Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 47 (1967)

Heft: 2

Artikel: Überblick über einige Sulfid- und Arsensulfosalz-Kristallstrukturen

Autor: Nowacki, Werner

DOI: https://doi.org/10.5169/seals-36967

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Überblick über einige Sulfid- und Arsensulfosalz-Kristallstrukturen*)

Von Werner Nowacki (Bern)

Mit 16 Textfiguren und 2 Tabellen

Zusammenfassung. Es wird ein Überblick über die strukturellen Verhältnisse von Lautit, Luzonit, Binnit, Sinnerit, Nowackiit (Zinkblendetypus), von (Pb, Tl)-As-Sulfosalzen wie Hutchinsonit, Skleroklas, Rathit-I, Rathit-II, Dufrenoysit und Baumhauerit mit Angabe eines gemeinsamen Bauprinzips [Vorhandensein einer ersten (Pb-S)-Schicht mit Pb in Neunerkoordination, gefolgt von einer zweiten (Pb-As-S)-Schicht wechselnder Dicke und Zusammensetzung], von PbS-ähnlichen As-Sulfosalzen wie Lengenbachit, Marrit, Jordanit und Gratonit sowie von Hatchit, Wallisit, Imhofit, Proustit, Pyrargyrit, Xanthokon und Trechmannit gegeben.

Summary. A review is given of the structures of lautite, luzonite, binnite, sinnerite, nowackiite (sphalerite type), of (Pb, Tl)-As-sulfosalts as hutchinsonite, scleroclase, rathite-I, rathite-II, dufrenoysite and baumhauerite with the explanation of a common structural principle [existence of a first (Pb-S)-layer with Pb with coordination number nine, followed by a second (Pb-As-S)-layer of variable thickness and chemical composition], of PbS-like As-sulfosalts as lengenbachite, marrite, jordanite and gratonite, as well as of hatchite, wallisite, imhofite, proustite, pyrargyrite, xanthoconite and trechmannite.

Während der letzten Jahre wurden von uns hauptsächlich Sulfide und Arsensulfosalze aus der Mineralfundstätte Lengenbach (Binnatal, Kt. Wallis, Schweiz) oder damit in Beziehung stehende Verbindungen untersucht. Diese lassen sich in drei Hauptgruppen gliedern: A. Sulfide vom Zinkblendetypus, B. Sulfosalze aus dem System Pb,Tl-As-S und C. Komplexe Pb,Tl,Cu,Ag- oder reine Ag,Tl-Arsensulfide.

^{*)} Mitt. Nr. 162 der Abteilung für Kristallographie und Strukturlehre, Universität Bern, Schweiz. — Teil 25 über Sulfide und Sulfosalze. — Vortrag, gehalten im Geophysical Laboratory, Washington D.C., und im Mass. Inst. Technology, Cambridge, im Herbst 1966.

A. Sulfide vom Zinkblendetypus

1. Lautit, CuAsS [Marumo, Nowacki, 1964]

Um völlige Klarheit über eine neue Mineralspezies, den Sinnerit (vgl. A. 4), zu erhalten, wurde die Struktur von Lautit, CuAsS, verfeinert: $a_0 = 11,356 \pm 0,008$, $b_0 = 3,754 \pm 0,005$, $c_0 = 5,453 \pm 0,005$ Å, $D_{2h}^{16}-Pnma$, Z=4. Jedes Cu hat 1 As (2,417)+3 S (2,289,2,304,2,304 Å) als nächste Nachbarn, jedes As: 1 Cu (2,417)+2 As (2,498)+1 S (2,239) und jedes S: 3 Cu (2,289,2,304,2,304)+1 As (2,239). As-As = 2,498 entspricht dem Abstand im Metall. Im Gegensatz zu den eigentlichen Sulfosalzen sind hier (Cu-As)- und (As-As)-Bindungen vorhanden, während wir dort nur (Me-S)- und (As-S)-Bindungen antreffen. R=9% mit individuellen isotropen Temperaturfaktoren. Lautit wurde bis jetzt im Lengenbach nicht gefunden.

2. Luzonit, Cu₃AsS₄ [Marumo, Nowacki, Engel, 1966; Marumo, Nowacki, 1967a].

Die Struktur von Luzonit wurde nach der Methode der kleinsten Quadrate mit Hilfe von 121 photographisch (Cu K_{α} -Strahlung) vermessenen Reflexen dreidimensional verfeinert. Die Mikrosondenanalyse ergab die Zusammensetzung Cu₃ (As_{0,644}Sb_{0,356})S₄, während die röntgenographische Verfeinerung auf Cu₃(As_{0,685}Sb_{0,315})S₄ führte. $a_0=5,33_2\pm0,005,\ c_0=10,57_0\pm0,01$ Å, $D_{2d}^{11}-I\,\overline{4}2\,m$. Die Struktur ist vom Zinkblendetypus mit allen Metallatomen in speziellen Punktlagen. Die Verschiebung eines S-Atomes aus dem Zentrum eines 2 Cu_I, Cu_{II}, (As,Sb)-Tetraeders ist sehr klein, 0,044 Å. Ausser Enargit ist Luzonit das einzig bekannte Beispiel mit As in tetraedrischer Schwefelkoordination [Arsenopyrit As: 3 Fe + 1 S, Cobaltin As: 3 Co + 1 S, Lautit As: 1 Cu + 2 As + 1 S]. Cu-S = 2,304, 2,337, (As,Sb)-S = 2,265, S-S = 3,683-3,858 Å. R=5,7% mit anisotropen Temperaturfaktoren und Berücksichtigung der anomalen Streuung. — Bis jetzt im Lengenbach nicht gefunden.

3. Binnit, $Cu_{12}As_4S_{13}$ [Wuensch, Takéuchi, Nowacki, 1966].

Ausgehend von der Zinkblendestruktur $\mathrm{Zn_{16}S_{16}}$ kann diejenige von Binnit durch $\mathrm{Zn_{16}} \to \mathrm{Cu_{12}As_4}$, Weglassen von $^1/_4$ der S und Hinzufügen eines Extra-S erhalten werden: $\mathrm{Zn_{16}S_{16}} \to \mathrm{Cu_{12}As_4S_{16-4+1}}$. $a_0 = 10,232 \pm 0,005$ Å, $T_d^3 - I \bar{4}3m$. Eine spektroskopische Analyse ergab die Zusammensetzung $\mathrm{Cu_{12}As_{3,48}Sb_{0,52}S_{13}}$, die röntgenographische Verfeinerung in sehr guter Übereinstimmung $\mathrm{Cu_{12}As_{3,40}Sb_{0,60}S_{13}}$. $\mathrm{Cu_{1-S}} = 2,337$ tetraedrisch, $\mathrm{Cu_{11-S}} = 1 \times 2,204 + 2 \times 2,258$ planar dreieckig, $\mathrm{As-S} = 2,246$ tri-

gonal-pyramidal (S-As-S=98° 22′), S_I : 2 Cu (2,337)+1 Cu (2,258)+1 As (2,246) tetraedrisch, S_{II} (=Extra): 6 Cu (2,204) oktaedrisch. R=7,2% mit anisotropen Temperaturfaktoren. — Ein Vergleich mit der Verfeinerung von Tetraedrit [Wuensch, 1964] zeigt, dass die Resultate der Verfeinerung mit photographisch erhaltenen Daten (Binnit) durchaus mit den zählrohrgoniometrisch erhaltenen Daten (Tetraedrit) vergleichbar sind, dass aber die Standardabweichungen der Parameter, Bindungslängen und Bindungswinkel um 50% grösser sind.

4. Sinnerit, Cu_{1.4}As_{0.9}S_{2.1} [Marumo, Nowacki, 1964].

Diese Verbindung war die erste im Lengenbach seit 1958 gefundene neue Mineralart [Nowacki, Marumo, Takéuchi, 1964]. Sie zeigt eine komplizierte Überstruktur. Die wahre Symmetrie ist triklin: $a_0 = 5 \, a_0' + 3 \, b_0' = 21.7$, $b_0 = -5 \, a_0' + b_0' = 19.0$, $c_0 = -5 \, a_0' - b_0' + c_0' = 19.7$ Å, $\alpha_0 = 27^{\circ} \, 10'$, $\beta_0 = 155^{\circ} \, 20'$, $\gamma_0 = 137^{\circ} \, 55'$; eine pseudotetragonale Subzelle ist $a_0' = 3.72$, $b_0' = 3.70$, $c_0' = 5.24$ Å. Die Symmetrie der starken Reflexe entsprechen einer noch kleineren, pseudokubischen Subzelle mit $a_0'' = a_0' + b_0' = 5.25$, $b_0'' = -a_0' + b_0' = 5.25$, $c_0'' = c_0' = 5.24$ Å, die beinahe mit derjenigen von Binnit und Luzonit identisch ist. — Bis jetzt konnte Sinnerit nur als verzwillingter Kristall gefunden werden.

5. *Nowackiit*, Cu₆Zn₃As₄S₁₂ [Marumo, Burri, 1965; Marumo, Nowacki, Engel, 1966; Marumo, 1967].

Diese ganz zufällig entdeckte neue Kristallart erwies sich als ein interessanter Vertreter des Zinkblendetypus mit Leerstellen (Löcher, vacant sites, vacancies). Die Mikrosondenanalyse ergab die Formel $Cu_{6.05}Zn_{3.04}As_{3.73}S_{12.46}$, d.h. $Cu_{6}Zn_{3}As_{4}S_{12-13}$. Schon die Pulveraufnahme zeigte, dass es sich um eine Überstruktur des Zinkblendetypus handeln muss. Bei Annahme der Gültigkeit der Grimm-Sommerfeldt-Regel für Tetraederstrukturen, der zu Folge der Quotient aus der Zahl der Valenzelektronen und der Zahl der Atome inklusive Löcher gleich vier sein muss, folgt eindeutig, dass die Formel 12 und nicht 13S enthalten muss, denn nur dann wird $(6 \cdot 1 + 3 \cdot 2 + 4 \cdot 5 + 12 \cdot 6) / (6 + 3 + 4 + 12 + 1) =$ 104/26=4 [[] = Symbol für eine Leerstelle]. Es ist: $a_{0,\,rho.}=8{,}34\pm$ $0.01 \quad \text{Å}, \quad \alpha_{0,\, rho.} = 107\,^{\circ}\,20'\,\pm\,10', \quad a_{0,\, hex.} = 13.44\,\pm\,0.015, \quad c_{0,\, hex.} = 9.17\,\pm\,0.015$ 0.01 Å; Symmetrie = C_3^4 - R_3 . Ein Zwilling nach $\{0.001\}$ ist in Fig. 1 abgebildet. Die Beziehung zum Zinkblendegitter ist durch $a_{0.rho}$ = $\frac{1}{2}[01\overline{3}]_{\text{ZnS}}$, $a_{0,hex.} = \frac{1}{2}[\overline{1}4\overline{3}]_{\text{ZnS}}$, $c_{0,hex.} = [111]_{\text{ZnS}}$ gegeben. Eine dreidimensionale, nur mit den Überstrukturreflexen berechnete Pattersonsynthese lieferte folgende Struktur: 1 S-Leerstelle (auf einer Trigyre gelegen) pro

rhomboedrische Zelle mit einer Formeleinheit $\mathrm{Cu_6Zn_3As_4S_{12}}$; sehr kleine Abweichungen $(0.09-0.21\ \text{Å})$ von der idealen Zinkblendestruktur; die mittleren Abstände sind: $\mathrm{Cu,Zn\text{-}S}=2.33_3$, 2.34_5 und 2.31_0 (tetraedrische Koordination), $\mathrm{As\text{-}S}=2.26_6$ und 2.24_1 (trigonal-pyramidal), die mittleren Winkel S-Cu, $\mathrm{Zn\text{-}S}=109.4$, 109.5, $109.2^\circ=\mathrm{Tetraederwinkel}$, S-As-S = $102._0$, $101._3^\circ<\mathrm{Tetraederwinkel}$. Vier As-Atome sind gegen eine Leerstelle hin verschoben (Fig. 2) und die AsS₃-Pyramiden sind nicht über gemeinsame S-Atome miteinander verknüpft. Vier AsS₃-Einheiten um eine Leerstelle herum bilden eine grössere Einheit $\mathrm{As_4S_{12}}$, welche

Fig. 1. Nowackiit-Zwilling nach {0001} (Photo Ch. Nicca).

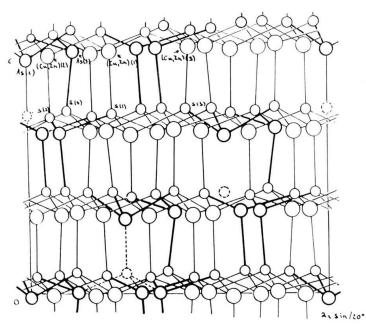


Fig. 2. Projektion der Nowackiit-Struktur // $a_{\text{hex.}}$ (dicke Kreise = As, mittelgrosse dünne = Cu, Zn, kleine = S, gestrichelte = Leerstellen).

dicht (aber nicht dichtest!) gepackt in den Zwischenräumen Platz für die Cu, Zn-Atome lassen. — R=7.8% für 637 beobachtete Reflexe (anisotrope Temperaturfaktoren).

B. Sulfosalze aus dem System (Pb, Tl)-As-S

Die Zusammensetzung (bezogen auf S=100) der verschiedenen, in der Natur auftretenden Sulfosalze mit ihrer ungefähren Dichte ist in Tabelle 1 gegeben. Gratonit wurde bis jetzt im Lengenbach nicht gefunden; er konnte mit dieser Zusammensetzung ($Pb_9As_4S_{15}$) auch nicht synthetisiert werden.

Tabelle 1. Zusammensetzung und Dichten (d) der $(Pb, Tl)_x As_y S_z$ -Sulfosalze und verwandter

Minera	1	x	y	z	d
α) Hutchi	insonit	22,2	55,6	100	4,6
β) Sklerol	klas	25	50	100	5,07
Bauml	nauerit (z.)	27,8	50	100	5,33
Rathit	-I, -III	30	50	100	5,37
Rathit	-II	32,2	46,5	100	5,37
Bauml	auerit (az.)	33,3	44,4	100	5,33
Dufren	oysit	40	40	100	5,53
γ) Lenger	nbachit				5,83
Marrit					5,82
Jordan	$_{ m it}$	56,5	30,4	100	6,38
[Graton	iit	60	26,7	100	6,221
Bleigla	nz	100		100	7,58

Die Formeln, Gitterkonstanten und die Raumgruppen sind in Tabelle 2 enthalten.

Strukturell können drei Gruppen α), β) und γ) mit einer mittleren Dichte von ungefähr 4,6, 5,4 und 6,1 unterschieden werden. Je mehr wir uns dem Bleiglanz nähern, desto ähnlicher im strukturellen Aufbau werden ihm z. T. auch die verschiedenen Mineralien. Der Hutchinsonit (α) weist den kleinsten Pb-Gehalt auf und soll zuerst besprochen werden.

α) 1. Hutchinsonit, $(Tl, Pb)_2As_5S_9$ [ΤακέυςΗΙ, Ghose, Nowacki, 1964, 1965].

Die chemischen Analysen dieses roten Sulfosalzes ergaben, dass Ag und Cu unwesentliche Bestandteile sind, entsprechend der neuen Formel (Tl, Pb)₂As₅S₉ statt der bisherigen (Tl, Pb)₂(Ag, Cu)As₅S₁₀. In der Zelle

Tabelle 2. Namen, Formeln, Gitterkonstanten und Raumgruppe der Blei-Arsensulfosalze

Literatur	T., G., N., 1965	N., I., B., K., 1961	К., Н., 1959	В., Н., 1959	R., H., 1959	LeB., 1962	R., H., 1959	M., N., 1966	LeB., 1962	M. ⁶)	LeB., 1962	N., M., T., 1964	LeB., 1962	M., N., 1967b	M. ⁶)	W., N., 1963, 1967	W., N., 1966	R., 1963; R., N. 1968	1
Raumgruppe	$D_{2h}^{15} - Pbca$	$C_{5h}^2 - P \; 2_1/n$	$T_d^3 - I = 1$	$D_{3d}^2-P\ \overline{3}1\ c$	$D_2^4 - P \ 2_1 \ 2_1 \ 2_1$	$C_i^1\!-\!P\bar{1}$	$C_i^1 - P \overline{1}$	C_{2h}^5-P $2_1/a$	$C_2^2 - P \ 2_1$	$C_1^1\!-\!\boldsymbol{P}1$	$C_2^2\!-\!P\ 2_1$	6:4	$C_2^2 - P \ 2_1$	$C_2^2 - P \ 2_1$	$C_1^1 - P 1, C_1^1 - P \overline{1}$	$C_{2h}^5-P~2_1/a$	$C_{2h}^2 - P \ 2_1/m$	$C_{3\mathrm{v}}^5 - R \ 3 \ m \]$	$O_h^5 - Fm \ 3 \ m$
84	Ī	°06	1	$\gamma = 120^\circ$	1	97°24'*)	91°30'*)	100° 28/	°06	97°18'*)	°06	∞-	°06	$90^{\circ} 21'$	92° 35′*)	$91^{\circ}13'$	$117^{\circ} 50'$	$\gamma = 120^{\circ}$	1
್	8,16	4,19	ļ	7,19	$2\times 4,15$	7,90	7,90,	8,47	8,43	7,92	7,91	∞ -	8,43	8,37	36,93	5,998	8,45	7,83	Ţ
$p_{ m o}$	35,36	7,89	1	1	7,82	8,33	$8,30_{5}$	7,94	7,91	8,37	6,07	e>+	25,80	25,74	5,75	$12,68_{\rm s}$	31,92	ļ	
α_{0}	10,81	19,62	10,6	6,9	19,4	22,78	$2\times 22,75_5$	25,16	24,52	22,89	8,43	140,42	7,91	7,90	35,1	7,291	96'8	17,69	5,94
Formel	$(TI, Pb)_3As_5S_9$	$PbAs_2S_4$	$\operatorname{Pb}\operatorname{A8_2S_4}$	$\operatorname{Pb}\operatorname{As_{\mathfrak{g}}S_{\mathfrak{q}}}$	$\operatorname{Pb}\operatorname{As_{\mathfrak{s}}S_{\mathfrak{s}}}$	Pb10 AS18 S36	6 ∞•	$\mathrm{Pb_{11}TlAs_{16}(As,Ag)_4S_{46}}$	Pb12 AS20 S40	$\mathrm{Pb}_{10}\left(\mathrm{Ag,Tl}\right)\mathrm{As}_{17}\mathrm{S}_{36}$	Pb, AS13 S16	6.1	Pb14 AS18 S40	Pb16 AS16 S40	$\mathrm{Pb}_{\mathfrak{z}_7}\mathrm{Ag},\mathrm{Cu}_{\mathfrak{s}}\mathrm{As}_{\mathfrak{z}_3}\mathrm{S}_{\mathfrak{z}_8}$	$\operatorname{Pb}\operatorname{Ag}\operatorname{AsS}_{s}$	$\mathrm{Pb}_{26}\mathrm{As}_{14}\mathrm{S}_{46}$	$\mathrm{Pb}_{\!s}\mathrm{As}_{\!s}\mathrm{S}_{\!1s}$	Pbs
Name	t Hutchinsonit	Skleroklas (Subzelle)	Kub. Phase ¹)	Trig. Phase ¹)	Skleroklas-II ¹)	Baumhauerit (z.)2)	Baumhauerit-II	Rathit-I	Rathit-III2)	Baumhauerit (az.) ⁵)	Rathit-II	Rathit-IV	Rathit-Ia ³)	Dufrenoysit	γ Lengenbachit ⁶)	Marrit	Jordanit	[Gratonit*)	δ Bleiglanz
	ષ્ઠ	β													7				0

Anmerkungen zu Tabelle 2: ¹) nur synthetisch; ²) von uns bis jetzt nicht gefunden; ³) Rathit-Ia = andere Bezeichnung für Dufrenoysit von LæBihan; ⁴) im Lengenbach bis jetzt nicht gefunden; ³) nach F. Marumo (unpubliziert) lautet die Formel für den azentrischen Baumhauerit entweder Pb₁a As₁s S₃s oder Pb₁o (Ag, Tl) As₁s S₃s; ⁵) nach F. Marumo (unpubliziert), Gitterkonstanten der Subzelle; *) $\alpha = \gamma = 90^{\circ}$.

 $a_0=10,81,\ b_0=35,36,\ c_0=8,16$ Å mit der Symmetrie $D_{2h}^{15}-Pbca$ sind 8 der obigen Formeleinheiten enthalten. Die Struktur besteht aus zwei Arten von Schichtpaketen $||\ (010)$. In dem einen (A) (Fig. 3) befinden sich $||\ c$ As₄S₈-Spiralen (As_{IV,V}) (Fig. 4), welche seitlich durch As_{III}S₃-Pyramiden zu einer komplexen Schicht (Fig. 5) zusammengehalten werden. Im anderen (B) treten endliche As₂S₅-Gruppen (As_{I,II}) auf, die zusammen mit den (Tl,Pb) in 7-er Koordination einem verzerrten PbS-Gittertyp ähneln. Die Abstände sind Pb (Tl)_I-S = 2,7-3,43 (i. M. 3,05),

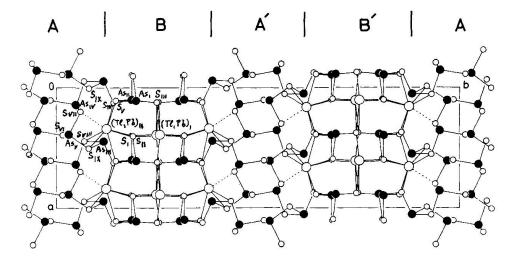
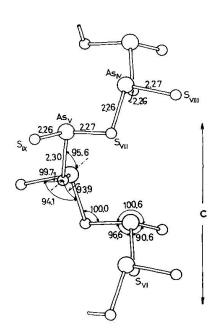



Fig. 3. Hutchinsonit-Struktur // c projiziert. Die Schichtpakete A' bzw. B' gehen aus A bzw. B durch b-Gleitspiegelungen oder b-2₁-Schraubungen hervor.

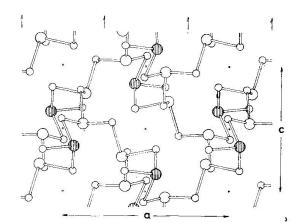


Fig. 5. Schichtpakete A von Hutchinsonit // b projiziert. Grosse Kreise: As (schraffierte = As_{III}), kleine: S.

Fig. 4. AsSS_{2/2} = AsS-Spirale von Hutchinsonit //b gesehen.

Tl (Pb)_{II}-S = 3,12-3,43 (i. M. 3,29), As-S = 2,29, 2,30, 2,30, 2,26 und 2,27 Å (i. M.). Silber, wenn in kleinen Mengen vorhanden, mag As ersetzen (vgl. Rathit-I). Die (S-S)-Abstände der AsS₃-Pyramiden haben eine Länge von etwa 3,5 Å, während die (Pb-S)-Ketten eine Periodizität von etwa 4 Å aufweisen; sie passen also nicht aufeinander, so dass keine unendlich langen (As-S)-Ketten, sondern Gruppen von endlicher Grösse in den Pb-As-Sulfosalzen vorhanden sind [vgl. Skleroklas, Rathit-I und Dufrenoysit; der gegenteiligen Ansicht von LeBihan (1962) können wir nicht zustimmen]. Bei den Sb- und Bi-Sulfosalzen hingegen mit den grösseren (S-S)-Abständen um 4 Å treffen wir unendlich lange Ketten an (vgl. Fig. 11 und Diskussion dazu bei Baumhauerit).

β) 2. Skleroklas, PbAs₂S₄ [Nowacki, IItaka, Bürki, Kunz, 1961; IItaka, Nowacki, 1961].

Skleroklas (= Sartorit) ist das im Lengenbach häufigste und chemisch einfachste Sulfosalz; seine Struktur hingegen ist wegen auftretender Satellitenreflexe (Superstruktur) äusserst komplex. Ursprünglich glaubten wir eine $3\times1\times11$ -Überstruktur gefunden zu haben. Es zeigte sich aber, dass diese Zahlen nicht immer realisiert sind, sondern, dass es sich um Satellitenreflexe handelt, deren Lage von Kristall zu Kristall, ja selbst innerhalb ein und desselben Kristalles variieren kann. Deshalb wurde nur die zugrunde liegende Pseudostruktur bestimmt: $a_0' = 19,62$, $b_0' = 7.89$, $c_0 = 4.19$ Å, $\beta = 90^{\circ}$, $C_{2h}^5 - P \, 2_1/n$, Z = 4. Fig. 6 zeigt die Projektion der Struktur ||c (unten) bzw. ||b (oben). Sie kann als aus zwei Teilen bestehend beschreiben werden: aus einer ersten Schicht | (100), bestehend aus Pb in der für die As-Sulfosalze typischen Neunerkoordination (Fig. 7) von S-Atomen und einer zweiten, bestehend aus As_I-S_{I,II}-Ketten bzw. $As_{II}-S_{-III,IV}$ -Ketten || c, was die gute Spaltbarkeit || {100} erklärt. Diese (As-S)-Ketten werden sich aus folgenden Gründen nicht ins Unendliche erstrecken: 1. die Streifung von Skleroklas wäre dann ||c|, entgegen der beobachteten ||b| und 2. die $S_{II,IV}$ -Atome haben einen sehr grossen Temperaturfaktor ||c|, so dass man bei einer Verrückung von 0,5 Å || c einen normalen (As-S)-Abstand von 2,17 Å und einen solchen von 2,98 Å Länge erhielte, der keiner (As-S)-Bindung entspräche. Wie schon bei Hutchinsonit erwähnt, passen die (S-S)-Abstände der (As-S)-Gruppen nicht mit der 4-Å-Periodizität der Pb-Atome zusammen, während z.B. bei Berthierit, FeSbS₄, mit einer ähnlichen Struktur, dies der Fall ist, wodurch unendliche (Sb-S)-Ketten möglich sind. Bei Jamesonit, Pb₄FeSb₆S₁₄, allerdings sind auch endliche Gruppen Sb₃S₇ vorhanden.

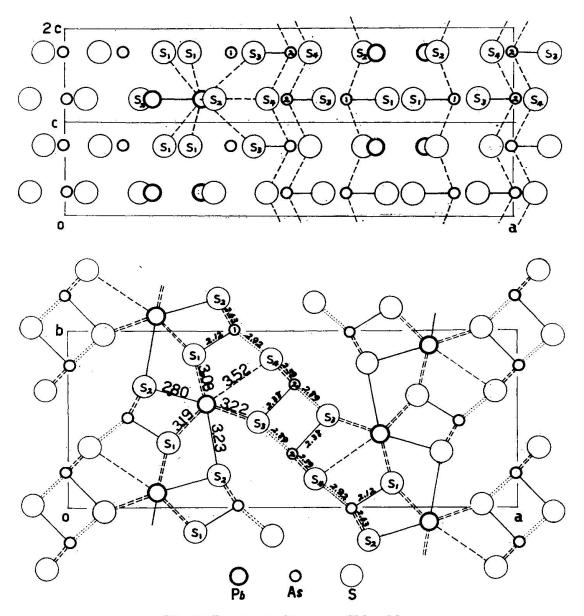
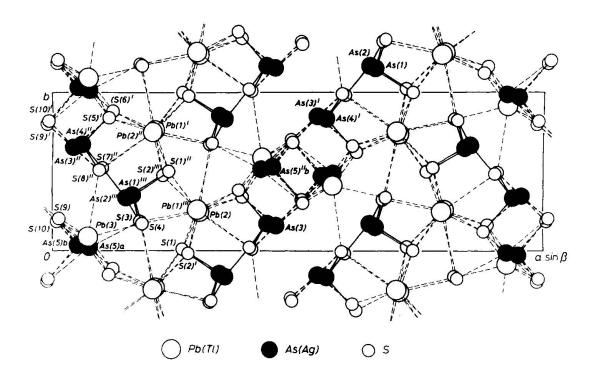



Fig. 6. Pseudostruktur von Skleroklas.

Die Abstände in Skleroklas sind: Pb-S = 2,95 – 3,42, As_I-S = 2,14 – 2,56, As_{II}-S = 2,36 – 2,59 Å. R = 14,7% (anisotrope Temperaturfaktoren).

3. Rathit-I, (Pb,Tl)₃As₄(As,Ag)S₁₀ [Nowacki, Marumo, Takéuchi, 1964; Marumo, Nowacki, 1965].

Vier Formeleinheiten (Pb,Tl)₃As₄(As,Ag)S₁₀ sind in der Einheitszelle der Symmetrie C_{2h}^5-P 2₁/a mit $a_0=25,16$, $b_0=7,94$, $c_0=8,47$ Å, $\beta=100^\circ$ 28' enthalten. Die wahre Symmetrie von Rathit-I ist möglicherweise triklin. Wie Hutchinsonit und besonders Skleroklas, so besteht auch Rathit-I

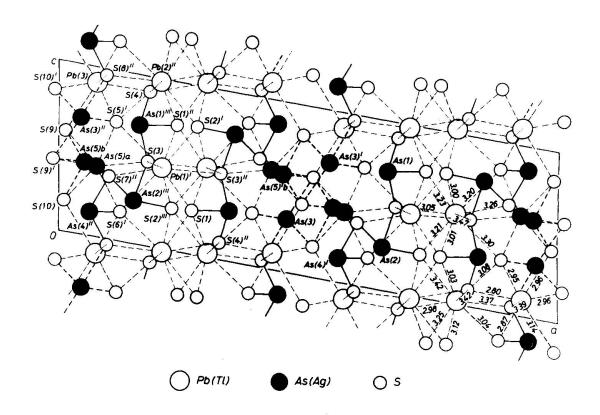


Fig. 7. Rathit-I, projiziert (a) // c, (b) // b.

aus zweierlei Schichten [||(100)|] (Fig. 7a, b): einer ersten Schicht mit Pb_{I,II} in Neunerkoordination (Zusammensetzung PbS₃) und einer zweiten bestehend aus Pb_{III} in Siebenerkoordination und endlichen Komplexen von trigonal-pyramidalen AsS₃-Gruppen. Diese letztere Schicht weist eine deformierte PbS-Struktur auf. Die As_{I,II,IV}-Atome bilden einen endlichen (As-S)-Komplex. As_{III} bildet mit S_{VIII} und S_{IX} statistisch eine kovalente Bindung. Gehört As_{III} zu S_{VIII}, dann ist die As_{III}S₃- mit der As_{IV}S₃-Pyramide verknüpft. As_V ist statistisch über zwei Punktlagen (Va) und (Vb) verteilt, besetzt aber hauptsächlich (Vb) mit trigonal-pyramidaler Koordination, während in (Va) das Ag mit der Koordinationszahl 6 sitzt. Im günstigsten Falle sind sechs AsS₃-Pyramiden zu einem Komplex assoziiert, nämlich As_{I,II,IV',III',V'',III}. Das Tl könnte eventuell auch an die Stelle des Ag treten. — Die Abstände sind: Pb_I-S =

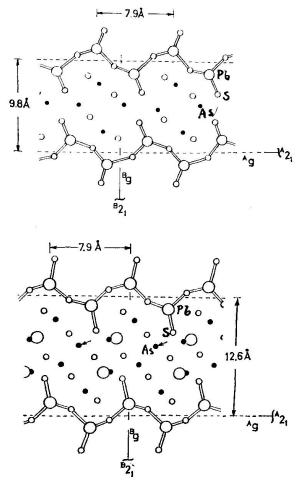


Fig. 8. Vergleich der Strukturen von Skleroklas (oben) und Rathit-I (unten) (nach Takéuchi, 1965).

3,194 (i. M.), Pb_{II} -S = 3,191, Pb_{III} -S = 3,014 Å, As_{I} -S = 2,265, As_{II} -S = 2,300, As_{III} -S = 2,283 - 2,737, As_{IV} -S = 2,279, As_{Va} -S = 2,761, As_{Vb} -S = 2,371 Å. R = 8,6% für 3013 beobachtete Reflexe (mit anisotropen Temperaturfaktoren).

Ein Vergleich von Skleroklas und Rathit-I ist in Fig. 8 gegeben. Die (Pb-S)-Schicht mit Pb in Neunerkoordination ist in beiden dieselbe. Im Falle des Skleroklas sind dazwischen nur As- und S-Atome, beim Rathit-I noch weitere Pb-Atome enthalten.

4. Rathit-II, Pb₉As₁₃S₂₈ [LeBihan, 1962].

Rathit-II hat $a_0=8,43$, $b_0=70,9$, $c_0=7,91$ Å, $\beta=90^\circ$, $C_2^2-P\,2_1$ und eine von Rathit-I und -III abweichende Zusammensetzung $\mathrm{Pb_9As_{13}S_{28}}$. Rathit-II sollte daher eigentlich einen anderen Namen erhalten, was jetzt aber natürlich nicht mehr zu machen ist. Die von LeBihan (1962) gefundenen unendlich langen (As-S)-Ketten entsprechen wahrscheinlich nicht den wirklich vorhandenen Verhältnissen. Nach Nowacki (1967b) ist "Liveingit" mit Rathit-II identisch.

5. Dufrenoysit, Pb₂As₂S₅ [MARUMO, NOWACKI, ENGEL, 1966; MARUMO, NOWACKI, 1967b].

Die monokline Zelle $a_0 = 7.90$, $b_0 = 25.74$, $c_0 = 8.37$ Å, $\beta = 90^{\circ} 21'$, $C_2^2 - P 2_1$, enthält Z = 8 Einheiten $Pb_2As_2S_5$, d.h. $Pb_{16}As_{16}S_{40}$. Wie aus den Fig. 9 und 10 ersichtlich ist, weist die Dufrenovsitstruktur eine sehr grosse Ähnlichkeit mit der Rathit-I-Struktur auf; der Unterschied resultiert als Folge der etwas anderen chemischen Zusammensetzung und besteht in kleinen Atomverschiebungen. Es sind wieder zwei Arten von Schichtpaketen [[](010)] vorhanden: eine erste Schicht mit Pb_{I,II,III,IV} in Neunerkoordination mit Pb-S (i. M.) = 3,16, 3,15, 3,20 und 3,22 A und eine zweite mit $Pb_{V,VI,VII,VIII}$ in (6+1)-er Koordination mit Pb-S (i. M.)2,91, 2,96, 3,04 und 3,04 Å und einem weiteren S-Atom im Abstand 3,6-3,8 Å, und trigonal-pyramidal koordinierten As-Atomen mit As-S (i. M.) = 2.38, 2.23, 2.27, 2.41, 2.31, 2.45, 2.35 und 2.21 Å [meist also]grösser als 2,25 = 1,21 (As) +1,04 (S) = normaler kovalenter (As-S)-Abstand bei Einfachbindung]. As_{VII} hat mit As-S = 2.37, 2.41, 2.27 und 2,68 Å eventuell tetraedrische Koordination und steht ohne Berücksichtigung der 2,68-Bindung isoliert da, d. h. hat mit den endlichen As₄S₉ (As_{III,IV,V,VI})- und As₃S₇ (As_{II,I,VIII})-Gruppen keine gemeinsamen S-Atome.

Diese zweite Schicht, eine deformierte PbS-Struktur bildend, weist für die vier Kristallarten Dufrenoysit, Rathit-II, Rathit-III [LeBihan,

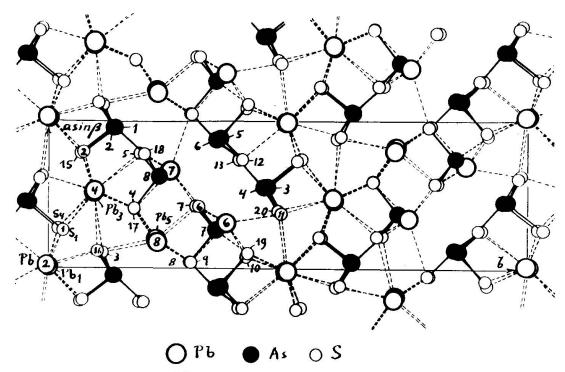


Fig. 9. Dufrenoysit-Struktur // c.

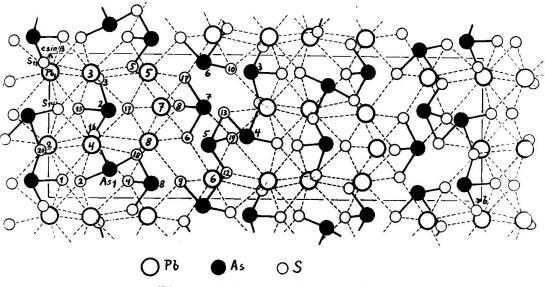


Fig. 10. Dufrenoysit-Struktur // a.

1962; von uns bis jetzt nicht beobachtet] und Rathit-Ia [von Le Bihan als Rathit-I bezeichnet, chemische Formel $Pb_{14}As_{18}S_{40}$, praktisch mit Dufrenoysit $Pb_{16}As_{16}S_{40}$ identisch] die Zusammensetzung $Pb_{4}As_{8}$, $Pb_{2}AgAs_{9}$, $Pb_{2}As_{10}$ und $Pb_{3}As_{9}$ auf. — R=14.0% für (hk0) und 16.8% für (0kl) [eine dreidimensionale Verfeinerung ist in Bearbeitung].

Bei einem Dufrenoysitkristall wurden diffuse Reflexe $||b^*|$ beobachtet. Eine Mikrosondenanalyse ergab, dass der Kristall aus Blöcken verschiedener Zusammensetzung besteht, kleine ohne Tl und grosse mit 4% Tl. Nimmt man an, dass das zweite Schichtpaket abwechslungsweise aus Rathit-I- und Dufrenoysit-Teilschichtpaketen bestünde, so hätte man damit eine plausible Erklärung der beobachteten diffusen Reflexe gefunden, vorausgesetzt, dass im Rathit-I das Tl das Ag ersetzte (vgl. oben).

6. Baumhauerit, Pb₁₀ (Ag, Tl)As₁₇S₃₆ [Marumo, unpubliziert; vorläufige Strukturbestimmung von LeBihan, 1962, und Nowacki, Marumo, Takéuchi, 1964].

Die Pb-Atome befinden sich in Neuner- und Siebener-Koordination; es sind endliche (As-S)-Gruppen, nicht unendliche (As-S)-Ketten vorhanden. Die Struktur ist azentrisch, bestehend entweder aus R (Rathit-I) und S [Zusammensetzung $Pb_{10}As_{17}(Ag,Tl)S_{35}$] oder aus R (Dufrenoysit) und S [Zusammensetzung $Pb_{12}As_{16}S_{36}$]; zentrischer Baumhauerit konnte von uns bis jetzt nicht gefunden werden.

Die früher angegebenen Formeln $Pb_{10}As_{18}S_{36}$ und $Pb_{11}As_{17}S_{36}$ sind stöchiometrisch nicht so wahrscheinlich, weil sowohl $2 \cdot 10 + 3 \cdot 18 - 2 \cdot 36 = 2$ und $2 \cdot 11 + 3 \cdot 17 - 2 \cdot 36 = 1$ beide von 0 verschieden sind.

In Fig. 11 sind die (Pb, Fe, Hg-S)-Ketten für Rathit-I, Hutchinsonit, Berthierit (FeSb₂S₄) bzw. Livingstonit (HgSb₄S₈) zum Vergleich zusammengestellt. Wie ersichtlich, passen nur bei den Sb-Verbindungen die 4-Å-(S-S)-Abstände der (Sb-S)- mit denen der (Pb-S)-Konfigurationen

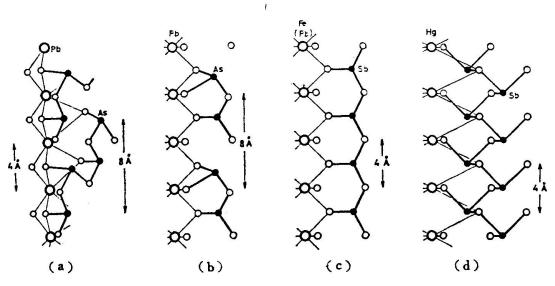


Fig. 11. Vergleich der Strukturen von (a) Rathit-I, (b) Hutchinsonit, (c) Berthierit und (d) Livingstonit (nach Takéuchi, 1965).

zusammen, so dass hier unendliche (Sb-S)-Ketten möglich sind, während — wie schon früher erwähnt — bei den As-Verbindungen wegen der kleineren (3,5 Å) (S-S)-Abstände der (As-S)-Konfigurationen ausschliesslich endliche (As-S)-Gruppen vorhanden sind.

Das gemeinsame Bauprinzip aller Verbindungen der Gruppe β) besteht also in dem Vorhandensein einer ersten (Pb-S)-Schicht mit Pb in Neuner-koordination, gefolgt von einer zweiten (Pb-As-S)-Schicht wechselnder Dicke und Zusammensetzung. Die Abmessungen sind derart, dass stets die Perioden $7.9 \times n \cdot 4.2$ Å resultieren.

Die bisherigen Kristallstrukturbestimmungen an den Pb-As-Sulfosalzen haben also ein gemeinsames Bauprinzip erkennen lassen. Es wäre aber verfrüht, schon von einer etablierten Kristallchemie der Sulfosalze sprechen zu wollen. Isotypie zwischen den As- und den Sb-, Bi-Sulfosalzen ist wohl selten [endliche bzw. unendliche (As-S)- bzw. (Sb-S)-(Bi-S)-Gruppen!], und es sind z. Z. noch wenig genaue und zuverlässige Strukturbestimmungen an Sb- und Bi-Verbindungen bekannt.

Eine einfache generelle Klassifikation ist durch die Art der $\mathfrak{B}S_3$ -Verbände ($\mathfrak{B} = As$, Sb, Bi) gegeben (Hofmann, 1934).

7. Faseriges Sulfosalz ("Sollyit") [Nowacki, IItaka, Bürki, Kunz, 1961].

Es ist inhomogen und stellt eine Verwachsung einer orthorhombischen Komponente mit Dufrenoysit in zwei verschiedenen Orientierungen dar.

γ) 8. Lengenbachit, Pb₃₇Ag₇Cu₆As₂₃S₇₈ [Nowacki, Iitaka, Bürki, Kunz, 1960, 1961; Nowacki, Bahezre, 1963; Nowacki, 1965; Marumo, unpubliziert].

Die wahre Symmetrie ist triklin, C_1^1-P 1 oder C_i^1-P $\overline{1}$ (nicht monoklin). Eine Subzelle hat $a_0'=35,10\pm0,03$, $b_0'=5,75_5\pm0,01$, $c_0'=36,92\pm0,03$ Å, $\alpha'\approx90^\circ$, $\beta'=92^\circ35'$, $\gamma'\approx90^\circ$ (Probe L 2600—1963). In der wahren Zelle ist $a_0=2\,a_0'$ und $b_0=2\,b_0'$, $c_0=c_0'$; das Gitter ist aber basiszentriert, so dass man für die reduzierte Zelle die a_0 -Achse [[1 $\overline{1}0$] nehmen muss. Die Mikrosondenanalyse (C. Bahezre, B.R.G.M., Paris, 1964) ergab Pb 58, Ag 5,5, Cu 2,8, As 13, S 19,2, $\sum 98,5\%$. Mit einer Dichte von 5,80 bis 5,85 ergibt sich die empirsiche chemische Formel Pb₃₇Ag₇Cu₆As₂₃S₇₈.

Eine zweidimensionale Pattersonsynthese P(x,z) zeigt klar, dass die Lengenbachitstruktur mit der PbS-Struktur sehr eng verwandt ist. Die a_0 -Achse entspricht $6 \cdot a_{0 \text{ PbS}}$, ebenso $c_0 = 6 \cdot a_{0 \text{ PbS}}$. Die Struktur besteht aus PbS-Schichten der Dicke $a_{0 \text{ PbS}}$ || (001) Diese PbS-Schichten sind

längs der a_0' -Achse nur $^{1}/_{4}a_{0 \text{ PbS}}$ gegeneinander verschoben (schematische Darstellung des Bauprinzips in Fig. 12).

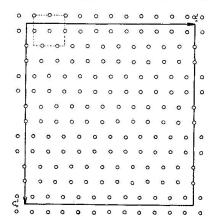


Fig. 12. Lengenbachit, Bauprinzip der Projektion auf die a_0' , c_0' -Ebene (nach F. MARUMO).

9. Marrit, PbAgAsS₃ [Wuensch, Nowacki, 1963, 1967].

Die Struktur $a_0 = 7,2705$, $b_0 = 12,6319$, $c_0 = 5,9853$ Å, $\beta_0 = 91^{\circ}13,7'$ in der Raumgruppe C_{2h}^5-P $2_1/a$ ist eine Überstruktur des PbS-Gitters. Sie wurde durch eine systematische Untersuchung aller möglichen Anordnungen, welche sich aus der Beziehung Sub-Superzelle ergaben, gefunden. Die Verfeinerung wurde bis zu R = 10.9% getrieben, ein Wert, welcher durch die Zuverlässigkeit der Messdaten gegeben war. — Die Struktur gleicht nur in sehr bedingter Weise einem PbS-Gitter. As hat wie üblich drei nächste S-Nachbarn (2,26—2,28 Å) in trigonal-pyramidaler Koordination. Ag weist drei nächste Nachbarn in Abständen zwischen 2,47 und 2,68 Å bei beinahe ebener Anordnung auf [ähnlich wie in Xanthokon oder in Hatchit (flach-pyramidale Dreierkoordination)]. Ein viertes S-Atom befindet sich ungefähr normal zur Dreiecksebene im Abstande 2,91 Å. Pb ist von sechs Schwefelatomen unregelmässig-oktaedrisch (2,80-3,26 Å) umgeben. Die S-Atome sind bis zu 1,09 Å aus den idealen Sub-Strukturlagen verschoben. Dies bedingt eine tetraedrische Koordination von zwei der drei S-Atome im Fundamentalbereich (≡ asymmetrische Einheit) (Fig. 13).

10. Jordanit, Pb₂₆As₁₄S₄₆(?) [Nowacki, Wuensch, Kunz, 1964; Wuensch, Nowacki, 1966].

Es wurde bisher die Substruktur bestimmt, d.h. eine über vier Zellen gemittelte Atomanordnung. Es liegt eine 10-er Oktaederschichtstruktur || (010) vor, wobei zwei Me-Atome trigonal-prismatische Koordination aufweisen. Die gesetzmässige Verwachsung des pseudohexagonalen Jor-

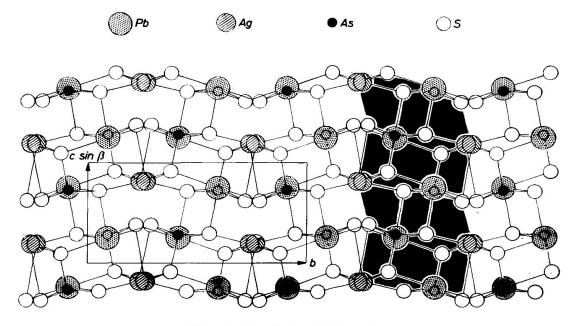


Fig. 13. Marrit, Projektion // a.

danits mit (010) | (111) von Zinkblende [Nowacki, Kunz, Marumo, 1964] findet damit eine natürliche Erklärung.

11. Gratonit, Pb₉As₄S₁₅ [Rösch, Hellner, 1959; Rösch, 1963; Ribar, Nowacki, 1968 (Neubestimmung mittels 3d-Methoden)].

Dieses As-Sulfosalz wurde bisher im Lengenbach nicht gefunden; es konnte mit dieser Zusammensetzung auch nicht synthetisiert werden. Die Pb-Atome weisen die Koordinationszahl 7 (nicht 5; 6) auf (Pb-S = 2,776—3,436 Å).

Anhang. — Die Struktur der rhomboedrischen Form $(3\,R)$ des MoS_2 wurde ebenfalls ermittelt [Takéuchi, Nowacki, 1964]. Die Einzelschicht ist natürlich gleich wie beim gewöhnlichen, hexagonalen Molybdänit $(2\,H_1)$; die Abfolge der Schichten übereinander ist aber rhomboedrisch.

C. Komplexe Pb, Tl, Cu, Ag- oder reine Ag, Tl-Arsensulfide

- 1. Hatchit, PbTlAgAs₂S₅ [Nowacki, Kunz, 1961; Marumo, Nowacki, Engel, 1966; Marumo, Nowacki, 1967c; Nowacki et al. 1967] und
- 2. Wallisit, PbTlCuAs₂S₅ [Nowacki, 1965, 1966, 1967a; Nowacki et al. 1967; Takéuchi, Ohmasa, Nowacki, 1968].

Diese beiden Kristallarten sind isomorph. Hatchit enthält etwas Cu und Wallisit etwas Ag. Die reduzierten Zellen sind:

	Hatchit	Wallisit		Hatchit		Wallisit
\boldsymbol{a}	$9,22~{ m \AA}$	$8,98_3~{ m \AA}$	a'	9,37 Å	a''	$9,21_5$ Å
\boldsymbol{b}	7,84	$7,76_{1}$	b'	7,84	b''	$8,52_{4}$
\boldsymbol{c}	8,06	$7,98_{0}$	c^{\prime}	8,06	c''	$7,98_{0}$
α	$66^{\circ}\ 25'$	$65^{\circ}\ 33'$	α'	$66^{\circ}\ 25'$	α''	$55^{\circ} 59'$
β	$65^{\circ}~17'$	$65^{\circ}\ 30'$	$oldsymbol{eta}'$	$63^{\circ}~20'$	β"	$62^{\circ}\ 30'$
γ	$74^{\circ} 54'$	73° 55′	γ'	84° 58′	γ''	$69^{\circ}~24'$

Zur Beschreibung wurden Zellen, die der Morphologie angemessen sind, gewählt $(a', \ldots$ für Hatchit und a'', \ldots für Wallisit). Der Strukturtyp besteht aus $Me_2As_4S_{10}$ -Doppelketten (Me=Ag, Cu) (Fig. 14 für Hatchit) || $[01\overline{1}]$ ('-Zelle) bzw. || [010] (''-Zelle), welche durch die Pb, Tl)-Atome zusammengehalten werden. Die Zusammensetzung der Ketten

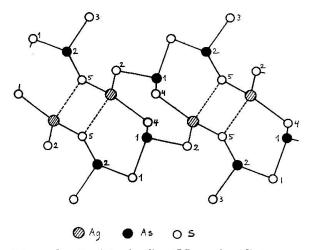


Fig. 14. Hatchit: Doppelkette $Me_2As_4S_{10}$ (Me = Ag, Cu); ganz analog derjenigen von Wallisit (Me = Cu, Ag).

ergibt sich aus MeS_6 -Doppeltetraedern (mit gemeinsamer Kante), welche durch As_2S_5 -Gruppen miteinander verknüpft sind. Die (Pb, Tl)-I-Position weist eine 8-er Koordination auf und entspricht hauptsächlich Pb, die (Tl, Pb)-II-Position mit nur 2 nächsten Nachbarn deutet auf Tl-Besetzung hin (Hatchit R=9.0%, Wallisit R=16.4%).

3. Imhofit, Tl_xCu_vAs_zS_u [Burri, Graeser, Marumo, Nowacki, 1965].

Dieses neue Mineral kristallisiert in extrem dünnen, durchscheinend kupferroten Blättchen, meist zu kugeligen Nestern aggregiert. Es ist monoklin mit $a_0 = 8,77$, $b_0 = 24,51$, $c_0 = 11,44$ Å, $\beta_0 = 107^{\circ}$, $C_2^2 - P 2_1$ oder

 $C_{2h}^2-P_{2h}^2$. Eine Strukturbestimmung dieses, neben dem Lorandit, TlAsS₂, wohl einzigen, natürlichen Tl-Arsensulfids (Cu-Gehalt nur 1,67%) dürfte wegen der extremen Dünnheit der Kristalle schwierig sein.

4. Proustit, Ag₃AsS₃ und Pyrargyrit, Ag₃SbS₃ [Engel, Nowacki, 1966].

Für diese Strukturen wurden zwei Bestimmungen publiziert [Harker, 1936, bzw. Hocart, 1937]. Unsere Verfeinerung ergab die Richtigkeit des Modelles von Harker. $a_{0, hex.} = 10.82$ (11,04 für Pyrargyrit), $c_{0, hex.} = 8.69$ (8,72) Å, $a_{0, rho.} = 6.89$ (7,01) Å, $\alpha_{0, rho.} = 103°25'$ (104°04'); $C_{3v}^6 - R3c$; Z = 6 in der hexagonalen Zelle. Beide Strukturen (As- und Sb-Verbindung) bestehen aus $(AgS)_{\infty}$ -Gruppen fast der gleichen Form (Fig. 15). Die S-Atome bilden die Ecken einer trigonalen (Dreieck-)-Spirale, während die Ag ziemlich genau in der Mitte der Dreiecksseite

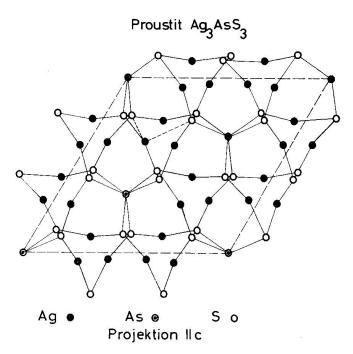


Fig. 15. Proustit; Projektion // c. Die beiden Teilgitter werden durch die längeren Bindungen Ag-S = 2.88 und 3.18 Å (gestrichelt) miteinander verknüpft.

liegen [etwas gegen innen verschoben, S-Ag-S=162°39′ (Proustit), 161°09′ (Pyrargyrit)]. Es ist je ein System von links- und ein solches von rechtsgängigen Spiralen vorhanden. Die einzelnen Spiralen eines solchen Systems sind über das As- bzw. Sb-Atom untereinander zu einem Teilgitter verbunden. Die Struktur besteht aus diesen zwei ineinandergestellten Teilgittern, welche durch etwas längere (S-Ag)-Bindungen (2,88 und 3,18 Å bei Proustit) miteinander verbunden sind. Die erhaltenen

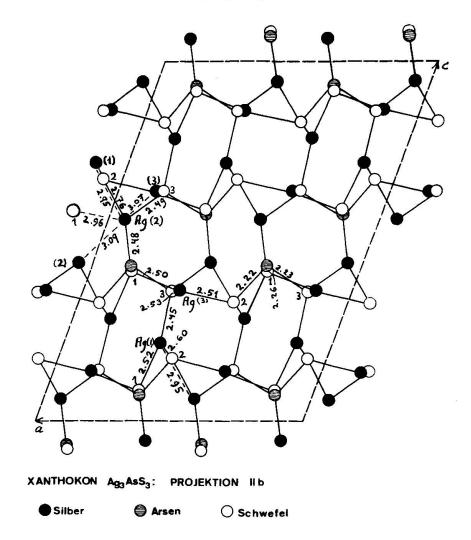


Fig. 16. Xanthokon, Projektion // b.

Abstände sind: Ag-S = 2,448 (2,450 für Pyrargyrit) [jedes Ag ist von zwei nächsten S umgeben; nimmt man die zwei längeren (Ag-S)-Bindungen von 2,88 und 3,18 Å dazu, so resultiert für das Ag eine stark-deformierte tetraedrische S-Umgebung]; jedes S ist zwei (bzw. zwei und einem) Ag und einem As bzw. Sb benachbart: Ag-S-Ag = 83° 12′ (83° 28′), As (Sb)-S-Ag = 99° 52′ (96° 16′) und $108^{\circ}02'$ ($107^{\circ}50'$); As bzw. Sb ist pyramidal von drei S umgeben: As (Sb)-S = 2,25₄ (2,46₃) A, S-As (Sb)-S = 99° 24′ (96° 20′). — R = 7% (mit anisotropen Temperaturfaktoren).

5. Xanthokon, Ag₃AsS₃ [Nowacki, Takéuchi, Ohmasa, Engel, 1967; Engel, Nowacki, 1968].

Diese instabile, gelbe Modifikation von Ag₃AsS₃ (rot = Proustit) hat $a_0 = 12,00 \pm 0,01, \ b_0 = 6,26 \pm 0,01, \ c_0 = 17,08 \pm 0,01$ Å, $\beta_0 = 110^\circ\,00' \pm 20'$

und Z=8 Formeleinheiten pro Elementarzelle; $d_x=5,53~{\rm gcm^{-3}}$. Die Struktur besteht aus Doppelschichten ||(001)| (= Zwillingsebene) aus ${\rm AsS_3}$ -Pyramiden, welche mit ihren As-Spitzen immer nach aussen weisen, welche über ${\rm Ag}\,(1)$ und ${\rm Ag}\,(3)$ miteinander verknüpft sind, während die ${\rm Ag}\,(2)$ -Atome die Verbindung zwischen den Doppelschichten herstellen (Fig. 16). Die ${\rm Ag}\,(1)$ und ${\rm Ag}\,(3)$ besitzen eine ebene Dreierkoordination mit ${\rm Ag}$ -S=2,45—2,60 Å, während die ${\rm Ag}\,(2)$ eine pyramidale Dreierkoordination mit ${\rm Ag}$ -S=2,48—2,76 Å aufweisen. Jedes ${\rm Ag}\,(1)$ resp. ${\rm Ag}\,(3)$ hat zusätzlich im Abstand 2,95 resp. 3,07 Å ein ${\rm Ag}\,(2)$, während jedes ${\rm Ag}\,(2)$ zudem 1 ${\rm Ag}\,(1)$ in 2,95, 1 ${\rm S}\,(1)$ in 2,96, 1 ${\rm Ag}\,(3)$ in 3,07 und 1 ${\rm Ag}\,(2)$ in 3,09 Å koordiniert aufweist (R=13%).

6. Trechmannit, AgAsS₂ [Matsumoto, Nowacki, 1968].

Vorhandensein eines trigonalen Dreierringes As₃S₆. Ag hat 3 nächste S (2,59₉, 2,64₆ Å), die eine sehr flache Pyramide bilden; mit einem vierten S (2,73₅ Å) zusammen ergibt sich eine deformiert-tetraedrische Koordination.

Über die Wiedererschliessung der Lengenbachgrube vgl. Nowacki 1960, 1963; über die Wichtigkeit der Mikrosondenanalysen Nowacki, Bahezre, 1963, und alle folgenden Arbeiten; eine erste Zusammenfassung über die Kristallchemie der Sulfosalze erschien 1964, und über die bisher vier neuen Mineralien aus dem Lengenbach wurde in den Publikationen 1965, 1966 und 1967 berichtet.

Diese Untersuchungen wurden in dankenswerter Weise vom Schweizerischen Nationalfonds (Projekt Nr. 2337/3508 und 2609), von der Kommission zur Förderung der wissenschaftlichen Forschung (Projekte Nr. 384 und 386), der Stiftung Entwicklungsfonds Seltene Metalle und von der Stiftung zur Förderung der wissenschaftlichen Forschung an der Universität Bern unterstützt. Der American-Swiss-Foundation for Scientific Exchange Inc. sind wir für die Gewährung eines Reisestipendiums nach den USA sehr verbunden.

Literatur

SMPM = Schweiz. Mineralogische und Petrographische Mitteilungen

Burri, G., Graeser, S., Marumo, F. und Nowacki, W. (1965): Imhofit, ein neues Thallium-Arsensulfosalz aus dem Lengenbach (Binnatal, Kanton Wallis). Chimia 19, 499—500.

ENGEL, P. und Nowacki, W. (1966): Die Verfeinerung der Kristallstruktur von Proustit, Ag₃AsS₃, und Pyrargyrit, Ag₃SbS₃. N. Jb. Min., Mh., 181—184.

— (1968): Die Kristallstruktur von Xanthokon, Ag₃AsS₃. Acta Cryst. B24, 77—81 (Ewald-Festschrift).

- Hofmann, W. (1934): Beitrag zur Kenntnis der nadelförmigen Sulfosalze des Arsens, Antimons und Wismuts. Fortschr. Mineral. 18, 19—20.
- Hügi, Th, Niggli, E., Nowacki, W. und Stalder, H. A. (1962): Bericht über die Exkursion der Schweiz. Mineralogischen und Petrographischen Gesellschaft über den Grimselpass und ins Binnatal (Aarmassiv und penninische Decken). SMPM 42, 15—23.
- IITAKA, Y. and Nowacki, W. (1961): A refinement of the pseudo crystal structure of scleroclase PbAs₂S₄. Acta Cryst. 14, 1291—1292.
- (1962): A redetermination of the crystal structure of galenobismutite, PbBi₂S₄. Acta Cryst. 15, 691—698.
- Le Bihan, M.-Th. (1962): Etude structurale de quelques sulfures de plomb et d'arsénic naturels du gisement de Binn. Bull. Soc. Franç. Min. Crist. 85, 15—47. Acta Cryst. 14 (1961) 1210—1211, 1211—1212.
- MARUMO, F. (1967): The crystal structure of nowackiite, Cu₆Zn₃As₄S₁₂. Z. Krist. 124, 352—368.
- MARUMO, F., BURRI, G. (1965): Nowackiite, a new copper zinc arsenosulfosalt, from Lengenbach (Binnatal, Kanton Wallis). Chimia 19, 500—501.
- MARUMO, F. and NOWACKI, W. (1964): The crystal structure of lautite and of sinnerite, a new mineral from the Lengenbach Quarry. SMPM 44, 439—454.
- (1965): The crystal structure of rathite-I. Z. Krist. 122, 433—456.
- MARUMO, F., NOWACKI, W. und ENGEL, P. (1966): Kristallchemische Untersuchungen an Sulfosalzen. SMPM 46, 694—695 (Luzonit, Nowackiit, Dufrenoysit, Hatchit).
- MARUMO, F. and Nowacki, W. (1967a): A refinement of the crystal structure of luzonite, Cu₃AsS₄. Z. Krist. 124, 1—8.
- (1967b): The crystal structure of dufrenoysite, $Pb_{16}As_{16}S_{40}$. Z. Krist. 124, 409—419.
- (1967c): The crystal structure of hatchite. Z. Krist. 125, 249—265.
- Matsumoto, T. and Nowacki, W. (1968): The crystal structure of trechmannite. Z. Krist. 1968 (in print).
- Nowacki, W. (1960): Die Neuerschliessung der Mineralfundstelle Lengenbach (Binnatal, Kt. Wallis). Mitt. Natf. Ges. Bern (N.F.) 18, 35—43. Urner Mineralien-Freund 1 (1963) 115—119.
- (1964): Zur Kristallchemie der Sulfosalze, insbesondere aus dem Lengenbach (Binnatal, Kt. Wallis). Schweiz. Min. Petr. Mitt. 44, 459—484. Mitt. Natf. Ges. Bern [N.F.] 21 (1963) XXI—XXII.
- (1965): Über einige Mineralfunde aus dem Lengenbach (Binnatal, Kt. Wallis). Eclogae geol. Helv. 58, 403—406 (Wallisit, Hatchit u. a.).
- (1966): Über vier neue Sulfosalze aus dem Lengenbach, Binnatal. Urner Mineralien-Freund 4, 18—19 (Sinnerit, Wallisit, Imhofit, Nowackiit).
- (1967a): Über neue Mineralien aus dem Lengenbach. Jb. Naturhist. Museum Bern 1963—1965 (publ. 1967) (u. a. d-Werte von Imhofit, Nowackiit, Wallisit).
- (1967b): Über die mögliche Identität von "Liveingite" mit Rathit-II. N. Jb. Min., Mh. S. 353—354.
- (1968): Über Hatchit, Lengenbachit und Vrbait. N. Jb. Min., Mh. S. 69—75.
- Nowacki, W. und Bahezre, C. (1963): Die Bestimmung der chemischen Zusammensetzung einiger Sulfosalze aus dem Lengenbach (Binnatal, Kt. Wallis) mit Hilfe der elektronischen Mikrosonde. SMPM 43, 407—411.

- Nowacki, W., Burri, G., Engel, P. und Marumo, F. (1967): Über einige Mineralstufen aus dem Lengenbach (Binnatal) II. N. Jb. Min., Mh. S. 43—48 (Hatchit, Wallisit, Hutchinsonit, Dufrenoysit, Enargit, Marrit).
- Nowacki, W., IITAKA, Y., BÜRKI, H. and Kunz, V. (1961): Structural investigations on sulfosalts from the Lengenbach, Binn Valley (Ct. Wallis). Part 2. Schweiz. Min. Petr. Mitt. 41, 103—116. Verh. Schweiz. Natf. Ges. 1960, 103—105.
- Nowacki, W. und Kunz, V. (1961): Gitterkonstanten und Raumgruppe von Hatchit und Trechmannit. N. Jb. Min., Mh. 94—95.
- Nowacki, W., Kunz, V. und Marumo, F. (1964): Über einige Mineralstufen aus dem Lengenbach (Binnatal). SMPM 44, 129—132.
- Nowacki, W., Marumo, F. and Takéuchi, Y. (1964): Untersuchungen an Sulfiden aus dem Binnatal (Kt. Wallis, Schweiz). SMPM 44, 5—9.
- NOWACKI, W., TAKÉUCHI, Y., OHMASA, M. und ENGEL, P. (1967). Die Kristallstruktur von Wallisit, PbTlCuAs₂S₅, dem Cu-Analogon von Hatchit, PbTlAg-Qs₂S₅, und von Xanthokon, Ag₃AsS₃. SMPM 47, 1138—1139.
- Nowacki, W., Wuensch, B. J. und Kunz, V. (1964): Über eine stengelig-faserige Ausbildung von Jordanit aus dem Lengenbach. SMPM 44, 455—458.
- RIBAR, B. und Nowacki, W. (1968): Neubestimmung der Kristallstruktur von Gratonit, Pb₉ As₄ S₁₅. Z. Krist. (im Druck).
- RÖSCH, H. (1963): Zur Kristallstruktur des Gratonits-9PbS·2As₂S₃. N. Jb. Min., Abh. 99, 307—337.
- RÖSCH, H., HELLNER, E. (1959): Hydrothermale Untersuchung am System PbS-As₂S₃. Naturwiss. 46, 72.
- Takeuchi, Y. (1965): Crystal chemistry of sulfosalts in the Pb-As-S system. J. Jap. Cryst. Soc. 7 (2), 110—121 (japanisch).
- Takéuchi, Y., Ghose, S. and Nowacki, W. (1965): The crystal structure of hutchinsonite, (Tl, Pb)₂As₅S₉. Z. Krist. 121, 321—348. Chimia 18 (1964), 215—217.
- Takeuchi, Y. and Nowacki, W. (1964): Detailed crystal structure of rhombohedral MoS₂ and systematic deduction of possible polytypes of molybdenite. SMPM 44, 105—120.
- TAKÉUCHI, Y., OHMASA, M. and Nowacki, W. (1968): The crystal structure of wallisite, PbTlCuAs₂S₅, the Cu analogue of hatchite, PbTlAgAs₂S₅. Z. Krist. (in press).
- WUENSCH, B. J. (1964): The crystal structure of tetrahedrite Cu₁₂Sb₄S₁₃. Z. Krist. 119, 437—453.
- Wuensch, B. J. und Nowacki, W. (1963): Zur Kristallchemie des Sulfosalzes. Marrit. Chimia 17, 381—382.
- (1966): The substructure of the sulfosalt jordanite. SMPM 46, 89-96.
- Wuensch, B. J. and Nowacki, W. (1967): The crystal structure of marrite, PbAgAsS₃. Z. Krist. 125, 182—211 (Menzer-Festschrift).
- Wuensch, B. J., Takéuchi, Y. and Nowacki, W. (1966): Refinement of the crystal structure of binnite, Cu₁₂As₄S₁₃. Z. Krist. 123, 1—20. Amer Min. 51, 276.

Eingegangen, den 29. November 1966.