Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 40 (1960)

Heft: 2

Artikel: Die Lössböden

Autor: Schaufelberger, Paul

DOI: https://doi.org/10.5169/seals-31159

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Lössböden

Von Paul Schaufelberger (Chinchiná, Kolumbien)

1. Problemstellung

Die konventionelle Bodenkunde kennt manche Böden, über die eine umfangreiche Literatur existiert, aber eine genaue Definition fehlt. Zu diesen gehört auch der Tschernosem der gemässigten Zone. Ist es ein Waldboden, wie manche behaupten, oder ein waldfeindlicher, wie andere feststellen? Ist seine Bildung an ein bestimmtes Klima gebunden, wie in der Literatur oft gesagt wird? Ist es ein Klimaboden, wie manche annehmen? Ganz sicher ist nicht einmal, ob der Tschernosem sich nur auf Löss bildet. Ebenso umstritten ist die Frage, ob alle Tschernoseme Kalkkonkretionen aufweisen.

Wir wollen nun annehmen, dass unter Tschernosemen Lössböden verstanden seien und versuchen, ob sich aus Analysen und Beschreibungen diese Lössböden irgendwie klassieren lassen und ob da Geologie und Petrographie, als Mutterwissenschaften der Bodenlehre, Klarheit bringen können.

Es ist mir ein aufrichtiges Bedürfnis, auch an dieser Stelle meinem langjährigen Freund und Kollegen, Herrn Chefgeologe Dr. E. Scherf in Budapest, meinen besten Dank auszusprechen, dass er mir aus hier nicht zugänglicher Literatur solche Analysen heraussuchte und mir zur Verfügung stellte.

2. Löss

In der Geologie wird der Löss folgendermassen definiert: "Erbsengelbes, mehlfeines, ungeschichtetes Sediment mit vorherrschenden Korngrössen zwischen 0,01—0,05 mm, bestehend aus winzigen Quarz-, Feldspat- und Kalksplitterchen, denen sich Glimmer, Tonsubstanz und anderes zugesellen. Löss bildet häufig senkrechte Wände. Häufig findet man im Löss kleine Landschneckengehäuse sowie Reste pleistozäner Säuge-

tiere (Mammut, Nashorn, Wildpferd u. a.). In Oberflächennähe ist der Löss durch Sickerwässer seines Kalkgehaltes beraubt; die Silikate sind in Tonsubstanz übergeführt worden. Durch kolloidal verteiltes Brauneisen ist das Gestein braun gefärbt. In geringer Tiefe hat sich der Kalk in unregelmässigen Knollen wieder ausgeschieden." Über seine chemische Zusammensetzung geben einige der Literatur entnommene Analysen Auskunft (Tab. 1).

Tabelle 1. Chemische Zusammensetzung des Lösses

	USA	Harz	Polen	Schweiz 1	Neu-Mexiko	Neu-	Neu-
						seeland	$\mathbf{seeland}$
	%	%	%	%	%	%	%
SiO_2	64,61	68,18	77,54	69,43	26,67	59,30	53,68
TiO_2	0,40	0,79	n. b.	0,81			-
Al_2O_3	10,64	7,80	7,22	11,25	0,91	18,00	18,44
$\mathrm{Fe_2O_3}$	2,66	1,78	5,02	5,37	0,64	4,24	6,54
\mathbf{FeO}	0,51	0,41		0			
$\mathbf{M}\mathbf{n}$	0,05	0,10	0,04	0,13	Sp.		
MgO	3,69	1,41	1,19	0,21	0,51	0,98	1,52
CaO	5,41	5,92	9,10	1,25	36,40	2,16	0,95
Na_2O	1,35	1,15	0,87	0,80	Sp.	1,59	1,67
K_2O	2,06	2,05	1,74	1,53	\mathbf{Sp} .	2,64	2,58

Das Muttergestein des Tschernosem ist sehr verschieden zusammengesetzt, und der gute Ruf der Lössböden dürfte weniger auf die chemischen, als auf die physikalischen Eigenschaften des Ursprungsgesteins zurückzuführen sein.

3. Waldböden

Morphologisch erkennt man die Waldböden in der Regel am vollständigen Bodenprofil: 1. Oberboden oder A-Horizont, 2. Unterboden oder B-Horizont und 3. Muttergestein oder C-Horizont. Dynamisch sind sie dadurch charakterisiert, dass das Wasser nach der Tiefe versickert. Das Regenwasser bewegt sich mehr oder weniger senkrecht durch Oberund Unterboden und in Spalten und Rissen durch das Muttergestein bis zu einer undurchlässigen Schicht, auf der es sich seitlich bewegt und als Quelle austritt. Die beiden Bodenhorizonte werden mehr oder weniger ausgelaugt; sie sind eluvial. Die Oberböden sind nie vernässt, und die Böden bilden zusammen die endoperkolative Bodenklasse (Schaufelberger, 1956).

Die endoperkolativen Waldböden sind gekennzeichnet durch einen bestimmten Humusgehalt, einen bestimmten Gehalt an austauschbaren Basen und einen bestimmten Auswaschungsfaktor. Die wichtigsten sind die basenreichen Lithosols und die basenarmen Klimasols (Tabelle 2).

Tabelle 2. Klassifikation der Waldbodentypen

Klimasols

endoperkolativ endoperkolativ endoperkolativ endoperkolativ endoperkolativ humusarm humusreich humusreich humusreich humusarm basenarm basenarm basenarm basenarm basenarm $+ \sin - c - alk$ + si + c - alk+ si + c + alk $+\sin -c + alk$ + si - c - alkKaktussolBambussolHumussolWaldsolUrwaldsolendoperkolativ endoperkolativ humusarm humusreich endoperkolativ endoperkolativ basenreich basenreich + si - c + alk+ si - c + alkCalisolQuindísol

Lithosols

Wenn sich nun auf Löss Waldböden bilden, so müssen sich diese auf die Bodentypen der Tabelle 2 verteilen. Mit Ausnahme des humiden Klimas erkennt man den Bodentyp am Humusgehalt und am Auswaschungsfaktor. Im folgenden sollen nun die Bodenanalysen von Lössböden nach der Befeuchtung geordnet und gedeutet werden.

3a. Lösswaldböden des ariden Klimas

In der Literatur fanden sich zwei Lössböden mit Regenfaktoren unter 40, also aus dem ariden Bereich (Tabelle 3).

Tabelle 3. Lössböden des ariden Klimas

		SI	क्षा	1111	G	aik	
a)	\mathbf{Boden}	285	36	30	18	16	USA
	Löss	102	12	13,5	68,5	5	
	Q	2,79	3,00	2,23	$0,\!26$	3,20	
b)	Boden	179	20	40,5	25	16,5	Russland
	Löss	150	17	33	36	14	
	\mathbf{Q}	1,19	1,18	1,25	0,65	1,15	

Beide Böden zeigen die Auslaugung von Calcium und nach dem Gesetz von Jenny (Schaufelberger, 1959a, 1959b) ist zu erwarten, dass sie auch basenreich sind. Die Literatur kennt und beschreibt sie als Sierosem, grauer Wüstenboden, Kastanienboden, Braunerde, Pedocal usw.

Dass sich im ariden Klima auf Löss auch Klimasols finden, erfahren wir von H. WILHELMY:

"Dennoch zeigt die Untersuchung der Böden unter einem vor 250 Jahren von Zar Peter I. bei Taganrog angepflanzten Eichenwald, dass selbst in der südlichen Trockensteppe künstlich geschaffene Waldböden podsolisieren. Die Entkalkung des Lösses scheint, sobald Baumbestände den Bodenwasserhaushalt ändern und beim Abbau der Waldstreu grosse Säuremengen produziert werden, schnell fortzuschreiten. Es entsteht ein basenarmer, lehmiger Oberboden, auf dem es nunmehr zur Rohhumusbildung, zur Beseitigung des lockeren Schwammgefüges und zu einer stärkeren mechanischen Durchschlämmung kommt. Die oberen 3 m des Waldbodenprofils unter der Mariupoler Versuchspflanzung beschreibt G. Machow wie folgt:

- 0 —1,10 m Lehmiger Tschernosem mit 80 cm mächtigem Humushorizont, darunter Löss (0,80—1,10 m) mit Gängen von Bodentieren.
- 1,10—2,80 m Brauner, lehmiger Lössboden mit Karbonathorizont in 1,10—1,50 m Tiefe."

Ob es sich um einen Waldboden oder einen Steppenboden handelt, muss das Bodenprofil entscheiden. Die konventionelle Bodenkunde bezeichnet den A-Horizont als eluvial und den B-Horizont als illuvial. E. P. Whiteside bezeichnet mit E Eluvial- und mit I Illuvialhorizonte, h bedeutet Humus und k Kalk im betreffenden Horizont. In der Dynamik wird mit Aen ein endoperkolativer Oberboden, mit B der Unterboden und mit C das Muttergestein bezeichnet. Das Bodenprofil ist bis zur obersten Grundwasser- bzw. bis zur obersten Zementationszone aufgenommen. Der oben beschriebene russische Eichenwaldboden ist ausgewaschen, weil er dem Kaktussol, mit dem Auswaschungsfaktor +si-c-alk, entspricht. Dieses Perkolat kennt aber die konventionelle Bodenkunde nur vom Podsol des perhumiden Klimas, der aber humusreich ist. Was sagt nun das Bodenprofil aus?

Horizont	Bodenkunde	WHITESIDE	Dynamik
Humushorizont	$\mathbf{A_1}$	$\mathbf{E}\mathbf{h}$	\mathbf{Aen}
${f L\ddot{o}ss}$	$\mathbf{A_2}$	${f E}$	${f C}$
Kalkhorizont	В	${f Ik}$	-
Deutung	Steppenboden	Waldboden	Waldboden

Hier haben wir ausnahmsweise einen Waldboden mit A-C-Profil; in einem feuchteren Klima würde er vielleicht zeitweise vernässen. Der Kalkhorizont ist ein Kalkortstein; er entspricht der Zementationszone und auf ihm liegt die untere Bodengrenze. Hätte sich ein Eisen- oder Humusortstein gebildet, so würde es sich, nach der konventionellen Bodenkunde, um einen "Podsol" handeln. Der Eisenanreicherungshorizont des echten Podsols des perhumiden Klimas ist keine Zementationszone, sondern ein Eluvialhorizont, der wasserdurchlässig ist und bleibt.

Auf Löss existieren im ariden Bereich der basenreiche Lithosol und der basenarme Klimasol.

3b. Lösswaldböden im semiariden Klima

Bei Regenfaktoren zwischen 40 und 60 ist die Befeuchtung für die Landwirtschaft günstiger, und hier finden wir Getreideäcker. Dadurch sind auch die Bodenanalysen etwas zahlreicher (Tabelle 4).

Die Böden a bis e sind dieselben Calisols, die wir schon im ariden Klima kennengelernt haben; diejenigen f und g zeigen die Abwanderung der Alkalien. Diese Bambussols unterscheiden sich durch den Chemismus vom Calisol und Kaktussol, aber die konventionelle Bodenkunde ignoriert sie.

Tabelle 4. Lösswaldböden des semiariden Klimas

		si	\mathbf{al}	${f fm}$	\mathbf{c}	alk	
a)	Boden	473	44	27,5	11,5	17	\mathbf{USA}
	${f L\ddot{o}ss}$	364	29,5	22	35,5	13	
	\mathbf{Q}	1,30	1,49	1,25	0,32	1,31	
b)	${f Boden}$	439	50	19,5	8,5	22	USA
	${f L\ddot{o}ss}$	310	26,5	23,5	32	18	
	\mathbf{Q}	1,45	1,83	0,83	$0,\!26$	1,22	
c)	\mathbf{Boden}	525	46	22	10	22	USA
	${ m L\ddot{o}ss}$	346	42	27	16	15	
	\mathbf{Q}	1,59	1,09	0,81	0,62	1,47	
d)	\mathbf{Boden}	850	44	19,5	12,5	29	Deutschland
	${f L}{\ddot{ ext{oss}}}$	383	25	21	41	13	
	Q	2,22	1,76	1,96	0,31	1,57	
e)	Boden	494	36,5	35,5	29	1	Deutschland
	Löss	178	13,5	15	71	0,5	
	Q	2,76	2,70	2,25	0,41	2,00	
f)	Boden	592	70	20,5	3,5	6	Deutschland
,	Löss	222	56	12	1	31	
	\mathbf{Q}	1,83	1,25		3,50	0,19	
g)	Boden	25 0	40			11,5	Russland
	Löss	252	42,5			12	
	\mathbf{Q}	0,99	-		•	0,96	

3c. Lösswaldböden des semihumiden Klimas

Diese Befeuchtung mit den Regenfaktoren zwischen 60 und 100 ist für die Landwirtschaft im allgemeinen am günstigsten, und der fruchtbare Lösswaldboden wird dann besonders geschätzt. Hier ist der Wald meist gerodet, und der Boden wird als Ackerland benützt. Den Klimasol überlässt man den Wäldern oder benützt ihn als Weide. Hier hat die konventionelle Bodenkunde herausgefunden, dass sich auf Löss zwei verschiedene Bodentypen entwickelt haben; man spricht von "Tschernosem" und "degradiertem Tschernosem". Dieser letztere entspricht dem basenarmen Klimasol. Beide Waldböden unterscheiden sich auch durch den Chemismus (Tabelle 5).

Tabelle 5. Waldböden des semihumiden Klimas

Löss 440 42 30 13 15 Q $1,22$ $1,12$ $0,83$ $0,77$ $1,20$	ssland ssland
Löss 440 42 30 13 15 Q 1,22 1,12 0,83 0,77 1,20 b) Boden 672 44,5 24 11,5 20 Rus Löss 375 30 28 30 12	sland
b) Boden 672 44,5 24 11,5 20 Rus Löss 375 30 28 30 12	sland
Löss 375 30 28 30 12	sland
Q $1,8$ $1,48$ $0,86$ $0,39$ $1,66$	
c) Boden 231 48,5 29,5 11 11 Rus	sland
Löss 178 31,5 21 39,5 8	
Q $1,30$ $1,54$ $1,40$ $0,28$ $1,37$	
a) Boach 100 ==,0	sland
Löss 286 29 20 40,5 10,5	
Q $1,74$ $1,50$ $1,40$ $0,27$ $1,66$	
e) Boden 221 22 45 25 8 Rus	sland
Löss 12 3 13 83 1,5	
Q 18.4 7.33 3.46 0.30 5.33	
f) Boden 335 45 31 9 15 Rus	sland
Löss 236 $31,5$ 30 29 $9,5$	
Q 1,31 1,43 1,03 0,31 1,58	
g) Boden 505 43 28 11 17 Rus	sland
Löss 264 29 21 40 10	
Q 1,91 1,48 1,33 0,27 1,70	
h) Boden 520 41,5 26,5 10 22 USA	4
Löss 325 34 27,5 24,5 14	
Q $1,60$ $1,22$ $1,96$ $0,41$ $1,57$	
i) Boden 361 47,5 35,5 5,5 10,5 Ung	garn
Löss 372 48 37 4 9	ter.
Q 0.97 0.99 0.91 1.33 1.17	

	w	si	${f al}$	fm	\mathbf{c}	alk	
j)	Boden Löss Q	685 475 1,44	45,5 38 1,20	24 35 0,69	11 11 1,00	19,5 16 1,22	Russland
k)	Boden Löss Q	250 254 0,98	40 42,5 0,94	32,5 33 0,98	15,5 12,5 1,24	12 12 1,00	Russland
1)	Boden Löss Q	675 571 <i>1,18</i>	51,5 50 1,03	20,5 $27,5$ $0,75$	7,5 6 $1,25$	20,5 15,5 1,24	USA
m)	Boden Löss Q	552 404 1,36	50 40,5 1,23	17,5 33 0,55	10 9,5 1,05	22,5 17 <i>1,25</i>	USA
n)	Boden Löss Q	456 386 1,19	46 41 1,12	23 29 0,79	11 11 <i>1,00</i>	20 19 <i>1,01</i>	USA
0)	Boden Löss Q	626 501 1,22	45,5 45 1,01	24,5 27,5 0,89	9 7,5 1,20	21 20 1,05	USA

Die Böden a bis h zeigen den Auswaschungsfaktor $+\sin -c + alk$, der dem Quindíosol entspricht. Dieser ist in der konventionellen Bodenkunde als Tschernosem, Braunerde, grauer Waldboden, podsolierte Braunerde, Rendiza, Humuskarbonatboden, terra rossa, terra roxa usw. bekannt.

Die Böden i bis o besitzen das Perkolat +si+c+alk des Humussols, dem Klimasol des semihumiden Klimas, den die konventionelle Bodenkunde ebenfalls ignoriert. Aus Deutschland ist er als rostfarbener Waldboden beschrieben, aus der USA als Tschernosem, Roterde und Waldsteppenboden.

3d. Systematik der Waldböden auf Löss

Alle diese Böden sind normal drainiert und gehören zu der Klasse der endoperkolativen Böden (Schaufelberger, 1955a, 1958a); sie unterscheiden sich durch den Humusgehalt, den Gehalt an austauschbaren Basen und den Auswaschungsfaktor, wie Tabelle 2 zeigt. Nach der Systematik haben sich im Löss folgende Böden gebildet:

Befeuchtung	\mathbf{arid}	semiarid	$\mathbf{semihumid}$
Regenfaktor	unter 40	40—60	60—100
Lithosol	2 Calisols, Tab. 3	5 Calisols, 4a—4e	8 Quindíosols, 5a—5h
Klimasol	1 Kaktussol	2 Bambussols, 4f, 4g	7 Humussols, 5i-50

Die als Tschernoseme auf Löss bezeichneten Böden sind Lithosols oder Pedocals der USA oder Klimasols. "Tschernosem" ist kein einheitlicher Bodentyp, sondern jeder muss erst systematisch klassiert werden. Diese Tatsache zeigt eindeutig, warum die konventionelle Bodenkunde diesen Boden nicht klar und eindeutig definieren konnte und kann.

3e. Genetik der Waldlössböden

Nach dem Pallmannschen Gesetz (Schaufelberger, 1959a, 1959b) geht bei den endoperkolativen Böden die Bodenbildung vom Rohboden über den unreifen zum reifen, degradierenden und degradierten Boden.

Der Rohboden entspricht dem Muttergestein Löss, über dessen chemische Zusammensetzung Tabelle 1 orientiert. Diese Lockermasse wird zum Pflanzenstandort, sobald Samen auf ihn fallen und die Befeuchtung ihn zum Keimen bringt. Nach und nach bildet sich Humus; die Mikroorganismen beeinflussen die edaphischen Prozesse, und es kommt zur Horizontbildung. Bei Abwesenheit der Organismen ist die Oberflächenverwitterung allitisch, und die Lebewesen stellen sie dann auf sialitisch um; bei jener wandert die Kieselsäure ab, bei dieser wird sie angereichert. Es sind also Pflanzenstandorte zu erwarten, wo die Analysen eine allitische Verwitterung anzeigen. Wir bezeichnen sie als unreife Böden und finden sie im semihumiden Klima auf Löss und vulkanischen Aschen (Tabelle 6).

Die reifen Böden entsprechen dem basenreichen Quindíosol mit dem Auswaschungsfaktor +si-c+alk und die degradierten dem basenarmen

		si	\mathbf{al}	${f fm}$	\mathbf{c}	alk	
a)	Unreifer Boden	240	38	21	21,5	19,5	Russland
	Löss	287	51	28	4	16	
	\mathbf{Q}	0,83	0,71	0,75	5,37	1,22	9
b)	Unreifer Boden	237	39	27	15	19	Long Eiland
	Andesitasche	304	40	21	14	25	
	Q	0,78	0,97	1,28	1,07	0,79	
c)	Laterit	170	56	43	0	1	Java
	Andesit	270	26	35	24	11	
	Q	0,63	1,93	1,14	0	0,09	
d)	Unreifer Boden	170	34	29	16	21	\mathbf{K} olumbien
	Andesitasche	217	36,5	34	10	19,5	
	\mathbf{Q}	0,78	0,93	0,85	1,60	1,07	*

Tabelle 6. Unreife Böden auf Löss und Andesitasche

Humussol mit dem Perkolat $+\sin + c + alk$. Bei der Degradierung ändert sich der Gehalt an austauschbaren Basen und, mit Ausnahme des humiden Klimas, der Auswaschungsfaktor. Aus dem ariden Klima Kolumbiens kennt man auf Diabas basenreiche Böden mit dem Auswaschungsfaktor $+\sin -c - alk$; dieser Boden hat den Basengehalt des Lithosols mit dem Perkolat des Klimasols. Er bildet einen Übergang von einem Bodentyp zum andern. Ob dies die Regel ist, können erst weitere Untersuchungen zeigen.

Bei den endoperkolativen Böden ändert sich mit der Zeit auch die Farbe des Unterbodens von grau über gelblich, gelb und braun zu rot. Man kennt graue (Sierosem, grauen Wüstenboden) und braune (Kastanienboden) Calisols. Man weiss auch, dass der Tschernosem sich in Braunerde verwandelt. Bekannt ist auch die Tatsache, dass man in Westeuropa auf Löss nicht den Tschernosem findet, sondern basenarme sols lessivés. Auch die Genetik zeigt, dass im selben Klima auf Löss verschieden entwickelte Böden zu erwarten sind, die zu Sukzessionsserien vereint werden. Es handelt sich um verschiedene Bodentypen, aber die konventionelle Bodenkunde hat dafür nur die Namen Tschernosem oder Pedocals.

4. Waldfeindliche Böden

4a. Systematik der waldfeindlichen Böden

Aus Russland kennt man Tundra- und Steppenböden. In Ungarn heissen sie Szikböden und in Deutschland Gley- und Paragleyböden. Die Holländer unterscheiden Eluvial- und Illuvialböden. Aus Nordamerika kennt man sie als Prärien- und aus Südamerika als Pampaböden. In den Tropen der Alten Welt heissen sie Schwarzerden. Das sind alles Sammelnamen für baumfeindliche Böden der Ebenen; oft werden noch die Moore dazugezählt. Sehen wir von diesen ab, so weiss man, dass die baumfeindlichen Böden manchmal zeitweise vernässen, andere nicht. Ebenso steht fest, dass es unter ihnen eluviale und illuviale Böden hat. Nach diesen zwei Merkmalspaaren lassen sich die waldfeindlichen Böden leicht auf vier Bodenklassen verteilen (Tabelle 7).

Im Profil dieser Böden findet man meist in geringer Tiefe eine Tonschicht oder eine Ortsteinbildung. Die konventionelle Bodenkunde bezeichnet diesen als "illuvialen B-Horizont". Nach dem Gesetz von van Hise-Glinka (Schaufelberger, 1959a, 1959b) ist es die Zementationszone unter dem obersten Grundwasser. Nun verdanken wir Whiteside

STREMME

Dynamik

STREMME

Dynamik

WHITESIDE

WHITESIDE

SZABOLCS u. JASSO

genaue Definitionen und Bezeichnungen der Horizonte; es können deshalb die Ortsteine genau erkannt werden. In der Morphologie wird nun entschieden, wo die untere Bodengrenze im Profil verläuft (Tabelle 8).

Tabelle 7. Die Bodenklassen der waldfeindlichen Böden

Oberboden nie vernässt

Eluviale Böden (S < T)
Steppenboden
Eh
Szik
Salzboden
EhSzik
Salzboden
exoperkolativ (Aex)

Oberboden zeitweise vernässt

Eluviale Böden (S < T)
Mineralnassboden
Ehwo
peri-endoperkolativ (Apen)

Illuviale Böden (S > T)
Anmoorboden
Ihwo
peri-exoperkolativ (Apex)

Tabelle 8. Morphologie der waldfeindlichen Böden

Bodenprofil	Bodenkunde	WHITESIDE	Dynamik
Wiesenboden mit Kalkortstein			
Oberboden	$\mathbf{A_1}$	\mathbf{Ehwo}	Apen
Unterboden	$\mathbf{A_2}$	${f E}$	$\hat{\mathbf{B}}$
Kalkortstein	В	${f I}{f k}$	
Steppenboden mit Kalkortstein			
Oberboden	${f A}$	Eh	Aam
Kalkortstein	${f B}$	Ik	
Wiesenboden mit Lateritortstein			
Oberboden	$\mathbf{A_1}$	Ehwo	$\mathbf{A}\mathbf{pen}$
Unterboden	$\mathbf{A_2}$	${f E}$	$\hat{\mathbf{B}}$
Laterit	${f B}$	${f R}$	
Steppenboden mit Lateritortstein	11		
Oberboden	${f A}$	$\mathbf{E}\mathbf{h}$	Aam
Laterit	${f B}$	${f R}$	
Salzboden mit Lateritortstein			
Oberboden	$\mathbf{B_1}$	Ih	Aex
Unterboden	$\mathbf{B_2}$	I	В
Laterit	\mathbf{A}	${f R}$	
Szik über salzigem Ton			
Oberboden	${f A}$	$\mathbf{E}\mathbf{h}$	Aam
Ton	В	Its	in the second se

Die Bodenprofile von Whiteside und der Dynamik zeigen, dass die Definitionen der konventionellen Bodenkunde: A-Horizont = eluvial und B-Horizont = illuvial revisionsbedürftig sind.

Die zum Solum gehörenden Horizonte müssen dieselbe Wasserbewegung haben; sie sind entweder eluvial oder illuvial. Findet man im Bodenprofil eluviale und illuviale Horizonte, so muss zwischen beiden eine wasserundurchlässige Scheidewand verlaufen, die untere Bodengrenze. Bis zu dieser nimmt die Dynamik das Bodenprofil auf, während nach dem Vorschlag von Whiteside die Tonschicht oder die Ortsteinbildung leicht zu erkennen ist, und auf ihr verläuft die untere Bodengrenze.

4 a 1. Klassifikation von Szabolcs und Jasso

Szabolcs und Jasso machen zur Klassifikation der Szikböden folgenden Vorschlag: "Die Abgrenzung der Subtypen und Varietäten erfolgte nicht nach starren Kategorien, sondern auf Grund jener wichtigen Eigenschaften, die unter den Bedingungen der Ungarischen Grossen Tiefebene in Erscheinung treten. Während zum Beispiel die einzelnen Subtypen der Solontschak und Solontschak-Solonetzböden nach Menge und Art der löslichen Salze abgetrennt wurden, erfolgte die Einstufung der Subtypen bei den Solonetzböden nach der Tiefe des A-Horizontes. Auf Grund ähnlicher Prinzipien wurde sinngemäss die Mächtigkeit der Humusschicht, der Kalziumkarbonat-Horizont usw. berücksichtigt. Bei der Abgrenzung bedeutete auch der Anteil an Natrium-Ionen in den austauschbaren Kationen einen wichtigen Gesichtspunkt. Falls innerhalb sämtlicher austauschbarer Kationen die Natrium-Ionen 20—25% überschreiten, wird der Boden als Solonetz, bei weniger als 20% aber mehr als 5% als solonetzig bezeichnet."

Das modifizierte System Pallmann (Schaufelberger, 1955b) sagt über die Bodenvarietäten:

"Bei den Salzböden spielt die einseitige Absättigung der Umtauschkomplexe durch K-, Na-, Ca- oder Mg-Ionen eine wichtige Rolle bei der Klassifizierung, ebenso die Zusammensetzung der freien Salze in der Bodenlösung". Die von Szabolcs und Jasso vorgeschlagene Klassification der Szikböden läßt in das modifizierte System Pallmann einbauen.

Tabelle 9. Systematische Klassifikation von Wald- und Szikböden

Kategorie	Waldböden	Szikböden
Bodenklasse	Perkolationsrichtung	Perkolationsrichtung
Bodenordnung	Humusgehalt	${f Humusgehalt}$
Bodenverband	Basengehalt	Basengehalt
Bodentyp	Auswaschungsfaktor	
Bodenuntertyp	Farbe	
Bodenart	Körnung	
Bodengruppe		Zusammensetzung
		der austauschbaren Basen
Bodenuntergruppe		Tiefe des Solums
Bodenvarietät		Anionenzusammensetzung

Tabelle 10. Bodengruppen der waldfeindlichen Böden

Klasse der peri-endoperkolativen Mineralnassböden

	Na- u. Mg-arm	Na-haltig	Na-reich			
Humusarm, basenarm	Aganfonoffsoel	Albaredasoel	Albertsoel			
Humusarm, basenreich	Ballsoel	Bauersoel	Benettsoel			
Humusreich, basenarm	Cameronsoel	Candollesoel	Carpentersoel			
Humusreich, basenreich	Daltonsoel	Deansoel	Demolonsoel			
Sehr humusreich, basenarm	Eatonsoel	Ecksteinsoel	Ehrenbergsoel			
Sehr humusreich, basenreich	Fabersoel	Falonsoel	Fausersoel			
Klasse der peri-experkolativen	$An moor b\"{o}den$					
Humusarm, basenarm	Ganssensoel	Gedroixsoel	Gessnersoel			
Humusarm, basenreich	Hardysoel	Harrassowitzsoel	Hellriegelsoel			
Humusarm, basenüberreich	Jackssoel	Jägersoel	Jakobsoel			
Humusreich, basenarm	Kappensoel	Kelleysoel	Kelloggsoel			
Humusreich, basenreich	Laatschsoel	Langsoel	Lawessoel			
Humusreich, basenüberreich	Marbutsoel	Meigensoel	Meyersoel			
Sehr humusreich, basenarm	Nagelschmittsoel	Neubauersoel	Nigglisoel			
Sehr humusreich, basenreich	Odénsoel	Oggsoel	Olbertzsoel			
Sehr humusr., basenüberr.	Pallmannsoel	Paracelsussoel	Passargesoel			
Klasse der amphiperkolativen	Steppenböden					
Humusarm, basenarm	Ramannsoel	Remysoel	Riesersoel			
Humusarm, basenreich	Salysburysoel	Sägersoel	Saussuresoel			
Humusreich, basenarm	Scharrersoel	Scheelesoel	Scheffersoel			
Humusreich, basenreich	Shalsoel	Shantzsoel	Sharpsoel			
Klasse der exoperkolativen Salzsteppenböden						
Humusarm, basenarm	Stebuttsoel	Stefanvovitssoel	Stewartsoel			
Humusarm, basenreich	Szabolcssoel	Sabosoel	Szebényisoel			
Humusarm, basenüberreich	Tomsonsoel	Taylersoel	Thaersoel			
Humusreich, basenarm	Vagelersoel	van Bemmelensoel	v. d. Merwesoel			
Humusreich, basenreich	Wagenersoel	Waksmansoel	Walleriussoel			
Humusreich, basenüberreich	Zacharowasoel	Zappesoel	Zeunersoel			

Die Untersuchungen von Szabolcs und Jasso zeigen, dass bei den waldfeindlichen Böden die Bodenverbände nicht durch den Auswaschungsfaktor zu unterteilen sind, sondern durch die Zusammensetzung der austauschbaren Basen. Statt der Bodentypen erhalten wir Bodengruppen. Wir können nun definieren:

Die Bodengruppe ist durch eine bestimmte Perkolationsrichtung, durch einen bestimmten Humusgehalt, einen bestimmten Basengehalt und eine bestimmte Zusammensetzung der austauschbaren und wasserlöslichen Kationen defeniert. Sie wird durch die von Whiteside vorgeschlagene Endung -soel charakterisiert.

Mg-haltig Altensoel Blancksoel Clarcksoel Dokutschajeffsoel Endellsoel Fehérsoel	Mg-reich Aranysoel Boussingaultsoel Combersoel Dosdoffsoel Englesoel Fischersoel	Na- u. Mg-haltig Atterbergsoel Buchanansoel Cornusoel Du Boissoel Erhardtsoel Fletschersoel	Na- u. Mg-reich Aubertsoel Burnottesoel Correnssoel Düggelisoel Eskolasoel Franzsoel
Glaubersoel Hilgardsoel Jennysoel Klappsoel Leiningensoel Mitscherlichsoel Nikiforoffsoel Oldershausensoel Pendletonsoel	Glinkasoel Hissingsoel Jensonsoel Kopeckeysoel Liebigsoel Mohrsoel Niklassoel Orthsoel Pereirasoel	Gracaninsoel Hoppsoel Joffesoel Krassanowsoel Liechtisoel Mückenhausensoel Noaksoel Overstreetsoel Pfaffsoel	Greenesoel Howardsoel Jonsessoel Kühnsoel Löhnissoel Muirsoel Nollsoel Owensoel Prescottsoel
Robinsonsoel Senftsoel Scherfsoel Shawsoel Stokessoel Székysoel Toblersoel van Hisesoel Walthersoel	Rogersoel Sibiceffsoel Schlössingsoel Shermansoel Stoklassoel Szelényisoel Treitzsoel Vargasoel Whitesidesoel	Romellsoel Siegelsoel Schollenbergsoel Shivesoel Storzsoel Szepésisoel Truogsoel Venemasoel Wiegnersoel	Russellsoel Sigmondsoel Schwarzsoel Schwtsoel Stremmesoel Szücssoel Turnersoel Vilenskysoel Wissotzkisoel

Nach dem Vorschlage von Szabolcs und Jasso definieren wir die einzelnen Bodengruppen:

Bodengruppe

%Äquivalente der Kationensumme S

>25% Na und >25% Mg

 1. Natrium- und magnesiumarme Böden
 < 5% Na und < 5% Mg</td>

 2. Natriumhaltige Böden
 5—25% Na

 3. Natriumreiche Böden
 > 25% Na

 4. Magnesiumhaltige Böden
 5—25% Mg

 5. Magnesiumreiche Böden
 > 25% Mg

 6. Magnesium- und natriumhaltige Böden
 5—25% Na und 5—25% Mg

7. Magnesium- und natriumreiche Böden

Die waldfeindlichen Lössböden verteilen sich auf 4 Bodenklassen mit 10 Ordnungen, 25 Verbänden und 175 definierten Bodengruppen, die, wie die Bodentypen, eigene Namen mit der Endung -soel erhalten (Tabelle 10).

SZABOLCS und JASSO unterteilen diese Bodengruppen nach der *Tiefe des Bodens*, die in vielen Fällen nur aus dem A-Horizont besteht. Unterscheidet man nur drei Varietäten, so erhalten wir 525 definierte Lokalböden, deren Muttergestein Löss sein kann und in sehr vielen Fällen auch ist; alle heissen dann nach der konventionellen Bodenkunde Tschernosem.

4 a 2. Bodenklassifikation von ARANY

SZABOLCS und JASSO klassieren die Szikböden nach den Kationen, während S. Arany eine solche nach den Anionen vorschlägt. Er unterscheidet folgende Bodenvarietäten: 1. Sulfate; 2. Chloride; 3. Sulfate und Chloride; 4. Sulfate und Bikarbonate; 5. Chloride und Bikarbonate; 6. Sulfate, Chloride und Bikarbonate; 7. Sulfate und Karbonate; 8. Chloride und Karbonate; 9. Sulfate, Chloride und Karbonate und 10. Karbonate.

Mit dem von Arany vorgeschlagenen Varietätsmerkmal lassen sich die durch den Vorschlag von Szabolcs und Jasso definierten 525 Bodenuntertypen in je 10 Varietäten unterteilen, und wir erhalten somit Definitionen für 5250 Bodenindividuen. Jetzt wird man die Klagen der Bodenkundler verstehen, dass es so schwer sei, die Böden der Ebenen zu klassieren, und dass die Versuchung gross ist, sie nach den Muttergesteinen, fluvialen und äolischen Sedimenten und deren Kalkgehalt zu ordnen. Nun zeigt die Systematik die Lösung; man muss ihre Dynamik berücksichtigen.

4b. Dynamik der waldfeindlichen Böden

Im schlesischen Lössgebiet fand E. Scherf Anmoore, Tschernosem, Braunerde und Podsol nebeneinander. Diese Feststellung überraschte, denn damals war die konventionelle Bodenkunde felsenfest überzeugt, dass Tschernosem, Braunerde und Podsol die Klimabodentypen semihumider, humider und perhumider Bereiche seien, und nun sollten diese drei Klimaböden sich nebeneinander im semiariden Klima bilden. Einzelne Bodenkundler sahen darin den Beweis, dass der Regenfaktor nicht stimme. Scherf selber gibt folgende Erklärung:

"Also nicht das Luftklima allein ist bestimmend für die Tschernosembildung in diesen Gebieten, sondern (und in viel höherem Masse) das Bodenklima. Welchem nun unter den verschiedenen, stets zusammen wirksamen bodenklimatischen Fak-

toren die Hauptrolle einzuräumen sei, ob es die Vegetation ist (Hohenstein und Schalow) oder das Relief (Orth) oder aber die Wasserdurchlässigkeit des Untergrundes und der Bodenkrume, zusammen mit deren Karbonatgehalt (Jenzsch und Scherf), müssen weitere Untersuchungen entscheiden..."

Heute lassen sich diese verschiedenen Bodenbildungen leicht deuten: der Podsol ist der basenarme, die Braunerde der basenreiche Waldboden, also nach Tabelle 2 handelt es sich um einen Bambus- bzw. Calisol des semiariden Klimas. Tschernosem und Anmoor sind zeitweise vernässte eluviale und illuviale, baumfeindliche Böden.

Während die konventionelle Bodenkunde annahm und teilweise noch heute annimmt, dass das Luftklima die Wasserbewegung im Boden bestimme, so erklärt sie Scherf, wohl als erster, geologisch. Es muss im Bodenprofil der baumfeindlichen Böden in der Nähe der Oberfläche ein wasserundurchlässiger Horizont existieren, auf dem sich das Wasser mindestens zeitweise staut, was zur Vernässung des Oberbodens führen kann. In anderen Fällen kann das aufsteigende Kapillarwasser die Eigenschaften des Oberbodens beeinflussen. Auf diesem undurchlässigen Horizont, der unteren Bodengrenze, fliesst das Wasser seitlich nach der tiefsten Stelle des Mikroreliefs. Bildet dieses eine tellerförmige, abflusslose Mulde, dann stagniert das Wasser. Da es nur durch Verdunsten entweichen kann, kommt es hier zur Salzanreicherung, und es bildet sich ein Illuvialboden, der von Eluvialböden umgeben ist. Die hier ausgelaugten Salze werden dort angereichert. Beide Böden bilden eine Katena.

Ist die Depression drainiert, dann bilden sich nur Eluvialböden, die basenreich oder basenarm sein können. Die Verhältnisse können sich dadurch komplizieren, dass die Bodenbildung durch Salzwasser beeinflusst wird, das unter Umständen reich an Na- und/oder Mg-Ionen sein kann. Solche Fälle kennt man aus Afrika, den USA, den Donaubecken usw.

In der Umgebung von Debrecen findet man einen salzhaltigen Ton, der flache Wellen bildet. In den Mulden ist er mit Löss bedeckt, und dieser entspricht dem Boden. In Weganschnitten beobachtet man die Salzausblühungen im *Untergrunde*, nicht aber aus dem Lössboden. In den Hügeln steht der salzige Ton an, und aus diesem blühen die Salze aus. Hier hat sich aus irgendeinem Grunde kein Boden gebildet. Bei Regen werden die Salze auf diesem Ton seitlich in den Löss der Mulden eingespühlt. Diese sind drainiert, und so bilden sich Eluvialböden mit wechselndem Gehalt an Na- und Mg-Ionen, je nach den örtlichen Verhältnissen.

Sehr oft hat man mit Bewässerung in Ebenen arider Gebiete unerfreuliche Erfahrung gemacht. Bewässert man eine tellerförmige Mulde

Tabelle 11. Klima und Tschernosembildung

		r	ĔΨ	M	Ą	M	Ļ	Ŀ	A	2 2	0	Z	D	
Frankfurt a. M.	N T RF	44 0,7 per	36 2,2 per	40 5,3 sh	39 9,3 sa	48 14,3 sa	57 17,3 a	68 18,7 sa	69 17,7 sa	51 14,4 sa	55 9,4 sh	49 4,7 h	53 m 1,9°.	o C
Köln	N T RF	52 2,4 per	45 3,4 per	46 5,9 sh	49 9,4 sh	52 14,1 sa	65 16,8 sa	81 18,4 sa	70 17,7 sa	54 14,9 sa	64 10,4 sh	55 6,0 h	63 m 3,4° per	O° C
Hannover	N H N	50 0,8 per	38 1,7 per	46 4,3 h	45 8,0 sh	54 13,0 sa	63 15,9 sa	80 17,5 sa	75 16,7 sa	80 13,8 sh	51 9,2 sh	43 4,6 h	$_{2,1}^{\circ}$	o C
Magdeburg	N T RE	$\begin{array}{c} 37 \\ 0.1 \\ \end{array}$	39 1,0 per	33 4,2 h	36 8,4 sa	42 13,8 a	47 16,8 a	68 18,4 sa	56 17,4 a	43 14,1 8	42 9,1 sa	36 4,1 h	39 m 1,4 $^{\circ}$	o C
Erfurt	N T R	31 - 1,1 per	23 0,1 per	30 3,4 h	40 7,4 sh	52 12,5 sa	58 15,4 88	70 17,0 sa	57 16,2 sa	47 12,9 sa	41 8,2 sa/sh	31 3,3 h	$30~\mathrm{m}$ $0.5~\mathrm{o}$	o C
Leipzig	N T RF	40 - 0,3 per	33 0,7 per	41 4,0 h	47 8,9 sh	60 13,6 sa	67 16,8 sa	85 18,4 sa	67 17,5 sa	49 13,9 sa	50 8,8 sh	40 3,9 h	$rac{42}{1,1}^{\circ}$	o C
Breslau	N T RF	38 - 1,1 per	$\begin{array}{c} 29 \\ - 0.2 \\ \text{per} \end{array}$	38 3,4 h	43 8,2 sh	60 13,8 sa	62 16,9 sa	87 18,8 sa	68 17,7 sa	46 14,2 a	44 19,0 sa	39 3,6 h	38 m $0,4$ $^{\circ}$	o C

		J.	দ	M	A	M	ſ	٦	Ą	SZ	0	Z	О
Russland I	T L RE	59 - 2,1 per	49 - 0,1 per	46 5,0 h	53 10,6 sa	44 16,7 a	67 20,4 sa	60 23,7 a	33 22,9 a	67 17,6 sa	47 12,2 sa	58 5,3 h	66 mm 1,1 ° C per
Russland II	N T RF	35 - 6,1 per	36 - 4,0 per	33 1,0 per	34 9,0 sa	43 16,8 a	62 20,7 a	56 23,7 a	31 22,8 a	31 16,5 a	33 9,8 8a	38 2,3 per	39 mm - 2,5 ° C per
Russland III	R H R	26 - 7,0 per		$\begin{array}{c} 32 \\ 0,1 \end{array}$	36 8,4 sa	50 16,0 a	62 19,6 a	58 22,7 a	36 20,7 a	34 14,6 8	35 8,0 sa	38 1,1 per	35 mm - 3,5 ° C per
Russland IV	N T RF	21 - 7,5 per	20 - 5,4 per	$\begin{array}{c} 32 \\ - 1,1 \\ \text{per} \end{array}$	29 7,1 sa	36 14,9 a	70 18,0 sa	66 20,6 a	52 19,4 a	24 14,1 a	40 7,4 sh	$\begin{array}{c} 32 \\ 0,2 \\ \end{array}$	29 mm - 4,5 ° C per
Russland V	T T RE	34 15,4 per	$\begin{array}{c} 22 \\ -13,5 \\ \text{per} \end{array}$	21 - 7,4 per	24 4,0 sh	39 14,8 a	44 19,7 a	31 22,0 a	35 19,7 a	26 13,0 a	29 4,7 sh	42 - 4,6 per	38 mm -11,0 °C per
Russland VI	N T RF	12 -19,1 per	8 18,1 per	10 -11,3 per	17 0,2 per	28 10,6 a	56 16,6 sa	70 18,9 sa	53 15,9 sa	34 10,3 sa	22 1,6 per	$\begin{array}{c} 17 \\ -8.6 \\ \mathrm{per} \end{array}$	14 mm -16,5 ° C per
Russland VII	N T X	13 19,2 per	9 18,5 per	11 -11,8 per	16 - 0,8 per	27 10,2 a	50 16,2 a	64 18,7 sa	48 15,8 a	29 9,9 a	$\frac{20}{1,2}$	$\begin{array}{c} 21 \\ - 9.2 \\ \mathrm{per} \end{array}$	17 mm -16,5 ° C per

mit einem Na- und/oder Mg-reichen Illuvialboden, dann steigt der Wasserspiegel, und das Salzwasser gelangt nun von unten in die vorher eluvialen Böden und vergiftet sie. In solchen Fällen hilft nur Drainage, damit die Salzwasser abfliessen können. In manchen Fällen hat man den Untergrund durch Sprengung aufgelockert und wasserdurchlässig gemacht.

Bei den Waldböden ist die Wasserbewegung nach unten, bei den waldfeindlichen seitlich gerichtet, und so unterscheiden sie sich durch die Dynamik. Diese ist in Ebenen mit Lössauflagerungen sehr vielseitig, und darum trifft man sehr mannigfaltige Bodenbildung, trotz desselben Klimas und demselben Muttergestein.

5. Lössbodenbildung und Klima

Oft liest man, dass sich der wahre Tschernosem im Löss nur im kontinentalen Klima mit heissen Sommern und kalten Wintern bilde. Nach anderen Autoren bilden sich im "trockenen Steppenklima" die Steppe, im "wechselfeuchten Savannenklima" die Savanne und im "immerfeuchten Waldklima" der Wald. Nach dieser Auffassung würde die Regenverteilung den Vegetationstyp und die Bodenklasse bestimmen.

Nun sind wir heute über die Verbreitung des Lösses in Eurasien gut unterrichtet und finden auch Klimaangaben aus dieser Löss- oder Tschernosemzone. Die Klimaangaben Russlands sind einer Arbeit von V. R. Volobuev in russischer Sprache entnommen. Eine Karte zeigt die Verbreitung des Tschernosems, der sich auch im Subpolargebiet bildet.

Um den Klimaablauf im Lössgebiet zu erkennen, finden wir in der Tabelle 11 die monatlichen Regenmengen (N), die mittleren Monatstemperaturen (T) und die monatlichen Regenfaktoren (RF). Es bedeuten: a = arid, sa = semiarid, sh = semihumid, h = humid und per = perhumid.

Die Tabelle 11 zeigt für das ganze Gebiet für die Monate Mai bis September einen ähnlichen Klimaablauf, der der Vegetationszeit entspricht. Ganz verschieden ist dagegen der Temperaturablauf im Winter; dieser entscheidet, ob das Klima ozeanisch, normal oder kontinental ist. Wenn wir nach der Regenverteilung definieren: trockene Steppenklimate mit 12 bis 9 ariden Monaten; wechselfeuchte Savannenklimate mit 8 bis 4 ariden Monaten und immerfeuchte Waldklimate mit 4 bis 0 ariden Monaten, so stellen wir mit Überraschung fest, dass es im Lössgebiet Eurasiens kein einziges Steppenklima gibt. Die drei "wechselfeuchten Savannenklimate" haben 5 aride Monate, und die 11 anderen Stationen

liegen im "immerfeuchten Regenwaldklima". Die Natur zeigt deutlich, dass die Klimaklassifikation nach der Regenverteilung und der Klimavegetationstypen revisionsbedürftig ist.

Dagegen zeigen die Tabellen 4 und 5, dass es Lössböden gibt, die mit der durch die Regenfaktoren definierten Befeuchtung im Gleichgewicht stehen. Wenn wir nun die Klimate des Lössgebietes von Eurasien klassieren wollen, so werden wir eine Klimasystematik wählen müssen, die die Befeuchtung durch die Regenfaktoren definiert. Das ist beim Vorschlag Caldas-Lang (Schaufelberger, 1957, 1959c) der Fall. Dieser beruht auf den Klimafaktoren: Zone, mittlere Jahrestemperatur (Höhenklima) und Befeuchtung (Regenfaktor). Weiter berechnen wir aus Tabelle 11 die Differenz der extremen Temperaturmonatsmittel (dT) und die Anzahl arider Monate (a) (Tabelle 12).

Tabelle 12. Klimaklassifikation nach Caldas-Lang

Ort	\mathbf{N}	${f T}$	\mathbf{RF}	dT	a	Klima
	mm	° C		° C		
Frankfurt a.M.	508	9,1	56	18,3	1	gemässigt, montan, semiarid, ozeanisch
Köln	696	10,2	68	16,0	0	gemässigt, montan, semihumid, ozean.
Hannover	644	9,0	73	16,7	0	gemässigt, montan, semihumid, ozean.
Magdeburg	508	9,1	56	18,3	4	gemässigt, montan, semiarid, ozeanisch
Erfurt	510	8,0	63	18,1	0	gemässigt, montan, semihumid, ozean.
Leipzig	621	8,9	70	18,7	0	gemässigt, montan, semihumid, ozean.
Breslau	592	11,0	54	19,9	1	gemässigt, montan, semiarid, ozeanisch
Russland I	646	11,9	54	25,6	3	gemässigt, montan, semiarid
Russland II	470	9,2	57	29,8	5	gemässigt, montan, semiarid
Russland III	496	7,9	62	29,2	5	gemässigt, alpin, semihumid
Russland IV	451	6,9	66	27,9	4	gemässigt, alpin, semihumid
Russland V	385	3,4	113	37,4	5	subpolar? alpin, humid, kontinental
Russland VI	341	0,0	> 160	38,0	1	subpolar? nival, perhumid, kontinental
Russland VII	325	-0.3	> 160	37,9	4	subpolar? nival, perhumid, kontinental

Wie anderswo gezeigt wurde (Schaufelberger, 1950, 1953, 1954, 1958b), wird der Klimasol, unabhängig von der mittleren Jahrestemperatur und der Zone, durch die Befeuchtung bestimmt. Nach dem zweiten Langschen Gesetz (Schaufelberger, 1959a, 1959b) bestimmt diese den Humusgehalt und den Auswaschungsfaktor. Die Tabellen 4 und 5 zeigen, dass Bambus- und Humussol verschiedene Regenfaktoren und Perkolate auch auf Lössböden zeigen. Nach der Tabelle 2 müssten die Klimasols im nördlichen Lössgebiet mit humiden und perhumiden Klimaten viel humusreicher sein als im südrussischen und demjenigen in Deutschland. Der Humusgehalt der Klimasols wächst mit geometri-

scher Progression: arid 1%, semiarid 2%, semihumid 4%, humid 8% und perhumid 16%. Diese Beziehung gilt nur für die Klimasols, aber auch bei den anderen Bodentypen und Bodenklassen erkennt man leicht ein Anwachsen des Humusgehaltes mit der Befeuchtung.

Über den Humusgehalt der Lössböden macht H. Wilhelmy folgende Angaben:

"Der Humusgehalt der fetten Tschernosems erreicht in der ukrainischen Waldsteppe bis 16% und geht in der südrussischen Pfriemengras-Trockensteppe allmählich auf 4% zurück. Auch die degradierten Schwarzerden der nördlichen Waldsteppe haben nur einen Humusgehalt von 4-6%. Diese Werte liegen aber immer noch über denen, die bei den deutschen Schwarzerden angetroffen werden (2-3%)."

Es sind also revisionsbedürftig die Ansichten über die Regenverteilung und der angeblich durch sie bestimmten Vegetationstypen: Steppe, Savanne und Wald.

Die Klimaklassifikation von Caldas wurde in den Tropen aufgestellt, die Regenfaktoren wurden ebenfalls in den Tropen erkannt. Die von Lang angenommenen Klimabodentypen wurden ebenfalls in den Tropen gefunden; auf Grund dieser wurde das zweite Gesetz von Lang aufgestellt, das über den Humusgehalt der Klimaböden aussagt. Wendet man diese tropischen Erfahrungstatsachen auf das Lössgebiet Eurasiens an, so erklären sie die längst bekannten Tatsachen vom grossen Unterschied des Humusgehaltes der verschiedenen Lössböden. Er ist klimabedingt, und es handelt sich um Böden verschiedener Typen und Gruppen.

Der Regenfaktor = Jahresniederschlag: mittlere Jahrestemperatur definiert die Befeuchtung. Die Einheit der Befeuchtung ist nach der Definition die auf 1° C reduzierte Regenmenge, die jede Sekunde fallen müsste, um im Jahre eine Regenhöhe von 1 cm zu erreichen. Nun ist zu entscheiden, ob diese neue physikalische Einheit der Befeuchtung sich in das Gramm-Zentimeter-Sekunden-System einbauen lässt.

Zusammenfassung

Nach der konventionellen Bodenkunde soll der Tschernosem ein Klimaboden sein und sollte sich in einem bestimmten "Steppenklima" bilden.

Die echten Klimaböden sind die Endglieder von fünf Sukzessionsserien endoperkolativer Waldböden, die sich auch im Löss bilden. Nach dem Gesetz von Pallmann sind also auch in Löss in jedem Klima Rohböden, unreife Böden, reife, degradierende und degradierte zu erwarten. Unter ihnen finden wir nachgewiesen die Lithosols und Klimasols aus den ariden, semiariden und semihumiden Klimaten.

Die waldfeindlichen Lössböden entwickeln sich in Ebenen mit seitlicher Wasserbewegung auf der unteren Bodengrenze. Es bilden sich dann Lössböden, die sich auf 4 Bodenklassen, 10 Bodenordnungen, 25 Bodenverbände und 175 Bodengruppen mit 5250 wohldefinierten Bodenvarietäten verteilen. Diese unterscheiden sich durch die Wasserbewegung im Boden, den Humusgehalt, den Basengehalt und die Zusammensetzung der austauschbaren und wasserlöslichen Basen. Diese ist sehr mannigfaltig, weil Salze oder Salzwasser seitlich in den Boden gelangen und dann die Bodenbildung beeinflussen kann.

Lössböden finden wir in allen Klimaten, also ist seine Bildung ganz sicher nicht an ein hypothetisches Steppenklima gebunden. Der Humusgehalt der Tropenböden wird bei den basenarmen Waldböden durch den Regenfaktor bestimmt. Genau dieselben Humusmengen findet man auch bei gleicher Befeuchtung im Lössgebiet von Eurasien. Der Regenfaktor muss also die Befeuchtung definieren. Die physikalische Einheit der Befeuchtung ist demnach die auf 1°C reduzierte Regenmenge, die jede Sekunde fallen müsste, um im Jahr eine Regenhöhe von 1 cm zu erreichen.

Chemie, Geologie, Petrographie, Botanik und Physik zeigen, dass sich auf Löss sehr verschiedene Böden bilden können. Wann wird diese Tatsache von der konventionellen Bodenkunde anerkannt werden?

Literaturverzeichnis

- S. M. P. M. = Schweiz. Mineralogische und Petrographische Mitteilungen
- Arany, S. A. (1956—1957): Die genetische und praktische Klassifizierung der ungarischen Alkaliböden (Szik-Böden). Ommy Vol. 4, S. 31—48.
- Gracanin, M. (1950): Monthly Rain-Factors and their Significance for pedological Investigations. Revisio Scientifica Agriculturae 12, S. 51—61.
- Lang, R. (1915): Versuch einer exakten Klassifikation der Böden in klimatischer und geologischer Hinsicht. Int. Mitt. f. Bodenkunde.
- Schaufelberger, P. (1950): Wie verläuft die Gesteinsverwitterung und Bodenbildung in den Tropen, insbesondere in Kolumbien? S. M. P. M. 30/2.
- (1952): Gibt es in den Tropen Tschernosem? Zeitschr. f. Pflanzenern., Düngung u. Bodenkunde 57/2.
- (1953): Tropische Verwitterung und Bodenbildung über Andesit und Diorit. S. M. P. M. 33/1.
- (1954): Verwitterung und Bodenbildung auf basischen Eruptivgesteinen. S. M. P. M. 34/2.

- (1955a): Zur Systematik der Tropenböden. Vierteljschr. d. Naturf. Ges. Zürich 100, S. 131—143.
- (1955b): Vierzig Jahre Regenfaktor. Ibid., S. 194—201.
- (1956): Kritische Betrachtung der Bodenklassifikation. S. M. P. M. 36/2.
- (1957): Zur Systematik des Tropenklimas. Geogr. Helv. XII/1.
- (1958a): Die Bodentypen des modifizierten Systems Pallmann. S. M. P. M. 38/1.
- (1958b): Las bases científicas de la Edafología. Anales de Edaf. y Fis. Veg. XVII/11.
- (1959a): Von der chaotischen Bodenkunde zur logischen Bodenlehre. S. M. P. M. 39/1—2.
- (1959b): Die Gesetze der Bodenbildung. Jb. f. Geol. u. Paläont. Mh. 9.
- (1959c): Klima-, Klimaboden- und Klimavegetationstypen. Geogr. Helv. 14/1.
- Scherf, E. (1930): Über die Rivalität der boden- und luftklimatischen Faktoren bei der Bodentypenbildung. Jber. d. kgl. ung. geol. Anstalt 24.
- Stremme, H. (1926): Grundzüge der praktischen Bodenkunde. Berlin.
- SZABOLCS, I. und Jasso, F. (1959): Klassifikation der Szikböden Ungarns. Agrochemie und Bodenkunde 8/3.
- Volobuev, V. R. (1958): Comparative Geographical Study of Climate Conditions of Chernosem Formation. Zeitschr. d. Akademie der Wissenschaft Baku, Nr. 8.
- WHITESIDE, E. P. (1959): A proposed system of genetic soil-horizon designation. Soils and Fertilizers 22/1.
- Wilhelmy, H. (1950): Das Alter der Schwarzerden und der Steppen Mittel- und Ostdeutschlands. Erdkunde IV/1-2.