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Über die Verwendung rechtwinkliger Koordinaten
bei der stereographischen Projektion

Von Conrad Burri und Rolf Schrnid (Zürich) *)

Mit 2 Toxtfiguren und 4 Tabellen

Zusammenfassung

Die Beziehungen zwischen der Position eines Poles auf der Lagenkugel, ausgedrückt
in rechtwinklig-räumlichen Koordinaten oder in Kugelkoordinaten nach Becke oder
Goldschmidt einerseits, und den rechtwinkligen Koordinaten seiner stereographischen
Projektion anderseits, werden abgeleitet. Sie gestatten das Zeichnen von Stereogrammen
von beliebigem Radius, ohne Wulffsches Netz, sowie deren quantitative Auswertung,
ebenfalls ohne dieses Hilfsmittel, nur unter Benützung eines gewöhnlichen Massstahes.
Für die vorkommenden Berechnungen wurde ein FORTRAX-IV - Programm entwickelt.

Summary

Formulas expressing the mutual relations between the position of a pole on the sphere,
as defined either by its rectangular solid coordinates or its spherical coordinates after
Becke or Goldschmidt, and the rectangular plane coordinates of its stereographical
projection, are developed. The construction of stereograms of any desired size is thus
made possible without the aid of a Wulffs net. The analysis of given stereograms can
also be carried out, no other instrument than a ruler being required. A FORTRAN IV
programm for the necessary calculations is given.

EINLEITUNG

Stereographische Projektionen werden in der Praxis im allgemeinen mit
Hilfe des sog. „Wulffschen Netzes" (Wulff 1902) gezeichnet, wobei ihre
Dimension durch den Radius des jeweils zur Verfügung stehenden Netzes
bedingt ist. Am verbreitetsten sind Netze vom Radius 10 cm, entsprechend
dem ursprünglichen Vorschlag von Wulff. Sie finden sich auch in verschiedenen

späteren Veröffentlichungen und werden auch der Plagioklasbestim-
mung nach der Methode von Fedoroff zugrunde gelegt, indem die hierzu not-

*) Institut für Kristallographie und Pétrographie der Eidg. Technischen Hochschule,
Sonneggstrasse 5, 8006 Zürich.



408 C. Burri und R. Schmid

wendigen Bestimmungsstereogramme der verschiedenen Autoren ebenfalls
diese Grösse aufweisen. Zum Entwurf von Stereogrammen von beliebiger oder
durch bestimmte Umstände bedingter Grösse ist man dagegen auf konstruktive

Verfahren angewiesen, wie sie in den einschlägigen Darstellungen, z. B.
denjenigen von Duparc und Pearce (1907), Boeke (1911), Gossner (1914)
oder Tertsch (1954) enthalten sind. Zum Eintragen der Pole nach Azimut
und Zentraldistanz bedient man sich dabei am besten nach dem Vorschlag
von Goldschmidt (1887) einer Sehnen- bzw. Tangententafel.

Man kann sich jedoch zum Zeichnen von Stereogrammen beliebiger Dimension

auch rechtwinkliger Koordinaten bedienen, wobei man nur Lineal und
Dreieck benötigt. Bei der Verwendung von Millimeterpapier können auch
diese Hilfsmittel entbehrt werden. Um auf solche Weise vorzugehen, benötigt
man die Kenntnis der Beziehungen zwischen den durch Koordinaten irgend
welcher Art ausgedrückten Position der Pole auf der Lagenkugel und den

rechtwinkligen Koordinaten ihrer Projektion im Stereogramm. Dieses Problem
ist in der Kartenentwurfslehre, wie auch in der Eunktionentheorie (Abbildung
der Riemannschen Zahlenkugel) schon längst gelöst. Leider lassen sich diese

Lösungen nicht direkt auf die hier interessierende Aufgabe übertragen. Im
Unterschiede zu dem in der Kristallographie seit Neumann üblichen
Vorgehen, wobei die Projektionsebene durch das Zentrum der Lagenkugel gelegt
wird und die obere und untere Halbkugel getrennt von zwei diametral
entgegengesetzt gelegenen Augpunkten aus betrachtet werden, ist es sowohl in
der Kartenentwurfslehre wie in der Punktionentheorie üblich, die Projektionsebene

tangential an die Kugel anzunehmen. Eine derartige Veränderung der

Lage der stereographischen Projektionsebene wirkt sich zwar nur hinsichtlich
der Grösse der Projektion aus, indem sämtliche Projektionen auf parallele
Ebenen verschiedener Zentraldistanz sich ähnlich sind, vorausgesetzt, dass

diese Ebenen normal zu dem durch den Augpunkt verlaufenden Kugeldurchmesser

liegen. Da nun aber einmal die Norm besteht, in der Kristallographie
die Projektionsebene durch den Kugelmittelpunkt verlaufen zu lassen, und
da ferner in der Eunktionentheorie der Durchmesser der Kugel und nicht
deren Radius gleich 1 gesetzt wird, können die bereits vorhandenen Lösungen
nicht auf den vorliegenden Eall übertragen werden, und es erweist sich als

notwendig, die Abbildungsgleichungen unter den in der Kristallographie
üblichen Annahmen für einen beliebigen Kugelradius R neu herzuleiten.

HERLEITUNG DER ABBILDUNGSGLEICHUNGEN (C. Bubri)

Zu diesem Zweck betrachtet man einen durch den auf der Kugel vom
Radius R liegenden Pol P verlaufenden Meridianschnitt (Fig. 1). Die Lage
von P sei vorerst durch seine rechtwinklig-räumlichen Koordinaten (x, y, z)
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definiert, wobei der Koordinatenursprung 0 im Mittelpunkt der Kugel liegt.
In der durch den Kugelmittelpunkt und senkrecht zur Zeichenebene verlaufenden

Ebene der stereographischen Projektion liege das rechtwinklige System
X' Y', wobei X' mit X und Y' mit Y zusammenfalle. Das Lot aus P auf die
Z-Achse sei r und der Abstand der Projektion von P, P', von 0 sei r'. Bezeichnet

man ferner den Winkel, den die durch P und die Z-Achse verlaufende
Meridianebene (Zeichenebene von Fig. 1) mit der FZ-Ebene einschliesst, mit
<p, so gilt:

x — r sin <p, x' r' sin <p,

y rcos<p,

r ix2 + y2.

(1) y r cos 99,

/•' ix'
(la)

+ y'2

Spur der

fp' Projektions
ebene

Fig. 1. Schnitt der Kugel nach der durch P
verlaufenden Meridianebene.

1. Berechnung der räumlichen Koordinaten (x,y,z) eines Poles P auf der Kugel
vom Radius R aus den rechtwinkligen Koordinaten (x', y') seiner Projektion im

Stereogramm

Aus ähnlichen Dreiecken von Fig. 1 ergibt sich :

(R + z) : r R : r',
(R — z) : r r' : R.

Daraus folgen die später benützten Beziehungen :

2 R2r'
(2)

R
R2 + r'*'

Unter Verwendung von (1) und (la) erhält man ferner:

2R2r' x' 2R2 2R2

(R + z)
(2a)

x r sin <p

y r cos cp

R2 + r'2 r'
2R2r' y'

R2 + r'2'
2 R2

R2 + x'2 + y'2"
2 R2

R2 + r"' R2 + r'2V R2 + x'2 + y' >.y
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Die Koordinate z erhält man aus der Kugelgleichung x2 + y2 + 22 R2, wobei
sich unter Berücksichtigung von 1 a) ergibt :

-« & ±R2r'2
R,,

(R2 + r'2)2 (R2 + r'2)2 '

FR2~r'2- FR2-(x'2+y'2) __ jfl 2R2 \
R2 + r'2 jtli?2 + (X'2 + ?/'2) ^+«'2 + ^2 }'

Für die praktische Berechnung, wie auch für die später behandelte Programmierung

in FORTRAN IV erweist es sich als zweckmässig, den Ausdruck

2 R2 2 R2
A

R2 + r'2 R2 + x'2 + y'2

abzusondern. Die räumlichen Koordinaten (x, y, z) eines Punktes auf der
Kugel vom Radius R lassen sich dann wie folgt durch die ebenen (x'. y')
seiner stereographischen Projektion P' ausdrücken:

2 R2
x Ax', y Ay', z R(A-1), A

+ x>2+ y,2
(3)

Für die Einheitskugel (R 1 vereinfachen sich die Ausdrücke zu :

x
2x' 2x'

1 +x'2 + y'2 1 +r'2'
2 y' 2 y'

1 + x'2 + y'2 1 +r'2 '

1 ~{x'2 + y'2) 1— r'2

(3a)

1 + (x'2 + y'2) 1+r'2'

Man kann auch hier einen Ausdruck

2

1+r'2 1 + x'2 + y'

absondern, worauf man erhält :

B

x Bx', y By', z (B -1), B
1+a.,2 + y,2-

(3b)

Die Formeln gestatten für eine vorliegende stereographische Projektion
von beliebigem Radius die Berechnung der Lage des der Projektion P'
zugeordneten Poles auf der Kugel P aus den mit einem Massstabe ermittelten
rechtwinkligen Koordination (x, y) des Stereogrammes. Sie ermöglichen auf
diese Weise u. a. die Auswertung publizierter Stereogramme, für welche die
Konstruktionsdaten bzw. die sphärischen Koordinaten der einzelnen Pole
nicht gegeben werden.
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Die räumlichen Koordinaten (x, y. z) gestatten sofort die Formulierung des
Ortsvektors des betreffenden Poles auf der Kugel. Handelt es sich um den
Einheitsvektor (i?=l), so erhält man sofort die drei Richtungswinkel i/>x, </r2,

i/i3, da dessen Komponenten den Richtungskosinus entsprechen. Ist der Radius
der Lagenkugel R verschieden von 1, so erhält man die drei Richtungscosinus
als x/R, yjR und z/R.

Da es in der Kristallographie üblich ist, die Lage eines Poles auf der Kugel
nicht in rechtwinkligen Koordinaten (x, y, z), sondern entweder in
Polarkoordinaten (9, p) nach Goldschmidt oder in Kugelkoordinaten (À, 99*) nach
Becke anzugeben, muss eine Umrechnung erfolgen.

a) Berechnung der (9, p)-Werte nach Goldschmidt aus (x, y, z) bzw. den
Richtungswinkeln

Aus Fig. 2 liest man unmittelbar ab, dass p=<fjA-

Aus Dreieck P'QS folgt cos 99
C°S f2 C°S

sin ifjs sin p

b) Berechnung der (À, 99*)-Koordinaten nach Becke

9* 90° — ijs2. Aus Dreieck OPR folgt

cos iL. cos 1A0

cos A -—P.
cos 9* sin^i2

Beispiel: Bei Bttrri, Parker, Wenk (1967, p. 49, Fig. 11.9) ist das bekannte
Stereogramm der optischen Orientierung der Plagioklase von Reinhard (1931)
verkleinert wiedergegeben. Es sei nun vorausgesetzt, dass die Achsenpositionen,
auf Grund welcher die Konstruktion erfolgte, nicht verfügbar seien, und es

wird nach den Beckeschen (À, 9*)-Koordinaten der optischen Achse B für
Andesin An35 gefragt.
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Die rechtwinkligen Koordinaten des betreffenden Poles sind x' — 16,5 mm,
y' +20,0 mm. Der Radius des Stereogrammes beträgt R 50,0 mm. Nach
(3) erhält man:

x — 26,01 mm, y 31,52 mm, z 28,81 mm.

Division durch R liefert die Richtungscosinus, aus denen sich die drei
Richtungswinkel ergeben:

ift1= — 58,7°, ijj2 50,9°, </r3 54,8°. Kontrolle: 2 cos2 </>i 0,99992.

Nach (5) erhält man hieraus A= +42,1°, <p* 39,1° in befriedigender
Übereinstimmung mit den durch Reinhard (1931, 114) benutzten Daten À 42,2°,
<p* 39,5°.

2. Berechnung der rechtwinkligen Koordinaten (x', y') der Projektion P' aus den

räumlichen Koordinaten (x,y,z) des Poles P auf der Kugel

Es handelt sich um die Umkehrung der eben behandelten Aufgabe, wofür
die Ausdrücke (3) bzw. (3 a) nach x' und y' aufzulösen sind. Unter
Berücksichtigung der sich aus den zu Anfang gegebenen Proportionen ergebenden
Beziehungen (2) und (2a) erhält man:

jR2 + r'2 r' R
/y* — /y» ,-y -y»

2 R2 r R + z '

ß2 + r'2 r' B
y ~~~¥W~y ~~7y ~R + ^y'

Unter Berücksichtigung, dass x'2 + y'2 r'2 und x2 + y2 + z2 R2, folgt ferner:

'2 Z>2
x2 + y2 V2R2~Z* m11-*r R tvs—vv R m w R n •

(R + z)2 (R + z)2 R + z

Die rechtwinkligen Koordinaten (x', y') eines Projektionspoles bzw. dessen

Zentraldistanz r' lassen sich somit durch die räumlichen Koordinaten (x, y, z)
des Poles P auf der Kugel ausdrücken :

R R
(.R + z)X' V ~ÇÊl + z)

x' Tj?TvTx> V' /pT V' r =J?/^+|" ^
Für R 1 (Einheitskugel) vereinfachen sich diese Ausdrücke in :

x V -,
1 —z ^x =- y r =1/- (6a)1+z y 1+z I1+z v

Ist die Lage des Poles nicht durch seine rechtwinklig-räumlichen Koordinaten
(x, y, z) gegeben, sondern durch (<p, p)-Werte nach Goldschmidt oder (X, cp*)-

Koordinaten nach Becke, so muss vorgängig der Anwendung der Ausdrücke
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(6) bzw. (6 a) eine Umrechnung erfolgen. Die Koordinatenwerte (x, y, z) erhält
man als x K cos tp1 etc. und die Richtungswinkel selbst durch Auflösen der
entsprechenden sphärischen Dreiecke in Fig. 2, wobei wie folgt vorgegangen
werden kann:

a) Berechnung der Richtungswinkel ifti aus den (99, p)-Werten nach
Goldschmidt

Aus Dreieck PQT folgt cos i/»1 sin <p sin p.
Aus Dreieck PSQ folgt cos îfi2 cos 99 sin p. (7)
Ferner ist ifj3 p.

b) Berechnung der Richtungswinkel ^ aus den (À, <p*)-Koordinaten
nach Becke

Aus Dreieck PET folgt cos ^ cos <p* sin À.

Unmittelbar abzulesen ist, dass i/r2 90°—99*. (8)
Aus Dreieck PRQ folgt cos i/jz cos 99* cos À sin ifi2 cos À.

Beispiel: Von Reinhard (1931) werden als Mittelwerte für die sphärischen

Koordinaten der Achse B von Labrador An52 im Stereogramm _L c

gegeben: À =+15,5°, 99* 35,0°. Man trage diese Achse auf Grund der zu
berechnenden rechtwinkligen Koordinaten in ein Stereogramm vom Radius
.R 10 cm ein. Man setzt R= 1 und benutzt die Formeln (6a), wobei
vorgängig die Richtungswinkel nach (8) erhalten werden:

^=-77,4°, 55,0°, tfi3 37,9°. Kontrolle : 2 cos2 ^ 0,99998.

Da R 1 gesetzt wurde, entsprechen die gesuchten Koordinaten (x, y, z) den
Richtungscosinus :

x cos tp1; y cos i/<2, 2 cos <p3

und man erhält durch Anwendung von (6a)

x' 0,1223 dm 12,2 mm, y' 0,3206 dm 32,1mm,
r' 0,3431 dm 34,3 mm.

Aus dem Diagramm von Reinhard (1931, Taf. 1) lässt sich entnehmen:

x' 11,5 mm, y' 31,9 mm, r' 34,1mm.

Im Rahmen der allgemein üblichen Zeichengenauigkeit erscheint die
Übereinstimmung als durchaus befriedigend. Der Umstand, dass die gemessenen
Werte insgesamt etwas kleiner sind als die berechneten, lässt eine geringe
Schrumpfung des Papiers beim Druck vermuten.
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UMRECHNUNGSPROGRAMM IN FORTRAN IV (R. Schmid)

Das Aufzeichnen einer Serie von Pollagen in die stereographische Projektion

mit Hilfe ihrer rechtwinkligen Koordinaten, bzw. die Ermittlung der
Winkelkoordinaten von Polen aus den rechtwinkligen Koordinaten ihrer
stereographischen Projektion ist dann besonders angenehm, zeitsparend und
genau, wenn die dafür notwendigen Umrechnungen auf elektronischem Weg
bewältigt werden. Wir haben zu diesem Zweck ein Programm entwickelt, das
diese Umrechnungsarbeit übernimmt. Es wurde aber so flexibel gestaltet, dass
sich allgemein jedes der in dieser Arbeit angegebenen Koordinatenpaare bzw.
-trippel in alle anderen umrechnen lässt.

1. Eingabe

Für die Eingabe verwendet man pro Polpunkt eine Lochkarte, auf welcher
nebst einem Eingabecode der Radius der Projektionshalbkugel sowie die
umzurechnenden Koordinatenwerte stehen müssen. Im weiteren kann eine
nähere Bezeichnung des Punktes darauf eingelocht werden. Über das Format
dieser Inputkarte sowie über die Verwendung des Eingabecodes orientiert die
Tabelle 1. Wenn nur ein Koordinatenpaar statt eines Koordinatentrippels
eingegeben wird, muss in den Kolonnen 21-26 der Wert Kuli (als 0,0, Kommapunkt

auf Kolonne 25) stehen.

Tabelle 1. Eingabevarianten und deren Verschlüsselung, Format der Datenkarten

Eingabe- Eingabedaten, in mm oder 1j10 mm bzw. in maximal 4-stellig, 1 Stelle
Code nach dem Komma, mit positivem oder negativem Vorzeichen

1-2* 3-8* 9-14* 15-20* 21-26* 28-78*

10 R x' y' 0,0 Bez.
20 R X y z Bez.
21 R X y 0,0 Bez.
30 R 4>i <!>

2 03 Bez.
31 R 01 •PÎ 0,0 Bez.
40 R V p 0,0 Bez.
50 R A œ* 0,0 Bez.
00 Leerkarte : bewirkt STOP (Beendigung des Rechenprozesses)

* : Kolonnen-Nr. der Felder, in welche die Eingabedaten gelocht werden müssen. Kommas
auf Kolonnen-Nr. 7, 13, 19 und 25.

/,' : Gewünschter oder vorgegebener Radius der Projektionshalbkugel.
Bez.: Irgendeine Bezeichnung in Form von Buchstaben oder Zahlen.

2. Rechnungsablauf

Nach dem Laden des Programms wird die erste Datenkarte eingelesen.
Der Eingabecode erlaubt es der Maschine, die eingelesenen Koordinatenwerte
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Tabelle 2. Berechnung von x, y und z aus den eingegebenen Koordinaten

415

Eingegebene
Koordinaten

Berechnungsformeln

V

x, y
2R2

R2 + x'2 + y'2
2 R

R2 + xÊ

R2 I r 2 R2 1
/2 + y'2y \ \R*+x'T+yPi~ J

1 \R

x, y, z

x, y

'Al» ^2» ^3

^1» ^2

fAi < 0 : — R cos ipx

ip! ^ 0 : + i? cos «Aj

9» 9

0 <<£><+180 \ Yft2__y2_
- 360° <<p< — 180° / y

-180° < (£>< + 360° | _+p2~
- 180°<9<0° J

"

iA2<0 : —Rcosip2
<A2 ^ 0 : + i? cos ^f2

i? sin p cos 9

A, 9*
AgO: + l/Ä2-2/2

A>0 : -1/R2-y2
R sin <p*

+Vr>2 — x% — 2/2

+ i? COS ?A3

+ /.R2 — 3/^

'3 arc cos —

R cos p

R cos <p* cos À

Tabelle 3. Formeln für die Berechnung der gesuchten Koordinaten aus x, y und z

Gesuchte
Koordinaten Berechnungsformeln

Gesuchte
Koordinaten Berechnungsformeln

x' —
R

R + z
X y > 0 : arc tg —

y

R
R + zV 9 y< 0: 180° + arctg-

y

PZ' - + l/X/2+l//2 y 0, x>0 : +90°
x<z0 : —90°
x 0: 0°

x,y9 z

PZ + Vx2 + y2
P arc cos —R

(Ai - X
arc cos—-R

z
x < 0 : + arc cos — -R cos <p*

A x 0 : 0°

<Aa
yarc cos —R

z
x > 0 : — arc cos

R cos <p*

<Ps
z

arc cos —R V* y
arc sin —-

R
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zu identifizieren. Aus diesen Werten werden als erstes die Kugelkoordinaten
x, y und 2 berechnet (mit den in der Tab. 2 angegebenen Formeln). Ausgehend
davon werden dann nacheinander die andern Koordinatenpaare bzw. -trippel
berechnet (Formeln dazu siehe Tab. 3). Nachdem die eingegebenen und errechneten

Werte herausgeschrieben sind, wird die nächste Karte eingelesen und
auf den Kolonnen 1-2 geprüft, ob der Eingabecode grösser als null ist. Wenn
ja, beginnt das Ganze wieder von vorne. Wenn nein (Leerkarte), wird der
Rechnungsvorgang abgebrochen. Am Schluss der Datenkarten muss also eine
Leerkarte stehen.

3. Ausgabe

Unabhängig von der Art der eingegebenen Koordinaten werden auf der
Printer-Einheit pro Punkt immer folgende Angaben herausgegeben :

— Bezeichnung laut Bezeichnung auf der Eingabe-Lochkarte.
— Code der Eingabedaten und Entschlüsselung des Codes.

— R eingegebener Radius der Projektionshalbkugel.

— iü-ber. aus x, y und 2 berechneter Radius (zur Kontrolle dieser Koordina¬
ten bei Eingabe nach dem Code 20).

— x' und y' rechtwinklige Koordinaten der stereographischen Projektion P'
des Punktes P in der Ebene X/Y.

— P' Z Abstand des Punktes I" von der Z-Achse.

— x, y und 2 rechtwinklige Koordinaten des Punktes P bezüglich der Achsen
X, Y und Z.

— P Z Abstand des Punktes P von der Z-Achse.

— <Pl $2 und 'p-.i Richtungswinkel bezogen auf X, Y und Z sog. Fedorow-Win-
kel, halbe Köhlerwinkel).

— 8-COS 2 cos2 ifii (zur Kontrolle der Winkel >/; bei Eingabe nach dem
Code 30).

— 95 und p Polarkoordinaten nach Goldschmidt.

— À und 99* sphärische Koordinaten nach Becke.

Für die Vorzeichen und die Höchst- und Mindestbeträge der Ein- und
Ausgabedaten gelten die in Tabelle 4 angeführten Regeln. Es ist hier beizufügen,
dass <p1, ifi2 und 93 in jener Form herausgegeben werden, in der man sie einliest,
sonst im Intervall von —90 bis +90° (1p1, ip2) bzw. —180 bis +180° (99). Im
weitern soll noch darauf hingewiesen werden, dass ohne Programmänderung
nur die Koordinaten von Punktlagen auf der oberen Halbkugel umgerechnet
werden können.

Das Programm benötigt ca. 20000 Speicherpositionen und 0,03 sec pro
Umrechnung auf der CDC 6400. Es ist so einfach geschrieben, dass es leicht
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in FORTRAN II umgewandelt und auch auf einfachen Digitalrechnern
verwendet werden kann. Hängt man ein Plotterprogramm an, können die Punkte
direkt in der stereographischen Projektion herausgezeichnet werden. Da im
Rechnungsablauf immer zuerst x, y und z berechnet werden, könnte mit
einem Programmzusatz überdies auf einfache Art und Weise (unter Verwendung

der entsprechenden Transformationsformeln) eine Drehung des

Koordinatensystems erzeugt werden, worauf die Koordinaten nach diesem neuen
System berechnet würden. Das Programm kann als Liste oder auf Lochkarten
jederzeit von uns bezogen werden.
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