Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 38 (1958)

Heft: 1

Artikel: Die Bodentypen des modifizierten Systems Pallmann

Autor: Schaufelberger, Paul

DOI: https://doi.org/10.5169/seals-29605

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Bodentypen des modifizierten Systems Pallmann

Von Paul Schaufelberger (Chinchiná, Colombia)

Einleitung

In einer früheren Arbeit (P. Schaufelberger, 1956) wurde gezeigt, dass man mit den bestehenden Vorschlägen die Böden der Tropen nicht klassieren kann, weil sie die Entstehungsweise der Böden nicht berücksichtigen, sondern einseitig auf die Morphologie abstellen. An einer anderen Stelle (P. Schaufelberger, 1955) wurde das modifizierte System Pallmann beschrieben und einige Bodentypen benannt. Inzwischen sind nun mehr Erfahrungen und Tatsachen gesammelt worden, die gestatten, die in der Natur zu erwartenden Bodentypen zu definieren und zu benennen. Das letztere dürfte zweckmässig sein, um zu verhindern, dass früher nicht benannte Bodentypen verschieden bezeichnet werden und ein neues Chaos entsteht, statt dass die dringende Klarheit geschaffen wird.

Nomenklatur

Das modifizierte System Pallmann umfasst folgende Kategorien:

Kategorie:	Kennzeichen	Bezeichnung
1. Bodenklasse	Perkolationsrichtung	Endoperkolative, peri-endoperkolative, amphiperkolative, exoperkolative, peri- exoperkolative Böden und periperkola- tive Moore.
2. Bodenordnung	Humusgehalt	Humusarm ($< 3\%$), humusreich (3 bis 20%), sehr humusreich ($> 20\%$)
3. Bodenverband	Gehalt an austausch- baren Basen	Basenarm ($< 10 \text{ mval}/100 \text{ g}$), basenreich ($> 10 \text{ maval}/100 \text{ g}$) und basenüberreich ($S > T$)
4. Bodentyp	Auswaschungsfaktor	(+si-c-alk), $(+si+c-alk)$, $(+si+c+alk)$ und $(+si-c+alk)$
5. Bodenuntertyp	Farbe des mineralischen Bodenanteils	grau, gelblich, gelb, braun und rot
6. Bodenart7. Bodenvarietät	Körnung x, y	Z. B. sandig, lehmig und tonig

Bodenklassen

H. Stremme (1949) klassiert die Böden nach dem Bodenprofil und nach der Vegetation, die die Wasserbewegung im Boden anzeigt. Beachten wir nur diese, dann stimmen seine Bodentypen mit den Bodenklassen des modifizierten Systems Pallmann überein, so dass wir Stremmes Bezeichnungen übernehmen können, wobei die Klassen durch die Endung -boden bzw. -moor charakterisiert sind.

> $= Waldb\"{o}den$ 1. Endoperkolative Böden

2. Peri-endoperkolative Böden = Mineralnassböden

3. Amphiperkolative Böden = Steppenböden

4. Exoperkolative Böden = Salz(steppen)böden

5. Peri-exoperkolative Böden = Anmoorböden

6. Periperkolative Klasse = Moore

Bodentypen

Die Bodentypen sind durch eine bestimmte Perkolationsrichtung, einen bestimmten Humusgehalt, einen bestimmten Gehalt an austauschbaren Basen und einen bestimmten Auswaschungsfaktor (Perkolat) definiert. Die Bodentypen sind neu und wir müssen ihnen daher irgendwelche Bezeichnung geben, die durch die Endung -sol (Ausnahmen: Klimasol, Lithosol und Hydrosol) bzw. -moor charakterisiert werden. Es dürften voraussichtlich folgende Bodentypen zu erwarten sein:

1. Endoperkolative Bodenklasse oder Waldböden (normale Drainage)

11. Humusarme Böden

111. Basenarme Böden

Kaktussol 1111. Perkolat: $+\sin -c - alk$ 1112. Perkolat: $+\sin + c - alk$ Bambussol

112. Basenreiche Böden

1121. Perkolat: $+\sin -c - alk$ Jungkaktussol Jungbambussol 1122. Perkolat: $+\sin + c - alk$

1123. Perkolat: $+\sin -c + alk$ Calisol

12. Humusreiche Böden

121. Basenarme Böden

1211. Perkolat: $+\sin + c + alk$ Humussol 1212. Perkolat: $+\sin -c + alk$ Waldsol Urwaldsol 1213. Perkolat: $+\sin -c - alk$

122. Basenreiche Böden

1221. Perkolat: $+\sin - c + alk$ Quindíosol 1222. Perkolat: $+\sin + c - alk$ Libanonsol

13. Sehr humusreiche Böden

131. Basenarme Böden

 $\begin{array}{lll} \textbf{1311. Perkolat:} & + \sin - c - alk \\ \textbf{1312. Perkolat:} & + \sin + c - alk \\ \textbf{1313. Perkolat:} & + \sin - c + alk \\ \textbf{1314. Perkolat:} & + \sin + c + alk \\ \end{array} \qquad \begin{array}{lll} \textbf{Humuspadsol} \\ \textbf{Humuswaldsol} \\ \textbf{Alpsol} \end{array}$

132. Basenreiche Böden

1321. Perkolat: $+ \sin - c + alk$ Humusquindíosol 1322. Perkolat: $+ \sin + c - alk$ Humuslibanosol

2. Peri-endoperkolative Bodenklasse oder Mineralnassböden (zeitweise vernässte Oberböden mit freier Basenwegfuhr: Wiesen-, Prärie-, Savannenböden, Tschernosem usw.)

21. Humusarme Böden

211. Basenarme Böden

2111. Perkolat: $+\sin - c - alk$ Kaktussavannesol 2112. Perkolat: $+\sin + c - alk$ Bambussavannesol 2113. Perkolat: $+\sin - c + alk$ Bugasavannesol 2114. Perkolat: $+\sin + c + alk$ Bogotásavannesol

212. Basenreiche Böden

2121. Perkolat: $+\sin - c - alk$ Jungkaktussavannesol 2122. Perkolat: $+\sin + c - alk$ Jungbambussavannesol 2123. Perkolat: $+\sin - c + alk$ Calisavannesol 2124. Perkolat: $+\sin + c + alk$ Costaricasol

22. Humusreiche Böden

221. Basenarme Böden

2211. Perkolat: + si + c + alk Humussavannesol 2212. Perkolat: + si - c + alk Waldsavannesol 2213. Perkolat: + si - c - alk Urwaldsavannesol

222. Basenreiche Böden

2221. Perkolat: +si-c+alk Quindíosavannesol

2222. Perkolat: + si + c + alk Albansol

23. Sehr humusreiche Böden

231. Basenarme Böden

2311. Perkolat: + si - c - alkParksol2312. Perkolat: + si + c - alkAirolasol2313. Perkolat: + si - c + alkBiascosol2314. Perkolat: + si + c + alkEngadinsol

232. Basenreiche Böden

2321. Perkolat: $+\sin - c + alk$ Zernezsol 2322. Perkolat: $+\sin + c + alk$ Samadensol 2323. Perkolat: $+\sin + c - alk$ Guardasol

- 3. Amphiperkolative Bodenklasse oder Steppenböden (Grundwasser steigt bei freier Basenwegfuhr kapillar zum Oberboden auf: Steppenböden)
 - 31. Humusarme Böden

311. Basenarme Böden

 $\begin{array}{lll} 3111. \ \ Perkolat: \ + si - c - alk \\ 3112. \ \ Perkolat: \ + si + c - alk \\ 3113. \ \ Perkolat: \ + si - c + alk \\ 3114. \ \ Perkolat: \ + si + c + alk \\ \end{array} \qquad \begin{array}{lll} Bugastepsol \\ Bugastepsol \\ Bugastepsol \\ \end{array}$

312. Basenreiche Böden

3121. Perkolat: $+\sin + c + alk$ Alkalisol

3122. Perkolat: $+\sin - c + alk$ Mineralregursol

32. Humusreiche Böden

321. Basenarme Böden

3211. Perkolat: + si + c + alk Humusstepsol 3212. Perkolat: + si - c + alk Waldstepsol

322. Basenreiche Böden

3221. Perkolat: +si+c+alk Alkalihumussol

3222. Perkolat: $+\sin -c + alk$ Regursol

- **4. Exoperkolative Bodenklasse oder Salzböden** (Grundwasser steigt bei gehemmter Basenwegfuhr kapillar zum Oberboden auf Trockenwannenböden)
 - 41. Humusarme Böden

411. Basenarme Böden

4111. Perkolat: + si - c - alkWannenkaktussol4112. Perkolat: + si + c - alkWannenbambussol4113. Perkolat: + si - c + alkWannenbugasol4114. Perkolat: + si + c + alkWannenbogotásol

412. Basenreiche Böden

4121. Perkolat: +si+c+alk Wannenalkalisol

4122. Perkolat: $+\sin -c + alk$ Tolimasol

412. Basenüberreiche Böden

4121. Perkolat: $+ \sin + c + alk$ Salzsol 4122. Perkolat: $+ \sin - c + alk$ Huilasol

- 42. Humusreiche Böden
 - 421. Basenarme Böden

4211. Perkolat: $+ \sin + c + alk$ Palmirasol 4212. Perkolat: $+ \sin - c + alk$ Pastosol 422. Basenreiche Böden

4221. Perkolat: +si+c+alk Neivasol

4222. Perkolat: +si-c+alk Wannenregursol

423. Basenüberreiche Böden

4231. Perkolat: $+\sin + c + alk$ Cúcutasol 4232. Perkolat: $+\sin - c + alk$ Salzregursol

5. Peri-exoperkolative Böden oder Anmoorböden (zeitweise vernässte bis überschwemmte, zeitweise trockene Wannenböden mit gehemmter Basenwegfuhr)

51. Humusarme Böden

511. Basenarme Böden

5111. Perkolat: 0Zarzalsol5112. Perkolat: + si + c + alkEtiopiasol5113. Perkolat: + si - c + alkSudansol

512. Basenreiche Böden

5121. Perkolat: $+\sin + c + alk$ Iransol 5122. Perkolat: $+\sin - c + alk$ Balkansol

513. Basenüberreiche Böden

5131. Perkolat: $+ \sin + c + alk$ Hawaiisol 5132. Perkolat: $+ \sin - c + alk$ Ortegasol

52. Humusreiche Böden

521. Basenarme Böden

5211. Perkolat: 0Sabisol5212. Perkolat: + si + c + alkTransvalsol5213. Perkolat: + si - c + alkCaucasol

522. Basenreiche Böden

5221. Perkolat: + si + c + alk Pusstasol

5222. Perkolat: + si - c + alk Wannentschernosem

523. Basenüberreiche Böden

5231. Perkolat: $+ \sin + c + alk$ Kongosol 5232. Perkolat: $+ \sin - c + alk$ Kivusol

53. Sehr humusreiche Böden

531. Basenarme Böden

5311. Perkolat: 0Amazonasol5312. Perkolat: $+ \sin + c + alk$ Esperanzasol5313. Perkolat: $+ \sin - c + alk$ Cairosol

532. Basenreiche Böden

5321. Perkolat: + si + c + alkCartagosol5322. Perkolat: + si - c + alkRovirasol

533. Basenüberreiche Böden

5331. Perkolat: $+\sin + c + alk$ Fresnosol 5332. Perkolat: $+\sin - c + alk$ Perusol

6. Periperkolative Klasse oder Moore (ständig vernässte, zeitweise bis ständig überüberschwemmte Wannen mit oder ohne oberirdischem Ablauf.)

61. Humusarme Moore

611

611. Basenarme Moore	
6111. Perkolat: 0	Cartagenamoor
6112. Perkolat: $+\sin + c + alk$	Barrancamoor
6113. Perkolat: $+\sin -c + alk$	Hondamoor
612. Basenreiche Moore	
6121. Perkolat: $+\sin + c + alk$	Deltamoor
6122. Perkolat: $+\sin -c + alk$	Tibetmoor
613. Basenüberreiche Moore	
6131. Perkolat: $+\sin + c + alk$	Boliviamoor
6132. Perkolat: $+\sin -c + alk$	Pampamoor

62. Humusreiche Moore

621. Basenarme Moore	
6211. Perkolat: 0	Suddmoor
6212. Perkolat: $+\sin + c + alk$	Masurmoor
6213. Perkolat: $+\sin -c + alk$	Sibirmoor
622. Basenreiche Moore	
6221. Perkolat: $+ si + c + alk$	Tschaadmoor
6222. Perkolat: $+\sin -c + alk$	Sambesimoor
623. Basenüberreiche Moore	
6231. Perkolat: $+\sin +c - alk$	Saharamoor
6232. Perkolat: $+\sin -c + alk$	Ciénegamoor

63. Sehr humusreiche Moore

631. Basenarme Moore	
6311. Perkolat: 0	Torfmoor
6312. Perkolat: $+ si + c + alk$	Mineraltorfmoor
6312. Perkolat: $+\sin -c + alk$	Kalktorfmoor
632. Basenreiche Moore	
6321. Perkolat: $+\sin + c + alk$	Meinradmoor
6322. Perkolat: $+\sin -c + alk$	Gastermoor
633. Basenüberreiche Moore	
6331. Perkolat: $+\sin + c + alk$	Yangtsemoor
6332. Perkolat: $+\sin -c + alk$	Dschungelmoor

Lokalböden

Das umfangreiche Inventar von Einzelböden stammt aus dem englischen Sprachgebiet, und wir schlagen daher vor, diese durch die Endung soil zu kennzeichnen. Man weiss dann, dass dies der Lokalname ist und nicht die systematische Bezeichnung.

Diese Lokalböden können mit jedem Namen bezeichnet werden, ausgenommen die hier angeführten Bezeichnungen für die Bodenklassen und Bodentypen.

KLASSIFIKATION VON LOKALBÖDEN

Heute haben wir ausserordentlich viele Vorschläge zur Bodenklassifikation, die sich sicherlich in ihrem Arbeitsgebiet bewähren; aber es ist oft unmöglich, den Anschluss an andere Gebiete mit anderen Nomenklaturen zu finden. Hier füllt nun das modifizierte System *Pallmann* eine Lücke aus, weil die Böden nach ihren Profilmerkmalen klassiert werden und nicht nach den Namen. Wir wollen nun an einigen Beispielen aus der Literatur zeigen, wie Böden anderer Autoren und anderer Arbeitsgebiete systematisch klassiert werden können.

Beispiel 1

C. R. VAN DER MERWE (1954) beschreibt aus der Südafrikanischen Union folgende zwei normaldrainierte "subtropical brown forest soils" aus dem ariden Klima:

	Brown to reddish brown	Brown chocolate
	sandy loam	clay loam
Tongehalt %	11,0	43,0
C %	0,46	1,48
N %	0,036	0,107
C/N	12,8	13,8
S mval/100 g	7,09	15,98
Muttergestein	Granit	Basalt
Bodenklassifikation:	*	
1. Bodenklasse	endoperkolativ	${f endoperkolativ}$
2. Bodenordnung	humusarm	humusarm
3. Bodenverband	basenarm	basenreich
4. Auswaschungsfaktor	+ si - c - alk	$+\operatorname{si}-\operatorname{c}+\operatorname{alk}$
5. Bodenuntertyp	braun	braun
6. Bodenart	\mathbf{sandig}	lehmig
Bezeichnung	$sandiger\ brauner\ Kaktussol$	lehmiger brauner Calisol

Das Perkolat ist nicht bestimmt, aber wir wissen, dass bei endoperkolativen Böden bei geringem Basengehalt dieses vom Klima, bei hohem Basengehalt dieses vom Muttergestein bestimmt wird und dann in der Regel $+\sin -c + alk$ ist.

Diese von VAN DER WERWE beschriebenen Böden sind heute nicht leicht zu klassieren. Der Kaktussol ist in der Literatur als Solod = degradierter Solonetz oder als degradierter Alkaliboden beschrieben, so

dass die Beschreibungen nicht mit denen eines Waldbodens in genetischer Hinsicht übereinstimmen.

Zu den Calisols gehören der graue Wüstenboden oder Sierosem, der Kastanienboden mit Kalkkonkretionen im Unterboden, die Terra rossa auf Kalk, so dass keine dieser Bodendefinitionen auf den Brown chocolate clay loam passt.

Beispiel 2

A. Dhein und H. Mertens (1955) machen über die Dikopshofer Böden bei Bonn folgende Angaben:

Boden Nr.	${f pH}$	Humus ($\%$)	S (mval/100 g)	T (mval/100g)	S in % T
1	7,15	2,22	18,51	32,27	57,4
2	7,20	2,19	17,94	31,78	56,5
3	7,30	2,20	17,21	30,97	55,6
4	7,25	2,15	18,03	32,03	56,3
5	6,85	2,20	16,75	20,91	54,2
6	6,90	2,09	15,94	30,02	53,9
7	7,25	2,03	17,90	31,90	51,1
8	7,25	1,99	17,27	31,35	55,1
9	7,30	1,99	17,92	31,76	56,4
10	7,10	2,00	17,17	30,01	55,4
11	6,70	2,06	16,74	30,87	54,2
12	6,65	1,93	16,09	29,96	55,4

Diese Autoren erwähnen weiter, dass hauptsächlich Ca ausgewaschen wird, so dass wir auf den Auswaschungsfaktor $+\sin -c + alk$ schliessen können. Dagegen fehlt eine Angabe über die Drainage.

In verdankenswerter Weise war Herr Prof. Dr. E. Klapp, Direktor des Institutes für Pflanzenbau der Universität Bonn, so liebenswürdig, mir folgende Angaben zu machen: "Die Böden des Dikopshofes sind durchlässig. Ausgangsgestein: Löss über Kies der Hauptterrasse des Rheines. An der Oberkante des Kieses findet sich flächenweise eine lehmig-schluffige Schicht, die vorübergehend den Ablauf des Sickerwassers verlangsamt. Irgendwelche Zeichen von Staunässe sind indessen im Profil nicht zu beobachten, zumal diese Schicht eben nur flächenweise auftritt."

Nun haben wir alle Angaben, um diese Böden klassieren zu können:

1. Bodenklasse	endoperkolativ
2. Bodenordnung	humusarm
3. Bodenverband	basenreich
4. Auswaschungsfaktor	+ si - c + alk
5. Bodenuntertyp	braun
Rezeichnung	brauner Calisol

Beispiel 3

- O. Woeber und P. Peer (1957) beschreiben zwei Böden von Tabakfeldern Oberitaliens:
- 1. "San Nazzaro: "Borowina". Boden von vorwiegend grauer Farbe, mit einem deutlich erkennbaren Humushorizont, jedoch mit geringem Humusgehalt. Der Boden ist reich an Kalkstein und von alluvialer Herkunft."
- 2. "La Valle: 'terra fusca' dunkelbrauner Boden, leicht rötlich, der sich auf vorwiegend kalkigem Schotter gebildet hat (es findet sich auch Granit, Schiefer, Gneis usw. vor). Der Humusgehalt ist gering, ebenso jener an löslichen Silikaten; es sind Sesquioxyde von Eisen und Aluminium vorhanden. Der Boden enthält relativ wenig aktiven Kalk, weil der Kalk zum grossen Teil aus Dolomit besteht und eher grobkörnig ist. Es ist eine Tendenz der Kalkwanderung in die unteren Schichten zu beobachten."

Böden über Kalk sind basenreich, ebenso solche trockener Klimate, bei denen Ca nach unten verlagert wird. Tabak braucht einen normal drainierten Boden. Damit haben wir die Angaben, um diese italienischen Böden klassieren zu können:

	San Nazzaro	La Valle
1. Bodenklasse	${f endoperkolativ}$	${f endoperkolativ}$
2. Bodenordnung	humusarm	humusarm
3. Bodenverband	basenreich	basenreich
4. Auswaschungsfaktor	$+ \sin - c + alk$	$+\sin -c + alk$
5. Bodenuntertyp	grau	braun
Bezeichnung	$grauer\ Calisol$	$brauner\ Calisol$

Beide Böden gehören zum selben Bodentyp, aber zu verschiedenen Untertypen; sie unterscheiden sich durch die Farbe, die durch das Alter der Bodenbildung bedingt ist. Das bestätigen auch Woeber und Peer: "Auf Grund dieser so charakteristischen Unterschiede besteht keinerlei Zweifel, dass wir bei den Böden von "La Valle" viel schwierigeren Problemen gegenüberstehen als beim grössten Teil der alluvialen, wesentlich jüngeren Böden." Diese haben noch Mineralreserven, die beim La Valle-Boden offenbar fehlen und daher etwas mehr Kalidünger für den Tabakbau gebrauchen.

Durch die Klassifikation im System *Pallmann* ist also gezeigt, dass der "brown chocolate clay loam" Südafrikas, der deutsche Dickhofsboden und die italienischen Böden San Nazzaro und La Valle zum selben Bodentyp gehören und miteinander verglichen werden können. Farbe und Körnung können verschieden sein, ohne dass sich die wesent-

lichen Bodeneigenschaften des Calisols dadurch ändern. Wesentliche andere Eigenschaften zeigt dagegen der südafrikanische "brown to reddish brown sandy soil", weil er einem andern Bodentyp (Kaktussol) angehört, obschon seine Farbe ähnlich derjenigen des italienischen La Valle soils ist. Trotz gleicher Farbe handelt es sich um zwei verschiedene Bodenformen.

Das modifizierte System *Pallmann* ermöglicht so die Zusammenfassung verschieden benannter Lokalböden zu höheren Systemeinheiten, ohne dass diese ihre Namen verlieren.

Bei den nicht normal drainierten Bodenklassen sind die Auswaschungsfaktoren nicht immer leicht zu bestimmen. Aber es dürfte dies auch nicht immer notwendig sein. Sehen wir von den Mooren ab, so verteilen sich die Hydrosols auf 4 Klassen, 12 Ordnungen und 36 Verbände. Diese Böden sind zusammengefasst im Norden zu den Tundraböden, in der gemässigten Zone zu den Gleiböden und in Afrika zu den Schwarzerden. Wenn wir nun diese Böden auf 36 Verbände verteilen, so werden wir schon viel an Klarheit gewonnen haben. Ausserdem sind bei den Salzböden die Bodenvarietäten wichtig, weil sie angeben, ob vegetationsfeindliche Magnesia- oder Natron-Salzböden vorliegen.

Literaturverzeichnis

- DHEIN, A. und MERTENS, H. (1955): Die chemischen, physikalischen und biologischen Bodeneigenschaften des Dikopshofer Dauerdüngversuches nach 45jähriger Versuchsführung. Z. f. Acker- u. Pflanzenbau 100, S. 137—162.
- Schaufelberger, P. (1955): Zur Systematik der Tropenböden. Vjschr.d. Natf. Ges. in Zürich 100, S. 131—143.
- (1956): Kritische Betrachtung der Bodenklassifikation. Schweiz. Min. Petr. Mitt. 36, S. 515—538.
- STREMME, H. (1949): Die Böden der deutschen demokratischen Republik. Berlin. Van der Merwe, C. R. (1954): Subtropical brown forest soils (Low Veld). Vth International Congr. of Soil Science, Leopoldsville, S. 211—216.
- Woeber, O. und Peer, P. (1957): Einfluss chemischer Düngmittel auf die Farbe und Qualität der zum Export bestimmten Zigarrendecktabake Italiens. Ref. in Kali-Briefe Fachgebiet 12, 9. Folge.

Eingegangen: 20. September 1957.