Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 51 (1971)

Heft: 2-3

Artikel: Regionale Verteilung der Mg-Phyllosilikate in den Serpentiniten des

Oberhalbsteins

Autor: Dietrich, Volker / Peters, Tjerk

DOI: https://doi.org/10.5169/seals-39824

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Regionale Verteilung der Mg-Phyllosilikate in den Serpentiniten des Oberhalbsteins

Von Volker Dietrich (Zürich)*) und Tjerk Peters (Bern)**)

Mit 1 Textfigur, 2 Tabellen, 2 Phototafeln und einer Kartenbeilage

Abstract

The distribution of Mg-layer silicates in serpentinites and associated rocks was studied in the Oberhalbstein and Engadine (Grisons). In this region the reaction brucite + serpentine \rightarrow forsterite $+H_2O$ has not yet taken place. Chrysotile and lizardite are found as main constituents in all the serpentinites of the Oberhalbstein and in some serpentinites of the Engadine. Rock forming antigorite, indicating a higher grade of regional metamorphism, occurs in serpentinites south of Bivio. Throughout the whole region fissure antigorite is found, often together with calcite, dolomite or sulfides in veins, crosscutting lizardite-chrysotile-serpentinites. These parageneses, also found in ophicalcites and ophidolomites, indicate that at lower activities of H_2O antigorite is favoured with respect to chrysotile and lizardite. Hydrothermal experiments, in trying to transform chrysotile serpentinites into antigorite serpentinites were not successful.

Im Rahmen der bisher beschriebenen, jungen zentralalpinen Metamorphose (Jäger, Niggli und Wenk, 1967) untersuchten Evans und Trommsdorff (1970) die Regionalmetamorphose der ultrabasischen Gesteine mit den Paragenesen des Systems CaO-MgO-SiO₂-H₂O. Leider existieren die interessanten und gut diagnostizierbaren Indexparagenesen erst oberhalb 350–400°C, d. h. jenseits der Gleichgewichtskurve "Serpentin + Brucit = 2 Forsterit + 3 H₂O" (Bowen und Tuttle, 1949, korrigiert 1968 durch Johannes).

Experimentelle Daten über Serpentinmineralreaktionen unterhalb 350 bis 400°C liegen noch nicht vor. Wir vermuten, dass die Mg-Phyllosilikate des Oberhalbsteiner Bereiches in diese experimentelle Lücke fallen.

Generell ist uns im Bündnerraum (Querschnitt Chur-Sondrio) eine Zunahme der alpinen Metamorphose (oder mehrerer alpinen Metamorphosen) bekannt, obwohl erst relativ wenige Daten zur Verfügung stehen.

^{*)} Institut für Kristallographie und Petrographie der ETH, Sonneggstrasse 5, CH-8006 Zürich.

 $[\]boldsymbol{**}$) Mineralogisch-petrographisches Institut der Universität, Sahlistrasse 6, CH-3012 Bern.

In einer petrographischen Arbeit (Dietrich, 1969) untersuchten wir die Zunahme der regionalen alpinen Metamorphose von Norden nach Süden auf Grund des Indexminerals Pumpellyit (Stabilitätsbereich P_{fluid}-T: nach neuesten experimentellen Daten von Liou (1970), 250–400°C und 2,7–4,5 kbar). In allen Meta-Vulkaniten und -Gabbros des nördlichen und mittleren Oberhalbsteins, insbesondere des Platta-Gebietes, fanden wir Pumpellyit. Prehnit, der in der nördlich anschliessenden Aroser-Zone zusammen mit Pumpellyit auftritt, fehlt dagegen im gesamten Oberhalbstein. Im südlichen Oberhalbstein konnten wir eine relativ scharfe Grenze des Pumpellyitauftretens feststellen, die etwa durch die Fuorcla da la Valletta hindurchgeht und in Richtung Julier-Pass verläuft. Südlich dieser Grenze setzen sich die vollständig überprägten Vulkanite vorwiegend aus Albit, Chlorit, Epidot, Muskovit, Aktinolith, Glaukophan und Titanit zusammen, Lawsonit haben wir bisher noch nicht entdeckt.

Die vorliegende Arbeit befasst sich mit dem Versuch einer Ausscheidung von Isograden ultrabasischer gesteinsbildender Mineralien. Dazu untersuchten wir optisch und röntgenographisch alle uns zugänglichen Serpentinit- und Ophicalcit-Dolomit-Vorkommen aus dem gesamten Oberhalbstein und dem Oberengadin.

Wir setzen damit die Untersuchungen von H.-P. CORNELIUS fort, der die Problematik zwischen Metamorphose und Gebirgsbau schon 1912 erkannte und 1935 über die Verbreitung der Oberhalbsteiner Serpentinmineralien schrieb:

"Wenn auch leider innerhalb unseres Gebietes die Verbreitung der einzelnen Serpentintypen noch nicht hinreichend bekannt ist, so scheint doch im grossen zu gelten: Chrysotilserpentinite im Norden, in Gegenden ohne alpine Metamorphose; im Süden, wo diese durchgreift, Antigoritserpentine, wie sie längs des Ost-Alpenrandes ihre schönste Ausprägung im Malenco findet. Da erhebt sich die Frage: haben dieselben vor der alpinen Metamorphose bereits als Chrysotilserpentine vorgelegen und ist mithin der Übergang von Chrysotil in Antigorit ein Ergebnis dieser Metamorphose? Ich möchte dies für sehr wahrscheinlich halten. Zur Sicherstellung ist jedoch noch viel Arbeit nötig, für welche gerade das Oberhalbstein, in dem beide Gesteinsformen einander ablösen, vielleicht der geeigneteste Boden sein wird."

Bis zur genaueren Kenntnis der Serpentinmineralien mit Hilfe der Röntgenographie vor ca. 10 Jahren durch Whittaker, Zussman, Kunze u. a. war eine solche Untersuchung nicht durchführbar, da man allein mit optischen Kriterien zu keinem Ziele kommen konnte.

DIE SERPENTINMINERALIEN

Strukturell gehören die Serpentinmineralien zu den trioktaedrischen Phyllosilikaten mit dem Basisabstand der einzelnen T-O-Schichten von $d_{001} \sim 7.3$ Å. Ihre Identifizierung wurde röntgenographisch durch Bestimmung

von Kristallpulvern nach dem Guinier-Verfahren (de Wolff- und Jagodzinski-Kameras, \varnothing 114,6 mm, FeK $_{\alpha_1}$ -Strahlung und Si als innerer Standard), thermoanalytisch und elektronenmikroskopisch durchgeführt.

Die röntgenographisch ermittelten Paragenesen sind in der Tabelle 2 zusammengefasst und auf der tektonischen Grundlage (Taf, III, Kartenbeilage eingetragen.

Aus einer grossen Anzahl chemischer Analysen kalkulierte Page (1968) die durchschnittlichen Mineralformeln der Chrysotile, Lizardite und Antigorite. Danach sollen diese Mineralien keine echten "polymorphs" sein, sondern sich im Chemismus unterscheiden: Chrysotil wird durch relativ hohe H_2O - ($\sim 13.5\%$) und MgO-Gehalte ($\sim 40.9\%$) sowie durch relativ niedrige Fe_2O_3 - (0.7%) und FeO-Gehalte (0.6%) charakterisiert, während die Lizardite wesentlich höhere Fe_2O_3 -Gehalte ($\sim 4.1\%$) aufweisen. Demgegenüber haben die Antigorite höhere SiO_2 - ($\sim 42.1\%$) und FeO- (3.7%) Gehalte sowie tiefere MgO- ($\sim 38.4\%$) und H_2O -Gehalte ($\sim 12.1\%$).

Unsere Ergebnisse (Peters, 1963 und Dietrich, 1971) bestätigten teilweise diese Annahme. Die Mineralien Lizardit, Klino- und Orthochrysotil sowie 6-layer Orthochrysotil beschreiben wir nicht näher, da unsere detaillierten optischen, chemischen und röntgenographischen Untersuchungen keine neuen Daten ergaben.

Antigorit

In alpinen Serpentiniten wurden die blättrig, büscheligen Antigorit-Aggregate morphologisch von Cornelius (1912 und 1935), Staub (1915) und besonders von Angel (1929 und 1930) eingehender beschrieben.

Der Habitus dieser monoklinen Kristalle ist meist blättrig nach (001) entwickelt. Angel unterschied grob- von feinblättrigem Antigorit, was nach unseren Studien nicht gut möglich erscheint, da sowohl die Kluft-Antigorite, als auch die gesteinsbildenden Antigorite xenoblastisch alle Grössenordnungen von 1 μ bis 0,2 mm aufweisen können. Ähnlich Angel (seine Beschreibungen stammen aus den Serpentiniten des Kals-Matreier Törls in Osttirol) können wir in den Oberhalbsteiner und Oberengadiner Serpentiniten folgende Antigorit-Varietäten unterscheiden:

Kluft-Antigorite

(Dimensionen der Blättehen 1 μ bis \sim 0,5 mm) max. 1 mm einzelne Blätter Fächer (z. T. mottenflügelartige Verwachsungen) Büschel Gitter konzentrische Aggregate

Gesteinsbildende Antigorite

(Dimensionen der Blättchen 1 μ bis ~ 0.2 mm)

meist Blätter oder Täfelchen mit xenoblastischen Rändern, angeordnet in: subparallelen Anordnungen unter Winkel von 45° und 60° oder als Gitter mit Winkel von 90°; z. T. submikroskopisch feine Aggregate

Auf den Tafeln I und II finden sich Beispiele gesteinsbildender Antigorite und Kluft-Antigorite.

Wie weit es sich bei den Verwachsungen der einzelnen Blätter um Zwillingsbildungen nach (001) oder Viellinge handelt, ist schwer zu entscheiden.

Der Antigorit (gesteinsbildend oder auf Klüften) ist meistens farblos oder besitzt nur einen schwach grünlichen Pleochroismus. Mit zunehmendem Eisengehalt zeigen die Kluft-Antigorite einen deutlichen Pleochroismus (X = grünlich-gelb mit allen Nuancen, Y \approx Z = grünlich). Die Lichtbrechung kann je nach Fe-Gehalten schwanken. Sie ist jedoch deutlich höher als beim Chrysotil, die Doppelbrechung niedriger ($n_x = 1,558-1,568$, $n_y = 1,565$, $n_z = 1,562-1,574$ nach Deer, Howie und Zussman, 1962). Die Achsenebene liegt senkrecht auf (010), 2 V = 30–60°, X steht senkrecht auf (001), daher gerade Auslöschung (X \wedge C \approx 0°). Diese Angaben konnten wir besonders bei den grösseren Kluft-Antigorit-Blättchen bestätigen.

Kristallstruktur

ARUJA (1943) bestimmte röntgenographisch für den Antigorit eine dem Kaolinit analoge Struktur und ermittelte 1945 als erster die Gitterkonstanten $a_0 = 43.5$, $b_0 = 9.26$ und $c_0 = 7.28$ Å. Mit Hilfe von Einkristall Weissenberg- und Oszillations-Aufnahmen konnten Whittaker und Zussman (1956) die in Pulveraufnahmen gefundenen d-Werte indizieren. Acht hol und ho-l-Reflexe dienten der Bestimmung von β .

Kunze (1956 und 1957) konnte die sinusähnliche Doppel-Halbwellen-Struktur des Antigorits nachweisen. Zwei Halbwellen sind am Wendepunkt über Mg-Brücken alternierend miteinander verbunden, wobei die Elementarzelle meistens in der a-Richtung 43,5 Å lang ist. Dies wird durch eine Überperiodenfolge von m- (=17) Tetraedern pro Zelle bedingt ($a_0 = 17$ Tetraederkantenlängen).

Auf Grund elektronenoptischer Beugungsaufnahmen konnte Kunze (1961) in den verschiedensten Antigoritaggregaten Überperioden A_{10} bis A_{20} (d. h. m=10-20) bestimmen. In einigen Kristallen sollen demnach bis zu 4 verschiedene Überperioden vorliegen.

Leider ist von uns (und von anderen Autoren) auf röntgenographischem Wege mittels Pulveraufnahmen nur die Überperiode $A_{17}=43,3$ Å gefunden worden.

Bei der Identifizierung der Antigorite fiel uns oft eine Verschiebung des Reflexes 24.3.0 gegenüber 060 auf. Daraufhin massen wir sämtliche Reflexabstände 24.3.0–060 mit Hilfe der recht konstanten Magnetitreflexe 333/511 und 440 ein. Tragen wir nun alle gemessenen $d_{24.3.0}$ Werte über $\Delta d = d_{24.3.0} - d_{060}$ auf, so erhalten wir gewisse Häufungspunkte, die annähernd auf einer Geraden liegen, was für Verschiebungen von 24.3.0 und 060 spricht. Beide Reflexe sind

relativ stark und können deswegen gut für eine Interpretation herangezogen werden. In zwei Diagrammen sei eine Häufigkeitsverteilung der ermittelten d-Werte aufgeführt (Fig. 1).

Die Kluft-Antigorite scheinen eine grössere Variationsbreite zu besitzen. Ausnahmen bilden nur die Fe-reichen Kluft-Antigorite mit $\Delta d = 0,030$ und 0,040 Å. Die gesteinsbildenden Antigorite zeigen dagegen eine Häufung zwischen $\Delta d = 0,017$ und 0,020 Å. In einigen Proben treten bis zu drei verschiedene Reflexe an die Stelle des normalen 24.3.0-Reflexes auf.

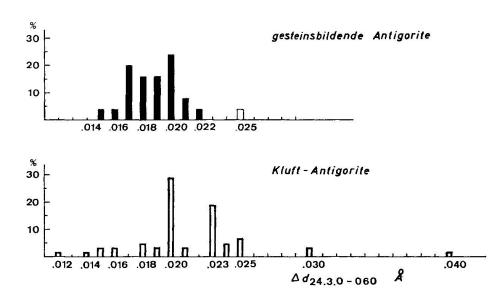


Fig. 1. Häufigkeit der verschiedenen Abstände Δ d [Å] zwischen den Antigoritreflexen "24.3.0" und 060 bei allen ausgewerteten Oberhalbsteiner und Oberengadiner Antigoritpulverdiagrammen. Gesteinsbildende und Kluft-Antigorite wurden makro- und mikroskopisch unterschieden. Die Indizierung 24.3.0 wird nur mit Vorbehalt verwendet. Wahrscheinlich treten andere Indizes auf.

Auf Grund der Kenntnisse der Überstrukturperioden nahmen wir mit Hilfe des Computerprogrammes Indizierungen der verschiedenen $A_{\rm m}$ (m = 15–20) vor. Obwohl die Indizierbarkeit gut zu sein scheint, bereitet die Zuordnung der gemessenen d-Werte 1,575 bis 1,555 Å noch grosse Schwierigkeiten, da anhand der Monoklinität und der grossen Zahl der Überstrukturreflexe mit schwachen Intensitäten viele Möglichkeiten bestehen. Zudem sind bei Unkenntnis der Chemismen die Intervallgrössen $\Delta A_{\rm m}$ kaum abzuschätzen. Ausserdem können Stapelungsfehler der T-O-Schichten existieren.

Die Indizierung der reinen A_{17} -Antigorite (z. B. diejenigen der ASTM-Kartei) ist deshalb nur mit Vorbehalt für Abweichungen in Antigorit-Pulver-diagrammen zu verwenden. Die vorliegenden Resultate sind als vorläufig zu betrachten. Weitere Untersuchungen an dieser problematischen Phyllosilikat-gruppe werden durchgeführt.

VERTEILUNG DER Mg-PHYLLOSILIKATE

Aus der grossen Anzahl der in Tab. 2 aufgeführten und in Taf. III (Kartenbeilage) eingetragenen Daten werden folgende Ergebnisse entnommen:

- 1. Die gesteinsbildenden Serpentinminerale Lizardit und Chrysotil kommen durchwegs von Tiefencastel bis ins Engadin vor.
- 2. Von der Linie Forcellina-Pass-Julier-Pass treten gesteinsbildend reine Antigorit-Serpentinite und Brucit-führende Antigorit-Serpentinite auf.
- 3. Kluft-Antigorite durchsetzen in Adern die Serpentinite durchgehend von Tiefencastel bis ins Engadin.
- 4. Die Ophicalcite führen sowohl Serpentinkomponenten der Paragenese Lizardit > Chrysotil als auch Kluft-Antigorite.
- 5. Die Ophidolomite (im engeren Sinn Triasdolomite) enthalten bis auf eine fragliche Ausnahme nur Kluft-Antigorit.
- 6. Talk tritt von Tiefencastel bis ins Engadin sowohl in Serpentiniten als auch in Ophicalciten auf. Er ist vorzugsweise an tektonische Kontakte (Störungen, Ruschelzonen, randlich an Boudinagen und Überschiebungshorizonte) gebunden.

DISKUSSION: NATUR - EXPERIMENT

1. Vergleichen wir die feldpetrographisch-mineralogischen Ergebnisse mit den schon erwähnten Gleichgewichtsbeziehungen im System ${\rm MgO\textsc{-}SiO_2} \cdot {\rm P_{H_2O}} = {\rm P_{total}}$ (Tuttle und Bowen (1949) und Johannes (1968)), so müssen wir zunächst eine untere Temperaturgrenze suchen.

JOHANNES (1968) gibt eine Reaktion "Serpentin + 2 Quarz

 Talk + Wasser" an, die zwischen 250−300°C abläuft und somit eine solche untere Temperaturgrenze liefern würde. Leider konnte diese Paragenese (Serpentin/Quarz) weder in den Serpentiniten noch in den Ophicalciten des nördlichen Oberhalbstein nachgewiesen werden.

Die obere Grenze dürfte unterhalb 350–400°C liegen, da die Reaktion (2) "Serpentin + Brucit ≥ 2 Forsterit + 3 Wasser" noch nicht abgelaufen ist. Diese Grenze wird erst im Malencoserpentinit überschritten, indem gesteinsbildend einerseits grobblättriger Antigorit und Brucit andererseits Antigorit und Forsterit vorliegen (Peters, 1968, Dietreich und de Quervain, 1968). Im Oberhalbstein und im Oberengadin ist diese Reaktion jedoch noch nicht abgelaufen. Es liegen nicht einmal die typischen Brucit-Antigorit- sondern nur Brucit-führende Antigorit-Serpentinite vor. Aus dem System CaO-MgO-H₂O-CO₂ (Trommsdorff und Schwander, 1969) entnehmen wir, dass Brucit-Dolomit- (evtl. Brucit-Calcit-) Aggregate bei höheren H₂O-Gehalten der fluiden Phase auch bei relativ tiefen Temperaturen entstehen können.

Um die Umwandlung von Lizardit/Chrysotil-Serpentinit in Antigorit-

Serpentinit als geologisches Thermometer verwenden zu können, haben wir versucht, diese Reaktion experimentell nachzuahmen.

Bei den experimentellen Arbeiten von Roy und Roy (1953) und GILLERY (1959) über die Bildungsbedingungen der Serpentin- und Chlorit-Mineralien wurden Gele mit der Zusammensetzung (6-x) MgO, (4-x) SiO₂, xAl₂O₃ als Ausgangsmaterial verwendet. Chrysotil, Lizardit und 6-layer Orthochrysotil bildeten sich nach zunehmenden Al-Gehalten. Antigorit wurde bis jetzt noch nicht synthetisch hergestellt. Für die experimentelle Untersuchung der Reaktionen Brucit + Serpentin \geq Forsterit + H₂O und Serpentin \geq Forsterit + Talk + H₂O haben Bowen und Tuttle (1949) synthetischen Chrysotil und Johannes (1968) natürlichen Chrysotil verwendet.

Versuchs a nordnung

Die Experimente wurden in vertikal gestellten "cold seal" Bomben durchgeführt. Die Ofentemperaturen wurden mit Thyristorregler auf etwa 3°C konstant gehalten. Die im Innern der Bomben gemessenen Temperaturen weichen im allgemeinen nicht mehr als 2°C von den aussen gemessenen Temperaturen ab. In jeder einzelnen Bombe wurde der Druck mit einem Manometer auf etwa 100 bar genau gemessen. Die Proben wurden mit H_2O oder $H_2O + Ag_2C_2O_4$ (zur Erzeugung von CO_2) in Goldröhrchen eingewogen und zugeschweisst. Für die Versuche verwendeten wir natürlichen Chrysotil TP 01 und Chrysotil-Serpentinit TP 76 aus der Totalp (Peters, 1963), Antigorit-Serpentinit aus der östlichen Malencoserpentinit-Masse sowie Kluftantigorit aus dem Engadin. Der Antigorit-Serpentinit führte neben Antigorit noch Magnetit (5–10%) und etwas Chlorit (<5%).

Ergebnisse

Die wichtigsten Daten sind in Tabelle 1 zusammengestellt. Trotz der langen Versuchszeiten ist es nicht gelungen, in einer reinen H₂O-Dampfphase Chrysotil oder Chrysotil-Serpentinit experimentell in Antigorit bzw. Antigorit-Serpentinite überzuführen. Die Kluft-Mineralparagenesen des Oberhalbsteins, Antigorit + Calcit und Antigorit + Dolomit liessen vermuten, dass sich Antigorit gegenüber Chrysotil bei niedrigeren H₂O-Aktivitäten bilden könnte. Bei den Versuchen (Run 349–354) mit verschiedenen CO₂/H₂O-Verhältnissen erhielten wir jedoch keinen Antigorit. Die Reaktionsprodukte Serpentin + Magnesit und Magnesit + Quarz bei zunehmenden CO₂-Gehalten bestätigen die Resultate von Johannes (1968), der für diese Reaktionen nur Mineralien und keine Gesteine verwendet hat.

Unsere Versuche ergaben für die Reaktion Serpentin \gtrsim Talk + Olivin + $\rm H_2O$ bei 2 Kb eine Temperatur von $480^{\circ} \pm 10^{\circ}$ C. Diese Temperatur ist nur um 10° C niedriger als diejenige von Bowen und Tuttle (1949), welche im reinen

Tabelle 1. Zusammenstellung der wichtigsten Runs mit natürlichen Chrysotil (Chrys), Chrysotil-Serpentinit (ChrysSerp), Kluftantigorit (KlAnt) und Antigorit-Serpentinit (AntSerp). Tc = Talk, Oliv = Olivin, Mgs = Magnesit, Chl = Chlorit und Qz = Quarz-In den Runs 1-158 wurde den Proben nur H₂O beigegeben.

		Eingew. Menge	Temp	Druck	Ver- suchs-	
Run	y .	H_2O in	in	in	zeit in	
Nr.	${\bf Ausgangs produkte}$	Gew%	$^{\circ}\mathrm{C}$	Kbar	Tagen	Reaktionsprodukte
1	Chrys	10,4	250	2	145	Keine Reaktion
3	ChrysSerp	7,3	250	2	145	Keine Reaktion
7	Chrys	9,5	295	2	145	Keine Reaktion
10	ChrysSerp	9,5	295	2	145	Keine Reaktion
13	Chrys	8	362	2	90	Keine Reaktion
19	Chrys	7,3	435	2	35	Keine Reaktion
21	ChrysSerp	9,1	435	2	35	Keine Reaktion
31	Chrys/AntSerp 80/20	10,6	606	3	30	$\mathbf{Oliv} + \mathbf{Tc} + \mathbf{AntSerp}$
33	Chrys/AntSerp 20/80	6,9	606	3	30	$\mathbf{AntSerp} + \mathbf{Oliv} + \mathbf{Te}$
37	Chrys/AntSerp 80/20	9,7	295	2	135	Keine Reaktion
43	$\mathbf{AntSerp}$	10,7	530	2	120	Keine Reaktion
45	Chrys/AntSerp~80/20	6,7	530	2	120	AntSerp + Chrys + Oliv + ?Tc
47	$\operatorname{ChrysSerp}$	0,0	530	2	120	Oliv + Chrys + ?Tc
49	$\mathbf{AntSerp}$	9,3	490	2	105	Keine Reaktion
51	Chrys/AntSerp 80/20	10,8	490	2	105	$\operatorname{Oliv} + \operatorname{AntSerp}$
54	Chrys	0,0	490	2	105	$\operatorname{Chrys} + \operatorname{Oliv}$
67	Chrys/AntSerp 50/50	10	465	2	25	Keine Reaktion
70	Chrys	8,7	465	2	25	Keine Reaktion
79	AntSerp + Chrys + Oliv +		505	1	25	Keine Reaktion
81	ChrysSerp	10,3	505	1	25	$\operatorname{ChrysSerp} + \operatorname{Oliv}$
83	Chrys/AntSerp 80/20	10,8	505	1	25	Keine Reaktion
111	Chrys/AntSerp 80/20	7	350	1	270	Keine Reaktion
114	ChrysSerp	9	350	1	270	Keine Reaktion
153	Chrys/AntSerp 80/20	7,8	550	1,4	60	$\operatorname{Oliv} + \operatorname{Tc} + \operatorname{AntSerp}$
155	ChrysSerp	9,2	550	1,4	60	Oliv + Te
158	KlAnt	10	550	1,4	60	$\mathbf{Ant} + \mathbf{Tc} + \mathbf{Oliv}$
		CO_2/CO_2				
		$+\mathrm{H_2O}$	${f T}$	\mathbf{P}	\mathbf{Z}	
240	Clauses /IZIA est. 00/10	in %	363		45	Chara /KlAnt 00/10 tan Man
349	Chrys/KlAnt 90/10	1,1		2,6		Chrys/KlAnt 90/10+spMgs
$\frac{350}{251}$	Chrys/KlAnt 90/10	1,1	363	2,6	45 45	Chrys/KlAnt 90/10+spMgs
351	Chrys/KlAnt 90/10	1,6	363	2,6	45 45	Chrys/KlAnt 90/10+Mgs
$\frac{352}{252}$	Chrys/KlAnt 90/10	1,9	363	2,6	45	Chrys/KlAnt 90/10+Mgs
353	Chrys/KlAnt 90/10	6,2	363	2,6	45	${ m spChrys/KlAnt~90/10+Mgs} \ + { m spQz}$
354	Chrys/KlAnt 90/10	13	363	2,6	45	Mgs+Qz

System MgO-SiO₂-H₂O bestimmt wurde. In unseren Experimenten stellte sich die Olivinbildung immer vor der Talkbildung ein (Run Nr. 51, 54 und 81). Im Gegensatz zu den natürlichen Chrysotil-Serpentiniten war der Antigorit-Serpentinit (Run 41 und 43) bei 530° und 600° nicht in Forsterit und Talk umgewandelt. Kluftantigorit dagegen (Run 158) hat reagiert.

Der geringe Entropie-Unterschied zwischen Antigorit $(52.9 \pm 0.4 \text{ cal/grad.} \text{mol.})$ und Chrysotil $(53.2 \pm 0.4 \text{ Cal/grad.mol})$ bei 298° K nach Messungen von Robie (1967) erklärt weitgehend, warum diese Mineralien so schwierig ineinander überzuführen sind. Für diese Umwandlung sind zusätzlich grosse struk-

turelle Veränderungen nötig: entweder müssen die T-O-Schichtpakete im Chrysotil nach etwa 17 Tetraedern abgebrochen und zu 50% um 180° gedreht werden oder es muss das ganze Gitter in seine kleinsten Teile zerlegt und wieder neu zusammengesetzt werden.

In Anbetracht dieser Tatsachen ist es nicht verwunderlich, dass bis heute alle Antigorit-Synthesen gescheitert sind. Es wäre eventuell denkbar, dass Experimente unter sehr hohen Drucken in sog. "squeezers" erfolgreicher verlaufen würden.

2. Interessant ist das Auftreten der reinen Antigorit-Serpentinite südlich der Linie Forcellina-Pass-Julier-Pass. Schon in den Grüngesteinen konnten wir diese Linie als relativ scharfe Grenze für das Verschwinden des Pumpellyit (Dietrich, 1969) festlegen. Vergleichen wir dies mit den petrographischen Ergebnissen, d. h. Mineralumwandlung und Strukturänderung der Vulkanite in den nördlichen, sehr mächtig werdenden Platta-Schuppen (Dietrich 1969), so erkennen wir nur eine allmählich fortschreitende Umwandlung, nicht aber sprungartig scharfe Wechsel. Dies zeigt auch deutlich die Verteilung der Paragenese Lizardit/Chrysotil in den Serpentiniten (Tafel III, Kartenbeilage).

Die Folgerung aus diesen Daten muss demnach tektonischer Natur sein. In der Kartierung konnten wir schon eine spezielle Serie, die Forcellina-Schuppe auf Grund der andersartigen lithologischen Zusammensetzung gegenüber der Platta-Decke s. str. abtrennen. Staub nahm diese tektonische Trennung bereits 1958 vor. Die Forcellina-Schuppe stellt eine gesonderte tektonische Einheit aus Grünschiefern, Serpentiniten, Kristallin (Malojakristallin und Casannaschiefer), Triasdolomit und reliktisch auftretenden Kieselschnurkalkmarmoren dar (Dietrich, 1970), die mit einem Serpentinitmantel (Cuolmens-Serpentinite) in die Vulkanite der Unteren Platta-Schuppen eingefaltet ist. Als wichtiges Argument für die Forcellina-Schuppe muss das völlige Fehlen jungmesozoischer Sedimente (Kieselschiefer-Radiolarite, Kalkmarmore und Kalkphyllite) hervorgehoben werden, die in der Platta-Decke s. str. und in der nördlich anschliessenden Aroser-Zone immer mit den basischen Vulkaniten vergesellschaftet sind.

Wir fassen den gesamten Platta-Ablagerungsraum (inkl. Forcellina-Bereich) als ozeanische Kruste auf und nehmen an, dass die Forcellina-Schuppe eine palägeographisch nördlichere Einheit der Platta-Ablagerungen darstellte, die entweder von den südlicheren Zonen in einer ersten Phase "überfahren" und dadurch in tiefere Krustenteile gelangte oder bei Beginn der Orogenese direkt abgesenkt wurde.

In einer späteren, evtl. letzten grossen tektonischen Phase der alpinen Orogenese wurden die Forcellina-Elemente von Süden her in die schon bestehenden Platta-Schuppen eingefaltet. Nur so kann der sprunghafte Wechsel der Mineralparagenesen und der Strukturen gedeutet werden. Dies erklärt

auch die nebeneinander vorkommenden Paragenesen Lizardit/Chrysotil und Antigorit zwischen Septimer-Pass, Lunghin-Pass und dem Oberengadin. Die gesamte Zone stellt ein buntes Gemisch von tektonischen Schuppen und Relikten der Platta-Decke mit der Forcellina-Schuppe dar. Beispielsweise müssten im kleinen Sattel bei Pkt. 2549 (östlich des Lunghin-Sees) theoretisch alle Ophiolitheinheiten auf 15 m Mächtigkeit reduziert zwischen dem hangenden unterostalpinen Grevasalvas-Graniten und den liegenden Sedimenten und Kristallin der penninischen Margna-Decke hindurchziehen.

3.-6. Das Auftreten der Kluft-Antigorite sowohl in den Lizardit/Chrysotil-Serpentiniten (3.) als auch in den Ophicalciten (4.) und Dolomiten (5.) stellt noch ein Problem dar. Den feldpetrographischen Beobachtungen kann man entnehmen, dass sich Antigorit eher unter höheren Temperaturen und Drucken als Lizardit und Chrysotil gebildet haben muss. Nun kommt Kluft-Antigorit schon im nördlichsten Oberhalbstein in der Zone schwächster regionaler Metamorphose (Übergang der Pumpellyit-Prehnit- in reine Pumpellyit-Zone) vor. Die Kluft-Paragenesen bestehen meistens aus Antigorit, Antigorit + Calcit und Antigorit + Dolomit, wobei in einigen Fällen Talk anwesend ist.

Diese Paragenesen deuten auf eine Bevorzugung des Antigorits gegenüber Chrysotil bei niedrigen H₂O-Aktivitäten hin. Die an den Wendepunkten der Halbwellen in der Antigorit-Struktur auftretenden Talkkonfigurationen (Kunze, 1961) bedingen eine geringere Anzahl OH-Gruppen als in der Chrysotil- oder Lizardit-Struktur. Die Untersuchungen von Page (1968) zeigten ebenfalls niedrigere Wassergehalte bei Antigorit als bei Chrysotil. Damit ist das relativ frühe Auftreten von Antigorit zusammen mit Karbonaten in Adern, in denen die fluide Phase neben H₂O noch CO₂ enthält, weitgehend erklärt.

Schlussfolgerungen

Das gesamte Bild, das sich auf Grund der mineralogischen Daten in den Ophiolithen zwischen Oberhalbstein und Engadin ergibt, sei kurz zusammengefasst:

Teile des südpenninischen Ablagerungsraumes werden als ozeanische Kruste aufgefasst. In diesen Bereichen wurden gewisse Zonen während wahrscheinlich frühester tektonischer Phasen in grössere Krustentiefen verfrachtet und gelangten dadurch unter höhere pT-Bedingungen.

Die Zone der Forcellina-Schuppe wurde am tiefsten abgesenkt, während die Zonen der späteren Unteren und Oberen Platta-Schuppen in höheren Niveaus zurückblieben.

Zusammen mit weiteren Bewegungsvorgängen ergibt dies ein Bild der Lagerungsverhältnisse während einer älteren Regionalmetamorphose unter relativ niedrigen Temperaturen und hohen Drucken. Als Alter möchten wir obere Kreide annehmen (~80 Millionen Jahre), eventuell sogar schon untere Kreide. An der Grenze Aptian/Albian Cenomanian müssen erste orogene Bewegungen erfolgt sein (DIETRICH, 1970).

Schliesslich nehmen wir ein gross-tektonisches Ereignis an, das die verschieden metamorph umgewandelten Bereiche miteinander verschuppt und verfaltet hat.

Die junge zentralalpine Regionalmetamorphose hat das Oberhalbstein nur schwach beeinflusst. Innerhalb der Platta-Decke scheint ihre Wirkung nur auf Kluftfüllungen (Kluft-Chrysotil, Antigorite, Talk, Karbonate etc.) und Reequilibrierung der Erzmineralparagenesen (Dietrich, 1971) beschränkt zu sein. Zudem existieren in den Gesteinen gewisse retrograde Mineralbildungen.

Die vorliegende Arbeit wurde durch wertvolle Kritik von Herrn Professor Dr. V. Trommsdorff unterstützt Ihm möchten wir unsern herzlichen Dank aussprechen. Der Schweizerischen Geotechnischen Kommission, insbesondere ihrem Präsidenten, Herrn Professor Dr. F. de Quervain, schulden wir für finanzielle Unterstützung grossen Dank.

LITERATUR

SMPM = Schweiz. Mineral. Petrogr. Mitt.

- Angel, F. (1929): Stubachit und Stubachitserpentin von Ganoz (bei Kals in Osttirol). Ein Beitrag zum chemischen und physiographischen Studium von Serpentinmineralien. Z. Krist. 72, 1, 1–41.
- (1930): Notizen zur Morphologie des Antigorites. Mitt. Natw. Ver. Steiermark, 67, 3-6.
 Aruja, E. (1943): An x-ray study of silicates. Chrysotile, antigorite, gümbelite. Ph. D. Thesis, Cambridge.
- (1945): An x-ray study of the crystal structure of antigorite. Mineral. Mag. 27, 65–74. Bonney, T. G. (1880): On some serpentinites from the Rhaetian Alps. Geol. Mag. VII, 538–542.
- Bowen, N. L. and Tuttle, O. F. (1949): The system MgO-SiO₂-H₂O. Bull. Geol. Soc. Amer. 60, 439–460.
- Cornelius, H. P. (1912): Petrographische Untersuchungen in den Bergen zwischen Septimer- und Julierpass. N. Jb. Mineral. Beil.-Bd. 35, 374–498.
- (1935): Geologie der Err-Julier-Gruppe, Teil I, das Baumaterial. Beitr. geol. Karte Schweiz, N.F. 7θ, 321 S.
- DEER, W. A., HOWIE, R. A. and ZUSSMAN, J. (1962): Rockforming minerals. Vol. 3. Sheet silicates. John Wiley Sons, Inc. New York.
- DIETRICH, V. (1969): Die Ophiolithe des Oberhalbsteins (Graubünden) und das Ophiolithmaterial der ostschweizerischen Molasseablagerungen, ein petrographischer Vergleich. Dissertation. Europäische Hochschulschriften, Reihe 17 Erdwissenschaften, Nr. 1, 180 S. Verl. Herbert Lang & Cie. AG, Bern.
- (1970): Die Stratigraphie der Platta-Decke. Fazielle Zusammenhänge zwischen Oberpenninikum und Unterostalpin. Eclogae geol. Helv. 63, 2, 631–671.
- (1972): Ilvait-Ferroantigorit-Greenalith als Begleiter oxydisch-sulfidischer Vererzungen in den Oberhalbsteiner Serpentiniten. SMPM 52/1, im Druck.
- DIETRICH, V. und DE QUERVAIN, F. (1968): Die Nephrit-Talklagerstätte Scortaseo. Übersicht der weiteren Nephritfunde der Schweizer Alpen insbesondere der Vorkommen im Oberhalbstein (Graubünden). Beitr. Geol. Schweiz., Geotechn. Ser., Lfg. 46, 77 S.

- Evans, B. W. and Trommsdorff, V. (1970): Regional Metamorphism of ultramafic rocks in the Central Alps: Parageneses in the system CaO-MgO-SiO₂-H₂O. SMPM 50, 3, 481–492.
- GILLERY, F. H. (1959): The x-ray studies of synthetic Mg-Al-serpentines and chlorites. Amer. Mineral. 44, 143–152.
- JÄGER, E., NIGGLI, E. und WENK, E. (1967): Rb-Sr-Altersbestimmungen an Glimmern der Zentralalpen. Beitr. geol. Karte Schweiz, N.F. 134, 67 S.
- Johannes, W. (1968): Experimental investigation of the reaction forsterite $+ H_2O =$ serpentine + brucite. Contr. Mineral. Petrol, 19, 309–315.
- Kunze, G. (1956): Die gewellte Struktur des Antigorits, I. Z. Krist. 108, 82-107.
- (1958): Die gewellte Struktur des Antigorits, II. Z. Krist. 110, 282-320.
- (1961): Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für die weitere Serpentin-Forschung. Fortschr. Mineral. 39, 2, 206–324.
- Liou, J. G. (1970): Synthesis and stability relations of wairakite, CaAl₂Si₄O₁₂·2 H₂O. Contr. Mineral. Petrol. 27, 259–282.
- MÜLLER, P. (1959): Vesuvianführende Gesteine vom Piz Lunghin, Graubünden. Hamburger Beitr. 2, 136–163.
- (1963): 6-layer-Serpentin vom Piz Lunghin bei Maloja, Schweiz. N. Jb. Mineral. Abh. 100, 1, 101–111.
- Nelson, B. W. and Roy, R. (1958): Synthesis of the chlorites and their structural and chemical constitution. Amer. Mineral. 43, 707–725.
- Page, N. J. (1968): Chemical differences among the serpentine "polymorphs". Amer. Mineral. 53, 201–215.
- PAGE, N. J. and COLEMAN, R. G. (1967): Serpentine mineral analyses and physical properties. U.S. Geol. Surv. Prof. Pap. 575-B, B 103-B 107.
- Peters, Tj. (1963): Mineralogie und Petrographie des Totalpserpentins bei Davos. SMPM 43, 531-685.
- (1968): Distribution of Mg, Fe, Al, Cu and Na in coexisting olivine, orthopyroxene and clinopyroxene in the Totalp serpentinite (Davos, Switzerland) and in the alpine metamorphosed Malenco serpentinite (N. Italy). Contr. Mineral. Petrol, 18, 65–75.
- Robie, R. A. (1967): Low temperature heat capacities of chrysotile and antigorite. U.S. Bur. of Mines. Rep. of Inv. 6962.
- Roy, D. M. and Roy, R. (1953): An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Amer. Mineral. 39, 957-975.
- Rucklidge, J. C. and Zussman, J. (1965): The crystal structure of the serpentine mineral, lizardite Mg₃Si₂O₅(OH)₄. Acta Cryst. 19, 381–389.
- STAUB, R. (1915): Petrographische Untersuchungen im westlichen Berninagebirge. Vjschr. Natf. Ges. Zürich, 60, 1 u. 2, 55–336.
- (1958): Klippendecke und Zentralalpenbau. Beziehungen und Probleme. Beitr. geol. Karte Schweiz, N.F. 103, 184 S.
- Trommsdorff, V. und Schwander, H. (1969): Brucitmarmore in den Bergelleralpen. SMPM 49, 2, 333-340.
- WHITTAKER, E. J. W. (1953): The structure of chrysotile. Acta Cryst. 6, 747–748.
- WHITTAKER, E. J. W. and Zussman, M. A. (1956): The characterization of serpentine minerals by x-ray diffraction. Mineral. Mag. 31, 233, 107-126.
- Zussman, J. and Brindley, G. W. (1957): Serpentines with 6-layer-ortho-hexagonal cells. Amer. Mineral. 42, 666–670.

Legende zur Tabelle 2

- Kolonne 1: Probennummern (Belegsammlungen am Geologischen Institut der ETH-Zürich: C = Hans-Peter Cornelius, 1935; D = Volker Dietrich, 1969; DD = Dorothea Dietrich, 1971; K = Han A. C. Kruysse, 1967; L = Dogan Leflef, 1970; Sch = Felix Schmid, 1965; St = Viktor Streiff, 1939 und Z = Walter H. Ziegler, 1952 und 1956. Belegsammlung am Mineralogisch-petrographischen Institut der Universität Bern: TP = Tjerk Peters, 1971. Nach Literaturangaben: B = Bonney (1880); M = MÜLLER (1959 u. 1963) und S = STAUB (1915).
- Kolonne 2.: Schweizerische Koordinaten des Fundortes, aufgetragen von Norden nach Süden (Tiefencastel-Oberengadin).
- Kolonne 3: Mineralparagenese (Hauptgemengteile).
- Kolonne 4: Mineralparagenese (Nebengemengteile).

Quarz

 $\begin{array}{ll} \mathbf{Q} & \mathbf{Quarz} \\ \mathbf{Zn\text{-}Ni\text{-}Cu\text{-}Fe\text{-}Sulfide} & \mathbf{Erzimpr\ddot{a}gnationen} \ \mathbf{in} \ \mathbf{verruschelten} \ \mathbf{Serpentiniten} \end{array}$

Kolonne 5: Gesteinsbezeichnung (mikroskopisches Gefüge).

Abkürzungen

$L\gg C$	überwiegend Lizardit
L>C	Lizardit > Clinochrysotil
C>L	Clinochrysotil > Lizardit
\mathbf{C}	Clinochrysotil
O	Orthochrysotil
6 L-O	6-Layer Örthochrysotil
\mathbf{A}	Antigorit
A (S 0,020 N)	Antigorit (mit sehr scharfen Reflexen; $\Delta d = 24.3.0-060$ in [Å]
Kl-A (Kl, N, Gr)	Kluftantigorit (\(\Delta \) d: klein, normal, gross)
Gre	Greenalith
Ilv	Ilvait
\mathbf{Akt}	Aktinolith
Chl	Chlorit s. l.
${f T}$	Talk
(Opx)	Orthopyroxen (meist in Talk oder Lizardit, z. T. in 6L-O umgewandelt)
Clpx	Clinopyroxen (meist Diallag)
Dpd	Diopsid
Andr	Andradit
Cet	Calcit
\mathbf{Dol}	Dolomit
Magnesit	
Aragonit	
Brucit	
Hydromagnesit	
Mgt	Magnetit (im Serpentinit randlich um relikt. Cr-Spinell sowie isoliert)
Mgt (Cr)	Magnetit und Cromspinell isoliert (in Ophicalciten)
Hä	Hämatit

Tabelle 2. Mineralparagenesen der Oberhalbsteiner Serpentinite, Ophicalcite und Ophidolomite

Gesteinsbezeichnung völlig verschieferter Serpentinit mit weissen Talk-	und Dolomitadern Serpentinitbreccie Zement schwarzer, massiger Serpentinit mit Edelserpentin-Klüften	verschieferter Serpentinit weisse Klüfte im Serpentinit Talk-Magnesit-Schiefer schwarzer, massig. Serpentinit m. Erzimprägnation	verschiefert. Serpentinit m. weissen Calcitadern stark verschieferter Serpentinit schwarzer, massiger Serpentinit verschieferter Serpentinit bis Talkschiefer	verschieferter Serpentinit Dis Laukschiefer schwarzer, massiger Serpentinit mit Calcitadern verschieferter Serpentinit roter und grüner Ophicalcit schwarzer, massiger Serpentinit schwarz., massig. Diallag-Serpentinit (MaschS.)	7 5 2 2	komponente verschieferter, schwarzer Serpentinit weisse Klüfte im Serpentinit Talkschiefer am Serpentinit Serpentinitkonglomerat (Komponente MaschS.) Zement	
Nebengemengteile $(<10\%)$ Dol, Cct	T, Cet, Chl, Mgt Mgt, Cet	Chl, Mgt Mgt, Cu-Fe-Sulfide	Chl, Cct, Mgt Mgt, Cct Mgt Dol. ? Kl.A	Cet Mgt, Cet Mgt (Cr), Cet Mgt, Clpx Cet, Mgt	Chl, Mgt (Cr) Mgt Mgt Mgt T, Mgt (Gr) T, Mgt (Cr)	${ m T}$ ${ m Mgt}$	(Opx), Mgt, T, ? 6 L-O Chl, T, Mgt Chl
Hauptgemengteile (>10%) $\mathbb{L}_{\geqslant} \mathbb{C}$, T		0.023 Gr, 0.014 MJ) T, Dol, C Dolomit Magnesit L>C	T, L>C L>C L>C, KI-A (0,023 N-Gr) L>C, T	L>C, KI-A (0,021 N) L>C L>C L>C L>C L>C	Cct, Hä, L>C, T L>C Akt, L>C (? Kl·A) Cct, T, Chl, Hä Chl, Cct	L>C, Cet Calcit T C≫L, Chl, Akt, Clpx Cet, Chl, Akt, C	Cet, Akt L>C, A (0,023 Gr), Clpx L>C T, Kl-A (0,023 N-Gr) Dolomit T, C, Kl-A (0,023 u. 0,020) Kl-A (0,023 u. 0,020), Akt
Koordinaten von N nach S 765.25/171.63	765.30/169.30 760.20/169.00	762.95/168.82 764.55/168.27	765.85/166.75 762.70/165.85 758.24/164.49 758.18/164.30	760.86/164.10 767.50/163.00 764.25/162.24 757.90/162.00 760.12/160.53	760.58/160.38 772.86/159.72 772.66/159.62 758.24/158.12	766.02/158.09 757.80/157.66 770.30/157.33	758.94/156.84 763.82/156.78 758.95/156.56
Probe Nr. D 1553	$egin{array}{ll} \operatorname{Sch} 2 & & \\ \operatorname{Sch} 2 & & \\ \operatorname{D} 1554 & & \\ \operatorname{D} 1554 & & \\ \end{array}$	$\begin{cases} \operatorname{Sch} 1 \\ \operatorname{Sch} 1 \\ \operatorname{D} 1571 \\ \operatorname{D} 1571 \end{cases} $	D 1555 D 1558 St 13 St 9	D 1557 D 1557 D 1559 St 8 St 7	$egin{array}{c} ext{St } 14 \\ ext{St } 16 \\ ext{C } 16 \\ ext{C } 13 \\ ext{St } 5 \end{array}$	$egin{array}{c} Z & 2 \ Z & 2 \ St & 1 \ D & 1523 & A \ D & 1523 & B \ \end{array}$	D 1523 C K 20 Z 1 St 3 St 4 St 4 St 4

Mg-Phyllosilikate in Serpentiniten	343
cct, Mgt cct, Dol ccr-Sp, A, Chl, Pyrit ccr-Sp, A, Chl, Pyrit cct, Dolomit mit Cr-Spinell und ? Antigorit, am Serpention cr-Sp, A, Chl, Pyrit cct, Pyrit, Mgt cct, Pyrit, Mgt schwarzer, Z. T. verschiefert. Serpentinit cct, Pyrit, Mgt schwarzer, Crauer, massiger Diallag-Serpentinit schwarzer, massiger Diallag-Serpentinit schwarzer, massiger Serpentinit mit schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit mit grünen Adem mgt clpx schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit mit grünen Adem mgt chwarzer, massiger Serpentinit schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit (Masch-S.) mgt chwarzer, massig. Diallag-Serpentinit (Masch-S.) chwarzer, massig. Diallag-Serpentinit (Masch-S.) mgt chwarzer, massig. Diallag-Serpentinit (Masch-S.) schwarzer, massig. Diallag-Serpentinit (Masch-S.) schwarzer, massig. Diallag-Serpentinit (Masch-S.) schwarzer, m	mnt gelblich-braunen Adern z. T. verschieferter, schwarzer Serpentinit schwarzer, massiger Diallag-Serpentinit verruschelter, schwarzer Serpentinit mit Erz- imprägnation
Cct, Mgt Cct, Mgt Cct, Mgt Mgt, Chl, Cct, Dol Cct Cr-Sp, A, Chl, Pyrit Cct, Pyrit, Mgt Mgt, Clpx Mgt, Mgt Mgt, Clpx Mgt	Cct, Dol Mgt Mgt
L>C L>C, KI-A (0,023 N-Gr) Dol, T Dol, Q : Greenalith L>C L>C, Clpx L>C, Clpx L>C L>C, Sh-A, Clpx L>C L>C C>C C>C C>C C>C C>C C>C C>C C>C	Magnesit, T $L\gg C$, Chl L>C L>C, Greenalith, Ilv, Mgt, Zn-Ni-Cu-Fe-Sulfide Mgt, Ilv, Greenalith
} 767.20/156.11 760.00/155.50 765.57/155.43 766.77/155.40 766.52/155.25 767.98/155.17 767.07/154.81 765.84/152.80 770.00/154.06 765.94/152.80 768.10/152.70 769.27/152.67 769.27/152.47 769.64/152.40 767.48/152.40 769.64/152.39 761.05/152.37	$ \begin{array}{c} 1 & 157.95/154.00 \\ 765.47/153.84 \\ 769.20/153.79 \end{array} $
D 1257 D 1258 Z 4 D 1023 D 1023 D 1192 D 1192 D 1192 D 1193 D 1194 D 1195 D 1166 D 1167 D 651 D 652 D 652 D 652 D 1291 TP 658 D 1294 D 1294 D 1297 TP 660 D 1227 Z 3	Z 3 K 10 D 1158 D 1560 TP 370

	344		٧.	Dietrich und	1 1]. Peters		
Gesteinsbezeichnung	weisslich-grüner Talkschiefer schwarzer, verschieferter Serpentinit grüner Talkschiefer grüner Talkschiefer	schwarz-grüner, mass. Diallag-Serpent. (MaschS.) schwarz-grüner, verschieferter Serpentinit schwarzer, massig. Diallag-Serpentinit (MaschS.) grünliche, dichte Diopsid-Adern in schwarzem Serpentinit.	schwarzer, massiger Serpentinit (MaschS.) schwarzer, massiger Serpentinit (MaschS.) veruschelter, schwarzer Serpentinit mit Erzimprägnation schwarzer, verschieferter Serpentinit, z. T. völlig	mit grünen "Edelserpentinadern" und weisslich-grünen Karbonatklüften verruschelt, schwarz. Serpent. m. Erzimprägnation verruschelter Serpentinit mit Erzimprägnation grüner Ophidolomit (Ophidolomitbreecie, Kompo-	schwarzer, massig. Diallag-Serpentinit (MaschS.) verruschelter, schwarzer Serpentinit mit Erzimprägnation schwarzer, massig. Serpent. m. weissen Calcitfetzen schwarzer, mass. Serpent., z. T. vererzt (MaschS.) schwarzer, massig. Serpent. m. Diallag (MaschS.) verruschelter, schwarzer Serpentinit mit Erzimprägnation	verschief. Serpentinit bis Talkschiefer (Kontakt) gebänderter Serpentinit mit Talklagen (Kontakt) roter Ophicalcitlagen (Kontakt) roter, gebänd. Serpentinit am Radiolaritkontakt Talkschiefer (Kontakt) Talkschiefer (Kontakt) Diopsid-Clinochrysotil-Ader im Serpentinit schwarzer, massiger Serpentinit mit feinen Calcit-	adern rot-grüner Ophicalcit (Serpentinitkomponente) rot-grüner Ophicalcit (Serpentinitkomponente) verschieferter Serpentinit mit weissen Calcitklüf- ten (Kontakt)
Nebengemengteile $(<10\%)$	Mgt Chl Mgt (m) One)	nge (ref. Opx) Mgt, Akt Mgt, Pentlandit Mgt	Mgt Mgt Ni-Cu-Fe-Sulfide Mgt	Ni-Cu-Fe-Sulfide Ilv, Ni-Cu-Fe-Sulfide Mgt	Mgt Zn-Ni-Cu-Fe-Sulfide Mgt, Cet, Chl Mgt, Cet Mgt Mgt Zn-Ni-Cu-Fe-Sulfide	Mgt Mgt Mgt (Cr), Akt Mgt Chl, Akt Mgt, Cct	L>C Akt, Chl Mgt, Chl, Dpd
Hauptgemengteile ($>10\%$)	$egin{array}{c} T, \operatorname{Chl}, \operatorname{Dol} \ L \!\!\!\! \geqslant \!\!\!\! \circlearrowleft \ T \ T, \operatorname{Cet} \ 6.1.0 \ 1.5.0 \end{array}$	L>C C>L C, ? O, Brueit Diopsid	L≽C L>C L>C, Ilv, Andr., Kl-A bis Greenalith L>C, Akt (Adern)	Dolomit Calcit und Aragonit L>C, Ilv, Andr, Mgt, Kl-A L>C, Chl Mgt L>C, T, Dol	L>C, KI-A (0,030 u. 0,040 Gr), Ilv, Andr., Mgt L>C L>C, KI-A L>C, KI-A L>C, KI-A L>C, KI-A (0,030 Gr) L>C L>C, KI-A (0,018), Greenalith, Ilv. Andr., Mgt. 2.0	T, L, Cet T, L>C, Akt Cet, Hā, L>C L>C, O, Hā T, C, Mgt T Dpd, C L>C	Cet, Akt, Chl $L\gg C$, T, Mgt (Cr) T, $L>C$, Akt, Cet
Koordinaten von N nach S	Meter vom Nordportal; Druckstollen Tinzen.	Marmorera 768.70/153.15 768.90/153.00	769.00/153.00 771.36/153.00 768.04/152.92	768.05/152.82 769.03/152.19 766.71/152.10	765.95/152.10 767.60/152.07 767.14/152.04	768.42/151.92 766.50/151.91	768.39/151.88
Probe Nr.	Z 7466 Z 7597 Z 7598 Z 8070 Z 8087	Z 8478 Z 9207 TP 376 D 1551	TP 569 C 1935 D 135 D 133	D 133 D 132 D 1569 D 628	$\begin{array}{c} \text{D } 1224 \\ \text{D } 1524 \\ \text{D } 1218 \\ \text{D } 1219 \\ \text{D } 1220 \\ \text{D } 1221 \\ \text{D } 406 \end{array} \right\}$	D 1300 D 1301 D 1302 D 1303 D 1304 D 1305 D 1306 D 1306	D 1270 D 1272 D 1273

mg-Phynosiikate in Serpentiniten	949
völlig verschieferter und geaderter Serpentinit grau-grüner geaderter Serpentinit (Kontakt) grüner Ophicalcit (Serpentinitkomponente) Serpentinit-Mylonit mit weissen Calcitadern grauer, geaderter massiger Serpentinitkomponente) grauer grüne Ophicalcit (Serpentinitkomponente) grauer grüner Ophicalcit (Serpentinitkomponente) grüner Ophicalcit (Serpentinit Mylonit (Kontakt) schwarzer, massiger Serpentinit schwarzer, verschieferter Serpentinit weisslich-schwarzer, verschieferter Serpentinit stark geaderter Serpentinit Nestenn schwarzer, massiger Serpentinit (MaschS.) schwarzer, massiger Serpentinit (Kontakt) schwarzer, massiger Serpentinit Dolomit mit feinen Antigoritkliften schwarzer, massiger Serpentinit bolomit mit feinen Antigoritkliften schwarzer, verschieferter Serpentinit schwarzer, gebänderter Serpentinit schwarzer, perschieferen schwarzer, gebänderter Serpentinit	gelb-grüner Ophicalcit am Kontakt hellgrüner Talkschiefer gelblicher Ophicalcit (Komponente) Dolomit mit feinen Antigoritklüften grüner Ophicalcit mit weissen Calcit-Quarz-Klüft. schwarzer, massiger, z. T. verschieferter Serpentinit
Mgt, Dpd Mgt (Cr), T, Akt Mgt (Cr), Akt Mgt, Akt Mgt, Akt Mgt, Akt Mgt, Akt Mgt, T Mgt, T Mgt, T Mgt, T Mgt, T Mgt Mgt, T Klan Mgt, T Mgt Mgt, T Mgt Chi, Akt Mgt Chi, H Ki-A, Chil	Akt Mgt, T
A (0,020 N), Andr. T, L>C, KI-A (0,020 N), Cet Cet, L>C, O Clpx, C, Cet Cet, Lod. C, KI-A (0,020 N) Cet, Lod. C, KI-A (0,020 N) Cet, KI-A (0,025 N-Gr) Cet, T, L od. C, Chl Cet, T, L od. C, Chl Akt, L>C, KI-A (0,020 N), Mgt Akt, L>C, KI-A (0,020 N), Mgt Cet, T, L od. C, Chl Akt, L>C, KI-A (0,020 N), Mgt Cet, T, Lod. C, Chl Akt, L>C, KI-A (0,018 N) Cet, Akt, C>L, KI-A (0,020 N) Cet, KI-A (0,023 Gr), L>C Cet C>C, KI-A (0,023 Gr), L>C Cet C>C, KI-A (0,012 KI), O Cet C+C, KI-A (0,012 KI), O Cet, Mgt C-C, Andr. C>C, C, Mgt C>C, C, KI-A (0,015 KI) Mgt C>C, O, ? L C, C, C, Mgt C, C, C, Mgt C, C, C, Mgt C, C, C, Mgt	Cet, Q, Dol, T, 2 M-Muskovit T Cot, T, Mgt (Cr), Kl-A Dol, Kl-A (0,020 N) L>C, Mgt (Cr), Cet, Q L≫C
768.27/151.82 768.40/151.82 768.40/151.81 768.32/151.72 769.58/151.70 768.25/151.69 770.90/151.81 767.13/151.32 767.838/151.24 767.13/151.32 767.15/151.19 766.12/151.19 766.12/151.19 766.05/151.09 767.64/150.09 767.67/150.68 767.61/150.59 769.03/150.58 767.61/150.59 768.85/149.85 768.85/149.85 768.85/149.83 768.85/149.83 768.85/149.83 768.85/149.83	764.82/149.25 761.48/149.16 764.88/149.15 764.68/149.12 770.24/148.84 769.62/148.59
D 1266 D 1267 D 1268 D 1274 D 1275 B D 1275 B D 1275 B D 1262 D 1263 D 1264 D 1264 D 1265 D 1265 D 1268 D 1268 D 1268 D 1268 D 1268 D 1268 D 1269 D 1321 TP 720 D 538 D 740 D 538 D 760 D 538 D 760 D 560 D 760 D 760 D 760 D 760 D 760 D 760 D 960	D 958 K 19 D 370 D 963 C 17 D 1423

J.	+0				٧.	Dien	nen	5									
Gesteinsbezeichnung	ger Diallag-Serpentinit repentinit mit Calcitade iger Serpentinit mit bis Serpentinit, bre	(kein Sediment) verruschelte Serpentinite, Ophicalcite und Talk- schiefen.	scheder verschieferter Diallag-Serpentinit (MaschS.) schwarzer, verschieferter Serpentinit verscholter Dahischeliefen	verruschene Opnicalene bis Lansemeter grüner Ophicaleit grüner, verschieferter Serpentinit Dolomit mit feinen Antigorit-Klüften	schwarzer, z.T. verschiefer. Serpent. (MaschS.) schwarzer, massizer Serpentinit (MaschS.)	Ophicalcitbreccie (Komponente MaschS.) grüner Ophicalcit (Komponente)	schwarzer, massig. Diallag-Serpentinit (MaschS.) schwarzer, massiger Serpentinit	Ophicalcitbreccie (Komponente z. T. MaschS.) schwarzer, z. T. verschieferter Serpentinit	schwarzer, massig. Diallag-Serpentinit (MaschS.) schwarzer, massiger Diallag-Serpentinitmylonit	(relikt. Masch. B.) schwarzer, massig. Diallag-Serpentinit (MaschS.)	schwarzer, geaderter Serpentinit (MaschS.) Ophidolomit, z. T. grauer Ophicalcit oraner Ophicalcit		schwarzer, verschieferter Serpentinit schwarzer, z. T. verschieferter Serpentinit schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit	stark verschieferter, schwarzer Serpentinit Talkschiefer an Nephritlinse schwarzer, massiger Serpentinit schwarzer, massiger Serpentinit			
Nebengemongteile $(<10\%)$	Mgt, Akt L>C, Cct Mgt, Pentlandit Dol	Mgt	Mgt, Akt, Clpx Mgt	Mgt, Dpd Mgt, Andr., Clpx	Cet, Dol Met	Mgt, Andr., (Opx) Mgt, Cet	Mgt Mgt	Cet, Mgt Mgt	Mgt	Mgt	Cet, Mgt. Mgt, Cet, Akt, C	Mgt (Cr), Stilpnomelan Mgt (Cr) Akt, Ni-Cu-Fe-Sulfide	Mgt Mgt Mgt Mgt, Akt, ? Dol	Mgt Mgt, ? C			
Hauptgemengteile $(>10\%)$	L>C, Clpx, (Opx)=T, ? O Chl, Akt L>C L>C, T	L>C, T, Cet	LSC, T LSC, T T 1 > C Dol Cot	Cet, L>C C>L Dol, KI-A (0.019 N)	L>C, Clpx, Chl relikt. Opx $L>C$	$C\gg L$ T, C, ? A		? L, C, A (Schatten) Clpx, Dpd L≫C	$L \geqslant C$, Clpx L > C, ? A $Clpx$	L>C, $Clpx$ (Opx)	L > C, Kl-A (Schatten) Dol, A (0,020 N) Cet. A (0.020 N)	Cet, A (0,025 N-Gr) Cet, A (0,026 N) T A (0,021 N)	L > C, Kl-A (0,021 N, Schatten) L > C, O L > C L > C	$egin{array}{c} L \gg C \ T \ L > C, Clpx \ A \ (0,020 N) \end{array}$			
Koordinaten von N nach S	771.96/148.52 769.60/148.52 769.57/148.48	772.64/148.48	769.47/148.40	771.38/148.14 764.01/148.12 764.35/148.11	764.40/148.09	764.73/148.07 764.86/148.03	764.52/148.01 765.25/148.00	768.31/147.83 768.37/147.82	767.22/147.44 767.26/147.43	Schutt, S Mazzaspitz	767.58/147.36 767.50/147.35	767.56/147.30 767.58/147.30 769.90/146.70	769.90/146.69 768.65/146.56 765.92/146.41 769.76/146.25 768.00/146.20	769.80/145.80 770.38/145.80 769.12/145.70			
	~					,						,					
Probe Nr.	TP 727 TP 726 D 1425 D 1426	D 1562	D 1380 D 1382 D 1561	C 7 D 165 D 176	D 861 D 862	D 865 D 865	D 839 D 820	D 12 D 11	D 94 D 95	D 841	D 17 D 18 D 19	D 14 D 15 D 1383 A	D 1384 D 1372 D 1456 D 1385 D 1354	D 1488 D 1427 A C 4 D 1334			

														1.1,1	6		1.y 1	100	,	xwc				PO	110111	10011	L Q									0.		
schwarzer, massig. Diallag-Serpentinit (MaschS.)	grauer, massiger Serpentinit	grauer, massiger Serpentinit (gangartig)	grüner, Calcit reicher, massiger Serpentinit	Kontaktgestein am Serpentinit	schwarz-grüner, massiger Serpentinit	kompakte Masse im Serpentinit ehem. Pyroxenit	grauer, massiger Serpentinit	Serpentinitkonglomerat(Komp.: Mylonit-Peridotit)		schwarz-grüner, massiger, gebänderter Serpentinit	mit Diopsidklüften	Ilv, +Ni-Cu-Fe-Sulfide grüner, massiger Serpentinit mit Erzimprägnation	grüner, massiger Serpentinit mit Chrysotiladern		grau-grüner, massiger Serpentinit	grau-grüner, massig. Serpent. mit Antigorit-Adern	Ilv, +Ni-Cu-Fe-Sulfide grau-grüner, massig. Serpent. m. Erzimprägnation	grauer, feingebändert. Serpentinit (rel. MaschS.)		schwarz-grüner, massiger Serpentinit mit Chrysotil-	oriner massiver Serpentinit	grüner Ophicalcit (Chlorit-Lagen)	schwarzer, massiger Serpentinit (z. T. ehem.	Pyroxenit	schwarzer, massiger Serpentinit mit grünen Chrysotilklüften	grüner, stark verschieferter Serpentinit	grau-schwarzer, geaderter, massiger Serpentinit	Adern (Edelserpentin)	schwarzer, verschieferter Serpentinit	schwarzer, massiger Serpentinit	schwarzer, gebänderter Serpentinit mit grünen Chrysotiladern	grünlich-grauer, massiger Serpentinit	grünlich-schwarzer, verschieferter Serpentinit	grauer, massiger Serpentinit	gruniich-grauer, massiger Serpentinit	grauer, massiger berpentinit grünlicher Talkschiefer, z. T. Nephrit	schwarzer, z.T. feingebändert. massig. Serpentinit	grauer, massiger Serpentinit
\mathbf{Mgt}	Clpx, Mgt, Dol		Cet, Mgt)	Mgt	Mgt, Pentlandit	Mgt, ? Brucit	Brucit	Mgt	Mgt, Cet, Dpd	3 2 2	Ilv, +Ni-Cu-Fe-Sulfide	Akt	Ilv, +Ni-Cu-Fe-Sulfide	Mgt, Cct	Mgt	Ilv, +Ni-Cu-Fe-Sulfide	Chl. relikt. $0px = T$,	Cet	Mgt, 6 L-O, ? Brucit,	-		? Dpd, Chl		Mgt, Cet		Mgt	D	Mgt		ರ				Mgt	Mgt	Mgt	Mgt
I≫C	3,018	A (S 0,018 Kl-N), Brucit		Dpd, Chl, A	C, Chl	Dpd, C, Chl	A (0,025 Gr), Dpd	A (0,019 N)	A (0,020 u. 0,024), C	? L>C, Kl-A $(0,016 \text{ Kl})$		(0,022 N	(S 0,018 N), C	A	? L, C, A (0,023 Gr)	A (0,020 N)	A, ? Greenalith Mgt	AK', Dpa, A (0,018 a. 0,024) ? L		$^{!}$ L>C	A (0.025 N.Gr), Cet	Chl. T	? L od. A, T, Akt., Amphibol		L>C	L>C, Mgt, ? Kl-A (0,016 Kl,	A (S 0.017 N)	A (0,020 N), C	L>C		? A (0,015 Kl) od. L	A (0,021 N), Akt	A (S 0,020 N)	A, Chl	A (S 0,020 N), Dol	A (0,016 u. 0,024) Cet T. Akt. Chl	? L>C, ? Kl-A (Schatten), Clpx	A (S 0,017 N)
767.55/145.46	770.00/145.38	769.85/145.25	767.62/145.16	769.66/145.14	768.60/144.80	768.45/144.72	768.52/144.71	789 18/144 89	00.11/01.00	776.43/144.43	***	768.67/144.38	768 96/144 97	10000	776.20/144.24	776.15/144.20	767.12/144.00	766.73/143.94		766.94/143.89	766.94/143.87	767.07/143.85	766.78/143.83		775.78/143.83	775.78/143.75		7/4.32/143.75	774.37/143.62	774.37/143.62	773.07/143.60	768.12/143.38	771.82/143.30	772.55/143.20	107.05/143.00	766.90/142.75	Lunghin Pass	770.30/142.50
D 1440	D 1335	$\mathrm{TP}~580$	D 1251	D 1326	${ m TP}~588$	D 1233	D 1533	D 1417 Z	D 1417 R	D 1563		D 1093	D 1087	D 1088	D 1564	TP 820	D 1074	D 1473		D 1244	D 1246	D 1075	D 1472		D 1565	D 1566	TP Grev 1	${ m TP~Grev}~2$	C 3	C 15	TP 818	D 914 A	C 8	TP 813	D 1303	D 1519	T 128	${ m TP}~803$

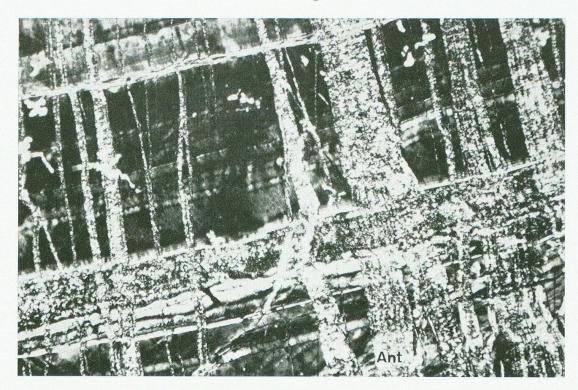
	010	V. 1010	on that Ij. I close	
Gesteinsbezeichnung	Serpentinit-Rand am Vesuvianfels grau-schwarzer, gebänderter Serpentinit Diopsid-Antigorit-Fels (gebändert) gelb-grüner, massiger Serpentinit schwarzer, gebänderter Serpentinit (MaschS.) hellgrüner, verschieferter Serpentinit schwarz-grüner, massiger Diallag-Serpentinit schwarz-grüner (Serpentinitkomponente) schwarzer, gebänderter Serpentinit (rel. MaschS.) gefalteter, grüner Ophicalcit (Serpentinitkomponente)	schwarzer, massiger Serpentinit (MaschS.) grau-grüner, massiger Serpentinit schwarzer, massiger "Diallag"-Serpentinit (rel. MaschS.) grau-grüner, massiger Serpentinit	schwarzer, massiger Serpentinit (MaschS.) mit Edelserpentinklüften schwarzer, massiger Serpentinit (MaschS.) grau-grüner, massiger Serpentinit (rel. MaschS.) auf Klüften: Antigorit-Rosetten mit Dolomit grüner Ophicalcit (Serpentinitkomponente) reiner Antigorit-Serpentinit, serpentinisierte" Partien innerhalb der porphyrischen Diabase schwarz-grüner, massiger Serpentinit (rel. MaschS.) Antigorit-Serpentinit	grauer Ophicalcit schwarz-grüner, massiger Serpentinit hellgrüner, verschieferter Ophicalcit schwarz-grüner, massig. Serpentinit hellgrüne Adern im Serpentinit grünlich-schwarzer, massiger Serpentinit Antigorit-Serpentinit (MaschS.)
Nebengemengteile $(<10\%)$	Chl, Mgt Mgt Mgt Mgt, T Mgt, T Mgt Mgt	Mgt ? Brueit T Mgt, Dol	Oberengadin (Südlich der Engadinerlinie) Mgt Mgt Cet Mgt Cot (0,020 N u. 0,024 Gr) Mgt (Cr), Cet Kl-A Mgt	Ohne genaue Lokalisierung Cct Ylpx, Dpd Mgt Opx Mgt
Hauptgemengteile ($>10\%$)	? L od. A (6,016 Kl), C A (S 0,018 N) A, Dpd, Chl A (0,017 Kl-N), C L>C rel. Clpx, Dpd C, Kl-A (0,020 N), Clpx Chl, C, Akt ? L>C, Kl-A Cct, A (0,019 N)	L>C, Kl-A (0,020 N, Schatten) Mgt A A (S 0,019 Kl-N) ? Brucit ? L>C, Kl-A (0,025 N-Gr), Akt, T Mgt, Dol A	Oberengadin (Süc L>C, T A (0,020 N), Dol, T L>C, Clpx A, T ? L>C, Kl-A (0,023 Gr) Dolomit, Kl-A (0,024 Gr) ? L>C, Kl-A (0,024 Gr) A Akt, T, Chl, C, Kl-A A (0,023 Gr), T	Cct, Serpentin? C, ? A Cct, A L (z. T. in 6-LO) > C, C 6 L.O +Chrysotilasbest? ? L>C, relikt. Clpx u. A
Koordinaten von N nach S	770.90/142.50 770.96/142.48 771.50/142.46 769.66/142.40 Piz Lunghin 769.08/142.33 771.10/142.30	768.60/142.18 769.26/141.75 770.04/141.06 767.80/140.92 770.16/140.89	782.25/146.87 780.77/146.23 781.38/144.00 780.67/143.99 781.50/143.75 781.48/143.38 779.42/143.36 780.65/142.98 781.29/142.79	Piz Lunghin Piz Lunghin Piz Lunghin Piz Lunghin Piz Lunghin Silser See (N Plaun da Lej) Alp Prasiëra
Probe Nr.	$ \begin{array}{c} \mathrm{TP} \ 593 \\ \mathrm{TP} \ 595 \\ \mathrm{D} \ 1541 \\ \mathrm{C} \ 1 \\ \mathrm{C} \ 1 \\ \mathrm{C} \ 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	L 67 L 109 L 108 L 44 b 2 L 107	TP Surlej 1 TP Surlej 2 S 1915 DD 154 DD 167 TP 845 DD 164 S 1915 DD 132 S 1915 S	M 1959 M 1959 M 1959 M 1963 M 1963 B 1880 S 1915

Gesteinsbildende Antigorite

Fig. 2. Reiner Antigorit-Serpentinit. L 108 b₂, Koord. 770.04/141.06 (südlich Septimerpass). Die Antigoritblättehen bilden ein feines Gitterwerk mit Winkel von ca. 60°. Grösse der Antigorite 0,005 bis 0,2 mm. Verg. $47 \times$ mit gekreuzten Nicols.

Fig. 3. Grüner Ophicalcit, der von Talk und Antigorit durchsetzt wird. D 1267, Koord. 768.27/151.82 (Westufer Marmorerasee). Rechts unten: Serpentinkomponente (Lizardit/Chrysotil mit Chromspinellrelikt). Vergr. 51× mit gekreuzten Nicols.

Kluft-Antigorite



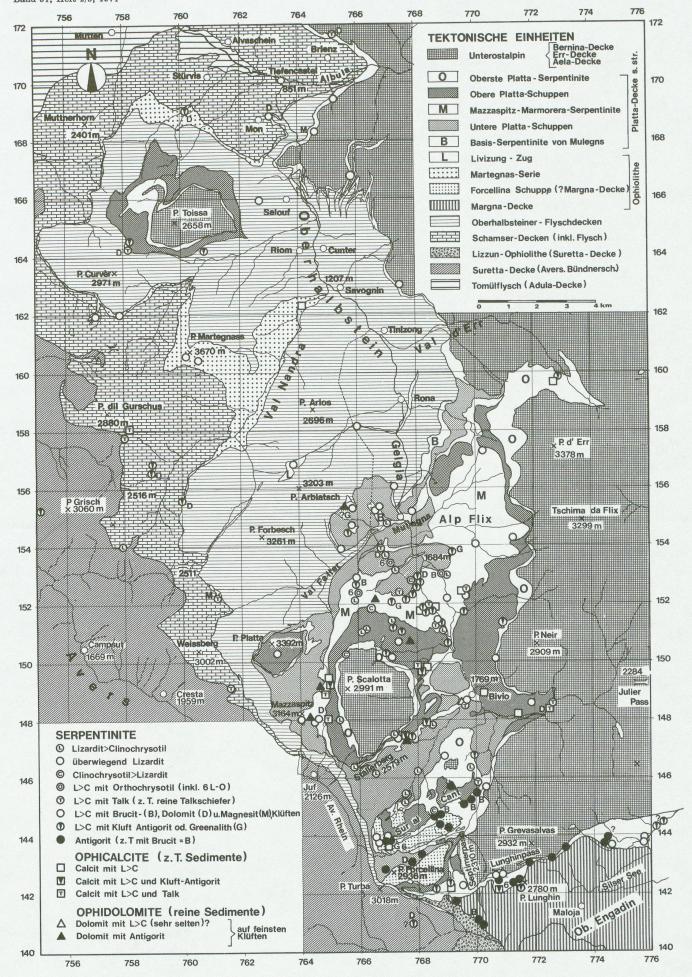

Fig. 4. Kluft-Antigorit. D 732, Koord. 769.03/150.58 (Westufer Marmorerasee). Ein massiger schwarzer, pyroxenführender Maschenserpentinit wird von Kluft-Antigoritadern (Breite 0,01 mm bis 1 cm) durchsetzt. Zwei senkrecht aufeinanderstehende Generationen Kluft-Antigorite (Δ d_{24.3.0-060} = 0,019 Å) durchdringen ein faseriges Chrysotilgrundgewebe. Vergr. 48× mit gekreuzten Nicols.

Fig. 5. Kluft-Antigorit. K 20, Koord. 758.94/156.84 (Alp Schmorras). Stark tektonisierter schwarzer, pyroxenführender Maschenserpentinit, dessen Grundgewebe aus Lizardit/Chrysotil (im Bild nicht gut sichtbar) besteht. Es wird sowohl durch Klüfte und büschelige Ansammlungen von Kluft-Antigorit (Δ d_{24.3.0-060} = 0,023 Å) als auch von Talk durchsetzt.

Links oben ist reliktisch Orthopyroxen erkennbar, der vollständig in Lizardit umgewandelt und in zweiter Generation durch Talk verdrängt ist. Vergr. $45 \times$ mit gekreuzten Nicols.

V. DIETRICH und TJ. PETERS: Regionale Verteilung der Mg-Phyllosilikate in den Serpentiniten des Oberhalbsteins

