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Die Azimute der Bildkanten bei der orthogonalen
Parallelprojektion von Zwillingsindividuen

Von R. Rath (Hannover)

Im allgemeinen wird die orthogonale Parallelprojektion eines Kristalls
auf Grund seiner Polfigur vorgenommen. Dabei sind pro Kante zwei
Hilfslinien erforderlich. Handelt es sich um ein Individuum, das sehr
flächenreich ist, oder um einen Zwilling, der nicht einmal sehr flächenreich

zu sein braucht, so können die Zwischenkonstruktionen das

begonnene Bild schnell — und häufig ausweglos — verwirren. In solchen
Fällen empfiehlt es sich, die Richtungen zu berechnen, die die Kristallkanten

im Bild mit einer Bezugsrichtung einschliessen. Für dieses von
Parker (1929) eingeführte Verfahren soll hier eine allgemein gehaltene
Begründung auf vektoranalytischer Basis gegeben werden unter
besonderer Berücksichtigung der Fälle, dass der Winkel (100) A (010)
unbekannt ist oder Zwillinge vorliegen, deren kristallographische Achsenkreuze

durch Spiegelung an der Verwachsungsebene bzw. Drehung um
eine zweizählige Achse ineinander übergehen.

1. Komponenten der Einheitsvektoren eines triklinen Achsenkreuzes in
bezug auf ein kubisches Achsenkreuz

Gegeben sei ein schiefwinkliges Rechtssystem (triklines Achsenkreuz)
(0, a, b, c) mit den Einheitsvektoren a0, b0, c0 und den Winkeln (b, c) a,
(c, a) ß, (a, b) y und ein rechtwinkliges Rechtssystem (kubisches
Achsenkreuz) (0, $, p, j). j sei der horizontalen, p der vertikalen Kante
des Zeichenblatts parallel; dann gibt j die Richtung seiner Normale an
(in Fig. 1 perspektivisch dargestellt), c falle in die Richtung von t), a liege
in der pg-Ebene. Durch diese Festsetzung wird eine für Kristalle aller
Systeme gleiche Lage der projizierten Fläche (010) erreicht. Gesucht
werden die Komponenten von a0, b0, c0 in bezug auf £, p, g. Benennungen
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und Spezialwerte dieser Komponenten gehen aus folgendem Schema
hervor :

£ b b

°0 0 ay

&0 bx by bz

Co 0 1 0

Fig. 1. Lage des schiefwinkligen Rechtssystems mit den Einheitsvektoren cto, bo, Co

in bezug auf das rechtwinklige Rechtssystem (0, j, t), j). Die Benennungen der
Vektoren als auch ihrer Komponenten sind in Rahmen eingefasst, um durch
Parallelstellung eines Seitenpaares zu dem anzusprechenden Objekt Zuordnungszweifel

ausschliessen zu können. Bei Vektoren ist dieser Rahmen, den darstellenden
Pfeil unterbrechend, unmittelbar vor dessen Endpunkt eingefügt, bei Kompo¬

nenten seitlich neben den Mittelpunkt der Strecke gerückt.

Gleichungen für die Komponenten lassen sich auf zwei Wegen finden.
Durch Verwendung des „Pythagoras" erhält man:

ay2 + az2 1, (1)
bx2 + by2 + bz2 =1, (2)

durch Bildung der skalaren Produkte ergibt sich :

(b0c0) cos« by, (3)
(c0a0) cos/3 ay, (4)
(a060) cosy ayby+ azbz. (5)

Kombiniert man die Gleichungen (1) bis (5) miteinander, so
resultieren die Ausdrücke der Tabelle 1.

2. Komponenten der Einheitsvektoren des zweimal gedrehten triklinen
Achsenkreuzes in bezug auf das kubische Achsenkreuz

Das schiefwinklige Rechtssystem werde gegenüber dem ortsfesten
rechtwinkligen Rechtssystem zweimal gedreht. Die erste Drehung
erfolge um t) und den sich aus tg ô 1/3 ergebenden Winkel ö 18,43°
im — bei Blick entgegen der Richtung von t) — negativen Sinne. Die
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Tabelle 1. Komponenten von a0, b0, C0 in bezug auf £, t), j.
Spalte 1 nennt die Komponente, Spalte 2 die Nummer der Ausgangsgleichung,
Spalte 3 diese selbst, in geeignete Form gebracht. In der folgenden Spalte sind die
Nummern der zur Substitution verwendeten Gleichungen angegeben, gefolgt von

den errechneten Ausdrücken und deren Nummern

ax JP Ii o

i i
(6)

ay (4) ay cosß (7)

Q>z (1) &Z — 1 (4) az sin/3 (8)

b* (2) (3),
(11)

(9)

bx= Kl~by2-bz2 -, /, „ /cosy —cos/3cosa\2
]/ COs2a sin/ j

bz |/sin2a ^y-eosßcosay

by (3) by cosa (10)

bz (5) u cos y— ayby
(7),
(10)
u.
(8)

u cos y — cos ß cos a
(11)

az sin ß

Cx Cx 0 (12)

Cy Cy 1 (13)

Cz Cz 0 (14)

zweite Drehung möge der Kristall um j und den aus sin e x/6 folgenden
Winkel e 9,59° im Gegenzeigersinn vollführen. Dabei ist ebenfalls
vorausgesetzt, dass das Auge der Achse entgegensehe. Die Grössen von
ô und e sind hier nach den Gepflogenheiten des Hamburger Instituts
notiert; in der Literatur finden sich etliche abweichende Angaben. So

gelten nach Parker (S. 15) (3 18,43° und e 6,38° (aus sin e x/9)
als Normalbedingungen. Zu berechnen sind nunmehr die Komponenten
des gedrehten Systems in bezug auf das ortsfeste System. Im folgenden
werden die durch die erste Drehung erhaltenen Vektoren durch einen
Strich, die durch die zweite Drehung erzeugten durch zwei Striche
gekennzeichnet. Vektoren, die mit gleichen Buchstaben und Indizes
benannt, aber unterschiedlich gestrichen sind, hahen demnach gleich grosse
Beträge, aber verschiedene Richtungen in bezug auf das ortsfeste System.
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Fig. 2.

Stellung der beiden Achsenkreuze zueinander nach Beendigung der Drehung um t).

Bei der Drehung um t) ändern sich die Komponenten in bezug auf t)

nicht. Es ist demnach (Fig. 2):

ay — ayj by by, Cy Cy. (15) bis (17)

Die beiden anderen Komponenten von a0 lauten :

&x' az sin ô, az' az cos ô. (18) und (19)

Der Vektor b0 hat dieselben Komponenten bx und bz wie seine
Projektion bxz. Nennt man den Winkel zwischen den Vektoren mit den

Beträgen bxz und bz £, so gilt :

bx' bxz sin (Ç-ô),

Darin ist:

und:

bz — bxz cos (£— ô).

bxz iV + b,2

sin (£ — ô) sin £ cos ô — cos £ sin ô, | cos (£ — <5) cos £ cos ô + sin £ sin d,

tg£=^, sin £

cos£

bx
bz

iMv)' VV + b»2

i/i+fêr VbJ+bj'

sin (£ — 5)
bxcos<5 — bzsind

Kbz2 + bx2
cos(£ — ô)

bz cos <5 + bx sind
Kbz2 + bx2

'
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also:

t>x' bx cos ô — bz sin ô, (20) bz' bz cos <5 + bx sin d. (21)

Die beiden anderen Komponenten von c0 brauchen, da 0, nicht
weiter betrachtet zu werden.

Fig. 3.

Stellung der beiden Achsenkreuze zueinander nach Beendigung der Drehung um j.

Bei der Drehung um £ behalten die Komponenten in bezug auf £
ihre Grösse bei. Das heisst (s. Fig. 3) :

ax ux bx bx cx cx (22) bis (24)

Der Vektor a0' hat dieselben Komponenten ay' und az' wie seine

Projektion ayZ'. Der Winkel zwischen ayZ' und ay' sei rj. Dann ist:
az" ayz' sin (rj + e), | ay" ayz' cos (rj + e).

Mit den Hilfsgleichungen:

*yz lV2 + az'2
und:
sin (rj + e) sin rj cos e + cos rj sin e, | cos (rj + e) cos rj cos e — sin rj sin e,

&ZJ. az
T7 sin??

az

8«y

Vnz'z + *y'2'

cos rj
I

sin (rj + e)
az' cos e + ay' sin e

l/az'2 + ay'2
'

j/a2'a + ay'a'

cos (rj + e)
ay cos e — az sme

|/az'2+ ay'2
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ergibt sich:

az" az' cos e + ay' sin e, (25) ay cos e — az sin e. (26)

Der Vektor b0' hat dieselben Komponenten by' und bz' wie seine

Projektion bzy'. Mit der Bezeichnung# für den Winkel zwischen byz'
und by' findet man:

bz" byz'sin (# + £), |

Durch Verwendung der Beziehungen:

by" byz'cos(# + e).

byz lV2 + bz'2
und:

sin (# + e) sin # cos e + cos # sin e,

tg#=£4,

cos#

sm<?

cos(# + e) cos # cos e — sin # sin e,

bz'
W
W

im¥) 2 |/bz'2 + by'2'

by'
2 lV2+by'2'

sin (# + e)
bz' cos e + by' sin e / n v bv' cos e — b2' sin e

cos (# + e) y

l/bz'2 + by'2 —x-.-, j/bz'2 + by'2

resultiert :

bz" bz'cos e + by'sine, (27)

Schliesslich hat noch der Vektor c0" die Komponenten:

by" by'cos e — bz'sin e. (28)

cy" cos e und cz" sin e. (29) und (30)

Setzt man nunmehr die Gleichungen (6) bis (14) in die Gleichungen (15)
bis (21) und diese in die Gleichungen (22) bis (30) ein, so ergeben sich die
Formeln (31) bis (39), jedoch ohne die Faktoren a, b und c. Durch
nachträgliche Multiplikation mit a, b oder c vermeidet man einerseits eine

unnötige Belastung der vorhergehenden Überlegungen und trägt andererseits

dem Umstand Rechnung, dass die Beträge der Einheitsvektoren
nur bei hochsymmetrischen Kristallen 1, im allgemeinen aber davon
verschieden sind. Die genannten Ausdrücke lauten:

ax" a sin ß sin ô, (31)

ay" a (cos/5 cos e — sin ß cos ô sine), (32)

az" a (sinß cos ô cos e -I- cos ß sin e), (33)
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(34)

(35)

(36)

bx" b Ksin2 a sin2 ß — (cos y — cos ß cos a)2j cos ô —

(cos y — cos ß cos a\ c]
—7—f sini

sm£ / J

r /cos y — cos ß cos a\
by =b {cos a cose— -—:—^ |cos<5 +y l L\ smß }

+ l'sin2 a sin2 ß — (cos y — cos ß cos a)2j sin dj sin ej,

i » ff/cosy — cosôcosa\"MlHw—)co"ä+
(sib/? ^s'n2 a s*n2 ß ~ (cos Y ~ cos ß cos a)2| 8in dj cos e + cos a sin e

Cx" 0, (37)

cy" ccose, (38)

c/ csine. (39)

Beim praktischen Gebrauch dieser Gleichungen ist zu beachten, dass
sie für spitze Winkel a, ß, y und ohne Rücksicht auf drehungsbedingtes
Negativwerden einzelner Komponenten abgeleitet worden sind, demnach

die Vorzeichen gegebenenfalls korrigiert werden müssen.

3. Vereinfachung der Gleichungen für die Komponenten von b0

Ist die Grösse des Winkels (100) a (010) £ (z. B. auf Grund der
Vermessung) bekannt, so lassen sich die Ausdrücke für bx", by", bz"
erheblich vereinfachen.

Durch Kombination der Gleichung (23) mit den auf (19) folgenden
Gleichungen entsteht:

bx" bx' l/bx2 + bz2sin(£-d)

und daraus mit Hilfe der in der Tabelle 1 aufgeführten Werte:

U " -1/ 1
r 2 !» I O \2T /cos y — cos ß cos a\2

bx l/-r-^-7;[sm2asin2ß — (cosy — cos ö cos a)2] + —:— •

|/ sm?ß \ smP /
• sin (£ - ä),

bx" .1 l^sin2 a sin2 ß — (cos y — cos ß cos a)2 + (cos y — cos ß cos a)2 •

sin ß

•sin (£-(3),
bx" b sin a sin (£ — <5). (40)
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Nach (27) bzw. (28) in Verbindung mit den zur Entwicklung von
Gleichung (40) benutzten Ausdrücken ist:

bz" Vbz2 + bx2 cos (C — Ô) cos e + cos a sin e,

by" cos a cos s — Kbz2 + bx2 cos (f — d) sin e
' :und da sich die Wurzeln wie ausgeführt auf sin a zusammenkürzen lassen :

bz" b [sin a cos (f — ô) cose+ cos a sine], (41)

by" b [cos a cos e — sin a cos (£ — d) sin e], (42)

4. Rechenhilfen

Allgemein verwendbare Rechenhilfen können lediglich durch
Vorbildung der Produkte der Winkelfunktionen von ô und e gegeben werden :

Tabelle 2a-d. Numerische Werte und Logarithmen der Winkelfunktionen
von ö und e sowie der Produkte dieser Funktionen in den Fällen ô 18,43°
und e 6,38° (sog. Normalbedingungen; Tab. 2a und b) sowie ô 18,43°

und e 9,59° (Tab. 2c und d).

a) log sin e log cos e b) sine cose

0,0458-1 0,9973-1 0,1111 0,9938

log sin ô 0,4999-1 0,5457-2 0,4972-1 sin <5 0,3161 0,0351 0,3142

log cos 4 0,9771-1 0,0229-1 0,9744-1 cos ô 0,9486 0,1054 0,9427

c) log sin e log cos e d) sine cose

0,2216-1 0,9939-1 0,1666 0,9860

log sin ô 0,4999-1 0,7215-2 0,4938-1 sin 8 0,3161 0,0527 0,3117

log cos ô 0,9771-1 0,1987-1 0,9710-1 cos 8 0,9486 0,1580 0,9354

5. Berechnung der Bildkantenazimute bei nicht verzwillingten Kristallen

Denkt man sich die zu zeichnende Kristallkante in den Ursprung
parallelverschoben und einen beliebigen Punkt K auf dieser Kante mit 0

durch den Vektor ï verbunden, so lässt sich ï durch den Vektorzug:

ua0 + vb0 + wc0
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darstellen. Da die beiden Drehungen um ô und s weder die Richtung
von f in bezug auf (0, a, b, c) noch dieses System selbst ändern
(vielmehr nur seine Lage in bezug auf (0, j, p, j) beeinflussen), kann man
auch schreiben:

!" ua0" + vb0" + wc0".

Die Komponenten dieses Vektors in bezug auf f und t) sind:

(Ï" So) u (<V So) + v (&o" So) + w (C0" So)'

(Ï" bo) u (<*o" tyo) +v (&o" 9o) + w (c0" Do)'

oder mit den Abkürzungen (ï"ï0) kx"; :

kx" u ax" + v bx" + w cx" und ky" u ay" + v by" + w cy". (43) u. (44)

Es sind aber kx" und ky" zugleich die Koordinaten des Punktes K"
in bezug auf £ und t). Durch diese Punkte 0 und K" ist die Richtung der
Kante im Bild fixiert. Das Verfahren besteht mithin darin, aus den
Einheitsabschnitten a, b, c und den Winkeln a, ß, y nach den Gleichungen
(31), (32), (34) und (35) oder (40) und (42), (37) und (38) die sechs in
den Ausdrücken (43) und (44) vorkommenden zweigestrichenen Faktoren
zu berechnen, die Indizes der Kanten zu ermitteln und entweder nach
(43) und (44) die Werte der Koordinaten von K" festzustellen oder gleich
deren Quotienten:

tg*"=K (45)
K-X

vorzugeben, der den Winkel x" zwischen j und der abzubildenden Kante
(das „Bildkantenazimut") enthält (Parker, S. 45).

6. Berechnung der Bildkantenazhnute bei Ebenenzwillingen

Bei Ebenenzwillingen kann das eine der beiden Individuen durch
Spiegelung an der Zwillingsebene in das andere Individuum überführt
werden. Die Zwillingsebene ist zugleich eine kristallographisch mögliche
Fläche; sie schneidet die Achsen des Systems (0, q, b, c) in den Punkten
M, N, P. Es sei ferner OM ma0, ON nb0, OP pc0.

Zur Lösung der Aufgabe, die Azimute der abgebildeten Kanten des

zweiten Individuums zu finden, sind zunächst die Komponenten Nx,
Ny, Nz des in die Richtung der Normale 9? der Verwachsungsebene
gelegten Einheitsvektors 9Î0 in bezug auf £, t), g aufzusuchen.

Verschiebt man 9i zu sich selbst parallel so, dass sein Ansatzpunkt
mit dem Punkt P zusammenfällt (Fig. 4), und zieht man die Vektoren
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einen Individuums durch Spiegelung an (hkl) hervorgehenden Bezugssystems
(0, 91, 93, (£) des anderen Individuums. Von zwei gleich gerichteten Vektoren,
z. B. nbo und fco, ist wegen Platzmangels durchweg nur ein Vektor bezeichnet.

Tabelle 3. Werte der Komponenten Sx< y> z und Tx y_ z der Vektoren © und %

sx Sx max —pcx Sx 0 (46)

Sy Sy may —pcy Sy m cos ß — p (47)

sz Sz — m &z — p Cz Sz m sin/? (48)

Tx Tx nbx-pcx Tx ,n „ )/sin2 a sin2 ß — (cos y — cos ß cos a)2
sin ß

(49)

Ty Ty nby p Cy Ty ncosa —p (50)

Tz Tz n bz — p Cz Tz ,n „ (cos y — cos ß cos a)
smß ' r (51)

PM © und PN %, so ist offenbar:

© m a0 - p c0 und : % n b0 - p c0
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Unter Zuhilfenahme der Tab. 1 erhält man die in die Tab. 3

aufgenommenen Werte für die Komponenten von © und %.

Damit lassen sich zunächst zwei zur Bestimmung der gesuchten
Komponenten verwendbare Gleichungen gewinnen, nämlich:

(@ SCo) 0 SxNx+SyNy+SzNz, (52)

(Ï 9£0) — 0 TxNx + TyNy + Tz Nz. (53)

Weiter existiert die Beziehung:

Nx2 + Ny2 + Nz2 1, (54)

wodurch die Lösung des Systems möglich wird. Durch Multiplikation
der Gleichung (52) mit Tx und der Gleichung (53) mit Sx und nachfolgende

Subtraktion erhält man die Gleichung (55) und durch eine
entsprechende Verfahrensweise bei der Elimination der zweiten und dritten
Glieder die Gleichungen (56) und (57):

(SyTx — SxTy) Ny + (SZTX — SXTZ) Nz 0, (55)

(SxTy — SyTx) Nx + (SzTy — SyTz) Nz 0, (56)

(SxTz-SzTx)Nx + (SyTz-SzTy)Ny 0. (57)

Kombiniert man die Gleichungen (54) bis (57), so resultiert:

Nx — _

1

__ (58)J, /Sx Tz —Sz Tx\2 /SxTy —SyTx\2
\ \SyTz-SzTy; + lSzTy-SyTj

Ny - =_
1

(59)
//SyTZ~SZTy\2 /SyTx — SxTy\2
\ lSxTz-SzTx; "^Is.Tx-SxTJ

Nz
1

(60)
//SZTy-SyTZ\2 /Sz Tx —Sx Tz\2

\ \SxTy-SyTj + (syTx-SxTy; +i
Nunmehr ist zwar die Richtung von 9Î bekannt, es fehlt jedoch noch

die Angabe des Abstands D der Zwillingsehene von 0 in dieser Richtung.
Zu seiner Berechnung kann man eine der Gleichungen:

m (Uq 9î0) JA (^x Nx + ay Ny 4- az Nz) D,
n(£>os^o) n(bxNx + byNy + bzNz) D, (61)

P(c09î0) P (°x Nx + Cy Ny + cz Nz) D
heranziehen.

Nennt man den Ursprung des aus (0, a, £), c) durch Spiegelung
hervorgegangenen System Q, so gelten folgende Beziehungen zwischen den
beiden Achsenkreuzen. Es ist:
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QM QO + OM, QN QO + ON,

QM m $l0, QN n 5B0,

OM m a0. ON n b0.

Mit dem weiteren Substituenten :

QP QO + OP,

QP pg0,

OP p c0.

QO -2T>%
erhält man:

oder in Komponentenform

2D

®o 6„-^9î„,

Ax — ax—Nx, (62)

2D
Ay ay

Az az --^Nz, (64)

Bx bx-^Nx, (65)

2D
By by (66)

Bz bz-^Nz, (67)

it 2Dw®0 ~ C0
p

Cx cx-^Nx, (68)

Oy Cy —Ny, (69)
p

Cz cz-^Nz. (70)

m, n und p sind gegeben; man hat demnach zunächst die Werte der
in der Tabelle 3 zusammengefassten Komponenten auszurechnen und
mit diesen die Gleichungen (58) bis (60) zu lösen. Dann kann man auf
einem der folgenden Wege weitergehen:

1. Hat man (was meist der Fall ist) die Koordinaten ax; der
Endpunkte der (z. B. ihrem Betrage nach =10 cm gesetzten) Einheitsvektoren

eines kubischen Achsenkreuzes vorrätig, so berechnet man die
Längen der zweimal gedrehten Einheitsvektoren im Bild (z. B. die Länge
des Einheitsvektors a0 aus a0" ^ax"2 + ay"2) oder misst diese Längen
gleich mit dem Zentimetermass aus und erhält dann aus Gleichungen
wie:

berechnete (gemessene) Länge verkürztes Nx
10 cm nach Gl. (58) berechnetes Nx

diejenige (verkürzte) Länge von Nx, die in der Richtung j0" abzutragen
ist. Der so erhaltene Vektorzug führt auf den Endpunkt des Vektors
(siehe Fig. 4). Nunmehr kann man (aus einer der Gleichungen (61))
D berechnen und wegen D9?0 31 durch eine entsprechende
Proportionsbildung den Endpunkt des Vektors 31 finden, der, seinem Betrage
nach verdoppelt, den Punkt Q liefert. Durch Verbindung von Q mit
M, N, P erhält man dann die Vektoren mSl0, nS30, pS0 und durch neuer-
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liehe Verkürzung auch 9t0, S80, (£0, die dann noch in 0 parallelverschoben
werden müssen.

2. Zieht man die rein rechnerische Lösung vor, so sind nach Erledigung

einer der Gleichungen (61) noch die Gleichungen (62) bis (70)
auszurechnen. Die Resultate sind die unverkürzten Koordinaten.

7. Berechnung der Bildkantenazimute bei Achsenzwillingen

Achsenzwillinge sind dadurch charakterisiert, dass sich das Bezugssystem

(0, a, b, c) des einen Individuums durch Drehung um eine zwei-
zählige Achse mit dem Bezugssystem (0, 31, 93, 6) des anderen Individuums

zur Deckung bringen lässt. Die Achse kann mit den Richtungen
von a (oder 91), beliebige (d. h. auch irrationale Indizes nach sich
ziehende) Winkel einschliessen. Im folgenden wird vorausgesetzt, dass
diese Indizes [uvw] bekannt sind.

Zur Lösung der Aufgabe werden in die Richtung der durch:

$ ua0 + vh0-i-wc0 (71)

bestimmten Digyre der Einheitsvektor:

S
$o

IS!

sowie drei weitere Vektoren gelegt, deren Endpunkte durch
die von den Endpunkten der Vektoren a0, £>0, C0 auf gefällten Lote
fixiert sind. Es ist:

l®a| :

und mit:

(üo®o)

®«=lt[<72)

|®b| (b„®o)

®° - ii(73)

I@c| (C0$o)

®o (74)

auch:

@a (a0$o)®o (75) | (f>o&o)$o (7ß) (Co$o)$o (77)

Die Position des gesuchten Systems resultiert dann aus:

% 2ga —a0 |

oder in Komponentenform:

Ax 2 Eax — ax,
Ay 2Eay —ay,
Az 2 Eaz — äz

93„ 2®b-b0

I?x 2 Ebx — bx,

By 2Eby —by,

Bz 2Ebz—bz,

®o 2@c-c0

2 Efix cxCx

Cy

Cz 2 Ecz cz

2Ecy -T >



300 R. Rath

Die hierin vorkommenden Subtrahenden ergeben sich aus Tabelle 1;

die E lassen sich (siehe die Gleichungen (75)bis (77)) wie folgt gewinnen:

Eax — Dx (ax Dx +
-f- ay Dy &z Dz)

Eay Dy(axDx +

f ay Dy + az Dz)

Eaz Dz (ax Dx +
+ ay Dy az Dz),

E)jX Dx (bxDx +
+ by Dy + bz Dz),

Eby Dy (bx Dx +
+ by Dy + bz Dz).,

Ebz Dz (bx Dx +
+ by Dy + bz Dz),

Ecx — Dx (cx Dx +
+ cyDy + Cz Dz),

ECy Dy (CX DX +
+ CyDy+CzDz),

Ecz Dz (cx Dx +
+ Cy Dy + Cz Dz)

Nach den Gleichungen (72) bis (74) ist ferner:

Dx
Fx

VFX2 + Fy2 + Fz2

nach Gleichung (71):

Fx =uax + vbx + wcx,

D Fy
y 1/Fx2 + Fy2 + Fz2'

Dz
Fz

KFX2 + Fy2 + Fz2'

Fv uay + vby + wcy, | Fz uaz + vbz + wcz.

Damit ist zugleich der Gang der Rechnung in elementarer Form
angegeben. Die praktische Durchführung ähnelt der unter 6 beschriebenen.

Eine graphische Darstellung findet sich in der folgenden Figur 5.

Fig. 5. Erzeugung des aus dem kristallographischen Achsenkreuz (0, a, £>, c) des
einen Individuums durch Drehung um [uvw] hervorgegangenen Bezugssystems
(0, 3t, 58, (£) des anderen Individuums. Im Punkt 0 setzen 4 Vektoren an. Ihre
Richtungen entsprechen der der schwach ausgezogenen Gerade. Der Vektor mit
dem kleinsten Betrag ist ©a. Den nächst größeren Betrag hat der Vektor Qsc. Nahe
zusammen fallen die Vektoren Sb und $o (der den grössten Betrag aufweist).
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