungen.

1. Die Ausgangswerte und ihr Ausgleich

a) Die Messwerte

Mit Hilfe des U-Tisches wurden an je 10 Zwillingen nach den Gesetzen
Roc Tourné, Albit und Karlsbad die Köhler-Winkel für die Hauptschwingungsrichtungen

[r/a| und [ny] gemessen, aus welchen durch Halbierung und
Mittelwertbildung die folgenden Fedorow-Winkel (Richtungswinkel) erhalten wurden:
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Fx=- 61,70°
Fy =-71,95° KJ.
Fz + 35,30°

Fx= + 72,55'
Fy + 35,05'

+ 59,80'
KL

Nach Ausgleich auf 2 c°s2 Ft 1 erhält man:

Fx=- 61,38°
Fu =-71,63° [»J,
Fz + 34,98°

^ + 72,87°
"

j; + 35,37° [ny],
Fz + 60,12°

Den beiden Bisektrizen [ na\ und [wy] werden die beiden Vektoren a(', und Cq

zugeordnet :

Uo - (cos 61,38°) i-(cos 71,63°) j + (cos 34,98°)
— 0,47810 i —0,31515 j +0,81935 ï,

Co + (cos 72,87°) i + (cos 35,37) \ + (cos 60,12°)

+ 0,29454 i + 0,81543 i + 0,49818 Ï.

Hierzu bildet man das skalare Produkt (a/, c<J) 0,01012 cos 89,4°. Es
ist somit ein Ausgleich notwendig. Hierzu bildet man die Winkelhalbierenden
der beiden Bisektrizen:

Oo + Co - 0,18356 i + 0,50028 j; + 1,31753!,
Cto-CÔ St =- 0,77264 i-1,13058 j + 0,32117 Ï.

woraus durch Normierung die Einheitsvektoren folgen:

§0 - 0,12916 i + 0,35201 j +0,92704 f,
=- 0,54931 i-0,80377 j + 0,22833 ï.

Die ausgeglichenen Schwingungsrichtungen erhält man durch erneute Bildung
der Winkelhalbierenden :

£0 + f0 a =- 0,67847 i-0,45176 i + 1,15537

&o-S£0 C +0,42015 i+1,15578 i + 0,69867 ï.

Daraus folgen wiederum die Einheitsvektoren, aus welchen man die (<p, p)-
Werte erhält:

a0 - 0,47984 i-0,31949 i + 0,81712 Ï, <pa 236,34°, Pa 35,20°,

C0 =+ 0,29705 i + 0,81716 i + 0,49397 Ï, <py 19,98°, py 60,40°.

Zur Kontrolle der angestrebten Orthogonalität bildet man wiederum das
skalare Produkt (a0 c0) 0,00002 cos 90,0°. Diese ist somit erreicht.

b) Prüfung auf Orthogonalität
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2. Berechnung der Position der optischen Normale

Ordnet man [riß] den Vektor b zu, so erhält man aus b0 [d0 c0]

b0 + 0,82555 i— 0,47976 j + 0,29721 <pß 120,16°, pß 72,71°.

3. Berechnung der Positionen der optischen Achsen

Gemessen wurde im Mittel + 21^, 78,8°, woraus \'a 50,6°. Der
Hilfsvektor £ berechnet sich zu £ C0 tg 50,6° zu

Ï + 0,36163 i + 0,99482 j + 0,60137 l.

Ordnet man den beiden optischen Achsen A und B die Vektoren 31 und 33 zu,
so wird

31 <x0_£ _ 0,84147 i- 1,31431 j + 0,215751,

93 a0 + ï - 0,11821 i + 0,67533j + 1,41849 f.

Normiert: 910 =- 0,53411 i — 0,83429 j + 0,13695 <p^ 212,630, pyl 82,08°,

930 =- 0,07513 i + 0,42918 j + 0,90012 1, 9B 350,07o, pB 25,83°.

Zur Kontrolle : Berechnung von 2 Vy aus den eben errechneten Achsenpositionen

(3t0 330) 0,19466 cos 78,8°, wie gemessen.

4. Berechnung der Euler-Winkel 1 (Fig. 4)

Knotenlinie t t [a0 Ï] + 0,31949 t ± 0,47984 j + 0 Ï.
Normiert : t0 + 0,55421 i + 0,83238 j + 0 ï.

cos 0 (t0 i) 0,55421, 0 56,34°,

cos W (t0b0) 0,85680, W 30,88°,

cos & (a0 0,81712, @ 35,20°.

5. Berechnung der Euler-Winkel II (Fig. 6)

Knotenlinie u u [b0 1] + 0,47976 i + 0,82555 j + 0 1.

Normiert: rt0 + 0,50246 i+0,86460 i + 0 ï.

cos R (u„i) 0,50246, R =120,16°,
cos I (b„l) 0,29721, I 72,71°,

cos La (u0a0) 0,51734, La 58,85°.
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6. Berechnung der Euler-Winkel III (Fig. 7)

Knotenlinie w to [c0 f] ± 0,81716 i+ 0,29705 j + 0

Normiert : to0 ± 0,93982 i + 0,34164 j + 0 I.

cos D (to0i) 0,93982, D 19,98°,

cos N (c0ï) 0,49397, N 60,40°,

cos Ka (tO0 O0) 0,34182, Ka 109,99°.

7. Parkersche Hilfswinkel (Fig. 8)

cos/1 (u0t0) 0,44121, cos E — (to0U0) 0,17683, cos H (t0 to0) 0,80524,

A 63,82°, E 79,82°, H 36,37°.

8. Zusammenstellung der Resultate

Vektoren der Hauptschwingungsrichtungen (ausgeglichen)

a0 - 0,47984 i —0,31949 j + 0,81712 Ï,
h0 + 0,82555 i - 0,47976 j + 0,29721 f,
C0 + 0,29705 i + 0,81716 j + 0,49397 Ï.

Positionen der Hauptschwingungsrichtungen

<pa 236,3°, n 120,2°, 20,0°,

Pa 35,2°, Pß 72,'7°, py 60,4°.

Vektoren der optischen Achsen

910 _ 0,53411 i —0,83429 j + 0,13695

S30 - 0,07513 i + 0,42918 j + 0,90012 Ï.

Positionen der optischen Achsen

cpA 212,6°, epB 350,1°,

pA 82,1°, pB 25,8°, + 2 Fy 78,8°.

Euler-Winkel I: <S> 56,3°, W 30,9°, © 35,2°,

Euler-Winkel II: R 120,2°, I =72,7°, La 58,8°,

Euler-Winkel III: D= 20,0°, N 60,4°, Ka 110,0°.
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