Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 50 (1970)

Heft: 1: Gas- und Flüssigkeitseinschlüsse in Mineralien

Artikel: Association des inclusions fluides et des particules d'or dans le quartz

aurifère

Autor: Machairas, G.

DOI: https://doi.org/10.5169/seals-39250

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Association des inclusions fluides et des particules d'or dans le quartz aurifère

Par G. Machairas (Orléans)*)

Avec 4 figures et 1 tableau dans le texte

Abstract. Genetical association of the gold particles with a liquid phase of fluid inclusions in quartz is described.

Dans certains filons de quartz aurifère on constate fréquemment une association entre des inclusions fluides et des particules d'or.

Cette association se caractérise soit par un remplissage de la même cavité par des particules d'or et les phases fluides (constituées d'eau et d'anhydrite carbonique) soit par des particules d'or isolées situées au voisinage des inclusions fluides.

Les mesures quantitatives (sur de différentes catégories de quartz aurifère) d'acidité exprimées en CO_2 montrent que le quartz ayant une concentration en or élevée (30 à 40 gr/t en moyenne) présente aussi une concentration en CO_2 la plus élevée: 0,260 à 0,315 mg CO_2 /g de quartz.

Dans les quartz des gisements aurifères les inclusions fluides monophasées $(H_2O \text{ ou } CO_2)$ et diphasées $(H_2O \text{ et } CO_2)$ sont nombreuses.

En général, on constate que la concentration des inclusions fluides et la concentration de l'or sont proportionnelles.

Ces observations laissent à penser que la phase fluide présente pendant la cristallisation du quartz de filons aurifères peut entrainer des particules d'or de la taille du micron réalisant ainsi dans les filons de quartz des zones préférentielles dans lesquelles la concentration en or est élevée.

Nous avons cherché à approfondir les caractéristiques d'une telle association entre des particules d'or et des inclusions fluides.

Tout d'abord, remarquons que la répartition de la concentration des inclusions fluides dans le même filon de quartz aurifère n'est pas homogène. On

^{*)} B.R.G.M., Orléans, La Source.

constate localement des petites zones dans lesquelles la concentration des inclusions fluides est importante.

Ces petites zones tantôt suivent une certaine direction tantôt sont irrégulières.

Ainsi, l'image d'ensemble de la répartition de la concentration des inclusions fluides montre l'existence de courants fluides pendant la formation des filons de quartz aurifère.

Les particules d'or (d'ordre de 1 à 5 microns) se trouvent également assez nombreuses dans les petites zones où la concentration des inclusions fluides est importante. Dans certains cas on constate que la même cavité (fig. 1–2) a été remplie simultanément par des particules d'or et les phases fluides (soit H_2O seul, soit H_2O associé à CO_2). Ailleurs les particules d'or se trouvent isolées mais au voisinage des inclusions fluides (ordre du micron à quelques dizaines de microns) (fig. 3–4).

Nous avons pu mettre au point une méthode (G. Machairas, 1963)¹) permettant de mesurer l'acidité des fluides inclus dans un minéral riche en inclusions. Il s'agit en fait de doser l'anhydride carbonique qui forme avec l'eau les constituants prédominants des inclusions. La méthode est basée sur la décoloration d'une solution alcoolique de phénolphtaléine; elle s'est avérée d'une sensibilité appropriée.

Mode opératoire

On prépare 100 cm³ d'une solution al coolique de phénolphtaléine à $0.1\,\%$ et l'on ajoute quelques gouttes d'une solution aqueuse de soude à 0,1% pour amener le pH entre 9,3 et 10. La liqueur est de couleur rose soutenu. On introduit 5 cm³ de cette liqueur dans un tube de verre soudé. On décolore par addition d'une solution aqueuse d'acide acétique à 0,1%. On note le nombre n de cm³ nécessaire pour obtenir cette décoloration. On vide et on lave le tube. On introduit dans le tube 5 cm³ de la solution de phénolphtaléine et 1 g du quartz étudié sous forme d'esquilles de 1 à 2 mm. Cette matière est ensuite broyée au fond du tube et dans le liquide. La poudre atteint ainsi une granulométrie de l'ordre de quelques μ . On achève de décolorer le liquide par addition d'acide acétique, ce qui nécessite n' cm³. La différence n-n' est proportionnelle à la quantité d'acide, ici d'anhydride carbonique, libéré par le broyage. On peut calculer que 1 cm³ de la solution acétique correspond à 0,38 mg d'anhydride carbonique. Notons que l'anhydride carbonique de l'atmosphère n'intervient que très lentement et ne gêne pas la mesure: il faut en effet plus de 24 h pour décolorer la solution de phénolphtalèine à l'air libre.

¹) G. Machairas (1963): Etude quantitative du gaz carbonique des inclusions fluides des minéraux. C.R. Acad. Sci. 256, p. 2885–2884.

Fig. 1. Remplissage d'une cavité (en forme plus ou moins sphérique) par une particule d'or localement semi transparente caractérisée par la couleur vert-bleuté et par la phase fluide constituée par $\rm H_2O.~\times1000.$

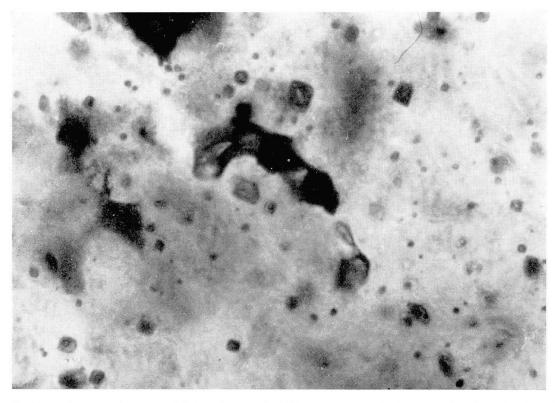


Fig. 2. Remplissage d'une cavité (en forme de bâtonnet) par plusieurs particules d'or (parties sombres) et par la phase fluide constituée par $\rm H_2O.~\times~600.$

170 G. Machairas

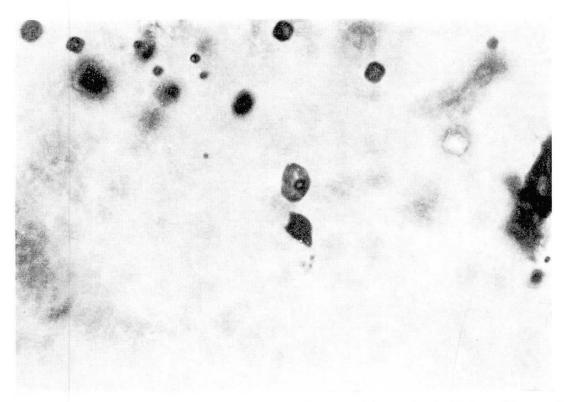


Fig. 3. Particule d'or (partie sombre) au voisinage d'une cavité remplie de ${\rm H_2O}$ et ${\rm CO_2.}~\times~400.$

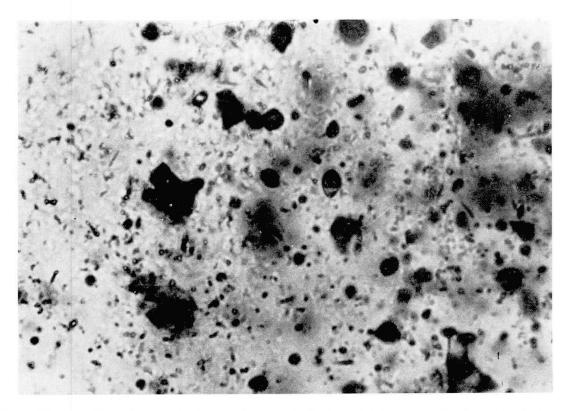


Fig. 4. L'association d'ensemble de nombreuses inclusions fluides monophasées et diphasées et de particules d'or (parties sombres et localement semi-transparentes). \times 400.

$R\'esultats\ obtenus$

L'application de la méthode montre que le quartz saccharoïde et massif, associé aux sulfures (galène, blende, pyrite), tellures, plombs antimonies présente une concentration en CO_2 nettement plus grande que celle du quartz à texture géodique. Le quartz bleuté présente une concentration en CO_2 intermédiaire.

Tableau. Teneur en CO2 du quartz de gisement aurifère

Caractéristiques du quartz	mg du CO_2/g du quartz	Minéraux associés
Quartz noir-bleuté (région Tommi, Vénézuéla)	0,184-0,210	Tourmaline abondante Or peu abondant
 a) Quartz à texture sac- charoïde Région Sophie, Guyane 	$0,\!250 - \!0,\!275$	Sulfures abondants Galène – blende Pyrite – tellures Plombs antimonies
b) Quartz compact laiteux		
1. Région Sophie, Guyane	0,300-0,315	Or abondant
2. Région Timmins (Mine Domme), Canada	0,295–0,320	Or abondant
3. Région St-Yrieix, France	0,260-0,280	Or abondant
Quartz géodique (région Cormotibo, Guyane)	0,050-0,065	Sulfures rares Or en traces

Ces résultats confirment dans l'ensemble que la concentration en or est d'autant plus grande que la proportion de la phase fluide est élevée.

Conclusions

L'étude approfondie de l'association des inclusions fluides avec des particules d'or dans des filons du quartz aurifères peut donner des renseignements concernant le mode de répartition de la concentration préférentielle de l'or dans l'espace filonien.