Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 47 (1967)

Heft: 1: Feldspäte

Artikel: Das Material für chemische und physikalische Untersuchungen an

Plagioklasen. Teil I der Laboratoiriumsuntersuchungen an Plagioklasen

Autor: Corlett, M. / Eberhard, E.

DOI: https://doi.org/10.5169/seals-36954

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das Material für chemische und physikalische Untersuchungen an Plagioklasen

(Teil I der Laboratoriumsuntersuchungen an Plagioklasen)

Zusammengestellt von M. Corlett und E. Eberhard (Zürich)*)

Mit 1 Tabelle

Abstract. Plagioclases from the mineralogical collection of the ETH and from several individual donors have been examined using X-ray and electron microanalysis techniques. The data are collected here in tabular form; this body of material was used for the laboratory investigations of plagioclases here presented.

Plagioklase sind Mischkristalle zwischen Albit NaAlSi $_3O_8$ und Anorthit CaAl $_2$ Si $_2O_8$. Wegen ihrer Verbreitung in der Natur waren sie seit langer Zeit ein beliebtes Untersuchungsobjekt vieler Forscher. In neuerer und neuester Zeit sind wiederum wichtige Ergebnisse bekannt geworden, welche daraufhin deuten, dass die variable Zusammensetzung, in Verbindung mit Ordnungs-Unordnungsproblemen und Domänenbau, die Plagioklase als eine äusserst komplexe Mineralart erscheinen lassen. Durch die Erfindung und Entwicklung der Mikro-Elektronensonde war die Möglichkeit gegeben, rasche und zuverlässige Analysen auszuführen. Die geringe Analysenmenge und das Auflösungsvermögen im μ -Bereich sind gerade ideal für die Plagioklase. Die Zuordnung zwischen Chemismus und anderen Untersuchungsmethoden konnte dadurch stark verfeinert werden.

Es schien deshalb erlaubt, in der Literatur angegebene Diagramme für Plagioklasbestimmungen durch verbesserte Methoden neu aufzurollen und gleichzeitig auch wohl definiertes Material für weitere Untersuchungen bereitzustellen.

Diese Vorhaben können nur gelingen, wenn eine möglichst grosse Anzahl von Proben verschiedenster Lokalitäten zusammengebracht wer-

^{*)} Institut für Kristallographie und Petrographie der ETH, Sonneggstr. 5, 8006 Zürich.

den kann. Die Mineralogische Sammlung der ETH mit ihren grossen Schätzen eignete sich zu diesem Zweck in besonderer Weise. Neben diesem "Grundstock" war es möglich, auch Material anderer Herkunft in die Untersuchungen miteinzubeziehen. Herr Prof. Dr. E. Wenk vom Mineralogisch-Petrographischen Institut der Universität Basel stellte in grosszügiger Weise einige wichtige Kristalle zur Verfügung. Herr Dr. K. Viswanathan von unserem Institut steuerte viele Proben saurer Plagioklase aus seinem Arbeitsgebiet im Tessin bei. Das von Prof. R. C. Emmons bereits gut untersuchte Plagioklasmaterial stand uns glücklicherweise in sauber abgetrennten Kriställchen ebenfalls zur Verfügung. Weiteres Material wurde von Mitarbeitern unseres Institutes gütigst zur Untersuchung überlassen. Es ist uns eine angenehme Pflicht, allen Spendern für ihre grosszügige Unterstützung herzlich zu danken.

Da uns dieses zusammengetragene Material für die folgenden und späteren Arbeiten wichtig erschien, soll hier in tabellarischer Form eine kurze Beschreibung mit chemischen Analysen und Pulverdaten folgen. Bei weiteren Untersuchungen besteht die Möglichkeit, auf diese Zusammenstellung zu verweisen. Die Liste wird laufend erweitert.

In der nun folgenden Tabelle bedeuten:

- Spalte 1: Von uns in willkürlicher Reihenfolge eingeführte Nummern. Das Material ist unter dieser Numerierung auf bewahrt.
- Spalte 2: Fundort.
- Spalte 3: Herkunft der Proben. Zur Vereinfachung der Tabelle werden folgende Zahlen für einzelne Herkünfte eingeführt:
 - 1 Proben aus der Sammlung ETH.
 - 2 Proben von Prof. Wenk, Basel.
 - 3 Proben R. C. Emmons.
 - 4 Material K. Viswanathan aus dem Tessin.

Alle anderen Spender sind mit Namen genannt.

- Spalte 4: An-Gehalte in Mol-%, Bestimmung mit der Mikrosonde. Chemisch homogene Proben sind auf 0,1% genau angegeben. Kristalle mit variabler Zusammensetzung haben einen Mittelwert, angegeben auf 1% genau. Wenn der Variationsbereich klein war, ist er durch den tiefsten und höchsten Wert, verbunden durch einen Bindestrich angegeben. Zwei Zusammensetzungen ohne Bindestrich bedeuten das Vorliegen von zwei definierten Plagioklaszusammensetzungen.
- Spalte 5: Or-Gehalt in Mol-%. Im Gegensatz zu nasschemischen Analysen ist hier nur der isomorph eingebaute Kalifeldspatgehalt angegeben. Antiperthitische Entmischungskörper sind also nicht berücksichtigt.

- Spalte 6: Differenz der Linien 131—1 $\overline{3}$ 1 im Pulverdiagramm, gemessen in 2 θ .
- Spalte 7: Differenz der Linien $\overline{2}41$ — $\overline{24}1$ im Pulverdiagramm, gemessen in 2θ . Dieser Wert kann auch negativ sein. Da es im Pulverdiagramm keine einwandfreie Entscheidungsmöglichkeit gibt, ist das Vorzeichen hier weggelassen.
- Spalte 8: Mit einem Stern versehene Proben sind in bezug auf An- wie Or-Gehalt fast oder ganz homogen.
- Spalte 9: Gekennzeichnete Proben dienten zur Konstruktion der $\Delta(\theta)_1$ und $\Delta(\theta)_2$ -Diagramme der Tief-Plagioklase.
- Spalte 10: Ein Stern bedeutet: Berechnung und Verfeinerung von Gitterkonstanten.
- Spalte 11: So weit möglich sind hier Angaben über den Gesteinstyp, Paragenese, Eigenfarbe oder Schillerfarbe der Kristalle, Literaturhinweise über bereits untersuchtes Material etc. angegeben. Wurden zwei oder mehr Analysenproben von einem Stück entnommen, so wird hier auf die entsprechenden Nummern verwiesen.

LITERATUR

- Brown, W. L. (1960): X-Ray Studies in the Plagioclases. Z. Krist. 113, 297—329.
 Emmons, R. C. (1953): Selected petrogenetic relationship of plagioclase. Geol. Soc. America, Memoir 52.
- HESS, H. H. (1960): Stillwater Igneous complex, Montana. Geol. Soc. America, Memoir 80.
- Knup, P. (1958): Geologie und Petrographie des Gebietes zwischen Centovalli-Valle Vigezzo und Onsernone. Schweiz. Min. Petr. Mitt. 38, 83—236.
- SAAGER, R. (1966): Erzgeologische Untersuchungen an kaledonischen Blei, Zink und Kupfer führenden Kieslagerstätten im Nord-Rana-Distrikt, Nord-Norwegen. Dissertation ETH.
- Subramaniam, A. P. (1956): Mineralogy and Petrology of the Sittampundi Complex, Salem District, Madras State, India. Bull. Geol. Soc. America, 67, 317—390.

Manuskript eingegangen am 20. Juli 1966.

Bemerkungen	Grosses Pegmatitstück mit weisslich-blauem Schiller, chemisch inhomogen	Pegmatit mit Turmalin	Anorthosit, chemisch inhomogen	Aus einer Kluft mit trüben Kristallen	Stufe mit grünen Plagioklasen mit Magnetkies u. Glimmer, zwei defin. Plagioklaszusammensetz.gen	Anorthosit mit Chromerzbändern chemisch inhomogen	Idiomorphe Kristalle mit schwarzem Überzug, wenig inhomogen	Gabbro, wenig inhomogen	Grosse, graue Feldspatkristalle mit Granat und Augit, chemisch inhomogen	Gebänderter Anorthosit, chemisch inhomogen	Sonnenstein, Spaltstück, chemisch inhomogen	Grünweisse Kristalle mit Hornblende und Glimmer, chemisch inhomogen	Pegmatit mit rotem Kalifeldspat (cf. Brown 1960)	Schwarzes Spaltstück; cf. 213 Or-Gehalt unregelmässig	Sonnenstein, Pulver, chemisch inhomogen	Augitarmer Olivingabbro	Anorthosit mit grünem Plagioklas Röntgendiagramm diffus	Mondstein mit blauem Schiller, mit Magnetit und Glimmer. Röntgendiagramm diffus	Anorthosit mit bräunlichem Plagioklas, chemisch inhomogen
Auslesen 2 3		*			*			*											
Aus 1		*					*	*						*		*			
$\Delta (\theta)_2$	1,705	1,09	0,025	1,74	0,55	0,045	0,345	0,38	0,455	90,0	1,25	0,685	1,725	0,415	0,635	0,025	0,45	0,585	0,585
$\Delta (\theta)_1$	1,18	1,51	2,13	1,13	1,745	2,145	2,295	1,875	1,81	2,09	1,395	1,73	1,135	1,825	1,75	2,125	1,795	1,71	1,73
Mol-% Or	9,0	6,0	-	9,4	4,2 3,4	0,4	0,0	0,2	2,5	1,2	1,4	6,0	0,1	0,7—2,5	7,0	0,1	1,2	3,6	6 3
Mol-% Mol-% An Or	မ	17,6	75	8,0	37,4 $39,0$	76,1— 78,3	94,6— 96,4	59,8	47	73	11	28	1,0— $1,2$	51,8	36	74,2	46,5	27,2	39
Her- kunft	-	-	-	7		-	1	-	-	1	1	-	Nissen	-	-	1	-	-	н
Fundort	Unbekannter Fundort	Utö, Södermanland, Schweden	Klipfontein, Bushveld	Arendal, Norwegen	Bodenmais, Deutschland	Klipfontein-Rustenberg, Bushveld	Miyakejima, Idzu, Japan	Volpersdorf, Schlesien	Vermont, USA	Klipfontein, südl. Jagdlust, Bushveld	Twedestrand, Norwegen	Marienberg, Erzgebirge	Vivero, Spanien	Lake St. John, Kanada	Unbekannter Fundort	Volpersdorf, Schlesien	Beresford Twp., Kanada	Küste von Labrador, Kanada	Egersund, Norwegen
Nr.	H	63	က	4	ro	L-	10	11	12	13	14	15	19	24	25	56	27	28	30

Grosses, weiss-grünliches Spaltstück	Gebänderter Anorthosit, wenig inhomogen	Norit, chemisch inhomogen	Klares Spaltstück	EB 18, cf. J. R. SMITH in HESS 1960	Anorthosit, anatektisch, katathermal, dunkles Spaltstück	(Cf. Knup 1958)	Röntgendiagramm diffus (cf. KNUP 1958)	Abgerundete, klare Kristalle	$\rm V_2$ 255 Universität Basel, chemisch inhomogen	$ m V_2$ 260 Universität Basel, chemisch inhomogen	Pulver, feine Fraktion; cf. 44	Pulver, grobe Fraktion; cf. 43	Kleine Plagioklasstücke aus einem Gestein	Grosses, getrübtes Spaltstück	Schwarzes Spaltstück mit blauem Schiller	Anorthosit mit blaugrünem Schiller	Einheitlich blauer Schiller	Anorthosit, ohne Schiller; cf. 52, Röntgendia- gramm diffus	Anorthosit, blauer Schiller; cf. 51, Röntgendia- gramm diffus	Angeschliffenes Stück mit rotem Schiller	Dunkles Spaltstück, Or-Gehalt inhomogen	Anorthosit. Blaugrüner Schiller	Röntgendiagramm diffus	Chemisch inhomogen
		*		*									*		*									
4	w			*				34					*											
•			-	•		-		•			*	*	•	*		•	•			*	*	*		
0,74	90,0	0,345	0,865	0,00	0,575	0,565	0,55	0,135	0,165	0,745	0,165	0,165	0,18	1,26	0,35	0,49	0,40			0,54	0,465	0,425		0,105
1,68	2,08	1,895	1,58	2,12	1,73	1,785	1,795	10,2	2,20	1,675	2,015	2,01	2,01	1,395	1,875	1,71	1,83			1,73	1,785	1,815		2,15
2,3	1,0	2,0	3,8	6,0	1,7	0,1	4,0	2,0	0,2	0,0	0,5	9,0	2,0	7,0	1,0	9,1	2,6	2,5	2,1	2,5	2,0 2,4	2,1	2,3	0,5
8,12	70,4— 73,4																64	•						
_	1- 1-	56	21,5	77,0	43,0	41,3	37,5	59,1	80	25	8,09	60,5	68,7	13,7	52,8	51,1	49,6	46,8	49,4	52,6	43,0	52,1	47,8	77— 83
	-	1 56	1 21,5	1 77,0	2 43,0	2 41,3	2 37,5	1 59,1	2 80	2 25	1 60,8	1 60,5	1 68,7	1 13,7			49,6		1 49,4	1 52,6	1 43,0	1 52,1	1 47,8	
Quebec, Kanada	Klipfontein, südl. Jagdlust, 1 7 Bushveld	Bonaccord, nördl. Pretoria, 1 56 Bushveld	Millard Co., Utah, USA 1 21,5	Stillwater, Ma., USA 1 77,0			Val Isorno, Agressina, Schweiz 2 37,5	Lake View, Oregon, USA 1 59,1	Verzasca-Tal, Schweiz 2 80	Verzasca-Tal, Schweiz 2 25	Grönland 1 60,8	Grönland 1 60,5	Roneval, S. Harris, Schottland 1 68,7	Ytterby, Schweden 1 13,7					Egersund, Norwegen 1 49,4	Unbekannter Fundort 1 52,6	Hidrasund, Norwegen 1 43,0	Küste von Labrador, Kanada 1 52,1	Essex County, N.Y., USA 1 47,8	Unbekannter Fundort Burri 77—83

Nr.	Fundort	Her-	Mol-%	Mol-%	$\Delta (\theta)_1$	Δ (θ) ₂	Ψn	Auslesen		Bemerkungen
		kunft	$^{ m An}$	Or			-	C 7	ಞ	
58	New Glasgow, Quebec, Kanada	-	99	1,5	1,875	0,375				Anorthosit mit grünem Feldspat, chem. inhomog.
59	St. Jerome, Quebec, Kanada	-	51	0,7						Anorthosit mit grünem Feldspat, Röntgendia- gramm diffus
09	Steelport River, Bushveld	-	85	0,1						Anorthosit mit Chromit, Röntgendiagramm diffus
61	Klipfontein-Rustenberg, Bushveld	-	73,1 74,1	9,0	2,085	0,03		*	*	Norit, chemisch zwei Plagioklaszusammensetzungen nachweisbar
62	Peerless Minc, S. D., USA	က	0,0	0,2-0,5	1,11	1,74				Pegmatit, Emmons Nr. 1
63	Patrick quarry, Texas, USA	ಣ	13— 18	$^{1,0-}_{2,0}$	1,405	1,25				Granit, chemisch inhomogen, Emmons Nr. 4
65	Spanish Peak, Calif., USA	က	$\frac{27}{41}$	7,0	1,735	0,665				Granodiorit, chemisch inhomogen, Emmons Nr. 6
99	Transvaal, Südafrika	ಣ	72— 77	0.7-1.2	2,10	0,04				Norit, chemisch inhomogen, Emmons Nr. 26
19	Tigerton, Wis., USA	ಣ	18,5	6,0	1,495		*	*	*	Granit, Emmons Nr. 5
89	Lake Co., Oregon, USA	က	65,1-67,2	. 0,5— 0,6	2,105	0,05	*			Basaltporphyr, Emmons Nr. 19
69	Chester Co., Pa., USA	ಣ	65	1,3						Diabas, Röntgendiagramm diffus, Emmons Nr. 18
20	Lincoln Co., Wis., USA	ಣ			2,05	0,00				Gabbro, Emmons Nr. 23
7.5	Merrill, Wis., USA.	ŧΩ	92	0,4	1,81	0,46				Gabbro, Röntgendiagr. diffus, Emmons Nr. 14
73	Grand Marais, Minn., USA	က	59— 65	1,8—3,6	1,945	0,24				Anorthosit, chemisch inhomogen, Emmons Nr. 17
74	Tigerton, Wis., USA	ಣ	53,8	0.5 - 1.0	1,80	0,495	*	*	*	Anorthosit, Or-Gehalt inhomogen Emmons Nr. 13
75	Parishville, N. Y., USA	က	15	1,1	1,45	1,19				Biotitgranit, Röntgendiagramm diffus Emmons Nr. 3
92	Fresno Co., Calif., USA	ಣ	48	2,2	1,81	0,425				Diorit, chemisch inhomogen, Emmons Nr. 11
11	Shelby, N. C., USA	က	43—. 51	0,5-1,3	1,835	0,435				Hornblendegabbro, chemisch inhomogen Emmons Nr. 10
48	Peekskill, N. Y., USA	ಣ	10	9,0						Zweiglimmergranit, Röntgendiagramm diffus

Gabbro, chemisch inhomogen, Emmons Nr. 21	Dacit, chemisch inhomogen, Emmons Nr. 7	Anorthosit, Or-Gehalt inhomogen Emmons Nr. 12	Orthoklas-Quarz-Gabbro, Emmons Nr. 20	Klarer, idiomorpher Kristall	Klare Spaltstücke (cf. Brown 1960)	Anorthosit, chemisch inhomogen, Emmons Nr. 9	Klares Spaltstück	Ganz klares Spaltstück	Grobkörniger Anorthosit mit dunklen Feldspäten	Hellgraues Spaltstück	Kleine, idiomorphe, trübe Kristalle, chemisch inhomogen	Idiomorphe getrübte Kristalle	Weisses Spaltstück	Kleines Spaltstück mit violettem Schiller	Kleines Spaltstück mit blauem Schiller	Peristerit aus Pegmatit, mit blauem Schiller	Peristerit mit blauem Schiller	Bruchstück, chemisch zwei Plagioklase	Milchigweisses Spaltstück	Milchigweisser Kristall Peristeritphasen erkennbar
		*			*					*			*	*					*	
					*			*		*			*						*	
		*		*	*		*	*	*	*			*	*	*	*	*		*	
0,055	98'0	0,44	0,23	0,205	1,185	0,44	0,94	1,075	0,305	0,57	0,30	0,285	0,575	0,33	0,425	1,75	1,65	0,93	0,74	1,34
2,065	1,84	1,83	1,985	1,89	1,455	1,82	1,555	1,46	1,925	1,75	1,85	1,93	1,755	1,88	1,79	1,10	1,175	1,595	1,68	1,345 $1,075$
$\frac{1,2}{1,7}$	2,7	0.5 - 1,2	1,0— $1,4$	5,5	0,7	2,2-3,0	3,2	5,4	2,0	0,2-0,3	4	0,5	0,4	$\frac{1,1}{1,4}$	2,1	0,5	0,1	$\frac{1,5}{2,0}$	8,0	9,0
64— 72	28— 43	53,7	64— 69	40,2	16,5	44— 48	18,5	16,8	56,7	47,8	35	38— 41	41,8	58,1	53,3	0.0 - 0.0	4,9	21,5 $24,5$	28,0	12
ಣ	က	က	ಣ	П	H	ಣ	1	-	-	-	н	-	H	Laves	-		1	н	-	-
Duluth, Minn., USA	San Luis, Calif., USA	Eland, Wis., USA	Wichita Mts., Okla., USA	Kako-Nen, Kankyohoku-Do, Korea	Sultan Hamud, Kenya	Essex Co., N. Y., USA	Buckingham, Quebec, Kanada	Nordkarelien, Finnland	St. Michels-Lan, Finnland	Bear Canyon, Calif., USA	Nishishiota, Shinano, Japan	San-Raphaël, Fréjus, Frankreich	Sannidal, Norwegen	Unbekannter Fundort	Kamenoi Brod	Amelia Court House, Va., USA	Amelia Court House, Va., USA	Seiland, Norwegen	Palmietfontein, Transvaal	Stockholm, Schweden
46	80	81	2 2	83	84	85	86	87	88	91	92	93	94	96	97	86	66	100	101	102

Bemerkungen	Braune Spaltstücke	Pegmatit, Schliere im Tessingneis	Pegmatitische Schliere im Tessingneis	Pegmatitische Schliere im Tessingneis, chemisch inhomogen	Pogmatitische Schliere im Tessingneis, chemisch inhomogen	Klare Kristallbruchstücke (cf. Brown 1960)	Grosse idiomorphe Kristalle mit blauweissem Schiller	Klare, grosse Spaltstücke, chemisch zwei Plagioklase	Zoisit-Plagioklas-Fels (cf. SAAGER 1966)	Klare, kleine Kristalle	Kristalle aus einem Granat in Oligoklaspegmatit (cf. Saager 1966)	Grosse rötliche Kristalle	Grobkörniger Gabbro mit weissen Feldspäten (cf. Brown 1960)	Spaltstück Peristeritentmischung m. d. Mikrosonde auflösb.	Weisses Spaltstück	Graue Kristallbruchstücke (cf. Brown 1960) Röntgendiagramm diffus	Rötlicher Anorthosit, chemisch inhomogen	Völlig klares Kristallbruchstück	Material Barth, helle Varietat, Spaltstück	Material Barth, dunkle Varietät, Spaltstück
й 3	*	*					*				*		*							
Auslesen 2													*							*
1	*	*	*			*	*		*	*	*	*	*	*	*			*	*	*
Δ $(\theta)_{2}$	0,155	0,925	0,575	99,0	0,725	0,635	1,655	0,94	1,72	0,36	0,705	0,405	0,31	1,735	1,085		0,115	0,825	1,655	0,615
$\Delta (\theta)_1$	2,025	1,61	1,75	1,715	1,695	1,76	1,16	1,565	1,135	2,265	1,735	2,285	2,255	1,145	1,495		2,05	1,61	1,165	1,705
Mol-% Or	0,6 0,9	0,5	5,9	6,0	0.5 - 1.2	6,4	1,4	1,8	6,3	0,5	0,3	0,0	0,03	$0,3 \\ 2,0$	8,0	9,0	-5,1	3,8	1,4	4,4
Mol-% An	69,0	17,9	35,4	33	$\frac{38}{40}$	29,0	4,1	$19,2 \\ 20,7$	0,4	93,0	23,9	98,5	93,1	1,3 $10,4$	17,4	10,1	63,9— 65,5	21,5	4,1	46,0
Her- kunft	-	4	4	4	4	-	-	Н	Saager	Н	Saager	-	н	-	H	Н	Η.	-	_	-
Fundort	Närödalen, Norwegen	Lodrino-Prosito, Schweiz	Cerio, Maggio, Schweiz	Arvigo, Calanca, Schweiz	Arvigo, Calanca, Schweiz	Corundum Hill, Macon Co., USA	Skarnbergbugten, Norwegen	Bakersville, N. C., USA	Mo-I-Rana, Norwegen	Vesuv, Italion	Mo-I-Rana, Norwegen	Monzoni, Italien	Grass Valley, Calif., USA	Amelia Court House, Va., USA	Pfitschtal, Tirol, Österreich	Hybla, Ontario, Kanada	Crystal Bay, Minn., USA	Mitchell Co., USA	Seiland, Norwegen	Seiland, Norwegen
Nr.	103	104	105	101	108	109	110	111	112	113	114	115	116	118	119	120	123	124	125	126

																*			
Spaltstück mit klaren und getrübten Partien Peristerit nur rönfengeranbisch auflächer	Rötlicher Peristerit ohne Schiller Peristerit nur röntzenogranhisch auflöshar	Milchigweisses Handstück	Anorthosit (cf. Brown 1960), chemisch inhomogen	Hornblendediorit, hell	Forellenstein mit violetten Plagioklasen chemisch inhomogen	Peristerit mit hellblauem Schiller, Spaltstück	Milchigweisses Spaltstück	Pegmatit, Kristall mit Seidenglanz	Forellenstein mit klaren Plagioklasen, chemisch inhomogen	Perthit, vorwiegend Kalifeldspat	Grober Pyroxenit mit grünweissen Plagioklasen Röntgendlagramm diffus	Chemisch inhomogen	Pulver	Kluftkristalle, chemisch inhomogen	Klares Spaltstück	Granat-Hornblende-Diorit	Weisses Spaltstück mit blauem Schiller	Granat-Disthen-Gneis mit Feldspataugen Röntgendiagramm diffus	Amphibolit-Hornblende-Fels, nach Röntgendia- gramm zwei Plagioklasphasen
							*												
		*		*						*									
*	*	*		*		*	*	*		*			*		*	*	*		
1,21	$\frac{1,175}{1,62}$	0,73	0,515	09'0	0,115	1,68 1,425	0,54	1,64	0,045	1,765		0,275	0,475	0,885	1,635	0,53	1,725	0,55	0,125
1,425 $1,195$	1,32	1,70	1,76	1,75	2,185	1,205 $1,40$	1,79	1,165	2,07	1,09		1,925	1,81	1,60	1,205	1,795	1,135	1,755	2,21 $2,015$
8,0	0.5 - 3.0	3,5	$\frac{1}{1,5}$	0.6 - 0.7	0,1	0,4	0,4	1,2	6,0	0,35	2,6	0,4	$\frac{1,2}{1,8}$	2,6	0,1	9,4	0,15	1,2	0,2
12	10,8	42,7	40— 50	36,8	81	12,3	35,3	4,0	69	0,1-0,0	61	. 62	e 46,3	24	0,1	49,6	0,0	29,4	78
1	-	-	_	-	-	-	-	н	-	Η.	-	1	Rimsaite	-	_	-	1	7	_
Snarum, Norwegen	Gregory Bottley, Norwegen	Hemet Riverside, Calif., USA	Heskestad, Norwegen	Odenwald, Deutschland	Belhelvie, Aberdeenshire, Schottland	Unbekannter Fundort	Maggia-Stollen, Schweiz	Skarnbergbugten, Seiland, Norwegen	Volpersdorf, Eulengebirge, Schlesien	Marblehead, Mass., USA	Zwartfontein, Südafrika	Magnetberg, Sachsen, Deutschland	Kanada Ri	Arendal, Norwegen	Unbekannter Fundort	Arendal, Norwegen	Amelia Court House, Va., USA	Vallone Bellinzona, Schweiz	Val Arbedo, Bellinzona, Schweiz
127	129	130	131	133	134	135	136	137	139	140	141	143	144	145	146	147	150	153	154

Nr.	Fundort	Her-	Mol-%	Wol-%	Δ (θ),	$\Delta (\theta)_{a}$	Au	Auslesen		Bemerkungen
		kunft	An	0 r			-	C 7	က	
156	Valle di Bordei	-	65	0,2	2,00	0,225				Grober Hornblendegabbro, chemisch inhomogen
158	Andfisktal, Norwegen	Saager	35,8	6,0	1,74	0,675	•			Zoisitgestein mit weissen Plagioklasen (cf. Saager 1966)
159	Val Morobbia, Schweiz	-	30	6,0	1,755	0,615				Plagioklas-Quarz-Biotit-Gneis mit Feldspataugen chemisch inhomogen
160	Fornogletscher, Schweiz	-	29	1,7						Biotit-Granit, porphyrartig, Röntgendiagramm diffus
161	Schwarzwald, Deutschland	-	32	1,8	1,71	0,705				Porphyrartiger Biotit-Granit (Albtalgranit), chemisch inhomogen
162	Risor, Norwegen	-	20,2	3,9	1,49	1,05	*	*	*	Klares Spaltstück
163	Eganville, Ontario, Kanada	Н	1,7	9,0	1,13	1,74	*	*	*	Idiomorpher, grosser, rötlicher Kristall
164	Cunnersdorf, Riesengebirge	г	32—- 38	3,1	1,725	0,575				Feldspat mit Sulfiden und Quarz, chemisch inhomogen
165	Verona, Ontario, Kanada		13,2	1,1	1,43	1,18	*			Weisses Spaltstück
166	Arendal, Norwegen	1	21,5	1,2	1,55	1,02	*	*	*	Bruchstück
167	Piz Miez, Schweiz	-	7,0	0,2	1,11	1,76	*		*	Kluft mit Chlorit
168	Stockholm, Schweden	1	24	6,0						Röntgendiagramm diffus
170	Kragerö, Norwegen	1	25,3	1,0	1,655	0,775	*		*	Sonnenstein mit Biotit
171	Norwegen	1	17,2	9,0	1,47	1,105	*	*	*	Grosses, weisses Spaltstück
172	Villeneuve Mine, Kanada	1	9,6	6,3	1,185	1,71	*			Spaltstück mit blauem Schiller
173	Bear Canyon, Calif., USA	1	37,9	8,0	1,745	0,62	•	*		Anorthosit mit dunklem Plagioklas
174	Hemet Riverside, Cal., USA	-	30	0,5	1,725	69'0				Milchweisses Handstück, chemisch inhomogen
175	Millard Co., Utah, USA	1	61,6 62,3	1,2	2,07	0,105				Bläuliche Kristalle, chemisch zwei Phasen
176	Bamle, Norwegen	<u>, </u>	11	1,4	1,305	1,36				Idiomorphe rötliche Kristalle, chemisch inhomogen
178	Portland, Conn., USA	-	2,0	6,0	1,175	1,71	*			Milchigweisses Gestein
179	Kalifornien, USA	Н	30	6,0	1,725	0,69				Milchigweisses Gestein, chemisch inhomogen
183	Monfoote, Portugal	-	20,7	1,3	1,555	0,985	*			Idiomorphe Kristalle mit Granat

Pegmatit mit rosa Glimmer	Pegnatitstück mit grossen Muskovit	Pegmatit	Pegmatit mit Turmalin Peristerit röntgenographisch auflösbar	Kluftkristalle mit Quarz	Pegmatit mit grossem Turmalin	* Cleavelandit-Habitus	Rotes Bruchstück mit Beryll	* Sonnenstein mit klaren Partien	Kristallgruppe mit Lösungserscheinungen		Derbes Stück mit Manganapatit	Pegmatit	Pegmatit mit Lepidolit	Pegmatit mit gesetzmässiger Vorwachsung von Quarz	Nephelin-Syenit-Pegmatit Peristerit mit weissem Schiller	Spaltstück mit Biotit, Röntgendiagramm diffus	Pegmatit	Stufe mit grossen Hornblendekristallen	Sonnenstein, chemisch inhomogen	Mondstein, Röntgendiagramm diffus	Pegmatit mit Epidot	Gabbro-Pegmatit mit grünem Plagioklas, chemisch zwei Phasen
						*		*														
*	*	*	*	*	*	*	*	*	*	*	*	*	*		*		*	*				
1,745	1,745	1,705	$1,365 \\ 1,67$	1,065	1,555	1,75	1,715	08'0	1,75	1,76	1,74	1,69	1,75	1,685	1,65 1,55		1,645	1,185	0,63	\sim 1,73	1,72	0,19
1,125	1,12	1,155	1,335 $1,165$	1,21	1,245	1,095	1,125	1,65	1,10	1,095	1,135	1,14	1,11	1,15	$1,11 \\ 1,22$		1,225	1,41	1,73	\sim 1,21	1,15	2,00
0,5	6,3	0,2-0,3	9,0	0,1	0.6 - 2.0	0,8—	6,3	1,0	0,3	6,3	0.3 - 0.6	0,4-1,7	0,8	0,05-	0,7	1,5	1,4	0,7	0,5	1,1	0.5-0.7	1,9-
0,4	4,0	1,5—	10,0	6,0	1,9	0,4-0,6	1,0	25,6	0,0	0,0	1,4	$0,1 \\ 1,2$	0,4	0,0	4,6	œ	4,5	2,1	27	80	$0,2 \\ 1,1$	51,3— 60
- -	+	-	н	-	-	H	-	_	-	-	-	н	-	-	1	н	, 1	-	-	_	_	-
Harding Mine, Taos, USA	Newry, Maine, USA	Villeneuve Twp., Kanada	Havredal, Norwegen	Dorfgastein, Österreich	Dolni Bory	Amelia Court House, Va., USA	Renfrew Co., Ontario, Kanada	Twedestrand, Norwegen	Brasilien	Fremont Co., Col., USA	Portland, Conn., USA	Dolni Bory	Auburn, Maine, USA	Striegau, Schlesien	Seiland, Norwegen	Seiland, Norwegen	Seiland, Norwegen	Wilberforce, Ontario, Kanada	Unbekannter Fundort	Delaware C., Pa., USA	Arendal, Norwegen	Silver Bay, Minn., USA
184	185	186	187	188	190	191	192	193	194	195	196	197	199	201	202	203	204	206	207	808	509	210

												19							_==				
Bemerkungen	Kluft mit Quarz	Anorthosit	Grundmasse, cf. 24		Anorthosit, obne Schiller; cf. 238	Anorthosit mit blauem Schiller; cf. 237	Gabbro	Chemisch inhomogen	Blauer Schiller	Blauer Schiller	Violetter Schiller	Grüner Schiller	Gelber Schiller	Grüner Schiller	Blauer Schiller	Gelber Schiller; cf. 253	Kein Schiller, chemisch inhomogen	Seeblauer Schiller; cf. 251	Blauer Schiller Zwei Plagioklasphasen; cf. 257, 260, 261	Grüner Schiller; cf. 256, 260, 261 Röutgendiagramm diffus	Blauer Schiller	Ohne Schiller; cf. 256, 257, 261	Gelber Schiller; cf. 256, 257, 260
9 H		*			•																		
Auslesen 2													*										*
A 1	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*		*			*		
Δ (θ)2	1,525	0,55	0,375	600,0	0,565	0,505	0,49	0,85	0.50	0.50	0,37	0,38	0,445	0,465	0,53	0,375	0,465	0,385	0,545		0,395	0,575	0,50
$\Delta (\theta)_1$	1,245	1,765	1,845	2,105	1,73	1,765	1,78	1,605	1,75	1,755	1,845	1,84	1,78	1,79	1,76	1,83	1,79	1,83	1,725		1,83	1,72	1,75
Mol-% Or	0,1	0,4	$\frac{2,2}{3,0}$	0,1	1,4—1,2	1,9	2,1	0,5	3,0	2,9	2,6	3,2	3,3	1,7	2,4	3,0	2,4	5,9	2,4	1,7	1,9	2,4	1,8 2,6
Mol-% An	9,0	43,2	53,1	71,4	43,7	51,0	42,8	$\frac{21}{25}$	49.6	49,3	52,0	54.0	55,0	52,6	52,3	6,09	52	50,3	50,3 $51,4$	52,6	52,8	49,1	52,7
Her- kunft	1	-	-	Т	Ħ	-	-	H	-	-	Н	_	-	-	-	Н	-	, - 1	-	H	Н	-	F
Fundort	Safiental, Schweiz	Bear Canyon, Calif., USA	Lake St. John, Quebec, Kanada	Anzola d'Ossola, Schweiz	Küste von Labrador, Kanada	Küste von Labrador, Kanada	Skaergaard Intrusion, Grönland	Palmietfontein, Südafrika	Böhmerwald, Böhmen	Unbekannter Fundort	Unbekannter Fundort	Indien	Indien	Küste von Labrador, Kanada	Unbekannter Fundort	Madagaskar	Hijärvi, Finnland	Madagaskar	Küste von Labrador, Kanada	Küste von Labrador, Kanada	Küste von Labrador, Kanada	Küste von Labrador, Kanada	Küste von Labrador, Kanada
Nr.	211	212	213	236	237	238	239	241	243	244	245	246	247	249	250	251	252	253	256	257	259	560	261

Pegmatit mit rotem Feldspat und Biotit	Gelbe Kristalle in schwarzem Gestein	Röntgendiagramm diffus	Chemisch inhomogen	Gelber Schiller	Blauer Schiller	Pegmatitgang	Pegmatitgang in Gneis	Pegmatitschliere in Marmor	Pegmatitgang	Pegmatitische Schliere in Tessingneis	Pegmatitlinse in Gneis	* Pegmatit-Schliere in Tessingneis, chemisch inhomogen	Pegmatitgang	Pegmatitgang	Pegmatit, Schliere in Tessingneis; cf. 282, 290, 291	Pegmatit, Schliere in Tessingneis; cf. 28,1 290, 291	Pegmatitische Schliere in Tessingneis, chemisch inhomogen	Pegmatitgang, chemisch inhomogen	Pegmatitgang	Pegmatitgang, Peristerit	Pegmatitkörper
*	*			*	*	*	*	*	*	*	*		*	*	*	*			*		*
1,74	0,23		0,595	0,44	0,46	1,695	1,075	1,56	1,435	1,00	1,135	1,29	0,965	1,215	1,39	0,885	0,62	٠.	1,35	~-	1,35
1,695	2,045		1,695	1,80	1,79	1,165	1,475	1,24	1,29	1,54	1,465	1,38	1,565	1,435	1,35	1,60	1,75	1,36	1,32	1,435	1,34
1,1	7,0	3,1	3,3	2,0 4,5	2,6	0,2	s, c	0.3 - 1.6	1,4—2,3	1,4- $2,9$	1,3	0,5 0,6	8,0	0,3	0,4	0,9— 2,5	1,2	0,2	0.5 - 3.4	1,3	1,2— 2.3
25,4	61,3	46	45	55,3	52,3	0,4	14,2	6,1—6,5	10,0	20,2—20,6	16,9	10,6— $13,2$	18,9	12,9	6,6	18,0	33	6	10,7	14	10—
1	? 1		П	-	-	4	-1 1	- 1 1	च	4	₹.	-#	Ŧ	4	च	4	* #	चा	4	4	₩
Sillböle, Finnland	Gaase-Gletscher, Grönland	Essex Co., N. Y., USA	Cape Ann, Mass., USA	Indien	Unbekannter Fundort	Preonzo, Leventina, Schweiz	Unt. Valle Sementina, Schweiz	Gordola, Verzasca, Schweiz	Claro-Monàstero, Schweiz	Riveo-Visletto, Maggia, Schweiz	Verdasio, Centovalli, Schweiz	Bonivolo-Mairano, Schweiz	Or, Verzasca, Schweiz	Or, Verzasca, Schweiz	Lodrino-Prosito, Schweiz	Lodrino-Prosito, Schweiz	Lodano, Maggia, Schweiz	Maggia-Auvigeno, Schweiz	Preonzo, Leventina, Schweiz	Verdasio, Centovalli, Schweiz	Corcapolo-Intragna, Schweiz
595	263	264	266	267	268	271	272	f12	275	276	277	278	513	280	281	282	283	284	285	286	182

Bemerkungen	Pegmatitgang	Pegmatitische Schliere im Tessingneis	Pegmatit, cf. 291, 281, 282, chemisch inhomogen	Pegmatit, cf. 290, 281, 282	Pegmatitische Schliere im Tessingneis	Pegmatitlinse im Gneis	Anorthosit, feinkörnig, helle Partie	Anorthosit, feinkörnig, mit grosser Hornblende	Anorthosit, mittelkörnig mit grossen und kleinen Feldspäten	Anorthosit, hell, feinkörnig, chemisch inhomogen	Anorthosit, mittelkörnig mit grossen Einschlüssen	Anorthosit, zuckerkörnig mit Hornblendekristal- len	Anorthosit, hell, zuckerkörnig	Anorthosit, dunkel mit grossen Hornblenden	Anorthosit, grobe Varietät	Zuckerkörniger Anorthosit	Anorthosit	Roter, idiomorpher Kristall
. es	*										*	*						
Auslesen 2											*	*						
1 A	*	*		*	*	*	*	*	*		*	*		*	*	*	*	*
Δ (θ) ₂	0,95	1,715	06'0	68'0	1,29	1,175	0,18	0,20	0,22	0,10	0,10	90,0	98,0	0,38	0,33	0,39	0,20	0,405
$\Delta (\theta)_{\rm t}$	1,575	1,135	1,585	1,61	1,395	1,44	5,29	2,24	2,225	2,195	2,16	2,15	5,29	2,265	2,27	2,28	2,20	2,29
Mol-% Or	6,0	0,1 0,4	6'0	1,1	0.2 - 2.2	1,1	0,0	0,02	0,0	0,05	00,0	0,2	00,0	0,00	00,0	80,0	00,0	0,00
Mol-% Mol-% An Or	21,0	$0,2 \\ 1,6$	20— 23	19,7	11,7	14,7	82— 85	83,3	84 86	78 92	81,0	79,3— 80,6	94,2— 95,0	89,4— 91,1	92,7	92,7— 94,4	84,9— 86,4	6,86
Her- kunft	4	4	4	4	4	4	н	-	H	-	-	1	н	-	Н	-	1	1
Fundort	Maggia-Auvigeno, Schweiz	Monastero, Leventina, Schweiz	Lodrino-Prosito, Schweiz	Lodrino-Prosito, Schweiz	Ponte Brolla, Maggia, Schweiz	Camedo, Centovalli, Schweiz	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Sittampundi, Indien	Unbekannter Fundort
Nr.	288	289	290	291	293	294	295	596	297	298	588	300	301	302	303	304	305	307