Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 42 (1962)

Heft: 1

Artikel: Radioaktivitätsmessungen an Gesteinen des St. Gotthard-Profils

Autor: Rybach, Ladislaus / Hafner, Stefan https://doi.org/10.5169/seals-32671

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Radioaktivitätsmessungen an Gesteinen des St. Gotthard-Profils*)

Von Ladislaus Rybach und Stefan Hafner (Zürich)

Mit 4 Tabellen, 5 Textfiguren und 1 Tafel

Zusammenfassung

Die γ-Aktivität von 67 typischen Gesteinsproben des Profils längs der St. Gotthardstrasse (Göschenen-Airolo) wurde gemessen und mit dem im Feld aufgenommenen Aktivitätsprofil verglichen. An 33 dieser Proben wurden die Na₂O-, K₂O- und CaO-Konzentrationen analytisch bestimmt. Die aus den Messungen ermittelten Uran- und Thorium- sowie Na₂O-, K₂O- und CaO-Gehalte der Gesteine sind in einer Tabelle zusammengestellt. Die Ergebnisse — insofern sie die granitischen Gesteinskörper des zentralen Aaregranits, des Gamsbodengneises, des Fibbiagneises und des Rotondogranits betreffen — werden petrographisch kurz diskutiert.

Abstract

The γ-activities of 67 typical rock samples from a profile along the St. Gotthard road (Göschenen-Airolo) were measured and compared with the activity profile measured in the field. The Na₂O, K₂O and CaO contents of 33 samples were determined analytically. The uranium and thorium contents obtained from the measurements as well as the Na₂O, K₂O and CaO contents of the rocks are given in a table. The results — as far as they concerne to the granite bodies of the central Aar massif, the Gamsboden gneiss, the Fibbia gneiss and the Rotondo granite — are discussed petrographically.

1. Einleitung

Im Bestreben, die Kenntnis der chemischen Zusammensetzung von Gesteinen der Schweizer Alpen — insbesondere des Gehalts an radioaktiven Elementen (U, Th, K) — zu erweitern und zu verfeinern, schien es wünschenswert, die Radioaktivität einiger ausgewählter Gesteinsproben am

^{*)} Erscheint gleichzeitig als "Beiträge zur Geologie der Schweiz, Geotechnische Serie, Kleinere Mitteilungen Nr. 25".

Profil längs der St. Gotthardstrasse zu messen. Quantitative Angaben über die Strahlungsintensität von Gesteinen sind vielleicht vor allem dann von gewissem Wert, wenn es sich um ein Gebiet handelt, dessen Geologie und Petrographie schon einigermassen erforscht und bekannt ist. Es gibt bis heute im Raum der Schweizer Alpen nur ganz wenige Arbeiten, die sich mit einer ausführlichen regionalen Beschreibung der Gesteinsradioaktivität befaßen. Unsere Wahl fiel auf das Profil der St. Gotthardstrasse, weil es sich um eines der bestbekannten Alpenprofile handelt, das ein zentrales, petrographisch gut untersuchtes Gebiet, das Gotthardmassiv mit seinen nördlichen und südlichen Grenzregionen, durchquert.

Die ersten Untersuchungen über die Radioaktivität im Gotthardmassiv stammen von Joly (1912). Das mittels einer grossen Zahl von Gesteinproben aus dem St. Gotthardtunnel aufgestellte Radioaktivitätsprofil ist wohl die erste Beschreibung der Gesteinsradioaktivität eines geschlossenen Gebietes überhaupt. In der Folge war es vor allem das Verdienst von Hirschi, in den dreissiger Jahren Messungen der Strahlungsintensität schweizerischer Gesteine durchgeführt zu haben, in einer Zeit, als über diese physikalische Erscheinung noch sehr wenig gesprochen wurde. Seine zahlreichen, während mehr als 10 Jahren gesammelten Messresultate, die damals noch grossen Zeitaufwand erforderten, besitzen heute freilich nur noch historischen Wert. Die in jener Zeit für die Bestimmungen gebrauchten Apparaturen lieferten verschiedene systematische Fehler. Die erhaltenen Werte waren zu hoch (vgl. hierüber zum Beispiel Faul, 1954, S. 75). Hirschi fasste seine Untersuchungen wohl mit Recht nicht nur als rein beschreibende Beiträge zur Kenntnis der chemischen Zusammensetzung der Gesteine auf. Er betonte mehrmals, dass die Radioaktivitätsmessung eine neue, von den üblichen petrogra-

Tabelle 1. Uran- und Thoriumgehalte von granitischen Gesteinen des Gotthardmassivs. Alte und neue Werte

	Hirsch	1 (1928)	Neue Mittelwerte				
	$\mathbf{U}_{ ext{ppm}}$	$\mathrm{Th}_{\mathrm{ppm}}$	$(U+Th)_{ppmeU.}$	Probenzahl			
Gamsbodengneis Fibbiagneis	$17,7 \\ 9,2$	41	16,3 16,0	7 6			
Rotondogranit "Tremolagranit"	14,7	65	13,5	4			

phischen Untersuchungsmethoden unabhängige Information liefere, die bei Betrachtungen über Entstehung und Geschichte der Gesteine zu berücksichtigen sei (vgl. zum Beispiel den heute noch richtigen Aufsatz "Anregungen zu absoluten Altersbestimmungen radioaktiver Gesteine der Schweiz", 1919). Hirschi beschäftigte sich hauptsächlich mit granitischen Gesteinen des Aarmassivs (1920, 1924, 1925, 1927, 1931), des Bergells (1920) und des Gotthardmassivs (1928). In Tabelle 1 können seine Resultate, insofern sie gleiche Gesteine betreffen, mit unseren Werten verglichen werden.

2. Messungen

Im Gegensatz zu Joly (1912) wurden die neuen Aktivitätsmessungen nicht an Gesteinsproben des Gotthardtunnels, sondern an solchen der Passstrasse durchgeführt. Im Tunnel sind verschiedene Gesteinskörper, die an der Oberfläche aufgeschlossen sind, nicht angeschnitten. Von dort stehen auch nur die vom Tunnelgeologen Stapff (1877—1882) während des Baus gesammelten, beschränkten Probenserien zur Verfügung (eine hiervon war von Joly verwendet worden). Geologie und Petrographie sind ferner an der Oberfläche besser untersucht. Sie sind teilweise so kompliziert, dass sie mit den alten Tunnelaufnahmen nicht korreliert werden können.

Die Messungen erfolgten auf zwei verschiedene Arten:

- a) Es wurden Feldmessungen längs der Passstrasse von Göschenen bis Airolo vorgenommen.
- b) An normierten Pulvern von Gesteinen desselben Profils wurden Messungen im Laboratorium durchgeführt. Die Gesteinsproben wurden auf Grund der provisorischen Feldmessungen ausgewählt. Es wurde besonders darauf geachtet, möglichst alle Gesteinskörper durch typische Handstücke zu erfassen. Eine Nebenabsicht bestand ferner darin, den Wert der Feldmessungen zu überprüfen.

a) Feldmessungen

Die γ -Aktivität der an der Gotthardstrasse anstehenden Gesteine wurde alle 10 Meter mit einem tragbaren Szintillometer Berthold Typ LgS/B (Wildbad, Schwarzwald) gemessen. Der Raumwinkel variierte zwischen 2,0 π (Rundhöcker auf der Passhöhe) und 2,8 π (hohe, fast senkrechte Felswände). Da ein Teil der gemessenen Strahlungsintensität von der kosmischen Strahlung sowie dem natürlichen Radongehalt und den künstlichen Spaltprodukten der Atmosphäre stammt, der nicht

vernachlässigt werden kann, wurde der Bestimmung des Nulleffekts besondere Aufmerksamkeit zugewendet. Dieser wurde einerseits mit der von Rybach (1961) beschriebenen Bleiabschirmungsmethode (Fig. 1) ermittelt, andererseits durch Messungen auf dem zugefrorenen Ritomsee am 5. 3. 1961 überprüft (Koord, der Messstelle 695,000/154,600; Stauhöhe 1827,5 m; 45 cm Eis, mindestens 35 m Wassertiefe). Der gemessene Nulleffekt von 4,5 Imp/sec entspricht 1,5 μ r/h und stimmt mit dem nach Fig. 1 berechneten Wert von 5,0 Imp/sec $(1,56 \mu r/h)$ innerhalb der zu erwartenden Fehlergrenze überein. Es ist bemerkenswert, dass diese Grössen etwa fünfmal niedriger sind als jene, die im Sommer 1958 auf dem Lago d'Osso im Misox gemessen und berechnet wurden (vgl. Ry-BACH, 1961) Die Tatsache erklärt sich durch die häufigen Kernwaffenexperimente des Jahres 1958 in der Atmosphäre. Die längs der Gotthardstrasse gemessenen Strahlungsintensitäten wurden nach der Berücksichtigung des Nulleffektes in µr/h-Einheiten umgerechnet. Sie sind auf der Tafel, unten, aufgetragen.

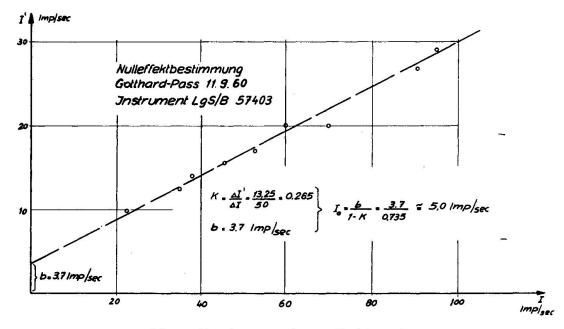


Fig. 1. Bestimmung des Nulleffektes I₀.

b) Quantitative Messungen an Gesteinspulver (Labormessungen)

Die quantitativen Bestimmungen der radioaktiven Elemente (Summe Uran, Thorium und Kalium) erfolgten mit Hilfe desselben, oben erwähnten Instruments nach der von Rybach (1961) entwickelten und beschriebenen Methode. Die Messungen wurden jeweils vier Wochen

nach erfolgter Pulverisierung in Angriff genommen. Da die γ -Spektrometrie bei den hier vorhandenen geringen Aktivitäten nicht erlaubt, Uran, Thorium und Kalium voneinander zu trennen, musste das Kalium analytisch bestimmt werden (siehe unter c).

Die gesamte γ -Aktivität einer Gesteinsprobe setzt sich zusammen entsprechend der Gleichung

$$\alpha_{tot} = \alpha_r + f_K \cdot e_K$$

 α_{tot} bedeutet die Totalaktivität (cpm/g)¹), α_r die Restaktivität von Uran und Thorium (cpm/g), f_K die durch $1\%~K_2O$ verursachte spezifische Aktivität (für unsere Apparatur $f_K=0.0485~\text{cpm/g},~\%K_2O)$ und c_K die analytisch ermittelte K_2O -Konzentration der Probe. Die Restaktivität $\alpha_r=\alpha_{tot}-f_K\cdot c_K$ wurde mit Hilfe einer Uran-Eichkurve (Fig. 2) in ppm Uran-Äquivalent ausgedrückt. Für die Aufnahme dieser Kurve diente eine Konzentrationsreihe reinen Urans der USA-Atomenergiekommission²). Die

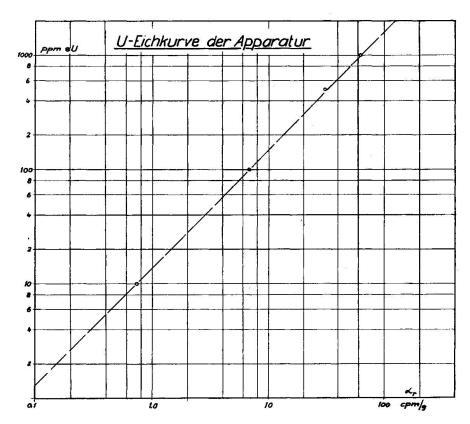


Fig. 2. Für Angabe der Restaktivität α_r (Aktivität von U und Th) in ppm Uran-Äquivalent (eU) verwendete Eichkurve.

¹⁾ cpm/g: "counts pro minute" pro Gramm.

²) New Brunswick Laboratory, Atomic Energy Commission, New Brunswick, N. J.

Resultate der gemessenen Gesteinsproben sind in Tabelle 4 sowie der Tafel, oben, aufgetragen.

c) Analytische Bestimmung des K2O-, Na2O- und CaO-Gehalts

Um genauere Anhaltspunkte über die in den 67 gesammelten Gesteinsproben vorhandenen Konzentrationen von K₂O zu gewinnen, wurden 33 petrographisch besonders typische Proben ausgewählt und K₂O nach den von Weibel (1961) aufgestellten Leitlinien mit einem EEL-Flammenphotometer Modell A (Evans Electroselenium Ltd.) bestimmt. Die Analysen wurden an gut durchmischten Proben der radiometrisch ausgemessenen Gesteinspulver vorgenommen. Da der Strahlungsanteil des Kaliums im Vergleich zur Gesamtaktivität gering ist, wurden für die restlichen, nicht analysierten Gesteinsproben K₂O-Mittelwerte angenommen und die Messwerte entsprechend korrigiert. Tabelle 4 liefert hierüber nähere Angaben. Im gleichen Arbeitsgang mit der K₂O-Bestimmung erfolgte auch eine quantitative, photometrische Ermittlung des Na₂Osowie eine komplexometrische Titration des CaO-Gehaltes. Als mittlerer Fehler einer einzelnen Bestimmung können für K₂O und Na₂O etwa 0,1 Gew. % (\sim 2—3% des bestimmten Wertes) und für CaO etwa 0,05 Gew. %angegeben werden. Alle Analysenwerte finden sich in Tabelle 4.

d) Kurze Bemerkung zu den petrographischen Angaben und zum geologischen Profil (Tabelle 4 und Tafel)

In der Absicht, ein ungefähres Bild über den Gehalt an Uran und Thorium der einzelnen Gesteinskörper des zentralen Gotthardmassivs und des südlichen Aarmassivs zu erhalten, wurde die petrographische Bezeichnung der Gesteinsproben möglichst sorgfältig durchgeführt. Der Mineralbestand wurde in einem Dünnschliff ausgezählt, der am selben Handstück angefertigt worden war, das nachher pulverisiert wurde.

Das in der Tafel, oben, aufgeführte geologische Profil durch Aarund Gotthardmassiv längs der St. Gotthardstrasse wurde im Gegensatz zu den bisherigen Profilen (zum Beispiel im Geologischen Führer der Schweiz) als Westkulisse Airolo-Göschenen gezeichnet, weil die meisten Aufschlüsse westlich der Strasse liegen und weil das westlich angrenzende Gebiet heute geologisch besser bekannt ist. Die Profil- und Kulissenspuren sind in der Skizze auf der Tafel, links unten, angegeben. Die Profilteile A-B und C-D sowie die Kulissen E-F und G-H wurden auf die Richtung T-K normalprojiziert. Die Projektion wurde anschliessend auf die Summe der beiden Abschnitte A-B und C-D gestreckt. Der Mass-

stab 1:50 000 ist somit durchschnittlich erfüllt. Der im Profil angegebene Neigungswinkel der Schichten wurde aus dem heute an der Oberfläche messbaren Schichtfallen berechnet. Dieses ist allerdings durch rezente Sackungen oft stark verändert. Insbesondere der Abschnitt zwischen P. 2048,8 (südlich Airolo) und Motto Bartola und der Südhang nördlich Andermatt sind als versackt anzusehen.

3. Diskussion der Resultate

In Tabelle 4 und in der Tafel sind unsere Ergebnisse zusammen mit dem geologischen Profil dargestellt. Der Durchmesser der Kreise im Diagrammteil "Labormessungen" entspricht der durchschnittlichen Messgenauigkeit. Die Aktivitätsunterschiede der verschiedenen Gesteinskörper sind daraus klar ersichtlich. Die Variation des Uran- und Thoriumgehalts in der Tremolaserie, Cavannaserie, in den Muldenzügen und im Aarmassiv-Südrand scheint grösser zu sein als in Gesteinen, die im Feld über grössere Strecken gleichförmig sind (Fibbia-Gamsbodengneis, zentraler Aaregranit). Der Massstab der Feldmessungen wurde in der Tafel demjenigen der Labormessungen angepasst, was eine erhöhte Fluktuation des Diagramms erzeugt. Diese erklärt sich daraus, dass der natürlichen Variation der Gesteinsradioaktivität noch der Einfluss des unterschiedlichen Raumwinkels (Oberflächengeometrie) überlagert wird. Die Feld-Aktivitätswerte zeigen jedoch im Mittel einen mit den Labormessungen durchaus vergleichbaren Verlauf.

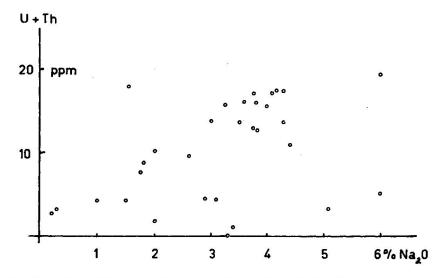


Fig. 3. Restaktivität und Natriumgehalt. Sämtliche Gesteine eingetragen.

In Fig. 3 ist der Uran- und Thoriumgehalt der Gesteine gegen die Na₂O-Konzentration aufgetragen. Fig. 4 zeigt die Messpunkte der Gesteine aus der Urserenmulde, der Tremolaserie und der Bedrettomulde, während Fig. 5 alle Punkte des Altkristallins ohne Tremolaserie gibt. Im Altkristallin scheint eine Abhängigkeit zwischen dem Uran- und Thoriumgehalt einerseits und der Natriumkonzentration andererseits vorhanden zu sein. Dies kann durch die Ähnlichkeit der Ionenradien von U⁴⁺ und Th⁴⁺ mit demjenigen von Na¹⁺ gut erklärt werden (vgl. Tabelle 2). U⁴⁺ und Th⁴⁺ dürften somit Na¹⁺ in den natriumführenden Gesteinen des Altkristallins als "Verunreinigung" ersetzen ("Abfangen" von U⁴⁺ und Th⁴⁺ und Einbau als Spurenelement in die Kristallstruktur im Sinne von V. M. Goldschmidt). Dass diese Abhängigkeit in den Proben der Tremolaserie und der Muldengesteine nicht besteht, mag vielleicht darin begründet sein, dass hier Uran und Thorium zum Teil in natriumfreien Silikaten und Erzen vorkommen, die in unterschiedlichen Konzentrationen sedimentiert wurden.

Tabelle 2. Goldschmidt-Radien³) von U^{4+} , Th^{4+} , Na^{1+} , K^{1+} , Ca^{2+}

U^{4+}	$0.97~{ m \AA}$	Na^{1+}	0,94 Å
Th4+	1,02 Å	\mathbf{K}^{1+}	$1,33 \; { m \AA}$
		Ca^{2+}	$0.99 \; \mathrm{\AA}$

Faul (1954, S. 88) wies darauf hin, dass U^{4+} und Th^{4+} in den Kristallen zur Hauptsache an der Stelle von Ca^{2+} sitzen. Dies kann auch bei unseren Gesteinen durchaus zutreffen. Die Variation der CaO-Konzentration ist aber zu klein, um diese Regel nachprüfen zu können. Ein Zusammengehen der beiden Ionen mit K^{1+} ist unwahrscheinlich.

Die Radioaktivität von zentralem Aaregranit, Gamsbodengneis, Fibbiagneis und Rotondogranit ist sehr ähnlich. Die von Hirschi (1928) gemessenen deutlichen Unterschiede haben sich nicht bestätigt (vgl. Tabelle 1). Es ist auffallend, dass der Rotondogranit bezüglich der Radioaktivität nicht aus der Reihe fällt, obwohl in neueren petrographischen Arbeiten die Möglichkeit einer anderen, von Fibbia- und Gamsbodengneis unabhängigen Entstehung des Granits diskutiert wurde (vgl. Hafner, 1958, und Grünenfelder und Hafner, 1962). Für genaue Vergleiche der Radioaktivität sind allerdings Messungen im eigentlichen Rotondomassiv westlich des St. Gotthardpasses notwendig. Eine entsprechende Arbeit wird beabsichtigt.

³⁾ Werte nach Ahrens (1952), zu finden in Strunz (1957).

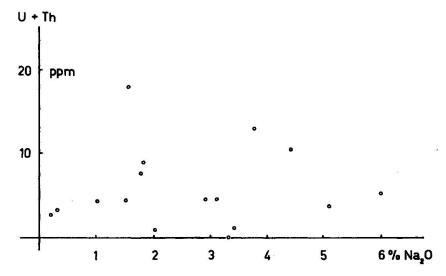


Fig. 4. Restaktivität und Natriumgehalt. Gesteine der Urserenmulde, Tremolaserie und Bedrettomulde.

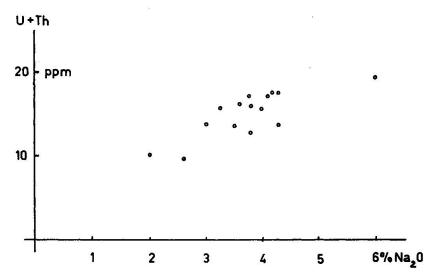


Fig. 5. Restaktivität und Natriumgehalt. Altkristallin des Aar- und Gotthardmassivs ohne Tremolaserie.

Bei der Betrachtung der gemessenen Aktivitätskurve auf der Tafel ist ein schwacher Anstieg des Uran- und Thoriumgehalts im zentralen Aaregranit, Gamsbodengneis und Fibbiagneis gegen den Kontakt hin zu bemerken (bei der Schöllenenbrücke, beim Gamssteg und bei der Lucendrobrücke). Vielleicht handelt es sich dabei um einen tatsächlichen Anstieg des Urangehalts gegen den Rand hin, wie dies schon mehrfach bei Granitstöcken nachgewiesen wurde (vgl. zum Beispiel Ingham und Keevil, 1951; Slack und Whitham, 1951). Die Beobachtung könnte mit der von Sonder (1921) erwähnten aplitischen Randfazies der ein-

zelnen Granitstöcke zusammenhängen. Beim Fibbiagneis ist die Erscheinung vielleicht darum weniger deutlich, weil dieser Gesteinskörper durch das Profil nur randlich geschnitten wird. Die im Abschnitt des zentralen Aaregranites aus der Reihe fallende Probe Nr. 990 stammt aus einem Aplitgang.

In Tabelle 3 sind die Mittelwerte und die Gesamtstreuung von Uran und Thorium sowie Na₂O, K₂O und CaO der im Profil geschnittenen granitischen Gneiskörper zusammengestellt. Die bereits von Sonder (1921) geäusserte Vermutung, dass der Gamsbodengneis einen besonders niedrigen K₂O-Gehalt aufweise, hat sich vorläufig bestätigt. Fibbia- und Gamsbodengneis wurden im geologischen Profil der Tafel allerdings zusammengefasst, weil sie zwischen Lucendrosee und der St. Gotthardstrasse an der Oberfläche miteinander verbunden sind. Bereits Heim (1921, S. 194) wies darauf hin, was in den späteren Jahren in Vergessenheit geriet. Abgesehen vom K₂O-Gehalt sind die neu bestimmten Messwerte der beiden Gneise sehr ähnlich.

Die Arbeit wurde im Rahmen des Forschungsprogrammes des "Arbeitsausschusses für die Untersuchung schweizerischer Mineralien und Gesteine auf Atombrennstoffe und seltene Elemente" durchgeführt. Die Feldmessungen wurden durch diesen Ausschuss mit Mitteln der Kommission für Atomwissenschaft des Schweizerischen Nationalfonds finanziert.

Wir danken den Herren Professoren Th. Hügi, F. de Quervain sowie den Herren Dr. M. Weibel und Dr. M. Grünenfelder herzlich für ihre freundliche Mithilfe.

Literaturverzeichnis

SMPM = Schweiz. Mineralog. und Petrogr. Mitteilungen

FAUL, H. (1954): Nuclear Geology, New York.

Fehr, W. (1926): Geologische Karte der Urserenzone (Grenzregion Gotthard-Aarmassiv zwischen Andermatt und Obergestelen). Schweiz. Geol. Kommission, Spezialkarte Nr. 110.

Grünenfelder, M. und Hafner, S. (1962): Über das Alter und die Entstehung des Rotondogranits. SMPM 42, 157—195.

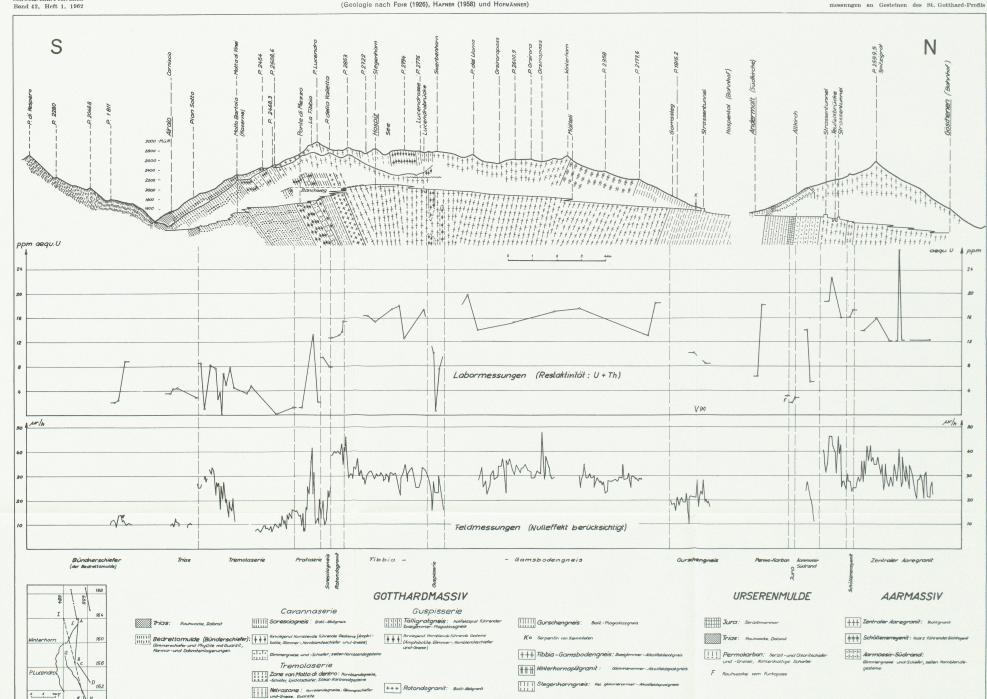
Hafner, S. (1958): Petrographie des südwestlichen Gotthardmassivs (zwischen St.-Gotthardpass und Nufenenpass). SMPM 38, 255—362.

Heim, Alb. (1921/22): Geologie der Schweiz, 2. Band. Leipzig.

Hirschi, H. (1919): Anregung zu absoluten Altersbestimmungen radioaktiver Gesteine der Schweiz. Vjschr. Natf. Ges. Zürich 64, 65—76 (Heim-Festschrift).

— (1920): Radioaktivität einiger Schweizergesteine. (Erster Teil.) Vjschr. Natf. Ges. Zürich. 45, 209—247.

— (1921): Radioaktivität einiger Schweizergesteine. (Dritter Teil.) SMPM 1, 1—18; 310—322.


 $Tabelle \ 3. \ \textit{Mittlere Na}_2O\text{-}, \ K_2O\text{-}, \ CaO\text{-} \ \textit{und} \ \ (U+Th)\text{-} \textit{Gehalte granitischer Gesteine des Aar- und Gotthard massivs }$

	Proben- zahl	$(U + Th)_{ppm eU.}$		Proben-	NagO %		1	K ₂ O %	CaO %		
		Mittel	Streubereich	zahl	Mittel	Streubereich	Mittel	Streubereich	Mittel	Streubereich	
Zentraler Aaregranit	10	17,1	12,1-27,0	5	3,80	3,25-4,0	4,26	3,8-4,9	2,24	1,26-3,22	
Gamsbodengneis	. 7	16,3	12,9-19,6	4	4,21	3,75-6,0	3,73	3,5-4,0	1,54	0,56-2,24	
Fibbiagneis	6	16,0	12,4-17,8	3	4,0	3,6 -4,3	4,70	4,1-5,45	1,40	0,98-1,82	
Rotondogranit Tremolagranit"	4	13,5	12,6—15,0	2	3,75	3,5 —4,0	4,8	4,55,1	1,03	0,95—1,12	

Nr. der Probe	Koordinaten	Höhe über Meer	Gestein	Q Quarz	Kf Na-Kaliumfeldspa	P Plagioklas	B Biotit	S Muskowit-Serizit	Restliche Gemengtelle	Gemengteile 1% und weniger	Totalaktivität « _{lot} (cpm/g)	Einfluss von Kalium f _K ·c _K (cpm/g)	Restaktivität 2, (ppm äqu. U)	NagO %	K2O %	20.0
00 90	687.925/168.750 687.750/168.000	1125 1220	Zentraler Aaregranit Zentraler Aaregranit	35 35	25 30	25 30	5 3	3	4 E 3 E	A, M, O, T, Z A, G, M, T, Z	1,11 2,15	0,20 0,24	12,2 27,0	3,9	4,9	1.
12 68 53 44 53	687.500/167.850 687.650/167.650 687.925/167.150 688.050/167.100 688.075/167.050	1245 1275 1330 1370 1375	Aplitgang Zentraler Aaregranit Zentraler Aaregranit Zentraler Aaregranit Schöllenensyenit Schöllenensyenit	35 20 35 15 20	25 15 45 20 5	30 45 20 45 50	4 10 1 10 10 15	2 4 5 4	3 E 3 E 1 E 3 E 5 E	A, M, T, Z A, M, T, Z A, M, T, Z A, M, O, T, Z A, M, T, Z	1,12 1,35 1,205 1,43 1,36	0,22 0,21 0,20 0,18 0,20	12,1 15,8 13,8 17,2 16,0	4,0 4,1 3,8	3,8 4,2	2 3 2
44 79 58 52	688.150/167.000 688.175/166.800 688.200/166.700 688.300/166.450	1380 1410 1425 1435	Zentraler Aaregranit Zentraler Aaregranit Zentraler Aaregranit Aarmassiv Südrand Epidotbiotitgneis	35 35 30 25	21 25 30	30 30 30 50	5 3 15	3 2 3	4 E 1 E 3 E 5 E 2 K	A, G, M, T, Z A, G, M, O, Z A, G, M, Z M	1,35 1,81 1,55 0,495	0,20 0,20 0,20 0,090	15,9 22,5 18,6 5,4	6,0	1,8	3
22 50	688.300/166.450 688.600/166.100	1435 1460	Epidotbiotitgneis Aarmassiv Südrand Epidot-Biotitserizitgneis Urserenmulde,	5 .		20	20	25	13 E 3 G 3 K 70 Cl	A, M, T M, S	1,235 0,237	0,21	13,9 2,8	3,0 0,2	4,0 0,3	5
87	688.600/166.075	1460 2070	Marmor Urserenmulde, Dolomitquarzit Urserenmulde	60				3	5 Cl 30 D 35 Cl	M M, P, Q, S	0,163	0,014	2,0	0,3	0,6	3
83	679.000/160.550 688.800/165.400	1445	Rauhwacke Furkapass "Karbon" v. Andermatt	25				50	55 D 20 Kl	M, 1, Q, 0	1,52	0,220	18,0	1,55		
33	688.800/165.375	1445	Kohle-Serizitschiefer Permokarbon	20		20	20	25	3 E	M	0,689	0,220	6,3			
77	686.500/163.450	1540	Muskowitbiotitgneis Gurschengneis Biotitserizitgneis	25 Sp	Tk	20	15	35	10 K 5 K	E, M, Z	0,760	0,150	8,3			
2	686.500/163.200	1640	Serpentin von Kemleten	40 Q	40 Kf				10 K 10 M		0,065	0,040	0,5			
94	686.725/163.200	1590	Gurschengneis Biotit-Muskowitgneis	50		20	10	20		G, M, Tm, Z	0,895		10,1	2,0	3,1	
87 15 33	686.400/162.300 686.350/162.200 686.100/160.875	1645 1650 1745	Gamsbodengneis Gamsbodengneis	40 25 50	20 20 10 15	30 45 30 35	3 2 4 3	4 5 3 5	4 E 4 E 3 E	A, G, M, O, T, Z A, E, M, Z A, M, T, Z A, G, M, T, Z	1,51 1,12 1,44 1,375	0,18 0,18 0,19 0,18	18,3 12,9 17,4 16,8	3,8 3,75	3,7 4,0	
10 54 48 58	685.700/160.350 685.850/159.500 685.900/158.750 685.800/158.575	1835 1920 1950 1955	Gamsbodengneis Gamsbodengneis Gamsbodengneis Gamsbodengneis	35 40 40 10	10 5 15	35 33 55	4 10 20	5 10 2	3 E 3 E 2 E	A, G, M, T, Z A, K, M, T, Z A, G, K, M, T, Z	1,285 1,18 1,585	0,18 0,17 0,18	15,1 13,8 19,6	4,3 6,0	3,5 3,7	
78	685,650/157,800	2000	Guspisserie Chloritgneis	30	Hb	50	4		10 C 3 E 2 M	A, Z	0,630	0,050	7,5			
79	685.650/157.750 685.675/157.700	2005 2010	Guspisserie Amphibolit Guspisserie	10 10	60	25 45	2 40		2 E	A, E, Z A, E, M	0,128 0,860		0,7 10,5	4,4	1,95	
43	685.700/157.650	2020	Biotitgneis Fibbiagneis	35	Kf 15	25	4 4	20 2	2 E 2 E	A, M, T, Z	1,495 1,115		17,2 12.4	4,3	5,45	
96 50 34	685.750/157.350 686.000/157.125 686.300/157.000	2055 2105 2100	Fibbiagneis Fibbiagneis Fibbiagneis	20 40 40	40 10 15	30 35 30	5	5 3	3 E 4 E	A, G, M, T, Z A, G, M, T, Z A, G, M, T, Z	1,48 1,45	0,214	17,8 17,2	4,1	4,6	
33	686.750/156.425 686.700/156.300	2065 2045	Fibbiagneis Fibbiagneis	45 30	10 25	20	10	10	4 E	A, G, K, M, T, Z A, E, G, K, M, T, Z	1,325	0,214	15,2 16,2	3,6	4,1	
54	686.725/155,950	2005	Rotondogranit "Tremolagranit"	40	30	20	5	3		A, E, G, M, T, Z	1,315	0,248	14,8	4,0	5,1	
78	686.700/155.925	2000	Rotondogranit "Tremolagranit"	45	20	20	10	3		A, E, M, T, Z	1,21	0,22	13,6	3,5	4,5	
63 86	686.650/155.850 686.600/155.800	1970 1965	Rotondogranit "Tremolagranit" Rotondogranit "Tremolagranit"	30	35	35	2	2		A, E, M, T, Z A, E, G, M, T, Z	1,17	0,218	13,0			
00	686.750/155.650	1935	Soresciagneis Muskowithiotitgneis	30		30	20	15	2 K	A, E, Kf, M, T, Z	0,766		7,8			
94	686.800/155.500	1845	Soresciagneis Biotitserizitgneis	40	Hb	15	15	25		A, E, G, K, M, T, Z	0,889		9,3	2,6	4,3	
52 42	686.850/155.400 686.800/155.300	1810 1755	Pratoserie Epidothornblendeschiefer Pratoserie	40	60 Kf 20	5 25	10	10	15 E 2 M	K, M, T A, E, M, T, Z	1,18	0,092	2,0	3,75	4,8	
			Muskowit-Biotitkali- feldspatgneis		Hb										1.0	
55 33	687.000/155.100 687.250/155.025	1735 1720	Pratoserie Hornblendeschiefer Tremolaserie	20	10	10 55	4		5 E	M, T A, E, T	0,177		1,1	7,0	0,75	5
28	687.550/154.825	1680	Hornblende-Chloritfeld- spatschiefer Tremolaserie Karbonat-Silikatgestein	4	3	30	15		5 K 3 M 30 E 16 K	М	0,068	0,063	0	3,3	1,3	
97	687.800/154.375 687.900/154.300	1550 1560	Tremolaserie Chloritbiotitgneis Tremolaserie	30		30	15		15 C 10 E	A, M	0,391	0,048	4,6	3,1	1,0	
28	688.250/154.250	1520	Quarzhornblendeschiefer Tremolaserie	10 70	80	10 10	5	10	2 A	M E, Z	0,057			1,0	2,1	
25	688.050/154.100	1490	Serizitquarzit Tremolaserie Muskowitschiefer mit grossen Granaten	25		5		55	3 M 10 G 3 M	A, B, E, St, Z	0,686	0,100	7,7			
37	688.200/154.125 687.975/153.900	1470 1440	Tremolaserie Chloritgneis Tremolaserie	35 30		35 5	15	35	30 C	A, E, G, M, T, Z A, E, St, Z		0,060		2,9	1,25	5
62	687.900/153.850	1430	Biotitmuskowitschiefer mit grossen Granaten Tremolaserie	10	20	35			5 M	A, E, Z	0,060	0,060	0			
66	688.100/153.925	1415	Hornblendechloritgneis Tremolaserie Amphibolit m. porphyro-	5	30	45			2 M 5 C 10 K	A, B, E, M, Z	0,28	0,010	3,6	5,1	0,3	
1	688.400/154.075	1380	blastischer Hornblende Tremolaserie Glimmerführender Gneis	50		35	5	5	2 M			0,090		3.77	3,4	
71	688.350/153.950 688.400/153.900	1350	Tremolaserie Biotitgneis Tremolaserie	20	3	30	20	10	2 E 3 M 4 E	A, K, Tm A, G, K, T, Z		5 0,120		1,40	3,0	
15	688.700/153.725	1220	Biotitgneis Tremolaserie	3	20	20	45	20	3 M 5 K	A, E, T, Z		8 0,150		2,0	3,1	5
153	688.850/153.500	1140	Hornblendebiotitschiefer Tremolaserie Biotitmuskowitgneis	45		15	10	25	2 M 5 G	A, E, M, Tm, Z		0 0,120				
160	688.900/153.275	1160	Rauhwacke Fontana	5				5	15 Cl 75 D	Q, P, M, S		0 0,021		1.	2.0	
310	685.975/153.025 686.000/153.000	1260 1260	Serizitgneis Triaskontakt Fontana Vererzter, glimmerarmer Gneis, Triaskontakt	50		15 25	3	25	2 M 14 M	A, E, Z A, E	0,40			1,5	2,0	
845	686.025/153.000	1260	Fontana Mylonitisierter Quarzit Triaskontakt Fontana	1.0		ar		0-	95 171	A, E, G, M, T,	0,28	6 0,023 5 0,186		1,8	3,8	
135 145	684.550/151.350 684.550/151.300	1500 1500	Bedrettomulde Serizitgneis Ossasco Bedrettomulde Marmor Ossasco	15	Kf	25	5	25	25 Kl 90 Cl	A, E, G, M, T, Tm, Z E, M, P	0,83			1,8	3,6	
509	684.525/151.300	1510	Bedrettomulde Serizitquarzit Ossasco	60	2		3	15	3 K	A, E, M	0,29	7 0,01	5 2,2			

A Apatit Karbonat Karbonat Biotit (oft teilweise chloritisiert) Karbonat Karbonat C Chlorit Kirken Karbonat Kirkenbeat Ki

Leere Seite Blank page Page vide

Leere Seite Blank page Page vide

- Hirschi, H. (1924): Radioaktivität der Intrusivgesteine des Aarmassivs. SMPM 4, 64—88.
- (1925): Radioaktivität der Intrusivgesteine des Aarmassivs. (Fortsetzung.) SMPM 5, 173—180.
- (1927): Radioaktivität der Intrusivgesteine des Aarmassivs. (Fortsetzung.) SMPM 7, 98—114.
- (1928): Radioaktivität der wichtigsten Granitmassen des Gotthardmassivs. SMPM 8, 318—320.
- (1931): Radioaktivität von Quellen im Aargranit. SMPM 11, 264—265.
- HOFMÄNNER, F.: Noch nicht veröffentlichte geologische Kartierungen im zentralen Gotthardmassiv. Inst. f. Kristallographie u. Petrographie, ETH, Zürich.
- INGHAM, W. and Keevil, N. (1951): Radioactivity of the Bourlamaque, Elzevir, and Cheddar Batholits, Canada. Bull. Geol. Soc. Amer. 62, 131—148.
- Joly, J. (1912): The Radioactivity of the Rocks of the St. Gotthard Tunnel. Phil. Mag. 23, 201—211.
- Rybach, L. (1961): Radiometrische Untersuchungen in der Misoxer Muldenzone. SMPM 41, 85—102.
- SLACK, H. and WHITHAM, K. (1951): A Further Investigation of the Radioactivity of the Round Lake and Elzevir Batholits. Trans. Am. Geophys. Union. 32, 44—48.
- SONDER, R. (1921): Untersuchungen über den Differentiationsverlauf der spätpaleozoischen Granitintrusionen im zentralen und westlichen Gotthardmassiv. SMPM 1, 323—391, und Diss. Univ. Zürich.
- Stapff, F.: Geologische Tabellen und Durchschnitte über den grossen Gotthardtunnel. Spezialbeilage zu den Berichten des Schweizerischen Bundesrathes über den Gang der Gotthardbahn-Unternehmung. (10 Liefg.) Bern 1877—1882.
- STRUNZ, H. (1957): Mineralogische Tabellen. 3. Aufl., Leipzig.
- Weibel, M. (1961): Die Schnellmethoden der Gesteinsanalyse. SMPM 41, 285-294.

Institut für Geophysik und Institut für Kristallographie und Petrographie der ETH, Zürich.

Manuskript eingegangen am 13. Januar 1962.