Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 46 (1966)

Heft: 1

Artikel: Zur optischen Orientierung des Bytownites von Bönskär (Schweden)

Autor: Trommsdorff, Volkmar

DOI: https://doi.org/10.5169/seals-36118

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

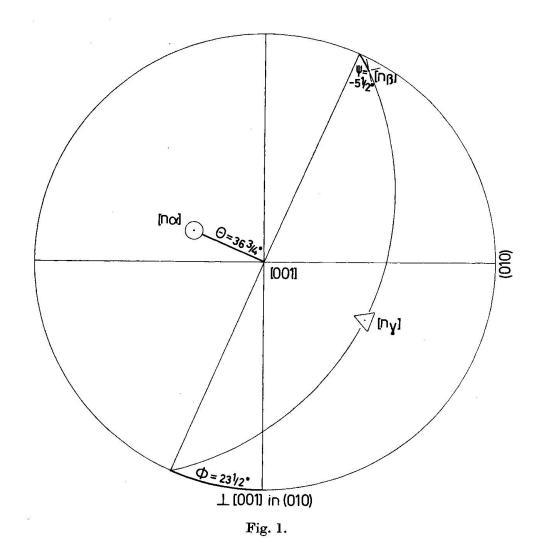
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur optischen Orientierung des Bytownites von Bönskär (Schweden)


Von Volkmar Trommsdorff (Basel)*)

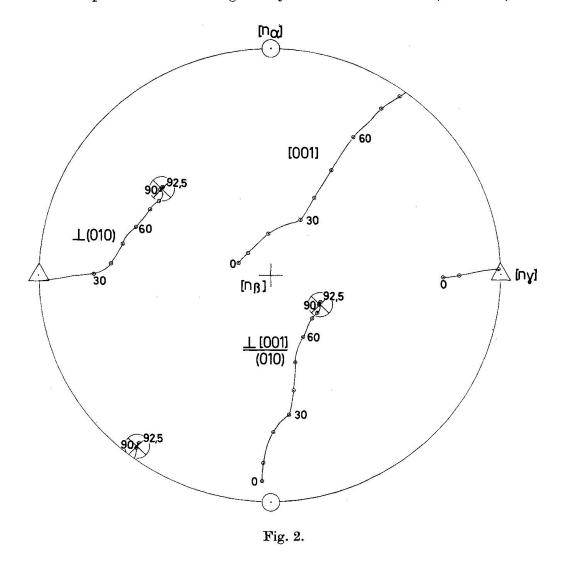
Mit 2 Textfiguren

Abstract. The basic end of the new low temperature plagioclase migration curves given by Burri, Parker and Wenk (1966) has been checked by determining the Euler angles of the bytownite from Bönskär. The An-content of 90 molpercent obtained by optical measurements agrees very well with the results of determination by electron microprobe.

Die bisher publizierten Daten des von Lundegardh (1941) optisch und chemisch untersuchten Bytownites aus dem Anorthosit von Bönskär im Norden des Stockholmer Schärenhofes in dem ebenfalls von LUNDE-GARDH (1943) beschriebenen Gabbromassiv von Grovstanäs erlauben es nicht, ohne zusätzliche Annahmen die Orientierung der Indikatrix im Kristallgebäude abzuleiten. Lundegarden Daten beziehen sich auf die Lage der optischen Hauptschwingungsrichtungen in Albit- und in Periklinzwillingen, die Verwachsungsebene von Periklinzwillingen ist bekanntlich variabel. Die Positionswinkel der Indikatrix in bezug auf (010) und [010] gestatten keine exakte Ableitung der optischen Orientierung dieses Plagioklases. Durch die freundliche Vermittlung von Professor E. Norin, Upsala, wurden den Kompilatoren neuer optischer Plagioklasbestimmungskurven Prof. R. L. Parker und Prof. E. Wenk einige Originalschliffe zur Verfügung gestellt. In zweien dieser Schliffe treten neben Albit- und Periklinzwillingen auch Spaltrisse (001) und einige Karlsbad- und Roc Tourné-Zwillinge auf, welche die exakte Ableitung der Orientierung der Indikatrix gestatten. Die Einmessung von fünf Körnern ergab 14 Tripel von Euler-Winkeln I. Art (vgl. Burri 1956). Die maximale Kantenlänge der bei der Konstruktion der Zwillings-

^{*)} Adresse: Dr. V. Trommsdorff, Mineralogisches und Petrographisches Institut, Bernoullianum Basel.

achsen resultierenden Fehlerdreiecke betrug 3°. Das arithmetische Mittel der je 14 Werte ergibt die Euler-Winkel I. Art


$$\Theta=36.8^{\circ}$$
 $\Phi=23.6^{\circ}$ $\Psi=-5.4^{\circ}$ sowie 2 $V_{\gamma}=95-106^{\circ}$, im Mittel = 101°

was nach Burri, Parker und Wenk¹) einem An-Gehalt von 90,5 Mol-% entspricht. Zum Vergleich seien die Werte für An 90 und für An 92,5 Mol-% Tieftemperatur aus dem Katalog in BPW angegeben:

An 90
$$\Theta = 37.2^{\circ}$$
 $\Phi = 24.0^{\circ}$ $\Psi = -4.6^{\circ}$ $2 \text{ V}_{\gamma} = 100.6^{\circ}$ An 92.5 37.5° 22.4° -6.5° 102.6°

Fig. 1 zeigt die Indikatrixlage des Bönskärbytownites im Stereo-

¹⁾ In der Folge als BPW abgekürzt.

gramm \perp [001], Fig. 2 zeigt die Tieftemperatur-Migrationskurven im Stereogramm \perp [n_{β}] nach BPW für die Positionen $X = \frac{\perp$ [001]}{(010)}, Y = (010) und Z = [001]. Die entsprechenden Projektionspunkte für den Bönskärbytownit sind durch Kreuze (\times) markiert.

18 sorgfältige Bestimmungen am Fedorofftisch ergaben für die Auslöschungsschiefe $[n_{\alpha'}] \land Spur (010)$ im Schnitt \bot [100] einen Wert von $44 \pm 1^{\circ}$, was nach den neuen Kurven in BPW ebenfalls einen An-Gehalt von etwa 90 Mol-% ergibt.

Von den von Lundegardh publizierten optischen Daten entspricht der Achsenwinkel von 101,6° ausgezeichnet dem hier bestimmten Mittelwert, hingegen weichen Lundegardhs Auslöschungswinkel deutlich von den neu bestimmten Werten ab und ergeben nach BPW An-Gehalte zwischen 80 ($[n_{\alpha'}] \land (010) \perp [100]$) und 92 Mol-% ($[n_{\alpha'}] \land (001)$ in (010).

Für die Gesamtheit der Anorthosite der Grovstanäs-Region gilt nach Lundegardh (1943) ein mittlerer An-Gehalt der Plagioklase von ca. 88,5 Mol-%, im nahen Radmansö-Gebiet nach Backlund (1930) ein solcher von ca. 90,5 Mol-%.

Nach der chemischen Analyse (Lundegardh 1941 S. 416) ergibt sich, wenn man das $\mathrm{SiO_2}$ -Manko von 1.4% als Analysenfehler betrachtet, die Formel An 85,8 Ab 12,5 Or 1,7 Mol-%. Das Beispiel schien sich auf Grund der Diskrepanz zwischen alter chemischer und neuer optischer Bestimmung nicht zum Test der Migrationskurven nach BPW zu eignen. Eine neuerliche Bestimmung des An-Gehaltes an einem auch optisch analysierten Korn mittels der Elektronen-Mikrosonde durch Dr. H. Schwander, Basel, ergab einen An-Gehalt von $90 \pm 1 \,\mathrm{Mol-\%}$. Dieses Korn lieferte die folgenden zwei Tripel von Euler-I-Winkeln:

$$\Theta = 36 \frac{1}{2}^{\circ}$$
 $\Phi = 23 \frac{1}{2}^{\circ}$ $\Psi = -5 \frac{1}{2}^{\circ}$ $37 \frac{1}{2}^{\circ}$ $23 \frac{1}{2}^{\circ}$ $-4 \frac{1}{2}^{\circ}$

sowie $[n_{\alpha'}] \wedge (010) \perp [100] = 44^{\circ}$, was nach BPW einem An-Gehalt von etwas über 90 Mol-% entspricht. Bedenkt man, dass die Verlagerung der Indikatrix oberhalb An 80 nur sehr gering ist, so kann die Übereinstimmung der beiden letzten Resultate als sehr gut bezeichnet werden, was für die Genauigkeit der neuen Bestimmungskurven nach BPW spricht.

Abschliessend seien die nach dem Rechenprogramm von H.-R. Wenk (Abschnitt 221.03 in BPW) aus den Euler-I-Winkeln berechneten Positionswinkel der üblichen Plagioklasprojektionen zusammengestellt:

Bytownit Bönskär, Schweden, 14. 9. 1965

Euler-I-Ausgangsdaten:

Köhlerwinkel		$[\mathrm{n}_{lpha_1}] \wedge [\mathrm{n}_{lpha_2}]$	[na] \ [na]	$[\mathbf{n}_{\gamma_1}] \wedge [\mathbf{n}_{\gamma_2}]$	$\mathbf{A}\mathbf{A}$	ВВ
Roc-Tourné-Ges	otz V	152,2	$\begin{array}{c} [\mathrm{n}\pmb{\beta_1}] \wedge [\mathrm{n}\pmb{\beta_2}] \\ 56.2 \end{array}$	132,2	127,4	171,6
Albitgesetz	Y	132,2 $113,5$	124,1	92,2	60,5	177,9
		150	7.0			70
Karlsbadgesetz	\mathbf{Z}	73,6	173,5	106,8	152,4	8,6
2. Projektion (001), Goldschmidtwinkel (φ/ρ)						
$[\mathbf{n}_{oldsymbol{lpha}}]$		$[n_{\beta}]$	$[\mathrm{n}_{\mathrm{oldsymbol{ u}}}]$	${f A}$		В
313,8/55,0		0.9/72.4	99,1/40,4	120,2/87,6	352,4/22,0	
, , , , , , ,		-,-,-,	2 / 2 / 2 / 2	7 / 7		, ,
3. Projektion (010), Goldschmidtwinkel (φ/ρ)						
196,7/56,7	8	6,4/62,1	325,8/46,1	241,7/30,2	358	5,8/89,0
4. Projektion \perp [$\overline{1}00$], Goldschmidtwinkel (φ/ρ)						
131,8/55,5	32	4,2/35,2	225,8/84,1	178,6/59,9	88	8,9/68,2
200 Paris 1			100 mm m 100 mm	And to become a see continue		
5. Projektion \perp [n β], Goldschmidtwinkel (φ/ρ)						
[001]	=	$\frac{[001]}{(010)}$	[010]	[100]		$\frac{[100]}{(0\overline{1}0)}$
126,7/86,8	3	0,6/28,1	222,3/59,9	79,8/35,2	319	9,2/70,3
(001)		(010)	(100)	(110)	:	(110)
323,0/72,4		8,4/62,1	31,3/30,7	34,8/59,6		0,2/3,2
323,0/12,±	21	0,4/02,1	01,0/00,1	04,0/00,0	011	0,2/0,2
(021)		$(0\overline{2}1)$	$(\overline{2}01)$			
178,8/83,6	27	3,8/55,7	90,2/40,9			

Herr Prof. E. Norin stellte in dankenswerter Weise die Originalschliffe zur Verfügung. Herrn Prof. Dr. E. Wenk verdanke ich die Anregung zu dieser Arbeit, Herrn Prof. Dr. H. Schwander danke ich für eine An-Bestimmung auf der Mikrosonde, Herrn Dr. H.-R. Wenk für Programm und Anleitung zu den Rechenarbeiten.

Literatur

Backlund, H. G. (1930): Om anortiten pa Radmansö. Geol. Fören. Förhandl. 52, 673—688.

Burri, C. (1956): Charakterisierung der Plagioklasoptik durch drei Winkel und Neuentwurf des Stereogramms der optischen Orientierung für konstante Anorthitintervalle. Schweiz. Min. Petr. Mitt. 36, 539—592.

Burri, C., Parker, R. L. und Wenk, E. (1966): Die optische Orientierung der Plagioklase. Basel, Birkhäuser.

Lundegardh, P. H. (1941): Bytownit aus Anorthosit von Bönskär im nördlichen Teil der Stockholmer Schären und seine Beziehungen zu verschiedenen Feldspatbestimmungskurven. Bull. Geol. Inst. Upsala XXVIII, 415—430.

— (1943): The Grovstanäs Region. An ultra-basic gabbro massiv and its immediate vicinity. Bull. Geol. Inst. Uppsala XXIX, 304—388.

Manuskript eingegangen am 28. Oktober 1965.