Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	50 (1970)
Heft:	1: Gas- und Flüssigkeitseinschlüsse in Mineralien
Artikel:	Etude par spectrométrie de masse de la composition des fluides dans les cavités alpines du massif du Mont Blanc
Autor:	Zimmermann, J.L. / Poty, B.
DOI:	https://doi.org/10.5169/seals-39244

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 17.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Etude par spectrométrie de masse de la composition des fluides dans les cavités alpines du massif du Mont Blanc

Par J. L. Zimmermann et B. Poty (Vandœuvre-lès-Nancy)*)

Avec 4 figures dans le texte et 5 tableaux

Résumé

Les cavités du granite du Mont Blanc contiennent des cristaux bien formés dans lesquels on trouve des inclusions de fluides qui ont été en équilibre avec divers minéraux du faciès schistes verts. Ces inclusions, déjà caractérisées par microthermométrie et écrasement sous le microscope, ont été analysées au spectromètre de masse. Les fluides sont constitués essentiellement de H_2O et CO_2 . Mais ils contiennent aussi en faibles quantités CH_4 , N_2 et CO. En outre, des hydrocarbures et des composés organiques non identifiés sont présents et particulièrement abondants dans la paragenèse où la fluorine est dominante.

Summary

The clefts in Mont Blanc granite contain euhedral crystals in which can be found inclusions of fluids that where in equilibrium with some minerals of the green schist facies. These inclusions, already characterized by microthermometry and crushing under microscope have been analysed by mass spectrometry. The fluids are essentially composed of H_2O and CO_2 . But they also contain minor quantities of CH_4 , N_2 and CO. Besides they, have been detected hydrocarbons and organics compounds which are especially abundant in the paragenesis where fluorite is dominant.

Jusqu'à présent la plupart des recherches consacrées aux inclusions étaient effectuées par les méthodes de thermométrie optique qui ne fournissent que peu de données sur la composition chimique exacte des phases fluides prisonnières. Ces dernières années, les techniques d'investigation s'affinant, des renseignements plus précis sont venus éclairer ce domaine (GOGUEL, 1963), mais poser aussi de nouveaux problèmes. Les plus récentes études sur le contenu gazeux des inclusions (BARKER, 1966, CHAIGNEAU, 1967, TOURAY, 1968) font appel à la spectrométrie de masse capable d'analyser de faibles quantités de

^{*)} Centre de Recherches Pétrographiques et Géochimiques, Case officielle N° 1, 54 Vandœuvre-lès-Nancy.

mélanges complexes dont certains constituants (gaz inertes, composés organiques) sont difficilement décelables par les moyens classiques.

Cette étude a été réalisée sur le matériel des cavités à cristaux du massif du Mont Blanc: quartz, fluorines et épidotes. Elle vise à compléter les données déjà obtenues par microthermométrie (POTY, 1967) et à permettre par l'analyse des divergences entre les résultats de mieux cerner les possibilités et les limites des deux méthodes, microthermométrie et spectrométrie de masse.

PROCESSUS EXPÉRIMENTAL

L'analyse spectrométrique des gaz occlus dans les minéraux nécessite au préalable leur extraction et leur séparation.

Extraction des gaz

Les gaz sont extraits par étuvage sous vide. L'échantillon est placé dans un tube de quartz qui est ensuite scellé à la ligne de séparation en pyrex (fig. 1). Le chauffage est obtenu au moyen d'un four à résistance muni d'un régulateur de température à programme avec thermocouple incorporé dans le tube (en contact avec l'échantillon). Un étuvage à 80° C sous pompage secondaire, pendant plusieurs heures, doit éliminer, dans la mesure du possible, les gaz adsorbés. L'échantillon est ensuite chauffé sous vide jusqu'à l'obtention, par décrépitation des inclusions, d'une pression suffisante pour l'analyse. En ne dépassant pas 300° C il ne se produit probablement pas de dissociation ni de transformation chimiques; en outre, à cette température, le départ des gaz du réseau reste encore très limité.

Séparation des gaz

Les interférences de masses qui surviennent lors de l'analyse de mélanges doivent être évitées; pour cela une séparation qui fractionne l'introduction des gaz dans la source du spectromètre est nécessaire.

Certains gaz de nature différente possèdent les mêmes masses et ne sont par conséquent pas identifiables s'ils pénètrent globalement dans la chambre d'ionisation. Ainsi que le montre le tableau n^o 1 pour les gaz courants susceptibles de se trouver dans les minéraux, le spectre caractéristique d'un gaz monomoléculaire comporte toute une série de pics. L'unité de séparation (fig. 1) est constituée d'un ensemble de pièges et de fours en pyrex et en quartz; elle est reliée à un système de pompage qui permet d'atteindre un vide d'environ 10^{-6} torr. Le rôle de cette unité de séparation est triple:

- -- Recueil de tous les gaz expulsés lors du chauffage de l'échantillon.
- Piégeage sélectif des différents gaz en fonction de leur point d'ébullition.
- Oxydation éventuelle des gaz autres que les gaz inertes.

Le tableau 2 illustre la mise en œuvre de la séparation.

100

Gaz	Formule chimique	Masse mol.	Pie m/e	e l I.r	Pie m/e	e 2 I.r	Pie m/e	c 3 I.r	Pi m/e	e 4 I.r	Pi m/e	c 5 I.r	Pie m/e	26 I.r
Hydrogène Helium	${f H_2}{f He}$	$2 \\ 4$	$2 \\ 4$	$\begin{array}{c} 100 \\ 100 \end{array}$									2 2 2 2 2 2 2	
Méthane Ethane	CH_4 C_0H_0	$\frac{16}{30}$	$\frac{16}{28}$	$\frac{100}{100}$	$15 \\ 27$	86 33	$\frac{14}{30}$	$\frac{16}{26}$	$\frac{13}{26}$	$\frac{8}{23}$	$\frac{1}{29}$	$\frac{3}{22}$	$\frac{12}{15}$	$\frac{3}{5}$
Propane	C_3H_8	44	29	100	28	59	27	39	44	29	43	23	39	17
Butane Pentane	C_4H_{10} C_5H_{12}	58 72	$43 \\ 43$	$\frac{100}{100}$	$\frac{29}{42}$	44 58	$\frac{27}{41}$	$\frac{37}{40}$	$\frac{28}{27}$	$\frac{33}{35}$	41 29	$\frac{28}{24}$	$\frac{39}{39}$	$\frac{13}{14}$
Eau	H_2O	18	18	100	17	?	?	1	?		?			
Oxyde de	1 ²	20	20	100	14	Ð	29	T				i		
carbone Ethylène	CO C.H.	$\frac{28}{28}$	$\frac{28}{28}$	$\frac{100}{100}$	$\frac{12}{27}$	5 65	$\frac{16}{26}$	2 62	$\frac{29}{25}$	1	14 14	$\frac{1}{6}$	30 1	1 4
Oxygène	O_2	32	$\frac{10}{32}$	$100 \\ 100$	$\overline{16}$	5	$\frac{10}{28}$	3	20	15		Ŭ	-	-
Hydrogène sulfuré Argon	$_{\rm A}^{\rm SH_2}$	$\frac{34}{40}$	$\frac{34}{40}$	100 100	$\frac{32}{20}$	44 13	33	42	1	5	36	4	35	2
Gaz car-				100	10		20	0	10		- 20		19	
Acétylène Anhydride	$CO_2 C_2H_2$	$\frac{44}{26}$	$\frac{44}{26}$	$100\\100$	16 25	9 20	$\frac{28}{24}$	8 6	12	6	$\frac{29}{27}$	1 3	13	T
sulfureux	SO_2	64	64	100	48	49,3	32	10,4	16	5,2	66	4,9	50	2,3

Tableau 1. Spectres de fragmentation (A.S.T.M.) des gaz courants

Fig. 1. Dispositif d'extraction et de séparation des gaz.

Analyse des gaz

Les gaz sont analysés au moyen d'un spectromètre Thomson-Houston THN 205 capable de détecter les gaz les plus courants dans les minéraux, c'està-dire de la masse 2 à la masse 100.

En dépit de la complexité du spectre d'un mélange gazeux, l'analyse qualitative ne pose pas de problème s'il y a eu une séparation préalable. Par contre, il n'en est pas de même pour l'analyse quantitative. L'analyse à l'aide de traceurs est en effet difficilement applicable; elle nécessite toute une série de traceurs couvrant le champ des masses étudiées puisque le coefficient d'ionisation varie suivant les masses. Lorsqu'il s'agit d'étudier un nombre restreint de gaz dont les masses sont très voisines, cette méthode s'avére très pratique et très précise, sinon il est nécessaire d'étalonner l'appareillage pour chaque gaz du mélange en se plaçant dans les conditions de pressions les plus proches de celles de l'analyse. Pour cet étalonnage, les pressions dans l'enceinte de recueil des gaz (dont le volume est connu) ont été mesurées au moyen d'un manomètre à mercure du type Mac Leod et d'une jauge du type Pirani qui mesure la perte de chaleur dans un filament chauffé; cette dernière sert surtout pour l'eau dont la forte tension de vapeur rend impossible l'emploi de la jauge à mercure. Le dosage de l'eau s'avère d'ailleurs délicat et conditionne toute la précision de l'analyse.

	GAZ GLOBAUX	
	÷ 1050 G	
	Prégeage $a = 195^{\circ} C$	
Gaz piègés	Gaz non	↓ piègés
$\begin{array}{l} H_2O\\ CO_2\\ Hydrocarbure (sauf CH_4)\\ & et C_2H_6 \text{ partiellement}\\ Ethylène\\ Acétylène\\ SH_2\\ \hline\\ Piège réchauffé\\ & \downarrow\\ Analyse spectrométrique\\ \end{array}$	$ \begin{array}{c} \mathbf{H}_{2} \\ \mathbf{H}_{2} \\ \mathbf{H}_{2} \\ \mathbf{C}_{2} \mathbf{H}_{6} \\ \mathbf{C} \mathbf{H}_{4} \\ \mathbf{N}_{2} \\ \mathbf{C} \mathbf{O} \\ \mathbf{O}_{2} \\ \mathbf{A} \mathbf{r} \end{array} \right\} \text{ analyse spectrom} $ $ \begin{array}{c} \mathbf{P}i \delta geage \ sur \ du \ charbon \ de char$	ométrique uctif et oxydation par CuO ellement)
	Piègeage à −195° C Gaz piègés CO ₂ H ₂ O O ₂ qui réoxyde le CuO réduit en Cu Piège réchauffé Analyse spectrométrique	$Gaz non piègés$ He Ar N ₂ CH ₄ partiellement \downarrow Analyse spectrométrique

Tableau 2. Représentation schématique de la séparation des gaz

Tableau 3. Détermination par spectrométrie de masse de la composition des inclusions fluides.

(1967
POTY (
f. B.
: ;;
s cavités
des
la localisation
Pour
388 cc.
les gaz:
détente c
de
Volume
d'analyses.
série
Première

	1			-					-	<u>. a</u> n								
Tem- péra- tures	420°C	450°C	540°C	300°C	300°C	360°C	300°C	240° C	420°C	300°C	280°C	300°C	490°C	430°C	0 001 0 001	0002	200°C	390°C
$^{\%}_{ m SH_2}$			traces	traces	0.1%	traces			traces	traces	traces	traces			tranes	traces	traces	traces
% Fluor			traces	traces	0,1%	0.1%	2		traces	traces	0.1 %	0,1%	0/ - 62		7060	0/2.0	0.50/	0,2%
% com- posés organi- ques	30 %	30 %	12.4%	× %	3,3%	5.5%	1.6%	1.3%	6, 0, 9	1.5%	4.2%	5 %	9.50%	17.50/	3 %	/0/ 1	3 5 0/	4 %
%0 C0%	10 ~%	2% 2	7,5%	1,8%	0,6%	3 %	0.4%	0.3%	3.2%	traces	1.8%	2.4%	2.2%	n/	0.4%	0, 5, 0	1.1%	traces
$\mathbf{N_2^{00}}$	9 %	8%	0.5%	2 %	0,7%	1,8%	5,5%	4 %	2 %	1 %	0.7%	0.5%	9.5%	6 %	0.4 %	0.3%	1.2%	2,2%
CH_4	2.2%	5,9%	3,4%	traces	traces	0,2%			0.7%	traces	0,2%	0.2%	0.7%	1 %	traces	traces	traces	traces
${ m H_2^{\%}}$	17,3%	11 %	5 %	1,5%	0,3%	1,6%	0, 3%	0,3%	1 %	0.5%	0,4%	0,7%	2 %	4.1%	0.1%	0.2 %	0.6%	0,5%
$CO_2^{\%}$	26, 5%	36,2%	19,5%	15,2%	2,5%	8 %	76 %	65 %	19 %	0% 6	11,4%	6 %	35 %	22 %	1.3%	1.7%	3.5%	5,4%
$H_2^{\%}O$	4 %	2,4%	51 %	211 %	93 %	80 %	16 %	29 %	68 %	88 %	81 %	82 %	35 %	47,5%	94,5%	95,3%	90,3%	87,5%
Pression totale Torr	$4,9 \cdot 10^{-3}$	$1,26.10^{-2}$	$7,64 \cdot 10^{-2}$	$3,48 \cdot 10^{-2}$	$15,59 \cdot 10^{-2}$	$6,04 \cdot 10^{-2}$	$5,45 \cdot 10^{-2}$	$9,04.10^{-2}$	$4,90 \cdot 10^{-2}$	$6,21 \cdot 10^{-2}$	$14,24 \cdot 10^{-2}$	$6,7 \cdot 10^{-2}$	$1,59 \cdot 10^{-2}$	$1,01 \cdot 10^{-2}$	$23.8 \cdot 10^{-2}$	$12,06 \cdot 10^{-2}$	$5,97 \cdot 10^{-2}$	$13, 14 \cdot 10^{-2}$
N ⁰ de la cavité	4	-	က	က	<u>e</u> :	L3	18	18	25	25	12	12	22	22	13	13		73
N ^o d'échan- tillon	Quartz 64.226.12	Quartz 65.61.6	Quartz 64.225.1	Quartz 64.225.1.2	Epidote 65.30.E1	Epidote 65.30.E2	Améthyste 66.210.5	Amethyste 66.210.1	$Quartz 66.20.Q_1$	Quartz 66.20.Q ₁ .3	Quartz 66.41	Quartz 66.41	Quartz 66.203.4	Quartz 66.203.2	Quartz 66.243	Quartz 65.30.13	Fluorine 62.352	Fluorine 65.60
N° d'ana- lyse	L	2		41	ۍ د	، م	- 0	× ×	<u>с</u> ,	10		12	13	14	15	16	17	18

Fluides dans les cavités alpines du massif du Mont Blanc

103

RÉSULTATS

Les analyses ont été effectuées en deux séries. Les résultats de la première série (tableau 2) comparés à ceux obtenus par microthermométrie (tableau 4) ont fait ressortir certains désaccords entre les deux méthodes et ont permis d'améliorer le processus expérimental pour la deuxième série d'analyses (tableau 5). Les discordances concernent essentiellement les teneurs en eau. Les mesures spectrométriques ont tendance à donner dans de nombreux cas des valeurs beaucoup plus faibles car l'eau peut se condenser facilement sur les parois froides de la ligne de séparation et de la chambre d'ionisation. La courbe d'étalonnage de l'eau (fig. 2) de même que les premiers résultats (tableau 3) montrent que les teneurs sont d'autant plus faibles et plus différentes que les pressions dans le volume d'extraction sont plus basses. Ceci est partiellement visible sur des échantillons qui contiennent des inclusions fluides identiques: inclusions primaires ou pseudosecondaires en équilibre avec les mêmes minéraux et prélevées dans des cristaux issus de la même cavité; c'est le cas notamment pour les analyses 1, 2, 3 et 4 et à un degré moindre pour les autres

Nº d'analyse spectrométrique	Nº d'échantillon	Teneur probable en CO_2 en moles %
1 2 3 4	Quartz 64-226-12 Quartz 65-61-6 Quartz 64-225-1 Quartz 64-225-1-2	0,5 à 1
$egin{array}{c} 5 \ 6 \ 19 \end{array}$	$\begin{array}{l} {\bf Epidote} ~~ 65\text{-}30\text{-}{\bf E_1} \\ {\bf Epidote} ~~ 65\text{-}30\text{-}{\bf E_2} \\ {\bf Epidote} ~~ 65\text{-}30\text{-}{\bf E_3} \end{array}$	0,2 à 0,5
$7\\8\\22$	Améthyste 66-210-5 Améthyste 66-210-1 Quartz 66-210	<u>≃</u> 25 à 30
9 10 23	Quartz $66-20$ -Q ₁ Quartz $66-20$ -Q ₁ -3 Quartz $66-20$	$\simeq 3,5$
11 12 21	Quartz 66-41 Quartz 66-41 Quartz enf. 66-41	0,7 à 1
$13\\14\\24$	Quartz 66-203-4 Quartz 66-203-2 Quartz 66-203	$\simeq 2$
$\frac{15}{16}$	Quartz 66-243 Quartz 65-30-13	0,5
17 18 20	Fluorine 62-352 Fluorine 65-60 Fluorine 66-41	0,7 à 1

Tableau 4. Teneurs en CO₂ des inclusions des échantillons du Massif du Mont-Blanc estimée par microthermométrie et écrasement dans de la glycérine sous le microscope

Nº d'ana- lyse	Nº d'échan- tillon et nature	Nº de la cavité	Pression totale Torr	% H ₂ O	$^{\%}_{\mathrm{CO}_2}$	${ m CH}_4^{ m \%}$		Tem- péra- ture
19	Epidote							
	$65.30.E_{3}$	13	$28 \cdot 10^{-2}$	91,5%	3 %	0,5%	5 %	220°C
20	Fluorine			1	/0		/0	
	66.41	12	$11, 4 \cdot 10^{-2}$	71 %	15 %	1,5%	12,5%	$270^{\circ}\mathrm{C}$
21	Quartz en-				27 1254		200-02	
	$\mathbf{fum} \acute{66} \mathbf{\cdot 41}$	12	$36,2 \cdot 10^{-2}$	78 %	13 %	1 %	8 %	$280^{\circ}C$
22	Quartz							
20	66.210	18	$31 \cdot 10^{-2}$	58,5%	27,5%	0,5%	13,5%	$270^{\circ}\mathrm{C}$
23	Quartz	95	14 0 10-2	04 0/	0 50/	ar	3 50/	0700 C
94	00.20 Overta	20	14,0.10-2	94 %	3,5%	traces	2,5%	270°C
24	66.203	22	$9,3 \cdot 10^{-2}$	94,5%	2,5%	traces	3 %	220°C

Tableau 5. Résultats de la 2^e série d'analyses spectrométriques des inclusions fluides, après amélioration du processus expérimental. Pour la localisation des cavités, c.f. B. POTY (1967)

groupes d'analyses. A partir de ces résultats, compte tenu du débit de la microfuite d'entrée dans le spectromètre et des conditions d'ionisation dans la source, il ressort que la pression totale d'introduction doit être supérieure à 10^{-1} mm de Hg. La teneur en CO₂ donnée par le spectromètre est alors très proche de celle estimée par microthermométrie. La pression ne doit toutefois pas dépasser 1 mm sinon le rendement de l'ionisation risque d'être fortement modifié. Le poids d'eau enfermée dans une inclusion de 100 μ de diamètre qui contient 95% d'eau liquide est d'environ $0.5 \cdot 10^{-6}$ g. La pression partielle d'eau de 10^{-1} mm de Hg dans le volume de la ligne (388 cc) sera obtenue avec $42.5 \cdot 10^{-6}$ g d'eau, c'est-à-dire avec plus de 80 inclusions. Lorsque ces conditions sont réalisées la convergence des résultats obtenus par microthermométrie et par spectrométrie de masse est très bonne (analyses 15 et 16, 23 et 24).

Des expériences antérieures (ZIMMERMANN, 1966) montrent que des quartz du Mont Blanc sans inclusion ne contiennent pas d'eau décelable; par contre, entre 200° C et 1200° C, ils libèrent toujours un peu de gaz carbonique qui, dans le cas des quartz à inclusions augmentera les teneurs attribuées aux inclusions. Ceci est confirmé par l'étuvage continu jusqu'à 1200° C d'un quartz à inclusions. Toute l'eau est expulsée dès la décrépitation alors que du CO_2 se dégage constamment de sorte qu'entre 240° C et 1200° C le rapport $\frac{H_2O}{CO_2}$ décroit de 48 à 30 (fig. 4).

A côté de l'eau et du gaz carbonique qui sont les constituants les plus abondants, nous notons la présence d'hydrogène, de méthane, d'azote, d'oxyde de carbone (CO) et de composés organiques. Ces molécules organiques ne sont pas identifiables avec notre technique actuelle qui nécessiterait un spectromètre à très haute résolution ou à défaut un chromatographe.

L'hydrogène doit provenir pour sa plus grande part de la dissociation des masses organiques, mais il n'est pas exclu qu'il puisse exister en petites quantités, à l'état dissous, dans les inclusions. En tous cas, le réseau en contient car des cristaux sans inclusions en libèrent au-dela de 600° C.

Le méthane détecté grâce à la masse 15 du radical méthyl se trouve en faibles teneurs dans tous les échantillons. Les autres molécules organiques décelées grâce à leurs masses de dissociation 28, 29, 30, 31, 36, 39 et 41 sont également présentes dans toutes les inclusions, mais à des teneurs variables. Ces variations sont difficilement interprétables mais l'existence de ces molécules

dans les inclusions semble difficilement contestable puisque des quartz sans inclusion de la même origine ne dégazent pas. Notons qu'une paragenèse particulièrement riche en fluorine et pauvre en quartz dans les cavités du granite (paragenèse C, POTY, 1967) se distingue des autres par l'exceptionnelle richesse des fluides en matières organiques de l'ordre de 8 à 12% (analyses 11, 12, 20 et 21). Les conditions de température et de pression ayant été comparables à celles des cavités à cristaux de quartz, selon toute vraisemblance, il est logique de relier l'abondance de la fluorine et la pauvreté en quartz à la présence de ces composés. KRANZ (1966/1968) a trouvé des hydrocarbures fluorés et des acides aminés dans des échantillons de fluorine. Ici des traces de fluor ont été détectées et il n'est pas impossible qu'une fraction de l'azote soit imputable à des composés aminés.

CONCLUSIONS

En plus des données qualitatives, la méthode utilisée a donné un certain nombre de résultats quantitatifs valables; mais il importe d'insister sur le fait que la complexité des mélanges et la présence de l'eau diminuent la précision, il est difficile d'escompter une erreur inférieure à 10% pour l'eau. Il faut constater que chaque analyse nécessite une quantité de matériel particulièrement bien choisi. Isoler une centaine d'inclusions fluides primaires, ou secondaires de la même génération, à l'exclusion de toutes autres inclusions, n'est pas toujours une opération possible. La microthermométrie tout comme les essais par écrasement sous microscope (DEICHA, 1955) conservent donc leur intérêt en donnant avec beaucoup de simplicité, sur une seule inclusion, et avec une précision relativement bonne, les teneurs en H_2O et CO_2 . Faut-il condamner l'analyse spectrométrique du contenu des inclusions fluides? Avec les progrès techniques réalisés actuellement dans ce domaine, il est imaginable d'améliorer la sensibilité d'un facteur 100. Il serait alors possible d'analyser le contenu de une ou de quelques inclusions avec des renseignements beaucoup plus complets que ceux donnés par la microthermométrie.

BIBLIOGRAPHIE

- 1. BARKER, C. C. (1966): Teneurs en fluides des minéraux et des roches avec référence spéciale aux inclusions fluides. Abstracts. Geol. Soc. Amer. Ann. Meeting, p. 45A.
- 2. CHAIGNEAU, M. (1967): Sur la relation entre l'aspect enfumé des quartz et leur teneur en hydrocarbures. C.R. Acad. Sci. Paris, 265, p. 1444-1447.
- 3. DEICHA, G. (1955): Les lacunes des cristaux et leurs inclusions fluides. Paris, Masson.
- GOGUEL, R. (1963): La composition chimique des gaz et des liquides inclus dans les minéraux de quelques granites et de leurs pegmatites. Geochimica Cosmochimica Acta, G.B., 27, nº 2, p. 155–181.
- 5. KRANZ, R. L. (1966): Composés organiques fluorés dans les inclusions gazeuses des fluorines de Wölsendorf. Naturw. Dtsch., 53, nº 23, p. 593-600.
- 6. KRANZ, R. L. (1968): Participation des composés organiques dans le transport des minerais dans les solutions hydrothermales. Inst. Min. Met. Bull. G.B., nº 735.
- POTY, B. (1967): La croissance des cristaux de quartz dans les filons sur l'exemple des filons de la Gardette et des filons du Massif du Mont-Blanc. Thèse, Nancy et Sci. de la Terre, Mém. 17 (1969).
- 8. TOURAY, J. C. (1968): Recherches géochimiques sur les inclusions à CO₂ liquide. Bull. Soc. franç. Mineral. Cristal., 91, p. 367–382.
- 9. ZIMMERMANN, J. L. (1966): Etude par spectrométrie de masse des fluides occlus dans quelques échantillons de quartz. C.R. Acad. Sci. Paris, 263, p. 461–464.