Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 41 (1961)

Heft: 2

Artikel: Betrachtungen über die Wahl von Winkeln zur Charakterisierung der

Plagioklasoptik

Autor: Parker, Robert L.

DOI: https://doi.org/10.5169/seals-31911

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Betrachtungen über die Wahl von Winkeln zur Charakterisierung der Plagioklasoptik

Von Robert L. Parker (Zürich)

Mit 3 Figuren im Text

Abstract

The Euler angles Φ , Ψ , Θ , now in current use for defining the position of the indicatrix in feldspars provide no information concerning the optical axial angle and the optical sign of the minerals in question. An alternative series of Euler angles based on the position of n_{β} (instead of on n_{α} as in the first system) overcomes this difficulty by providing two angles R and I to define the position of the axial plane and two further angles L_{α} and L_{λ} to indicate the positions within that plane of n_{α} and the optical axis A respectively. Two further angles L_{γ} and L_{B} giving the positions of n_{γ} and the second optical axis can easily be derived. From the characteristic values for the various plagioclases of the first four angles named curves can be constructed (Figs. 2 and 3) which provide a ready means of diagnosing the composition of a given feldspar and the presumable conditions (high or low temperature) under which it was formed. Data for calculating the second system of Euler angles from the first and vice versa are appended.

Im Zusammenhang mit der Plagioklasbestimmung nach der Fedorowschen U-Tisch-Methode spielen Positionsangaben mittels geeigneter Winkel der Indikatrixachsen n_{α} , n_{β} , n_{γ} sowie der zwei optischen Achsen A und B eine wichtige Rolle. Insofern man zur Lagen-Charakterisierung dieser fünf Richtungen eines der üblichen Systeme sphärischer Koordinaten, zum Beispiel φ und ρ nach V. Goldschmidt, oder λ und φ nach F. Becke wählt, so benötigt man also nicht weniger als zehn Winkelangaben zur Erreichung des gewünschten Zieles. Indessen zeigt eine einfache Überlegung, dass von diesen zehn Werten nicht weniger als sechs im Grunde überzählig sind, weil sie aus den restierenden vier eindeutig

ableitbar sind. In der Tat lassen sich aus den Positionswinkeln nach Goldschmidt oder Becke der beiden optischen Achsen die entsprechenden Positionen der Indikatrixachsen rasch und eindeutig berechnen oder stereographisch ermitteln. Leider entbehrt diese an sich sehr knappe und zweckmässige Darstellungsweise der unmittelbaren Anschaulichkeit, so dass angesichts einer für A und B geltenden Positionsangabe eine qualitative Vorstellung der räumlichen Verteilung von n_{α} , n_{β} , n_{γ} erst nach einiger Überlegung zu gewinnen ist.

Es ist das Verdienst C. Burris, zur Charakterisierung der Plagioklasoptik Positionswinkel — die sogenannten Eulerwinkel — eingeführt zu haben, die in der kristallographischen Praxis bis anhin ganz unbekannt waren, aber vorzüglich geeignet sind, als Unterlagen für die Plagioklasbestimmung zu dienen. Da Burri in seiner Arbeit "Charakterisierung der Plagioklasoptik durch drei Winkel und Neuentwurf des Stereogramms der optischen Orientierung für konstante Anorthit-Intervalle" (Schweiz. Min. Petr. Mitt. Bd. 36, H. 2, 1956) die Ableitung und Verwendung dieser Winkel einlässlich erläutert, dürfen deren Charakter und Eigenschaften hier als bekannt vorausgesetzt und lediglich einige allgemeine Betrachtungen angestellt werden.

Zweierlei Merkmale sind es, die den Eulerwinkeln Φ , Ψ , Θ ihren besonderen praktischen Vorteil verleihen. Es sind dies die Okonomie und die gegenseitige Unabhängigkeit. Dass es sich bei ihnen um eine besonders knappe Darstellungsweise handelt, zeigt sich schon daran, dass die drei Eulerwinkel die gleiche Auskunft zu vermitteln vermögen wie vier übliche Positionswinkel, zum Beispiel wie die φ - und ρ -Werte von n_{α} und n_{β} . (Bei beiden Darstellungen bleibt n_{γ} unerwähnt, doch kann die Lage dieses Vektors aus den Angaben über die beiden anderen leicht ermittelt werden.) Dabei bringt die gegenseitige Unabhängigkeit der Eulerwinkel den grossen Vorteil mit sich, dass man sie unbedenklich zu Inter- und Extrapolationen benutzen kann, ohne dass innere Widersprüche entstehen. Das ist bei Positionsangaben nach Goldschmidt oder Becke nicht der Fall, da solche Operationen bei diesen zu Lagen führen können, die nicht mehr die erforderlichen 90°-Abstände aufweisen.

Indessen ist der von den drei Eulerwinkeln vermittelte Einblick in die optischen Verhältnisse eines Plagioklases kein so vollständiger, wie derjenige, der aus den vier üblichen Positionswinkeln der beiden optischen Achsen A und B hervorgeht. Denn diese letzteren (die übrigens ebenfalls gemittelt werden können, ohne innere Widersprüche hervorzurufen) halten nicht nur die räumliche Lage der Indikatrix fest, sondern gestatten auch, Schlüsse über die Grösse des optischen Achsenwinkels und

das optische Vorzeichen¹) zu ziehen. Über die letztgenannten Daten vermitteln die Winkel Φ , Ψ , Θ natürlich keine Auskunft.

Unstrittig sind Angaben über Achsenwinkel und optisches Vorzeichen bei der Diagnose der Plagioklase zwar nicht unentbehrlich, nichtsdestoweniger aber von grosser, manchmal sogar ausschlaggebender Bedeutung. In seinem klassischen Buch "Universal-Drehtischmethoden" (Basel 1931) betont M. Reinhard dies ausdrücklich und zu wiederholten Malen. Es ist auch bezeichnend, dass in einem der von ihm ausführlich durchgearbeiteten Beispielen (S. 101) die Entscheidung, ob eine Zwillingsachse im NE-Quadrant der Kurve \perp [100] in (010) bei 75% An, oder im NW-Quadrant der Kurve [010] = \perp [100] in (001) bei 90% An zugeordnet werden soll, anhand des Achsenwinkels von $2V = -84^{\circ}$ zugunsten der ersteren Möglichkeit entschieden wird.

Überlegungen dieser Art führen zum Schlusse, dass zur adäquaten Charakterisierung der Plagioklasoptik im Grunde doch vier Winkel notwendig sind. Als solche können die drei Eulerwinkel Φ, Ψ, Θ nach Burri nebst einer zusätzlichen Angabe über die Grösse des Achsenwinkels benutzt werden. Freilich büsst die Darstellung durch die Verquickung der Positions- mit völlig andersgeartetem Winkel so sehr an Eleganz ein, dass man sich unwillkürlich fragen muss, ob nicht eine homogenere Darstellungsweise gefunden werden könnte, welche das von Burri übernommene Eulersche Koordinatenprinzip sowohl für die Indikatrixachsen wie für die optischen Achsen anwenden würde. In diesem Zusammenhang kann daran erinnert werden, dass die Verwendung Eulerscher Koordinaten zur Charakterisierung der Plagioklasoptik in dreierlei Weise geschehen kann. Auf diese Tatsache hat C. Burri in seiner bereits zitierten Arbeit ausdrücklich hingewiesen (S. 551). Man kann sich die Verhältnisse folgendermassen vor Augen führen:

Von dem als Eulerwinkel bekannten Wertetripel dienen zwei Winkel im wesentlichen dazu, die Lage eines der drei optischen Vektoren festzuhalten. Als dieses "singuläre" Element figuriert im Burrischen System der Vektor n_{α} und die zwei Winkel Φ , Θ können als dessen Azimut und Poldistanz aufgefasst werden. Gleichzeitig wird durch diese Wahl die zu n_{α} senkrechte Ebene in ihrer räumlichen Lage definiert. Weil aber n_{β} und n_{γ} in dieser Ebene liegen und aufeinander senkrecht stehen, genügt ein einziger zusätzlicher, von einem geeigneten Aufpunkt ge-

 $^{^{1}}$) Soll das optische Vorzeichen aus den Positionswinkeln der beiden Achsen hervorgehen, empfiehlt es sich, die Lage von A stets auf die obere Halbkugel zu beziehen, für B aber diejenige Lage festzuhalten, die man von A aus über n_{γ} erreicht.

messener Winkel, ihre Position zu fixieren. Es ist dies bei Burri der Ψ -Winkel, der die Lage von n_{β} und indirekt von n_{γ} in der betrachteten Ebene festhält. Es ist evident, dass statt n_{α} auch n_{β} oder n_{γ} zum singulären Element gewählt werden könnte, doch wurden diese Möglichkeiten in der grundlegenden Arbeit als unzweckmässig abgelehnt.

In diesem Punkt ist nun der Schreibende anderer Auffassung. Nach Berechnung zahlreicher Bestimmungsdaten ist er im Gegenteil zur Einsicht gelangt, dass das System, in welchem n_{β} als singuläres Element Verwendung findet, grosse Vorteile in sich birgt und es verdient, neben dem bestens eingeführten und n_{α} als singuläres Element benutzende System berücksichtigt zu werden.

Um im weiteren alle Verwechslungsmöglichkeiten zwischen dem von C. Burri eingeführten und dem hier zur Diskussion stehenden alternativen System zu vermeiden, soll das erstgenannte, auf n_{α} basierende, als das der Eulerwinkel I. Art bezeichnet werden. Das jetzt zu diskutierende,

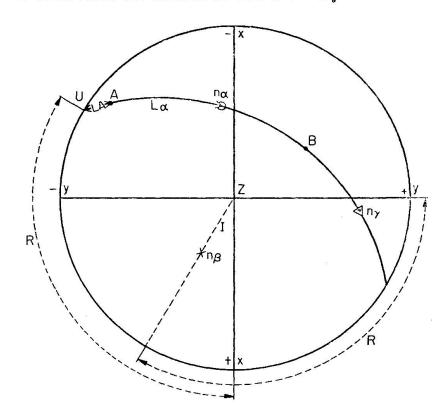


Fig. 1. Durch die Winkel R und I wird die Position von n_{β} resp. von der dazu senkrechten Ebene (= optische Achsenebene) festgelegt. Zwei weitere, von U aus gemessene Winkel L_{α} und L_{A} fixieren die Lage innerhalb der Achsenebene von n_{α} und der optischen Achse A. Durch zwei ana oge (nicht hervorgehobene) Winkel L_{γ} und L_{B} könnten die Lagen von n_{γ} und der zweiten optischen Achse B zusätzlich angegeben werden.

 n_{β} bevorzugende System, mag demgegenüber als dasjenige der Eulerwinkel II. Art gelten. (Auf die Möglichkeit, n_{γ} als singuläres Element zu benutzen [Eulerwinkel III. Art], soll nicht weiter eingegangen werden.)

Im System der Eulerwinkel II. Art müssen zunächst Azimut und Poldistanz von n_{β} angegeben werden. Die betreffenden Winkel mögen R(otation) und I(nklination) heissen, wobei festzulegen ist, dass R im Uhrzeigersinn vom Ostpunkt Y der Kugel aus gemessen wird, während I vom Zenit (Z) nach vorne abzutragen ist. Wie aus Fig. 1 ersichtlich, ist R zugleich der Winkelabstand zwischen dem Südpunkt X der Kugel und dem Punkt U, in welchem die Ebene $\perp n_{\beta}$ den Äquator der Kugel schneidet. Somit entsprechen R und I genau den Winkeln Φ und Θ im System der Eulerwinkel I. Art. Wird nun der Winkelabstand L_{α}^{\dagger} (L = Länge, longitude) zwischen U und n_{α} angegeben, so ist die Position dieses Vektors festgelegt, und zwar in genau analoger Weise wie im System I. Art die Lage von n_{β} durch den Winkel Ψ fixiert wird. Auch ein analoger Winkel L_{γ} kann angegeben werden, wobei $L_{\gamma} = L_{\alpha} \pm 90^{\circ}$.

Die Vorteile des so gewählten Systems offenbaren sich nun darin, dass die Ebene senkrecht der singulären Richtung n_{β} die optische Achsenebene ist, so dass nicht nur n_{α} und n_{β} in ihr gelegen sind, sondern auch A und B, die ebenfalls durch L-Werte, L_A und L_B , fixiert werden können. Von den bisher erwähnten sechs Werten R, I, L_{α} , L_{γ} , L_A , L_B sind vier als fundamental, zwei als überzählig zu betrachten. So können aus R, I, L_{α} , L_A sowohl L_{γ} und L_B wie auch das optische Vorzeichen ermittelt werden. In der Tat ist (wie schon erwähnt) $L_{\gamma} = L_{\alpha} \pm 90^{\circ}$; ferner gilt $(L_{\alpha} - L_A) = (L_B - L_{\alpha})$. Ergeben überdies die eingeklammerten Ausdrücke einen unter 45° liegenden Wert, so ist n_{α} spitze Bisektrix und das optische Vorzeichen negativ. Sind die Klammerausdrücke $>45^{\circ}$, so gilt das positive Vorzeichen.

Es gelingt somit auf diesem Wege, eine vollständige optische Charakterisierung mit vier Winkeln völlig homogenen Charakters zu erreichen.

Die Eulerwinkel II. Art teilen mit denjenigen I. Art die Eigenschaft, voneinander unabhängige Grössen zu sein und sich deshalb für Interund Extrapolationen zu eignen, ohne dass sich widersprechende Werte ergeben könnten. Sie zeigen aber auch die für Mittelwertbildungen wesentliche Eigenschaft, stetig zu sein. Dies lässt sich deutlich in den Figuren 2 und 3 feststellen, die den Verlauf der vier Fundamentalwerte R, I, L_{α} , L_{A} je für Hoch- und Tieftemperatur-Plagioklase zeigen²) und

 $^{^2}$) Von diesen Kurven wurden diejenigen für R, I, L $_{\alpha}$ mittels des am Ende dieses Aufsatzes wiedergegebenen Rechenschemas "A" aus den von C. Burri für die Hoch- und Tieftemperatur- (HT- und TT-) Plagioklase ermittelten Euler-

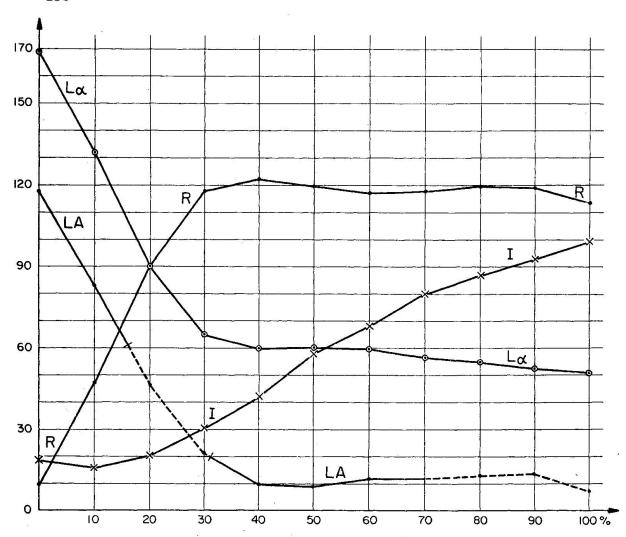


Fig. 2. Tieftemperatur-Plagioklase: Verlauf der Werte von R, I, L_{α} , L_{A} bei (auf der Abszisse abzulesenden) Anorthitgehalten von 0 % bis 100 %.

erkennen lassen, dass ausgeprägte Knickstellen (scharfe Maxima oder Minima), die bei Diagnosen zu Zweideutigkeiten führen könnten, völlig fehlen.

Diese Kurvenbilder sind geeignet, ein recht anschauliches Bild der mit steigendem Anorthitgehalt stattfindenden Lagenwechsel der optischen Vektoren zu gewinnen. Bei den TT-Plagioklasen (Fig. 2) ergibt

winkel I. Art umgerechnet. Die L_A -Kurve ist aus einer grösseren Zahl zuverlässig erscheinender Bestimmung der Literatur erstmals berechnet worden. Obgleich angenommen werden darf, dass diese vier Kurven die Verhältnisse weitgehend zutreffend wiedergeben, werden sie nicht als endgültig betrachtet. Vielmehr sind Arbeiten im Gange, um aus der Gesamtheit der verfügbaren Daten ihren Verlauf neu zu bestimmen.

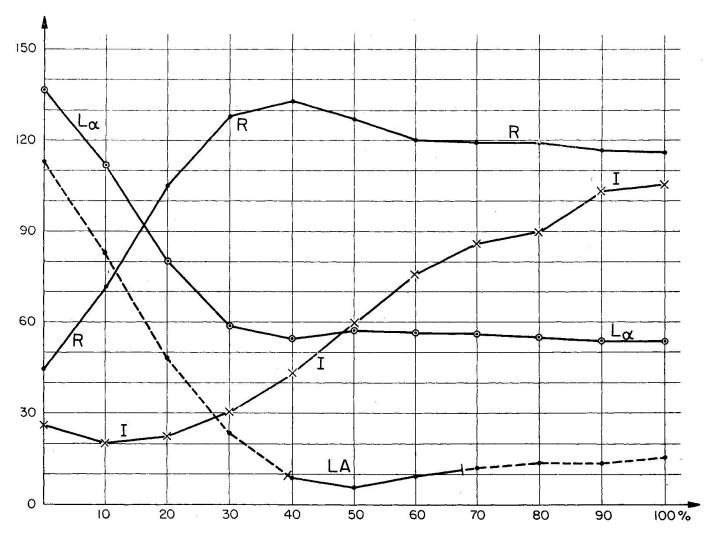


Fig. 3. Hochtemperatur-Plagioklase: Verlauf der Werte von R, I, L_{α} , L_{B} bei (auf der Abszisse abzulesenden) Anorthitgehalten von 0% bis 100%.

sich zum Beispiel folgender Verlauf: Bezeichnet man die durch die kristallographische c-Achse und n_{β} verlaufende Ebene als "Medianebene", so ist ersichtlich ($R=9^{\circ}$), dass sie beim reinen Albit fast senkrecht auf (010) steht. Innerhalb dieser Ebene ist n_{β} gegenüber c nur wenig geneigt ($I=18\frac{1}{2}^{\circ}$) und dementsprechend liegt die optische Achsenebene nur wenig aus der horizontalen Lage geneigt. Der sehr grosse Wert von L_{α} (168 $\frac{1}{2}^{\circ}$) bringt es mit sich, dass n_{α} fast parallel (010) verläuft. Die beiden optischen Achsen bilden einen stumpfen Winkel um n_{α} ($L_{A}=117\frac{1}{2}^{\circ}$), so dass das optische Vorzeichen + ist. Bei 20% An haben sich die Verhältnisse folgendermassen geändert: während die Neigung von n_{β} gegenüber c, resp. diejenige der Achsenebene gegenüber der Horizontalen sich nur unbedeutend geändert hat, ist die Drehung der "Medianebene" so-

weit gestiegen, dass sie jetzt parallel zu (010) liegt ($R = 90\frac{1}{2}^{\circ}$). Gleichzeitig ist L_{α} auf 90° zurückgegangen, so dass n_{α} trotz der Drehung der Achsenebene nach wie vor parallel (010) liegt. Die beiden optischen Achsen bilden einen schwach spitzen Winkel um n_{α} ($L_{A} = 46\frac{1}{2}^{\circ}$) was einem negativen optischen Vorzeichen entspricht. Bei weiterer Zunahme des An-Gehaltes dreht sich die "Medianebene" noch um ca. 30° im Uhrzeigersinn (R max = ca. 120°). Die auffälligste Änderung in der optischen Orientierung besteht aber nun in der immer grösser werdenden Neigung von n_g gegenüber c (resp. der Achsenebene gegenüber der Horizontalen). In der Tat steigt I kontinuierlich an, um bei 85% An 90° zu werden (vertikale Stellung der Achsenebene). Den die Lage von $n_{\rm g}$ bei 85% An charakterisierenden Winkelwerten $R = 120^{\circ}$, $I = 90^{\circ}$ sind die Positionswinkel $\varphi = 117^{\circ} 33'$, $\rho = 90^{\circ} 00'$ der Fläche (1 $\overline{10}$) gegenüberzustellen. Die starke Annäherung der respektiven Werte bedeutet, dass ng hier praktisch normal zu dieser Flächenlage steht, resp. dass die Achsenebene praktisch parallel diesem Pinakoid verläuft. Innerhalb der Achsenebene zeigt L_{α} einen wenig über 50° liegenden Wert, so dass die Annäherung dieses Vektors zu c ca. 40° beträgt. Im Anreichsten Sektor nimmt I sogar stumpfe, bis ca. 100° reichende Werte an, was einer Uberkippung der Achsenebene entspricht. Die Differenz $(L_{\alpha}-L_{A})$ nimmt zwischen 40% An und 50% An ihren grössten Wert an, was einem relativ stark positiven Vorzeichen entspricht. Später nimmt die Differenz wieder ab, um bei 70% An den optisch neutralen Punkt zu überschreiten, womit für das An-reiche Ende das optische Vorzeichen wieder negativ wird. Von den genannten Merkmalen sind als diagnostisch besonders wertvoll folgende zu nennen: der steile Abfall von L_{α} und der rasche Anstieg von R am albitreichen Ende des Diagramms; der von 20% An bis zum reinen Anorthit stetige Anstieg von I.

Die Möglichkeit, an Hand beider Diagramme zwischen HT- und TT-Plagioklasen zu unterscheiden, kann beurteilt werden, wenn die zwei Figuren aufeinandergelegt werden. Sie scheint im Intervall 0% An bis 60% An recht günstig zu sein. In diesem Abschnitt liegt bei den HT-Plagioklasen die L_{α} -Kurve durchgängig niedriger, die R-Kurve dagegen stets höher als die entsprechende Kurve bei den TT-Feldspäten. Bei einem sehr ähnlichen Verlauf beider L_{Λ} -Kurven bedeutet die tiefere L_{α} -Kurve bei den HT-Gliedern eine für diese stark erweiterte Ausdehnung des optisch negativen Gebietes, das bereits beim Albit (Hochalbit) anfängt. Im Intervall 60% An—100% An ist die I-Kurve bei den HT-Plagioklasen durchwegs höher gelegen als im TT-Diagramm. Weil aber die übrigen drei Kurven sich weitgehend decken, kann es kaum gelingen,

aus der I-Kurve allein, zwischen beiden Serien zu unterscheiden. Steht eine chemische Analyse zur Verfügung, so sollte allerdings die Abweichung im Verlauf beider I-Kurven ausreichen, um eine Entscheidung über die Bildungstemperatur zu treffen.

Als Beispiel einer Diagnose seien die von A. Glauser und E. Wenk (1960) über einen Andesin von Egersund, Norwegen, mitgeteilten Daten besprochen. Die Autoren geben an:

Zusammensetzung: An 41%: Ab 56%: Or 3%Eulerwinkel I. Art:

 Φ 83,5°: Ψ 63,3°: Θ 51,5°

 $2V = 83.6^{\circ}$ Achsenwinkel:

Die Umrechnung dieser Werte mit Hilfe des unten angeführten Rechenschemas "A" liefert folgende

R $122,5^{\circ}$: I $45,6^{\circ}$: L_{\alpha} $60,6^{\circ}$: L_A $12,4^{\circ}$ Eulerwinkel II. Art:

Geht man bei $I = 45\frac{1}{2}^{\circ}$ in die HT-Kurven ein, so ergibt sich in naher Übereinstimmung mit der gegebenen Formel ein An-Gehalt von 41%. Demgegenüber liefern die zugehörigen Werte $R = 132\frac{1}{2}^{\circ}$, $L_{\alpha} = 55^{\circ}$, $L_A = 8\frac{1}{2}^{\circ}$ eine nur schlechte Übereinstimmung mit den gegebenen Daten. Auf der TT-Kurve liefert ein I-Wert von $45\frac{1}{2}^{\circ}$ einen An-Gehalt von 42%, ferner die Werte $R = 122^{\circ}$, $L_{\alpha} = 60^{\circ}$, $L_{A} = 9\frac{1}{2}^{\circ}$, also Zahlen, deren Übereinstimmung mit den Angaben der Autoren entschieden besser und ausreichend gut erscheint, um die Annahme einer Entstehung bei tiefer Temperatur für den untersuchten Feldspat zu rechtfertigen.

Abschliessend sei darauf hingewiesen, dass die Eulerwinkel II. Art im Zusammenhang mit einem stereographischen Netz eine bequeme Unterlage für die Konstruktion von Projektionsdiagrammen bieten. Man kann folgendermassen vorgehen: Bei quergestelltem Netz (Pole rechts und links) werden auf dem Pausblatt der Ostpunkt (= Y), der Südpunkt (= X), der Westpunkt (= Y) und der Nordpunkt (= X) markiert. Man zählt nun von X ausgehend auf dem Grundkreis einen Winkel von R° im Uhrzeigersinn ab und bezeichnet den erhaltenen Punkt mit U. Durch Drehung der Pause wird U nun in den linksliegenden Pol des Netzes gebracht. Zählt man jetzt vom Zentrum aus auf dem vertikal stehenden Durchmesser des Netzes I° nach vorne ab, so erreicht man die Lage von n_{β} . Um diejenige von n_{α} zu finden, zählt man von U aus La auf dem Grundkreis im Uhrzeigersinn ab und erreicht damit einen provisorischen (nicht einzutragenden) Punkt p. Schreitet man auf dem in p beginnenden Kleinkreis den Winkelbetrag I° nach vorne ab, so

führt dies zur gesuchten Lage von n_{α} . Völlig analog lassen sich mit Hilfe der Werte L_{γ} , L_{A} , L_{B} und des Winkels I die Lagen auch dieser Vektoren finden.

Anhang

Folgende Rechenschemata gestatten bei gegebenen Eulerwinkeln I. Art, diejenigen II. Art zu berechnen und umgekehrt.

Rechenschema A

Gegeben: Φ , Ψ , Θ , V_{α} Gesucht: R, I, L_{α} , L_{Λ}

- 1: $\sin \Theta$
- 2: $\cos \Theta$
- $3: \sin \Psi^*$
- 4: tg \(\mathbf{Y} \)
- 5: $1\times 3 = \cos I$
- 6: sin I
- 7: $2:6 = \sin L_{\alpha}$
- 8: $2\times 4 = \operatorname{tg} \Delta$
- 9: $\Phi \Delta + 90^\circ = R^{**}$

10:
$$L_{\alpha} - V_{\alpha} = L_{A}$$

- *) Wenn Ψ negativ ist, setze man das Supplement des (positiv gedachten) Winkels ein und berücksichtige beim Aufsuchen des sin und tg, dass der Winkel nun stumpf ist (cos statt sin, –ctg statt tg). L_{α} ist dann ebenfalls stumpf zu nehmen.
- **) Resultiert ein negativer R-Wert (Vorzeichen beachten) so gebe man für R das Supplement des (positiv gedachten) Winkels an und benutze für I ebenfalls den Supplementwinkel.

Rechenschema B

Gegeben: R, I, L_{α} , L_{A} Gesucht: Φ , Ψ , Θ , V_{α}

- 1: $\sin L_{\alpha}$
- 2: sin I
- 3: cos I
- 4: $1 \times 2 = \cos \Theta$
- 5: $\sin \Theta$
- 6: $3:5 = \sin \Psi^*$)
- 7: tg \(\mathbf{Y} \)
- 8: $7 \times 4 = \operatorname{tg} \Delta$
- 9: $R + \Delta 90^{\circ} = \Phi^{**}$
- 10: $L_{\alpha} L_{A} = V_{\alpha}$
- *) Falls $L_{\alpha} > 90^{\circ}$, setze man für Ψ das Supplement des berechneten Wertes ein und berechne Φ nach dem Schema $\Phi = R 4 + 90^{\circ}$.
- **) Falls $I > 90^{\circ}$ berechne man Φ nach dem Schema $\Phi = R \Delta 90^{\circ}$.

Manuskript eingegangen am 30. Mai 1961.