Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 34 (1954)

Heft: 1

Artikel: Über die Anzahl verschiedener Raumgruppen

Autor: Nowacki, Werner

DOI: https://doi.org/10.5169/seals-27133

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Anzahl verschiedener Raumgruppen 1)

Von Werner Nowacki, Bern

"Ist jedem Element einer Gruppe & ein und nur ein Element einer zweiten Gruppe & zugeordnet dergestalt, dass dem Produkt zweier Elemente von & das Produkt der zugeordneten Elemente von & zugeordnet ist, so heisst die Gruppe & isomorph mit der Gruppe &. Die Zuordnung heisst ein Isomorphismus von & mit & — Falls bei dieser Zuordnung zwei verschiedenen Elementen von & stets zwei verschiedene Elemente von & entsprechen, so sind die beiden Gruppen abstrakt genommen miteinander identisch. Ihre Gruppentafeln unterscheiden sich nur durch die Bezeichnung der Elemente. Man heisst die Gruppen in diesem Fall holoedrisch (einstufig) isomorph²)." Wir wollen dafür den kürzeren Ausdruck holomorph gebrauchen. Das hier zu lösende Problem besteht in der Aufstellung und Charakterisierung aller nicht-holomorphen kristallographischen Punkt- und Raumgruppen (mit endlichem Fundamentalbereich) in ein, zwei und drei Dimensionen.

A. Die kristallographischen Punktgruppen

I. Die eindimensionalen Gruppen

Es gibt zwei nicht-holomorphe Gruppen:

1. C_1-1 abstrakte Gruppe = $\{1\}$ Ordnung = n=12. $C_i-\overline{1}$ abstrakte Gruppe = $\{1, \overline{1}\}$ mit $\overline{1}^2=1$, n=2

¹) Mitt. Nr. 77, Abt. für Kristallographie und Strukturlehre, Mineralogisches Institut, Universität Bern.

²) A. Speiser, Theorie der Gruppen von endlicher Ordnung. 2. A., J. Springer, Berlin 1927, S. 33.

II. Die zweidimensionalen Gruppen

Es gibt 9 nicht-holomorphe Gruppen:

ı.	$C_1 - 1$	$\{1\}$	=1
2.	$C_2 - 2$	$\{1, 2\}$ mit $2^2 = I$	2
	$C_s - m$	$\{1, m\} \text{mit } m^2 = 1$	
3.	$C_{2v}-mm2$	$\{1, 2, m, m'\}$	4
4.	$C_4 - 4$	$\{1, 4, 4^2 (=2), 4^3\}$	4
5.	$C_{4v}-4mm$	$\{1, 4, 4^2 (=2), 4^3, (m', m'), (m'', m'')\}$	8
6.	$C_3 - 3$	$\{1, 3, 3^2\}$	3
7.	$C_{3v}-3m$	$\{1, 3, 3^2, (m, m, m)\}$	6
8.	$C_6 - 6$	$\{1, 6, 6^2 (=3), 6^3 (=2), 6^4 (=3^2), 6^5\}$	6
9.	$C_{6v}-6mm$	$\{1, 6, 6^2 (=3), 6^3 (=2), 6^4 (=3^2), 6^5, (m', m', m')\}$,
	***	(m'', m'', m'')	12

Die Gruppen C_2-2 und C_s-m sind holomorph, denn bei beiden ist das Quadrat der Symmetrieoperation (2 bzw. m) gleich der Identität. Abstrakt geschrieben lauten beide Gruppen $\{1,A\}$ mit $A^2=1$.

III. Die dreidimensionalen Gruppen

Es gibt 18 nicht-holomorphe Gruppen. Sie wurden von E. N. Belowa, N. W. Below und A. Schubnikow³) abgeleitet. Der Vollständigkeit halber seien sie im folgenden in der Nomenklatur der "Internationalen Tabellen zur Bestimmung von Kristallstrukturen" (Borntraeger, Berlin 1935) nochmals zusammengestellt.

Nr. der abstrakten Gruppe	Kristall- klassen	Gruppenelemente	Ord- nung
1	$C_1 - 1$	{1}	1
2	$\begin{array}{ c c }\hline C_i - \overline{1} \\ C_2 - 2 \\ C_8 - m \end{array}$	$\{1, \overline{1}\}\$ $\{1, 2\}$ $\{1, m\}$	2
3	C_3-3	$\{1, 3, 3^2\}$	3
4	$C_4 - 4 \\ S_4 - \overline{4}$	$\{1, 4, 4^2 (=2), 4^3\}$ $\{1, \overline{4}, \overline{4^2} (=2), \overline{4^3}\}$	4

³) E. N. Belowa, N. W. Below und A. Schubnikow, Dokl. Akad. Nauk SSSR. 63 (1948) 669—672; ref. in Zbl. Math. 31 (1949) 249—250, und in Chem. Abstr. 44, 10431b.

¹¹ Schweiz. Min. Petr. Mitt., Bd. 34, Heft 1, 1954

Nr. der abstrakten Gruppe	Kristall- klassen	Gruppenelemente	Ord- nung
5	$C_{2h}\!-\!2/m \ C_{2v}\!-\!mm2 \ D_{2}\!-\!222$	$\{1, 2, m, \overline{1}\}\$ $\{1, 2, m', m''\}\$ $\{1, 2', 2'', 2'''\}$	4
6	$C_{3i} - \overline{3} \ C_{6} - 6 \ C_{3h} - \overline{6}$	$\{1, \overline{3}, \overline{3}^2 (=3), \overline{3}^3 (=\overline{1}), \overline{3}^4 (=3^2), \overline{3}^5\}^*\}$ $\{1, 6, 6^2 (=3), 6^3 (=2), 6^4 (=3^2), 6^5\}$ $\{1, \overline{6}, \overline{6}^2 (=3), \overline{6}^3 (=m), \overline{6}^4 (=3^2), \overline{6}^5\}$	6
7	$D_3 - 32$ $C_{3v} - 3m$	$\{1, 3, 3^2, (2, 2, 2)\}\$ $\{1, 3, 3^2, (m, m, m)\}$	6
8	$D_{4} - 422 \ C_{4v} - 4mm \ D_{2d} - \overline{4}2m$	$\{1, 4, 4^2 (=2), 4^3, (2', 2'), (2'', 2'')\}\$ $\{1, 4, 4^2 (=2), 4^3, (m', m'), (m'', m'')\}\$ $\{1, \overline{4}, \overline{4^2} (=2), \overline{4^3}, (2', 2'), (m, m)\}$	8
9	$D_{3d} - \overline{3}m$ $D_{6} - 622$ $C_{6v} - 6mm$	$\{1, \overline{3}, \overline{3}^2 (=3), \overline{3}^3 (=\overline{1}), \overline{3}^4 (=3^2), \overline{3}^5, (2, 2, 2), (m, m, m)\}^*\}$ $\{1, 6, 6^2 (=3), 6^3 (=2), 6^4 (=3^2), 6^5, (2', 2', 2'), (2'', 2'', 2'')\}$ $\{1, 6, 6^2 (=3), 6^3 (=2), 6^4 (=3^2), 6^5,$	12
	$D_{3h} - \overline{6}m2$	(m', m', m'), (m'', m'', m'') $\{1, \overline{6}, \overline{6}^2 (=3), \overline{6}^3 (=m), \overline{6}^4 (=3^2), \overline{6}^5, (2, 2, 2), (m, m, m)\}$	
10	$D_{2h}-mmm$	$\{1, 2', 2'', 2''', m', m'', m''', \overline{1}\}$	8
11	$C_{4h}-4/m$	$\{1, 4, 4^2 \ (=\overline{4}{}^2=2), 4^3, \overline{4}, \overline{4}^3, m, \overline{1}\}$	8
12	$D_{4h}-4/mmm$	$\{1, 4, 4^2 (=\overline{4}^2=2), 4^3, \overline{4}, \overline{4}^3, m, \overline{1}, (2', 2'), (2'', 2''), (m', m'), (m'', m'')\}$	16
13	$C_{6h}-6/m$	$\{1, 6, 6^2 \ (=\overline{6}^2 = 3 = \overline{3}^2), 6^3 \ (=2), 6^4 \ (=\overline{6}^4 = 3^2 = \overline{3}^4), 6^5, \overline{6}, \overline{6}^3 \ (=m), \overline{6}^5, \overline{3}, \overline{3}^5 \ (=\overline{3}^3), \overline{1}\}^*\}$	12
14	$D_{6h}-6/mmm$	$\{1, 6, 6^2 (=\overline{6}^2 = 3 = \overline{3}^2), 6^3 (= 2), 6^4 (= \overline{6}^4 = 3^2 = \overline{3}^4), 6^5, \overline{6}, \overline{6}^5, \overline{3}, \overline{3}^5, (2', 2', 2'), (2'', 2'', 2''), (m', m', m'), (m'', m'', m''), m (= \overline{6}^3), \overline{1} (= \overline{3}^3)\}^*\}$	24
15	T-23	$\{1, (2, 2, 2), (3, 3, 3, 3), (3^2, 3^2, 3^2, 3^2)\}$	12
16	$T_h - m3$	$\{1, (2, 2, 2), (\overline{3}, \overline{3}, \overline{3}), (\overline{3}^2 = 3, \overline{3}^2 = 3, \overline{3}$	24
17	$O-432$ $T_d-\overline{4}3m$	$\{1, (4, 4, 4), (4^2 = 2, 4^2 = 2, 4^2 = 2), (4^3, 4^3, 4^3), (3, 3, 3, 3), (3^2, 3^2, 3^2, 3^2), (2', 2', 2', 2', 2', 2', 2')\}$ $\{1, (\overline{4}, \overline{4}, \overline{4}), (\overline{4}^2 = 2, \overline{4}^2 = 2, \overline{4}^2 = 2), (\overline{4}^3, \overline{4}^3, \overline{4}^3), (3, 3, 3, 3), (3^2, 3^2, 3^2, 3^2), (m, m, m, m, m, m, m)\}$	24

^{*) 3 (}bzw. 6) und $\overline{3}$ haben entgegengesetzten Drehsinn.

Nr. der abstrakten Gruppe	Kristall- klassen	Gruppenelemente	Ord- nung
18	$O_h - m3m$	$\{1, (4, 4, 4), (4^2 = \overline{4}^2 = 2, 4^2 = \overline{4}^2 = 2, 4^2 = \overline{4}^2 = 2), (4^3, 4^3, 4^3), (\overline{4}, \overline{4}, \overline{4}), (\overline{4}^3, \overline{4}^3, \overline{4}^3), (\overline{3}, \overline{3}, \overline{3}, \overline{3}), (\overline{3}^2 = 3, \overline{3}^2 = 3, \overline{3}^2 = 3), (\overline{3}^4 = 3^2, \overline{3}^4 = 3^2, \overline{3}^4 = 3^2), (\overline{3}^5, \overline{3}^5, \overline{3}^5), (2', 2', 2', 2', 2', 2', 2'), (m', m', m'), (m'', m'', m'', m'', m'', m'', m''), \overline{1} (= \overline{3}^3)\}*)$	48

*) 3 (bzw. 6) und $\overline{3}$ haben entgegengesetzten Drehsinn.

Der eigentliche Grund für die auftretenden Holomorphien ist die Holomorphie zwischen $(2, \overline{2} = zweizählige Drehinversion \equiv m, \mathring{2} = zweizählige Drehspiegelung <math>\equiv \overline{1}$), $(4, \overline{4} \equiv \mathring{4})$ und $(6, \overline{6} \equiv \mathring{3}, \mathring{6} \equiv \overline{3})$, d. h. den gleichzähligen, geradzähligen Dreh-, Drehinversions- und Drehspiegelachsen.

B. Die Raumgruppen mit endlichem Fundamentalbereich

I. Die eindimensionalen Gruppen

Es gibt zwei nicht-holomorphe Gruppen:

1.
$$C_1^1 - p1$$
 und 2. $C_i^1 - p\overline{1}$.

II. Die zweidimensionalen Gruppen

Es gibt 17 nicht-holomorphe Gruppen. Sie sind mit den 17 zweidimensionalen Bewegungsgruppen identisch. Von den in Frage kommenden Symmetrieoperationen (normal zur Ebene) sind nur 2 und m holomorph $(\overline{1}, \overline{3}, \overline{4}, \overline{6}$ scheiden aus). Gruppen mit verschiedenen Translationsuntergruppen oder einer verschiedenen Anzahl von Symmetrieoperationen pro Elementarzelle oder mit verschiedener Zähligkeit des allgemeinen Gitterkomplexes können offensichtlich nicht holomorph sein. Man erhält die Elemente der abstrakten Gruppe, indem man sämtliche Koordinatentripel eines Gitterkomplexes hinschreibt, den Übergang eines herausgegriffenen Tripels zu jedem anderen mit einem Buchstaben bezeichnet und die Identität sowie die zwei Translationen T_1, T_2 hinzufügt. Zur Charakterisierung sind dann noch die definierenden Relationen aufzustellen (z. B. bei einer Gleitspiegelung $A^2 = T_1$, oder $BA = T_1T_2$, usw.).

Führt man dies für die 17 ebenen Gruppen durch, so erkennt man ihre Nicht-Holomorphie.

III. Die dreidimensionalen Gruppen

Gleichzeitig und unabhängig voneinander wurden vom Verfasser in einer Arbeit über euklidische Raumformen⁴) und von B. N. Delaunay, N. N. Padurow und A. D. Alexandrow in einem Lehrbuche⁵) die Zahl der nicht-holomorphen Raumgruppen mit 219 angegeben. E. N. Belowa et al.³) liessen die Frage, ob diese Lösung richtig sei, offen. Wir haben uns erneut damit beschäftigt, einen anderen Weg zur Lösung eingeschlagen und kommen zum selben Resultat.

Die Sätze über die Nicht-Holomorphie zweier Raumgruppen von B. II gelten auch hier. Es ist bemerkenswert, dass z. B. symmorphe Raumgruppen mit holomorphen Kristallklassen nicht holomorph zu sein brauchen. Beispiel: Die Kristallklassen $C_i - \overline{1}$, $C_2 - 2$ und $C_s - m$ sind holomorph, hingegen nicht die Raufmgruppen $C_i^1 - P\overline{1}$, $C_2^1 - P2$ und $C_s^1 - Pm$. Beweis: Sei $A = C_i - \overline{1}$, $C_2 - 2$ (// T_3) bzw. $C_s - m$ ($\perp T_3$); T_1 , T_2 , $T_3 = \text{Translationen}$. Dann lauten die definierenden Relationen für die drei Raumgruppen: $(C_i^1 - P\bar{1})$ $T_i T_k = T_k T_i$ $(i, k = 1, 2, 3), A^2 = 1, T_1 A = 1$ $A \ T_1^{-1}, \ T_2 A = A \ T_2^{-1}, \ T_3 A = A \ T_3^{-1}, \ (C_2^1 - P \ 2) \ T_i T_k = T_k T_i, \ A^2 = 1, \ T_1 A = T_1 A = T_1 A = T_2 A T_2 A T_3 A = A T_3 A T_3 A T_4 A T_4 A T_5 A T_5 A T_5 A T_5 A T_6 A T_7 A T_8 A$ $A \; T_1^{-1}, \; T_2 A = A \; T_2^{-1}, \; T_3 A = A \; T_3, \; (C_s^1 - P \, m) \; \; T_i T_k = T_k T_i, \; A^2 = 1, \; T_1 A = 1, \; T_1 A = 1, \; T_2 A = 1, \; T_3 A = 1, \; T_3 A = 1, \; T_3 A = 1, \; T_4 A = 1, \; T_5 A = 1$ AT_1 , $T_2A = AT_2$, $T_3A = AT_3^{-1}$, d. h. die Gruppen sind nicht holomorph. Anschaulich geometrisch kommt dies in der verschiedenen Anzahl der kristallographisch ungleichwertigen Symmetrieelemente pro Elementarzelle zum Ausdruck. Bei $C_i^1 - P\overline{1}$ sind acht $C_i - \overline{1}$, bei $C_2^1 - P2$ vier $C_2 - 2$ und bei $C_s^1 - Pm$ zwei $C_s - m$ vorhanden; die Beziehung von $\overline{1}$, 2 und mzu den T_i ist verschieden.

Als Symmetrieoperationen ohne Translationen, die eventuell zu holomorphen Raumgruppen führen könnten, kommen nach A. III einzig $(2, \overline{2} \equiv m, \stackrel{\circ}{2} \equiv \overline{1})$, $(4, \overline{4} \equiv \stackrel{\circ}{4})$ und $(6, \overline{6} \equiv \stackrel{\circ}{3}, \stackrel{\circ}{6} \equiv \overline{3})$ in Frage. Enantiomorphe Schraubenoperationen $(3_1, 3_2 - 4_1, 4_3 - 6_1, 6_5 - 6_2, 6_4)$ erzeugen natürlich holomorphe Gruppen. Die 22 paarweise enantiomorphen Raumgruppen $(C_3^2 - P3_1, C_3^3 - P3_2, C_4^2 - P4_1, C_4^4 - P4_3, C_6^2 - P6_1, C_6^3 - P6_5, C_6^4 - P6_2, C_6^5 - P6_4, D_3^3 - P3_112, D_3^5 - P3_312, D_3^4 - P3_121, D_3^6 - P3_221, D_4^3 - P4_122,$

⁴⁾ W. Nowacki, Comm. Math. Helv. 7 (1934/35) 81-93.

⁵) B. N. Delaunay, N. N. Padurow und A. D. Alexandrow, Mathematische Grundlagen der Kristallstrukturanalyse. Moskau-Leningrad, 1934; ref. in Zbl. Math. 13 (1936) 90—91.

 $D_4^7 - P4_3 22$, $D_4^4 - P4_1 2_1 2$, $D_4^8 - P4_3 2_1 2$, $D_6^2 - P6_1 22$, $D_6^3 - P6_5 22$, $D_6^4 - P6_2 22$, $D_6^5 - P6_4 22$ und $O^7 - P4_1 32$, $O^6 - P4_3 32$) sind daher auch paarweise holomorph. Im übrigen könnte nur noch 2_1 und eine Gleitspiegelung mit einer zu 2_1 parallelen Gleitkomponente g zu Holomorphie führen, denn es gilt $2_1^2 = g^2 = T_i$. Beispiel: Für $C_2^2 - P2_1$ (mit $2_1 = A //c = T_3$) lauten die definierenden Relationen: $A^2 = T_3$, $AT_1 = T_1^{-1}A$, $AT_2 = T_2^{-1}A$, $AT_3 = T_3A$, $T_iT_k = T_kT_i$ (i, k=1,2,3); für $C_s^2 - Pc$ (mit T_2 , T_3 als Gleitspiegelebene mit einer Gleitkomponente $//T_3$, A = Gleitspiegelung): $A^2 = T_3$, $AT_1 = T_1^{-1}A$, $AT_2 = T_2A$, $AT_3 = T_3A$, $T_iT_k = T_kT_i$ (i, k=1,2,3), d. h. die beiden Gruppen sind nicht holomorph. Die Beziehung zwischen Schraubung und Translation ist von derjenigen zwischen Gleitspiegelung und Translation verschieden. Geometrisch kommt dies wieder in der verschiedenen Anzahl ungleichwertiger Symmetrieelemente pro Elementarzelle zum Ausdruck: bei $C_2^2 - P2_1$ sind vier 2_1 , bei $C_s^2 - Pc$ hingegen zwei c vorhanden.

Jede Raumgruppe kann eindeutig durch die Gesamtheit ihrer Hauptpunkte im Sinne K. Weissenbergs⁶) charakterisiert werden. Wären zwei Raumgruppen holomorph, so müssten sie "holomorphe Hauptpunkte" in gleicher Zahl und Zähligkeit besitzen. Dabei sollen zwei Hauptpunkte holomorph heissen, wenn ihre Eigensymmetriegruppen (= Symmetriebedingungen = eine der 32 kristallographischen Punktgruppen) holomorph sind. Besässen sie derartige holomorphe Hauptpunkte, so brauchten die Gruppen dennoch nicht holomorph zu sein, da die Art und Zahl der Schraubenachsen und Gleitspiegelebenen noch verschieden sein könnte. Es muss daher mittels einer systematischen Durchmusterung aller Hauptpunkte aller 230 Raumgruppen und unter eventuell nötiger Zuziehung aller Symmetrieoperationen mit Translationen möglich sein, die Holomorphie zweier Raumgruppen festzustellen. Dabei könnten nur zwei Raumgruppen &, die holomorphen Kristallklassen a entsprechen, selbst holomorph sein, denn es ist $g = \mathfrak{G}/\mathfrak{T}$ die Faktorgruppe nach \mathfrak{T} (= Translationsuntergruppe); anschaulich ausgedrückt: wenn alle Translationen τ_i zweier holomorphen Raumgruppen gegen null streben, so müssen holomorphe Punktgruppen entstehen ($\mathfrak{T} \to 1 = Identität$). Umgekehrt müssen aber aus holomorphen Punktgruppen (z. B. $C_i - \overline{1}$, $C_2 - 2$, C_s-m) — wie gezeigt wurde — nicht notwendigerweise holomorphe Raumgruppen $(C_i^1 - P\bar{1}, C_2^2 - P2, C_s^1 - Pm)$ hervorgehen. Die Durchmusterung kann am besten an Hand der Tabelle 4 (S. 32-41) in 6) vorgenommen werden.

⁶⁾ K. Weissenberg, Z. Krist. 62 (1925) 13-51.

Beispiele:

1. Holomorphe Punktgruppe Nr. 2, P-Translationsgruppe

		Hauptpunkte	
Raumgruppe	Eigensymmetrie- gruppe	Zähligkeit	Zahl der krist. verschiedenen Hauptpunkte
$C_{i}^{1}-P\overline{1} \ C_{2}^{1}-P2 \ C_{2}^{2}-P2_{1} \ C_{i}^{1}-Pm \ C_{i}^{2}-Pb$	$egin{array}{cccc} C_t - \overline{1} & & & & & \\ C_2 - 2 & & & & & \\ C_1 - 1 & & & & & \\ C_s - m & & & & \\ C_1 - 1 & & & & \\ \end{array}$	1 1 2 1 2	8 4 1 2

Man erkennt, dass nur $C_2^2 - P \, 2_1$ und $C_s^2 - Pb$ holomorph sein könnten, was aber — wie oben erwähnt — nicht der Fall ist.

2. Holomorphe Punktgruppe Nr. 5, P-Translationsgruppe

Zähligkeit	Zahl der krist.
	verschiedenen Hauptpunkte
1	8
2	4
2	1
2	4
2	2
2	4
1	8
2	4
2	2
4	1
1	4
2	2
	1

Die Gruppen $C_{2h}^1 - P2/m$ und $D_2^1 - P222$ könnten demzufolge holomorph sein. Sie sind es aber nicht, da holomorphe Raumgruppen auch holomorphe Untergruppen besitzen müssten. Nun sind die Relationen

zwischen den 2 und den T_i in $C_{2h}^1 - P2/m$ dieselben wie zwischen den 2 einer der drei Richtungen und den T_i in $D_2^1 - P222$; hingegen sind die Relationen zwischen den $C_i - \overline{1}$ bzw. den $C_s - m$ und den T_i in $C_{2h}^1 - P2/m$ von denjenigen zwischen den 2 der beiden anderen Richtungen und den T_i in $D_2^1 - P222$ verschieden $(C_i^1 - P\overline{1}, C_s^1 - Pm \text{ und } C_2^1 - P2 \text{ sind nicht holomorph; vgl. oben).$

3. Holomorphe Punktgruppe Nr. 17, P-Translationsgruppe

	Hauptpunkte		
Raumgruppe	Eigensymmetrie- gruppe	Zähligkeit	Zahl der krist. verschiedenen Hauptpunkte
$O^1 - P432$	O -432	1	2
	$D_4 - 422$	3	2
$O^2 - P4_232$	T - 23	2	1
	$D_3 - 32$	4	2
	$D_2 - 222$	6	3
$O^6 - P4_332$	$D_3 - 32$	4	2
$O^7 - P4_132$	$D_3 - 32$	4	2
$T_d^1 - P\overline{4}3m$	$T_d - \overline{4} 3m$	1	2
	$D_{2d} - \overline{4} 2m$	3	2
$T_d^4 - P\overline{4}3n$	T^2-23	2	1
	$S_4 - \overline{4}$	6	2
	$D_2 - 222$	6	4
14	"		

Die Raumgruppen O^6-P4_332 und O^7-P4_132 sind als enantiomorphe Gruppen auch holomorph. O^1-P432 und $T_d^1-P\overline{4}3m$ könnten eventuell holomorph sein $(O-432\,\mathrm{und}\,T_d-\overline{4}3m,D_4-422\,\mathrm{und}\,D_{2d}-\overline{4}2m$ sind holomorph, in gleicher Zahl und Anordnung vorhanden). O^1-P432 weist zwei Scharen von sechs gleichwertigen 2_1 -Schraubungsachsen, $T_d^1-P\overline{4}3m$ hingegen nur eine Schar von sechs gleichwertigen b-Gleitspiegelebenen auf. Die beiden Gruppen sind daher nicht holomorph.

Auf diese Weise wurden alle Hauptpunkte und die anderen Symmetrieelemente der 230 Raumgruppen systematisch geprüft. Das Resultat ist:

Es gibt 219 nicht-holomorphe Raumgruppen. Darunter sind 11 Paare enantiomorpher Raumgruppen enthalten, die holomorph sind. Ob man die enantiomorphen Raumgruppen kristallographisch als gleich oder verschieden bezeichnen will, ist eine Ermessensfrage. Quantitativ unterscheiden sie sich

auch röntgenographisch nicht; nur die Aufeinanderfolge entsprechender Röntgenreflexe $h \, k \, l \, und \, \bar{h} \, \bar{k} \, \bar{l} \, mit \, I^a_{\bar{h} \bar{k} \, \bar{l}} \, + \, I^b_{h \, k \, l} \, + \, I^b_{h \, k \, \bar{l}} \, + \, I^b_{h \, k \, l} \, (a, b = optische Antipoden) ist entgegengesetzt⁷).$

Dass die 219 Raumgruppen nicht holomorph sind, folgt auch aus einem allgemeinen Satz von L. Bieberbach⁸), der lautet: Isomorphe Raumgruppen mit endlichem Fundamentalbereich sind immer äquivalent, d. h. durch Änderung der Koordinaten ineinander überführbar, unabhängig davon, ob die Determinante der "rotativen Teile" positiv oder negativ ist. Die 219 Raumgruppen sind aber eben nicht äquivalent, also auch nicht (holoedrisch) isomorph.

Unsere Arbeit hat auf elementarem und etwas weiterem Wege diesen Satz von L. BIEBERBACH bestätigt. Damit dürfte die Frage nach der Zahl der verschiedenen Raumgruppen mit endlichem Fundamentalbereich in abstrakt-gruppentheoretischem, bzw. kristallographischem Sinne endgültig geklärt sein.

Eingegangen, den 23. Dezember 1953.

⁷⁾ J. M. BIJVOET, Proc. K. Ned. Akad. Wet. **52** (1949) 313—314; A. F. PEERDEMAN, A. J. VAN BOMMEL and J. M. BIJVOET, ibid. [B] **54** (1951) 16—19; J. M. BIJVOET, A. F. PEERDEMAN and A. J. VAN BOMMEL, Nature **168** (1951) 271—272; A. F. PEERDEMAN en A. J. VAN BOMMEL, Chem. Weekbl. **48** (1952) 988—991.

⁸⁾ L. Bieberbach, Math. Ann. 72 (1912) 400, § 4; und freundliche briefliche Mitteilung von Herrn Prof. L. Bieberbach im Dezember 1953.