Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	47 (1967)
Heft:	1: Feldspäte
Artikel:	Studien mit der Röntgen-Mikrosonde an basischen Plagioklasen alpiner Metamorphite
Autor:	Schwander, Hans / Wenk, Eduard
DOI:	https://doi.org/10.5169/seals-36947

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 17.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Studien mit der Röntgen-Mikrosonde an basischen Plagioklasen alpiner Metamorphite

Von Hans Schwander und Eduard Wenk (Basel)*)

Mit 4 Textfiguren, 2 Tabellen und 1 Tafelbeilage

Abstract

Calcic plagioclases from marbles and calcsilicate rocks of the deep zones in the Swiss and Italian Alps have been analysed in thin sections with an electron microprobe. Bytownites and anorthites, especially those with An 91—96, are of common occurrence, but the Ca end member of the series is extremely rare. The individual results obtained with the microprobe and U-stage methods are listed. A chart (table 1) shows the regional distribution of An-contents in the assemblage plagioclase — calcite and indicates several metamorphic zones. The newly established zone with plagioclases An 85—100 forms a belt that is 100 km long and connects the Ticino area with the Bergell intrusion. This belt almost coincides with the field of the paragenesis diopside-calcite (TROMMSDORFF 1966) and covers the area marked by phenomena of alpidic anatexis. The marginal An-isogrades surrounding the highly metamorphic centre and the thermal bulge of the Lepontine Alps agree with those drawn by WENK (1962). The analytical methods relying on natural and artificial plagioclase crystals as standards (table 2) are described.

Von den beiden Endgliedern der Plagioklasreihe ist der Albit weit verbreitet, besonders in metamorphen Gesteinen und als Kluftmineral, während reiner Anorthit entschieden zu den Seltenheiten gehört. Es ist sogar fraglich, ob einheitliche Kristalle des Calcium-Endgliedes in der Natur überhaupt auftreten. Aus dem Schmelzdiagramm der Plagioklase kann man ableiten, dass homogene Anorthite nur unter sehr speziellen Bedingungen der magmatischen Kristallisation gebildet werden können; in der Tat wurden in Eruptivgesteinen bisher keine Plagioklase mit mehr als 97% Anorthit analytisch nachgewiesen. In hochmetamorphen oder in metasomatischen, calciumreichen Gesteinen hingegen sollten gute Voraussetzungen für die Bildung des Ca-Endgliedes der Mischkristallreihe be-

^{*)} Mineralogisch-petrographisches Institut, Bernoullianum, 4000 Basel.

stehen. Aus diesem Grunde untersuchten wir beim Verfolgen dieser Frage vor allem Feldspäte aus Silikatmarmoren und Kalksilikatgesteinen der lepontinischen Tiefzone der Alpen. Die Analyse erfolgte mit der Röntgen-Mikrosonde.

Neben Material aus neueren Sammlungen des Mineralogischen Institutes der Universität Basel und einigen Leihgaben von Kollegen wurden hauptsächlich die von WENK (1962) mit U-Tischmethoden untersuchten Proben berücksichtigt. Dabei bot sich zugleich die Möglichkeit, an Originalschliffen die - nicht immer am gleichen Korn, aber im gleichen Präparat - nach der Fedorow-Methode gewonnenen Anorthitbestimmungen mit Hilfe der Mikrosonde zu überprüfen. Dies war um so naheliegender, als die optische Methode am basischen Ende der Plagioklasreihe an Genauigkeit verliert und in bestimmten Fällen sogar zwei verschiedene Interpretationen zulässt. So kann beispielsweise auf Grund von Fedorow-Stereogrammen senkrecht $[n\beta]$ manchmal nicht zwischen den beiden Interpretationen An 70 und An 90 bis 100 unterschieden werden, vor allem wenn die Flächenpole (001) und (010) nicht genau eingemessen werden können. Aus diesem Grunde fasste WENK (1962) in seiner Anorthitgehaltskarte die Stufen An 70 bis 100 zusammen. Die Mikrosonde hingegen, die den μ -Bereich erfasst, erlaubt es, den Calciumgehalt über den ganzen Konzentrationsbereich der Plagioklase mit der gleichen Empfindlichkeit zu bestimmen.

Tabelle 1 gibt Auskunft über die Proben und die Untersuchungs-

Fig. 1. Häufigkeit des Anorthitgehaltes von Plagioklasen, An 70 bis 100 (77 Einzelbestimmungen).

resultate; in der letzten Kolonne sind zum Vergleich die älteren optischen Bestimmungen mitgeteilt. Es bestätigt sich, dass sehr basische Plagioklase in metamorphen Karbonatgesteinen der Lepontinischen Alpen häufig auftreten; aber reine Calciumfeldspäte wurden nur ganz ausnahmsweise festgestellt. Fig. 1 lässt — trotz des statistisch ungenügenden Zahlenmaterials (77 Einzelbestimmungen mit An >70) — zwei Häufigkeitsmaxima deutlich erkennen: eines bei An 84, das andere bei An 94; Minima treten bei An 75, An 87 und An 100 auf. Das bei den Tessiner Anorthiten festgestellte Maximum zwischen An 91 und 97 entspricht genau einem Anorthitintervall, das durch einheitliche Kristalle aus Vulkangebieten (Vesuv, Soufrière, Mijakejima) vorzüglich belegt ist.

Die Tessiner Anorthite sind sehr arm an K, Sr und Ba, enthalten jedoch stets Na. Wir vermuten, dass das sehr seltene Auftreten von reinem Anorthit in den untersuchten alpinen Metamorphiten darauf zurückzuführen ist, dass in diesen Gesteinen ausser Ca-Na-Feldspäten — und in weit geringerem Masse Skapolith — meist keine natriumhaltigen Mineralien auftreten und dass somit in erster Linie der Plagioklas das im Stoffsystem vorhandene Na einbaut. Strukturelle Motive sollten eher die Bildung des Endgliedes, mit dem idealen Verhältnis Si : Al = 1 : 1, begünstigen. Auch die Temperatur lag während der Metamorphose in weiten Bereichen so hoch, dass Anorthitbildung möglich war. Interessant ist immerhin, dass der basischste Plagioklas im Marmorkern einer kleinen metasomatisch zonierten Scholle in der feinkörnigen Varietät des Bergellergranites gefunden wurde.

Tafel I stellt die mit der Röntgen-Mikrosonde erzielten Daten im Kartenbild dar und entspricht der auf optischen Bestimmungen fussenden Anorthit-Verteilungskarte von WENK (1962) für die Paragenese Calcit-Plagioklas. Da sich keine gravierenden Unterschiede zwischen U-Tisch- und Sonden-Bestimmungen ergaben, konnten die peripheren, Ab-reichen Zonen gemäss den seither wesentlich ergänzten und ausgedehnten optischen Daten eingezeichnet werden. Neu ist hingegen die durch die Mikrosonde ermöglichte Unterteilung des alten Verbreitungsgebietes An 70 bis 100 in die zwei Zonen An 70 bis 84 und An 85 bis 100. Besonders das Verbreitungsgebiet An 85-100 bringt einen neuen Aspekt und ist geologisch bedeutsam: Anorthite treten ausschliesslich in einem über 100 km langen, West-Ost streichenden und mehrheitlich nördlich der sogenannten Wurzelzone verlaufenden Gebietsstreifen auf, der sich vom Osthang von Val d'Antigorio bis zum Ostende des Bergellermassives verfolgen lässt. Innerhalb dieses Abschnittes mit den höchsten Anorthitgehalten, nämlich in ihrem südlich-zentralen und östlichen Teil,

Samml. Nr.	Fundort	Koordinaten	Gesteinsname	Anorthit-Gehal RMS	t in Mol-% nach U-Tisch
ST. 3900 N	Simplontunnel	646.75/128.0	Albit-Calcitschiefer		03
Toce 79a	Val Loranco	650.4 /105.6	Kl'chlor-StrahlstPhlogKl'zoisPlagCalc.schiefer	23 bis 35 nicht einheit	1. 20-30 unsicher
ST. 9574 N	Simplontunnel	651.0 /124.25	Oligoklas-Hellglimmer-Biotit-Calcitschiefer	18 18	20 - 38
ST. 9700 N	Simplontunnel	651.1 /124.2	Zoisit-2 Glimmer-Andesin-Calcitschiefer	38 42	30—46 evtl. bis 54
Toce 71 b	Antrona	651.65/100.4	Granat-ZoisPlagCalcit-Biotitschiefer	64 bis 80 nicht einheit	I. 44—72
Toce 51 c	" A. Cheggio	652.1 /104.3	Quarz-PlagZoisit-MuskKl'chlor-Biotit-Marmor	55 71	60
ST. 4977 S	Simplontunnel	655.5 /120.4	Quarzreicher Calcitmarmor	39 bis 41	40—53 evtl. bis 65
Toce 68a	A. Vaccareccia	659.75/104.5	Granat-PlagCalcit-Biotitschiefer	84	50 - 65
Spl. 43c	A. Dorca	659.65/112.95	PlagCalcit-2 Glimmerschiefer	83 bis 95 74	7085
Spl. VT. 180	Varzotunnel	661.05/117.65	ZoisLabrHellglimmer-PhlogCalcitschiefer	55 56	0609
Varzo 31 b	Cistella	662.25/122.0	SkapKl'zoisit-Plag2 Glimmer-Calcitschiefer	73	66 - 82
Toce 37	Monte Crestese	668.2 /112.7	PlagMuskPhlogQuarzmarmor	56 bis 77 nicht einheit	l. ca. 60
Toce 44 b	A. Provo	668.5 /102.7	BiotPlagCalcitschiefer	61 73	46 - 60
Re. $346c$	SE Beura	667.9 /102.05	Plag 2 Glimmer - Calcitschiefer	70 86	65 - 80
56.02.24	Maglioggio	669.5 /120.1	PlagCalcit-Glimmerschiefer	16	80 - 100
Wi. 263	R. Fenecchio	672.1 /114.0	PlagSkapMuskBiot('alcitschiefer	84	85100
Re. 186b	P. Marcio	673.4 /106.3	2 Glimmer-PlagCalcitschiefer	84	7080
Isor. 11	R. Fenecchio	673.15/115.6	SkapPhlogopitmarmor	93	73 - 100
Toce 30	Grovella	675.75/137.9	Kl'zoisit-PlagMuskBiotCalcitschiefer	79 76	68-70 oder 90-100
Wi. 307	R. Fenecchio	673.0 /115.5	Byt./AnorthPhlogopitmarmor	95 92	80100
Hu. 1177	N Sonnenhorn	676.15/128.6	PlagMuskBiotCalcitschiefer	47 bis 62	6080
Gr. 408	Cerentino	685.0 /129.6	GranPlagCalcit-Biotitschiefer	82 84	80100
Mat. 532	A. Savinera	685.7 /141.2	BiotBytCalcitschiefer	82 83	56 - 85
PK. 620	V. d. Orti	686.3 /111.8	geb. Tremolitmarmor- und PlagDiopsidfels	83	70 - 100
Gü. 7	Piano d. Peccia	688.90/142.3	2 Glimmer-EpSkapCalcitgneiss	94 30	
G. 6	Piano d. Peccia	689.0 /142.2	PlagBiotit-Calcitschiefer	81	
Bn. 21	A. Masnerolo	690 / 143	Calcit-Quarz-BytKlinozoisitfels	88 78 bis 82	6484
HP. 182	P. Busen	690.7 /150.0	Biotitphyllit, Lage in Calcitglimmerschiefer	71 83	6580
Bn. 116	Mogno	694.15/143.4	2 Glimmer-Calcit-Plagioklasschiefer	82	80100
HP. 605	Someo	694.7 /125.7	PhlogCalcPlagDiopsAkt.schiefer in Marmor	76	60-75
TV. 161	V. Prato	696.05/138.55	Wechselfolge Marmor/Granatglimmerschiefer	81	7390

Tabelle 1. Verzeichnis der Proben und Untersuchungsresultate

228

H. Schwander und E. Wenk

V. 926		0 001 0 100	Coloft The Distinguistic allocities for a		0.0		10.00
V 4. 000	A. Usula	0.701/ 0.100	Carche-Flage-Dionoschieler, alkalitentsp.t.	6 0	3 0		20 - 34
Vz. 389	A. Osola	697.9 /132.0	Marmorband in KarbHornblPlagChloritschiefer	91			90100
TV. 19	Madone	698.35/147.7	PlagMuskBiotCalcitschiefer	30	72 ni	oht einheitl.	1690
Mad. Scal.	Verscio	700.2 /116.1	Calcit-BytDiopsAktinolithfels	68			70 - 100
Vz. 595a	V. Redorta	701.22/135.5	AktHornblBiotPlagCalcitschiefer	29	32		28 - 35
Vz. 93	A. Cognone	702.15/135.25	erzreicher, quarzführender Marmor	80	92		90 - 100
сТ. 6а	NE A. Sponda	704.4 /141.6	Calcit-GranHornblBytQuarzfels	84			80-100
HP. 472	Frasco	705.7 /133.6	Trem. Diops. Forst. Labr. fels, Grenze Marmor	63	62	63	6075
Vz. 622 b	Romerio, Contra	706.4 /116.5	AnorthHellgliQzCalcitmarmor, kalifeldspatführend	16			> 85
HP. 515	A. Casca	706.5 /138.7	Quarz-Bytownitfels, nahe Marmor	88			80-100
Vz. 95 b	V. d'Efra	707.5 /133.4	DiopsQuarz-GranPlag.fels, Rand Marmor	85	23		80-100
Vz. 433a	Gordemo	708.7 /116.4	EpHornblAndQuarzmarmor, mikroklinführend	41			3448
Vz. 255a	V. d'Agro	708.7 /128.3	HornblBiotitBytownitschiefergneiss	93	92		75-100
Vz. 255b	V. d'Agro	708.7 /128.3	idem	80			75-100
Vz. 583	A. Lignescio	710.3 /129.5	GranAnorthCalcit-2 Glimmerschiefer	97	96	93	> 8.5
Vz. 458b	Mti Odro	711.4 /120.8	PlagQuarz-DiopsEpidotmarmor	92			70 oder 90-100
Vz. 610b	Fiumegna	711.55/127.8	Skapolithf. Plag. BiotCalcitschiefer	84			>85
Vz. 593b	V. Carechio	712.12/124.0	PlagDiopsidmarmor	91	93		70-75 oder 90-100
TV. S 1a	N V. Soja	717.98/151.05	Quarz-Plagioklasmarmor	36 bis	s 40 ni	cht einheitl.	Andesin unsicher
TV.93	Cima di Biasca	722.3 /133.7	Plag Phlog Quarzmarmor	80			72 - 90
Riv. 4 b	Claro	723.0 /123.9	CalcVesuvGrossDiopsBytownitfels, gebändert	89			8090
Wurz. 117a	\mathbf{V} . Sementina	719.8 /116.45	PhlogAmph./DiopsSkapPlagQuarzmarmor	86 bis	s 95 ni	cht einheitl.	80 - 100
Wurz. 104	Castione	723.9 /121.1	(alcit-BiotHornblDiopsAnorthitfels	91			> 90
Wurz. 122	Castione	723.9 /121.1	DiopsBiotSkapAnorthit-Quarzmarmor	95	88		>90
Ad. 37 c	Hinterrhein	731.5 /153.25	gebänderter Hellglimmermarmor	ഹ			0-4
FK. Grono 3	V. Calanca	729.82/124.12	Calcit-Anorthit-Diopsidfels	96	94	96	>90
Cal. 1	A. Calvarese	732.0 /134.8	Phlogopit-Marmor, kalifeldspatführend	66			70 oder 90-100
Mis. 12a	Forcola	737.5 /135.5	schiefriger Quarz-MuskBiotitCalcitmarmor	31 bis	s 37 ni	oht einheitl.	25 - 32
Bl. 1623	V. Darengo	741.3 /120.6	SkapDiopsidmarmor	86			8085
Fum. 464	∇ . Piana	742.47/117.28	GranSkapDiopsAnorthCalcitgneiss	94			85 - 100
Wurz. 114 b	Dangri	744.0 /117.2	Quarz-SkapPlagDiopsidmarmor	92	95	. 26	90 - 100
Bl. 824	$\operatorname{Stoveno}$	751.15/128.95	HellglPhlogQuarz-Calcitmarmor	93	91		75 - 100
Els. 393	L. di Mezzola	753.7 /118.4	AnorthSkapDiopsidmarmor	94			>85
Mas. 9f	Bagni Masino	766.1 /124.2	Calcit-AnorthSkapWollDiopsidfels	96	64	96	> 90
Brg. 23	NE Forno-Hütte	775.0 /133.2	PhlogChondrForstCalcDolomitmarmor	66	100		
Mal. 43	\mathbf{V} . Sissone	777.1 /128.8	DiopsPhlogopit-Marmor	96 bis	s 98		75 oder 90

Studien mit der Röntgen-Mikrosonde

229

liegt die Sillimanitzone nach NIGGLI (1960, 1965); auch die Fundpunkte von Humitmineralien nach WENK (1963) verteilen sich auf diese basischste Zone. Besonders gut stimmen aber die Verbreitungsgebiete der Paragenesen Anorthit-Calcit und Diopsid-Calcit, über die TROMMSDORFF (1966) publiziert hat, miteinander überein. Ausnahmen ergeben sich hauptsächlich im Gebiet der Wasserscheide Toce-Maggia, wo Anorthit weiter nach Westen greift als der Diopsid; auch auf Alpe Calvarese (Calanca) tritt Anorthit zusammen mit Tremolit, in diopsidfreier Paragenese auf. Am auffallendsten ist aber die Gebundenheit des Anorthitgürtels an jenen Gebietsstreifen, in dem Migmatite mit diskordanten Quarz-Feldspat-Mobilisaten und auch querschlagende Pegmatite auftreten; es ergibt sich also eine nahe Beziehung zur alpidischen Anatexis. Der Umstand, dass die Anorthit-Calcit-Paragenese, im Gegensatz zu Bytownit-Calcit, nicht im nördlichen Teil der Maggia-Steilzone festzustellen ist, erfordert eine kritische Neubearbeitung dieser wichtigsten Querzone der Alpen.

Der geneigte Leser kann der Tabelle 1 und der Tafel I manche weitere Information entnehmen, auf die wir hier nicht eingehen. Auffallend ist zum Beispiel, dass von der Valle Verzasca weg in östlicher Richtung An-Werte > 90 häufiger werden, dass sie im Osten vorherrschen und dann rapid absinken.

Das neu abgegrenzte Verbreitungsgebiet der Paragenese Plagioklas An 85 bis 100-Calcit belegt auf jeden Fall den Zusammenhang zwischen den Kristallisationserscheinungen im Tessin und denjenigen von Valle Mera und Bergell/Veltlin. Wir werden dem bisher schlecht bekannten Ostflügel dieser Zone unsere besondere Aufmerksamkeit schenken müssen.

METHODISCHES

Grundsätzlich kann eine quantitative Analyse mit der Röntgen-Mikrosonde auf zwei Arten vorgenommen werden. Im ersten Fall erfolgt die Festlegung der Eichkurve rechnerisch, dieses Verfahren ist im Vielkomponentensystem — unsere silikatischen Mineralien sind bekanntlich aus mindestens fünf bis sieben Hauptkomponenten zusammengesetzt nicht zu empfehlen. Auch hat KLEMM festgestellt, dass bei den Korrekturvorschlägen im rechnerischen Eichverfahren die Absorptions- und Fluoreszenzkorrekturen in gewissem Rahmen zwar erfassbar sind, dass aber Fehler, die aus dem Untersuchungsobjekt selbst stammen, nicht rechnerisch eliminiert werden können. Wir wählten deshalb den zweiten Weg, das leitprobengebundene Eichverfahren. Es werden hierzu chemisch einheitliche und chemisch analysierte Mineralien ähnlicher Zusammensetzung wie die Analysenprobe verwendet.

Zunächst galt es überhaupt abzuklären, ob die Natur chemisch einheitliche Kristalle liefert — einheitlich im Rahmen von einigen wenigen bis zu einigen Hundert Mikron, denn dank den besonderen Spezifikationen der Mikrosonde ist es möglich, eine ausserordentlich kleine Stoffmenge (von 10^{-14} bis 10^{-16} g) auf röntgenspektralanalytischem Wege zu erfassen. An Bergkristall, Disthen und Plagioklasen wurden Punktanalysen durchgeführt und die relativen Abweichungen auf den jeweiligen Oberflächen ermittelt. Diese Abweichungen betragen im Falle von Quarz und Disthen und von nichtzonaren Plagioklasen $\pm 1\%$ relativ; es heisst dies, dass die Proben im untersuchten μ -Bereich homogen sind.

Tabelle 2. Zusammenstellung der zur Eichung verwendeten Standardproben

1*	\mathbf{Albit}	Täschtal
2^*	Oligoklas	
3	Andesin	D 638, Geol. Soc. Amer. 1953, Mem. 52, p. 16
4	$\mathbf{Andesin}$	F 31, Schweiz. Min. Petr. Mitt. 1960, 40, p. 44
5	$\mathbf{Andesin}$	160b, Schweiz. Min. Petr. Mitt. 1960, 40, p. 299
6*	Labradorit	Nor. 83
7**	Labradorit	An 60% synthetisch (Zürich)
8	Labradorit	An 60% synthetisch (Basel)
9	Labradorit	WW 161 Schweiz. Min. Petr. Mitt. 1957, 37, p. 182
10	Labradorit	F 40a, Acta Nat. Isl. 1965 Vol. II, Nr. 5, p. 5-28
11	Labradorit	Gaa 615, Schweiz. Min. Petr. Mitt. 1960, 40, p. 300
12*	Labradorit	I 2
13*	Bytownit	Toce 11a
14*	$\mathbf{Bytownit}$	Parry 2
15	Anorthit	F 26, Schweiz. Min. Petr. Mitt. 1957, 37, p. 182
16	Anorthit	T 740, Bull. Volcanol. 1962, 24, p. 95
17**	Anorthit	An 100% synthetisch (Zürich)
18	Anorthit	An 100% synthetisch (Basel)

* Proben nicht in der Literatur aufgeführt, An-Gehalt optisch und spektrographisch bestimmt.

** Die beiden synthetischen Proben wurden uns in freundlicher Weise vom Kristallographischen Institut der ETH in Zürich zur Verfügung gestellt.

Für ein genaues Eichverfahren mit der Röntgenmikrosonde sind einheitliche Standardproben erforderlich, die chemisch genau analysiert sind und in kristallstruktureller Hinsicht den Analysenproben entsprechen. Einstweilen ist es infolgedessen schwierig, irgendwelche silikatische Mineralien ohne Standard-Proben quantitativ zu analysieren. Im Falle der Plagioklase allerdings stehen uns die chemisch und optisch untersuchten Feldspäte der Institutssammlungen zur Verfügung. Die Punkte auf der in Fig. 2 abgebildeten Eichkurve streuen mit einem relativen Fehler von 1 bis 2%. Einzelne Punkte liegen nicht exakt auf der Geraden — dies mag wohl an der ungenügenden Probenvorbereitung oder an einer eventuellen Ungenauigkeit der chemischen Analyse liegen. Wenn wir in erster Linie den Calciumgehalt in Beziehung zum Anorthitgehalt setzen, so deswegen, weil die Calciumbestimmung mit genügender Empfindlich- und Genauigkeit durchgeführt werden kann, ohne dass dabei extreme Anforderungen an die Probenoberfläche gestellt werden müssen.

Es ist nicht selbstverständlich, dass die abgebildete Eichkurve gerade verläuft, denn infolge der erhöhten Kontamination bei den sauren Plagioklasen ist es schwierig, die Analysenbedingungen konstant zu halten.

Fig. 2. Eichkurve zur Bestimmung des CaO-Gehaltes in Plagioklasen (An 0 bis 100). Messbedingungen: Ca K_{α} 60° 06′ (Quarz), Strahldurchmesser ca. 1 Mikron, Probenstrom 0,3 μ A, Beschleunigungsspannung 25 KV, Strahlstrom 50 μ A, Messdauer 1′. Nummern 1 bis 18 beziehen sich auf Tabelle 2.

Die als Ringe auf der Eichkurve dargestellten Standards sind synthetisch hergestellte Eichproben (An 100%, An 60%). Wie die folgenden beiden Figuren 3 und 4 zeigen, handelt es sich dabei nicht um Silikatglasproben von Plagioklaszusammensetzung, sondern um kristalline Produkte, hergestellt aus reinen Oxyden. Nach dem Schmelzen im Hochvakuumofen bei ca. 2000°C erfolgte langsame Abkühlung auf etwa 1400°C (während 16 Stunden). Dann wurde das Produkt abgeschreckt. Das Präparat wurde zwischen gekreuzten Nicols aufgenommen; wie die Figuren zeigen, sind Spaltrisse und Zwillingsverwachsungen zu beobachten. Das gesamte Material ist kristallin, glasige Restschmelzen sind nicht vorhanden. Die abgebildeten Aggregate sind schon nach verhältnismässig kurzer Zeit auskristallisiert; dies ist aber nur bei den basischen Endgliedern der Plagioklasreihe möglich, die sauren sind zu hochviskos. Auch ist es schwierig, unter den gegebenen Bedingungen homogene Plagioklase aus dem sauren Bereich zu synthetisieren.

Fig. 3. Fig. 4. Mikroaufnahme (Nicols x) von synthetischen Anorthiten %. Vergr. 80fach.

An sich wäre es vorteilhaft, wenn gleichzeitig mit den Standards auch die Analysenproben aufgenommen werden könnten. Aus platztechnischen Gründen war dies nicht möglich, da wir vorwiegend Kristalle in abgedeckten Dünnschliffen untersuchten. Selbstverständlich ist die vorherige optische Untersuchung der Analysenprobe, und zwar in durchfallendem Licht, unerlässlich, um geeignete Kristalle auszusuchen und zu markieren.

Natürlich sind mit diesen Ausführungen die analytischen Probleme der Plagioklasuntersuchung mit der RMS nicht abgeschlossen. Einerseits müsste die Probenherstellung verbessert werden, andererseits würde eine genügend empfindliche Bestimmung des Natriumgehaltes eine wertvolle Ergänzung bilden. Erst neuerdings ist es — dank dem neu entwickelten Soft X-Ray Analyzer — möglich, Na und leichtere Elemente quantitativ zu erfassen. Diese Probleme werden wir weiter verfolgen.

LITERATUR

- KLEMM, D. D. (1965): Einige spezielle weniger beachtete Fehlerquellen bei der Mineralanalyse mit der Elektronenmikrosonde. Vortrag gehalten vor der deutschen mineral. Ges. Hannover.
- NIGGLI, E. (1960): Mineralzonen der alpinen Metamorphose in den Alpen. Rep. Internat. geol. Congr., XXI Session, Pt. XIII, 132.
- NIGGLI, E. und NIGGLI, C. R. (1965): Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen (Stilpnomelan, Alkali-Amphibol, Chloritoid, Staurolith, Disthen, Sillimanit). Eclogae geol. Helv. 58, 335.
- TROMMSDORFF, V. (1966): Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz. Mineral. Petrogr. Mitt., 46, 421-460.
- WENK, E. (1962): Plagioklas als Indexmineral in den Zentralalpen. Die Paragenese Calcit-Plagioklas. Schweiz. Mineral. Petrogr. Mitt., 42, 139.
- -- (1963): Klinohumit und Chondrodit in Marmoren der Tessineralpen und der Disgrazia-Gruppe. Schweiz. Mineral. Petrogr. Mitt. 43, 287.

Manuskript eingegangen am 24. Juni 1966.

TAFEL I

H. SCHWANDER und E. WENK: Studien mit der Röntgen-Mikrosonde an basischen Plagioklasen alpiner Metamorphite

