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Einleitung

Die Möglichkeiten einer Darstellung der Symmetrielehre liegen zwischen zwei
Grenzformen, welche durch abstrakte gruppentheoretische Formulierung einerseits
und anschauliche Kombination von Symmetrieelementen andererseits gegeben
sind. Während die erste Methode durch ihre Geschlossenheit besticht, erlaubt die
zweite ohne mathematischen Aufwand eine unmittelbare Einsicht in die Bedeutimg

ihrer Ergebnisse. So ist es wohl kein Zufall, dass die Physik der ersten und die
Kristallographie der zweiten Betrachtungsweise den Vorzug gegeben hat;
allerdings beschränkte sich das Anwendungsgebiet im wesentlichen auf Punktgruppen
etwa von Schwingungssystemen und auf die Raumgruppen der Kristalle.

Bei der Behandlung höherdimensionaler Räume versagt das Vorstellungsvermögen

und damit die anschauliche Methode. Aber auch wenn man nicht über
den dreidimensionalen Raum hinausgeht, wird mindestens für Berechnungen eine
mathematische Formulierung erforderlich. Es scheint nun, dass die Verwendung
von Symmetrieformeln und Charakterentafeln einen zweckmässigen Mittelweg für
die Darstellung der Symmetrielehre abgibt. Ihre Erläuterung ist die Aufgabe der
vorliegenden Arbeit. Zur Erfassung des gesamten Gebietes müssen sowohl
gruppentheoretische wie kristallographische Begriffe und Gedankengänge nicht nur
herangezogen, sondern gelegentlich auch erweitert und aufeinander abgestimmt werden.
In verschiedenen Fällen wird dadurch eine Vereinheitlichung der Bezeichnungsweise

nahegelegt. Jedenfalls rechtfertigt sich das geschilderte Vorgehen ausser
durch seine Einfachheit vor allem damit, dass es manche Zusammenhänge in
neuartiger Weise beleuchtet.

Die Gliederung des Stoffes richtet sich nach der Deutung des Charakterenbegriffs.

Noch ohne Charaktere kommt man im Teil I aus, wo die Punktsymmetrie-
lehre eine Darstellung vom Standpunkte der Zyklengliederung erfährt. Mit der
Einführung translativer und rotativer Charaktere gelangt man weiter zur Beschreibung

der komplexeren Symmetrie von Raumgruppen und Schwingungssystemen
in den Teilen II und III. Anschliessend wird im Teil IV versucht, durch gemeinsame

Symmetriesätze die zumindest formale Analogie von translativer und rotativer

Deutung der Charaktere aufzuzeigen; für die Betrachtung der Symmetrie-
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eigenschaften ist damit eine Verbindung zwischen den Gebieten der molekularen
und kristallinen Systeme sowie ihrer Normalschwingungen hergestellt. Das kommt
auch im Teil V zum Ausdruck, der die Anwendung von Charakteren höherer
Ordnung auf physikalische Eigenschaften behandelt.

Auch an dieser Stelle möchte ich meinem verehrten Lehrer, Herrn Prof. Dr.
P. Niggli, danken, und zwar sowohl für sein Interesse an dieser Arbeit wie
überhaupt für seine Einführung in die Denkweise der Symmetrielehre.

I. Grundlagen der Punktsymmetrielehre

1. Der Symmetriebegriff; Decktransformationen und Symmetrieelemente

Der Begriff der Symmetrie ist schon nach mannigfaltigen Gesichtspunkten
bestimmt worden. So unterstreicht etwa Pascal in seiner geistreichen Erklärung
die Bedeutung des Satzes vom zureichenden Grunde für die Symmetrielehre:
„Symétrie, en ce qu'on voit d'une vue, fondée sur ce qu'il n'y a pas de raison de
faire autrement" (Fragment 28).

In der Mathematik wird ein Ausdruck „symmetrisch in x, y, " genannt,
wenn eine beliebige Vertauschung der Variablen x, y, seinen Wert nicht ändert.
Diese Definition macht deutlich, dass die Auszeichnung einer symmetrischen
Grösse stets willkürlich sein muss. Durch Symmetrieeigenschaften verknüpfte
Elemente sind gleichwertig, und die Erfahrung zeigt denn auch, dass ihre
gemeinsame und gleichartige Behandlung nicht nur eleganter wirkt, sondern
meistens auch bequemer ist. Es lohnt sich immer, Symmetriebeziehungen nicht ohne
zwingenden Grund zu zerstören, sie aber nach Möglichkeit auszunützen. Fasst
man den Symmetriebegriff mit P. Niggli (19) als „Wiederholung von
Gleichartigem, sei es, dass sich an ein und demselben Gegenstand ein Motiv bzw.
Verhalten wiederholt, oder dass verschiedene Gegenstände weitgehend einander
gleichgesetzt werden können", so drängt sich eine geometrische Verwirklichung auf.
Allerdings lassen sich je nach der Deutung des Wortes „gleichartig" verschiedene
Symmetriesysteme im Sinne von K. L. Wolf (38) aufstellen. Die folgenden
Ausführungen beschränken sich durchwegs auf den Fall ununterscheidbar gleicher
Elemente.

Als Symmetrie- oder Deckoperationen bezeichnet man
diejenigen Operationen, welche aus einem vorgegebenen Element symmetrische

Elementensysteme erzeugen oder, was auf dasselbe hinausläuft,
ein solches System mit sich selbst zur Deckung bringen. Ihre Gesamtheit
bildet in jedem Falle eine Gruppe, denn

jedem geordneten Paar von nacheinander ausgeführten Symmetrie¬
operationen entspricht eindeutig wieder einer Symmetrieoperation ;
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die Verknüpfung der Operationen ist assoziativ (nicht aber im allgemeinen
kommutativ) ;

als Einheitselement ist die Trivialoperation der Identität vorhanden ;

zu jeder Symmetrieoperation gibt es eine und nur eine inverse Operation.

In geometrischer Betrachtungsweise lässt sich jede Deckoperation
als lineare orthogonale Koordinatentransformation auffassen
und durch eine zugehörige Transformationsmatrix beschreiben. Man kann
nun die Symmetrieoperationen nach zwei verschiedenen Gesichtspunkten
einteilen. Einmal können den Operationen, welche mindestens einen Punkt
im Räume fest lassen, die fixpunktfreien Operationen, welche
Translationen enthalten, gegenübergestellt werden. Oder es können je nachdem,

ob die Determinante der Transformationsmatrix den Wert + 1 oder
— 1 annimmt, die orientierungserha Itenden Operationen I. Art von den

Operationen II. Art unterschieden werden, welche die Reihenfolge der
Koordinatenachsen vertauschen.

Für den dreidimensionalen Raum ergeben sich, wenn man von den im Teil II
zu behandelnden fixpunktfreien Operationen der Verschiebung, Schraubung und
Gleitspiegelung vorläufig absieht, die folgenden Punktsymmetrieoperationen:

Drehung
cos <p + sin çp 0

+ sin <p cos <p 0
0 0 1

Drehspiegelung
cos <p + sin <p 0

+ sin <p cos cp 0
0 0 -1

Drehinversion
— cos tp ± sin (p 0

+ sin <p — cos çp 0

0 0-1
Dabei ist die c-Achse des rechtwinkligen Koordinatensystems in die durch

die Operation ausgezeichnete Richtung gelegt. Die Matrizen für beliebige Lage des

Bezugssystems werden erhalten, indem man zweimal mit analogen Matrizen
transformiert, die den EuLERschen Drehungen um die a- und b-Achse entsprechen. Aus
den angegebenen Transformationsmatrizen geht hervor, dass nur die reinen
Drehungen Operationen I. Art sind. Eine Drehung um ein ganzzahliges Vielfaches
von 2 TT liefert die Einheitsmatrix der Identitätstransformation. Die Operationen
II. Art enthalten als Spezialfälle für die Drehung um ein ganzzahliges Vielfaches
von 2 TT oder tt die Inversion und die Spiegelung. An sich könnte man übrigens
wegen der Beziehungen zwischen Drehinversion und Drehspiegelung auf eine dieser
beiden Operationsarten verzichten.

Zur Veranschaulichung wird für jede Operation ein zugehöriges

Symmetrieelement definiert als der geometrische Ort aller Punkte,
deren Koordinaten gegenüber der Transformation invariant sind. Im
n-dimensionalen Raum wird die Lage eines Punktes durch n linear
unabhängige Koordinaten beschrieben ; von der uneigentlichen Operation der
Identität abgesehen, werden also den Symmetrieelementen selbst 0 bis
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n — 1 Dimensionen zukommen. Um eine einheitliche Bezeichnungsweise
zu gewährleisten, soll im folgenden von der Spiegelung an einem (n — 1)-

dimensionalen, der Drehung um ein (n —2)-dimensionales und der Inversion

an einen (n —3)-dimensionalen Element gesprochen werden. Dann
sind als Punktsymmetrieelemente möglich

im R1 Spiegelpunkte,
im Rn Drehpunkte und Spiegelgeraden,
im Rm Inversionspunkte (Symmetriezentren), Drehachsen bzw. Dreh-

inversions- oder Drehspiegelachsen, und Spiegelebenen.

Gegenüber Drehinversionen und Drehspiegelungen sind zwar im
allgemeinen nur die Koordinaten eines Punktes invariant, doch ist zur
Beschreibung der Operation ausser diesen Drehinversions- oder
Drehspiegelzentren auch die Achsenrichtung anzugeben.

2. Formen und Zyklengliederung

Ist n die kleinste positive ganze Zahl, für welche die n-te Potenz
einer Transformationsmatrix mit der Einheitsmatrix identisch wird, so
führt eine n-malige Ausführung der Symmetrieoperation erstmals den

ganzen Raum in seine Ausgangslage zurück, n wird als die Ordnung
der Operation bezeichnet. Um den fixpunktfreien Operationen der
Raumgruppen ebenfalls eine Ordnung zuschreiben zu können, wird diese

Betrachtungsweise im Teil II etwas abgeändert werden müssen. Werden
aber nur Symmetrieoperationen, die mindestens einen Punkt im Räume
fest lassen, zu einer Punktgruppe kombiniert, so haben sie wenigstens
einen Fixpunkt gemeinsam. Sämtliche Symmetrieelemente schneiden sich
also in einem Punkt, dem Hauptsymmetriepunkt. Es liegt nahe, ihn
zum Nullpunkt des Bezugssystems zu wählen; immerhin können dabei

f Freiheitsgrade auftreten, wenn der Schnitt sämtlicher Symmetrieelemente

selbst f-dimensional wird. Die Anzahl N der verschiedenen
Symmetrieoperationen als Gruppenelemente definiert die Ordnung der
Gruppe. Da die einzelnen Operationen zyklische Untergruppen erzeugen,
sind ihre Ordnungen n Teiler von N.

Als Form wird ein Komplex von allen unter sieh gleichwertigen
geometrischen Elementen bezeichnet. Bei gegebener Symmetrie ist die
Form also durch eines ihrer Elemente bestimmt. Für allgemeine Lage
der Z Formenelemente gegenüber den Symmetrieelementen gibt es ausser
der Identität keine Symmetrieoperation, die ein Einzelelement in sich
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selbst überführen würde, und die Zähligkeit Z der Form entspricht der
Gruppenordnung N. Liegen aber die Elemente einer speziellen Form
auf Symmetrieelementen, so haben sie der Symmetriebedingung der
durch die zugehörigen Symmetrieoperationen gebildeten selbständigen
Untergruppe zu genügen, und die Ordnung dieser Untergruppe setzt als

N
geometrische Wertigkeit w die Zähligkeit der Form auf Z =—
herunter. Zugleich sinkt die Zahl der Freiheitsgrade unter die Dimensionszahl

des Raumes.

Im R111 etwa sind, je nachdem es sich beim erzeugenden Element um einen
Punkt xyz, eine Richtung [uvw] oder eine Fläche (hkl) handelt, folgende Arten
von Formen möglich:

(xyz) Punktform, Punktner
([uvw]) Kantenform, Kantner
((hkl)) Flächenform, Flächner.

Im R11 kommen nur Punktner und Kantner, im R1 nur Punktner vor.

Als Grundlage für manche Berechnungen, etwa von Isomerenzahlen,
ist die von G. Polya (30) eingeführte und von P. Niggli (22) weiter
ausgebaute Zyklengliederung angemessen. Es ist zwar üblich, eine Symmetriegruppe

nur durch die Angabe einer Mindestzahl von erzeugenden Operationen

zu beschreiben; in die Rechnung gehen aber alle N Operationen
ein. Die Zyklendarstellung verbindet nun eine vollständige Aufzählung

der Symmetrieoperationen mit einer Beschreibung der Form. Einen
Zyklus bezüglich einer herausgegriffenen Symmetrieoperation bilden
diejenigen Formenelemente, die durch wiederholte Ausführung der Operation

ineinander übergeführt werden. Ihre Anzahl definiert die Ordnung
des Zyklus.

Es sind nun folgende drei Fälle zu unterscheiden :

a) Keine Formenelemente liegen auf dem zur betrachteten Operation gehörigen

Symmetrieelement. Dann ist die Zyklenordnung gleich der Ordnung n der

Operation, und die Z-zählige Form zerfällt bezüglich der Operation in p —

gleichwertige Zyklen. Dieser Tatbestand findet seinen Ausdruck im Zyklensymbol
F®. F bedeutet eine beliebige Symmetrieoperation; soll unterschieden werden, so
schreibt man f für Drehung, s für Drehinversion und s' für Drehspiegelung. Als
Index steht die Zyklenordnung, als Exponent die Zyklenzahl.

b) Sämtliche Formenelemente liegen auf dem betrachteten Symmetrieelement.

Die Zyklen sind ebenfalls gleichwertig, aber im Symbol FJ wird die
Zyklenordnung m 2, wenn bei Drehinversion oder Drehspiegelung die Formenelemente
auf der Achse, nicht im Zentrum liegen ; in allen übrigen Fällen führt die Operation
jedes Element in sich selbst über, und die Zyklenordnung wird m= 1. Die Zyklenzahl

ergibt sich entsprechend zuq | bzw. q Z.
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c) Von den Z Formenelementen liegen r auf dem betrachteten Symmetrie -

element. Jetzt zerfällt die Form bezüglich der Operation in zweierlei ungleichwertige

Zyklen von verschiedener Ordnung. Das zusammengesetzte Zyklensymbol
F{[ F('n ist als Produkt aufzufassen, n ist wieder die Ordnung der Operation, und

_____ ^ 2 p pfür m gilt das unter b) gesagte. Die Exponenten werden zu p und q —

erhalten. Insgesamt gilt natürlich pn + qm Z. Man sieht, dass die einfachen
Zyklensymbole aus den zusammengesetzten als Spezialfall hervorgehen, wenn einer
der Exponenten verschwindet.

Die durch die Gruppenordnung N dividierte Summe der Zyklensymbole für
alle N Symmetrieoperationen bildet die Symmetrieformel. Da die Operationen,
die zu gleichwertigen Zyklen eines Symmetrieelementes oder gleichwertiger
Symmetrieelemente gehören, im gruppentheoretischen Sinne eine Klasse konjugierter
Elemente bilden, können sie in der Symmetrieformel zusammengefasst werden.
Dazu schreibt man ihr Zyklensymbol nur einmal hin und versieht es dafür njit
einem entsprechenden Koeffizienten. Wird nicht zwischen den Operationsarten
unterschieden, so vereinigt man darüberhinaus alle gleichartigen F-Symbole auf
diese Weise. Die Symmetrieformel ist charakteristisch für Form und
Punktsymmetriegruppe. Vieldeutigkeit ergibt sich stets bezüglich der Stellung einer
Form, und bei Verwendung der allgemeinen F-Symbole gelegentlich auch bezüglich
der Punktgruppe. Anordnungen, denen trotz Verknüpfung durch verschiedene
Symmetrie die gleiche allgemeine Symmetrieformel zukommt, werden isozyklisch
genannt.

Nun rechtfertigt es sich auch, Drehinversionen und Drehspiegelungen
nebeneinander als Symmetrieoperationen zu verwenden. Ist nämlich für einen
Drehwinkel cp die Achsenzähligkeit — ganzzahlig, aber nicht durch 4 teilbar, so

unterscheidet sie sieh bei beiden Operationsarten um den Faktor 2. Man kann dann
einheitlich die Operation mit dem höheren Wert benützen, weil für sie die
Achsenzähligkeit der Ordnung entspricht. So wird etwa die Spiegelung durch s2 und die
Inversion durch s.j dargestellt.

3. Punktsymmetriegruppen, Systeme und Syngonien

Für die Punktgruppen, die durch geeignete Kombination von
(translationsfreien) Symmetrieoperationen entstehen, kommen zunächst
folgende Einteilungsmöglichkeiten in Frage:

nach der Dimensionszahl des betrachteten Raumes; hier soll nur auf
die anschaulich darstellbaren 1- bis 3-dimensionalen Gruppen
eingegangen werden;

nach der Zahl der Operationen in Gruppen endlicher oder unend¬
licher Ordnung;

nach dem Fehlen bzw. Auftreten von (mit einer nicht in die Achsenrich¬

tung fallenden Translation unverträglichen) Operationen der
Ordnung 5 oder > 6 in kristallographische und nichtkristallo-
graphische Gruppen;
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nach dem Fehlen oder Vorhandensein von Operationen II. Art in reine
Drehungsgruppen und Gruppen II. Art;

speziell im Rm nach dem Auftreten keiner, einer oder mehrerer durch
Operationen der Ordnung < 2 ausgezeichneter Richtungen in monobis

digonale, wirtelige und isometrische Gruppen; dabei
können die Gruppen mit 1- oder 2-zähliger Hauptachse auch als

Spezialfälle zu den wirteligen gerechnet werden.

In Erweiterung der in der Kristallographie üblichen Bezeichnungsweise

werden Gruppen, die gleiche wesentüche Elemente (höherer
Ordnung) enthalten, zu Systemen zusammengefasst. Eine schärfere
Definition des Systemsbegriffs hat von den zur Beschreibung verwendeten,
der Symmetrie angepassten Koordinatensystemen auszugehen; im Teil II
wird das am Elementarbereich der Raumgruppen deutlich. Die
höchstsymmetrische Gruppe eines solchen Systems, die Holoedrie, lässt sich
durch gesetzmässige Unterdrückung von Elementen zu den Meroedrien
abbauen; diese sind als Hemiedrien von der Ordnung N/2, als
Tetartoedrien von der Ordnung N/4, wenn N die Ordnung der
Holoedrie bedeutet. Untergruppen der Holoedrie mit einem Index 3 oder
> 4 können dem System nicht mehr angehören, solche mit dem Index
2 oder 4 müssen es nicht.

Eine Übersicht über die dreidimensionalen Punktgruppen ist von W. Nowacki
(27) gegeben worden. In der folgenden Zusammenstellung sind sämtliche
Punktsymmetriegruppen des R1, Rn und Rm in ihre Systeme gegliedert aufgeführt. Die
Bezeichnungsweise schliesst sich an die der Kristallklassen an; insbesondere
entsprechen die Symbole der linearen und ebenen Gruppen einem Schnitt des betrachteten

Raumes mit den Symmetrieelementen der analogen dreidimensionalen
Gruppe.

A. Punktgruppen endlicher Ordnung:
I. Eindimensionaler Raum: nur ein System (Holoedrie Cs, Hemiedrie Cj).

II. Zweidimensionaler Raum: nur n-gonale Systeme (Holoedrie Cnv, Hemiedrie
CJ.

III. Dreidimensionaler Raum:
a) Wirtelig : n-gonale Systeme (Holoedrie Dnh für n 0 (mod. 2) bzw. Dnd für

n=l (mod. 2), Hemimorphie Cnv, Enantiomorphie Dn, Paramorphie Cnh

für n 0 (mod. 2) bzw. Cni für n 1 (mod. 2), Hemiedrie II. Art nur D|d
für n 0 (mod. 4) bzw. D|h für n 2 (mod. 4), Tetartoedrie (I. Art) Cn,
Tetartoedrie II. Art nur Sn für n 0 (mod. 4) bzw. C|h für n 2 (mod. 4)).

b) Speziell für n 2 oder 1: drei Systeme.
1. Orthorhombisches System (Holoedrie D2h, Hemimorphie C2v, Hemiedrie

D2).
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2. Monoklines System (Holoedrie C2h, Hemimorphie C2, Hemiedrie Cg).
3. Triklines System (Holoedrie C1; Hemiedrie Cj).

c) Isometrisch: zwei Systeme.
1. Kubisches System (Holoedrie Oh, Enantiomorphie O, Hemimorphie Td,

Paramorphie Th, Tetartoedrie T).
2. Ikosaedrisches System (Holoedrie Ih, Hemiedrie I).

B. Punktgruppen unendlicher Ordnung:
I. Eindimensionaler Raum: keine.

II. Zweidimensionaler Raum: System der Kreisgruppen (Holoedrie Cœv, Hemi¬
edrie Cœ).

III. Dreidimensionaler Raum:
a) Wirtelig: System der Zylindergruppen (Holoedrie Doch, Hemimorphie

C00T, Enantiomorphie Dx, Paramorphie C!xh, Tetartoedrie Cx).
b) Isometrisch: System der Kugelgruppen (Holoedrie Kh, Hemiedrie K).

Kristallographisch sind nur Punktgruppen endlicher Ordnung, und zwar das
System des R1, im R11 die Gruppen der n-gonalen Systeme mit n 1, 2, 3, 4, 6, und
im Rni von den wirteligen die tri-, tetra- und hexagonalen sowie die unter b)
aufgeführten mono- und digonalen, und schliesslich von den isometrischen die
kubischen Gruppen.

Treibt man nun den Abbau der Symmetrie über das System hinaus
weiter, so gelangt man zum übergeordneten Begriff der Syngonie, den
E. S. Fedorow eingeführt hat. Die zu einer holoedrischen Gruppe gehörige

Syngonie umfasst die Gesamtheit der in ihr enthaltenen
Untergruppen, die uneigentlichen inbegriffen. Während alle Gruppen eines

Systems üblicherweise in derselben Aufstellung beschrieben werden,
erweist es sich im Rahmen der Syngonie als zweckmässig, auch
Bezugssysteme in andern sinnvollen Aufstellungen zu verwenden. Damit wird
die Möglichkeit gegeben, Pseudosymmetrien und Deformationen in ihrem
Zusammenhang zu überblicken; Beispiele für diese Betrachtungsweise
finden sich bei P. Niggli (19,20).

Sämtliche ebenen Punktgruppen gehören der Syngonie von Coov an;
im Rni sind die isometrischen Gruppen Glieder der Syngonie von Kh und
die wirteligen Glieder der zylindrischen Syngonie, die aber ihrerseits auch
zur Kugelsyngonie gehört. Beschränkt man sich auf die endlichen Gruppen,
so ist allgemein die n-gonale Syngonie in allen m-gonalen Syngonien mit
m s 0 (mod. n) enthalten. Die kubische Syngonie enthält auch die tri- und
tetragonale, die ikosaedrische die tri- und pentagonale. Dadurch
überschneiden sich die kubische und hexagonale, die ikosaedrische und
hexagonale bzw. dekagonale Syngonie.
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Die von einerPunktgruppe und ihren Nebengruppen bezüglich einer
Holoedrie erzeugten Formen ergänzen sich zur holoedrischen Form. Sind
die Einzelformen meroedrisch, so werden sie zueinander korrelat
genannt; wird der Zusammenhang über das System hinaus verfolgt, so

spricht man von hypokorrelaten Formen. Natürlich kann man auch

umgekehrt vorgehen und den Zerfall einer Form in gleichwertige (hypo-)
korrelate Formen betrachten. Beispielhaft soll die Korrelation in den

kristallographischen Syngonien des Rni im Abschnitt 5 vollständig behandelt

werden.

4. Die Symmetrieoperationen der Punktgruppen; Koordinatentafeln

Die in der Kristallographie verwendeten Symbole nach Schoen-
elies oder Herman* nt-Mauguin beschreiben die Punktgruppen durch einen
Satz von im allgemeinen willkürlich ausgewählten erzeugenden Symmetrieelementen.

Es wurde aber schon darauf hingewiesen, dass für Berechnungen

eine vollständige Aufzählung der Symmetrieoperationen
notwendig ist. Diese Aufzählung wird durch die Glieder der im Abschnitt 2

erläuterten Symmetrieformel gegeben, doch muss die Formel noch
von der Form unabhängig gemacht werden. Das geschieht dadurch, dass

man sie für eine Form allgemeiner Lage aufstellt und die Exponenten der
Glieder weglässt. Es bleiben dann nur einfache Zyklensymbole übrig, und
die Ordnung ist für Zyklus und Operation dieselbe. So liest man aus der
verallgemeinerten F-Symmetrieformel sofort Anzahl und Ordnungen der
Symmetrieoperationen ab; aus der speziellen (f, s, s' unterscheidenden und
die Klassenzugehörigkeit berücksichtigenden) Formel sind ausserdem Art
und Gleichwertigkeit der Operationen unmittelbar ersichtlich.

Die Symmetrieformeln von Gruppen unendlicher Ordnung enthalten natur-
gemäss unendlich viele Glieder. Zur Aufstellung der Formeln für endliche Gruppen

hingegen kann man einige Gesetzmässigkeiten ausnützen. Zunächst sind die
Ordnungen der in einer Operation von der Ordnung n enthaltenen Untergruppen
ganzzahlige Teiler von n. Bezeichnet man mit {Fn} die Gesamtheit der in diesem
Sinne zu Fn gehörigen Operationen, so gewinnt man die Glieder der Symmetrieformel

durch Auflösung des n-zähligen Symmetrieelementes in seine Unter -

elemente. Die Zahlentheorie liefert dafür die Beziehungen

{fn} 2PiL., und für n 0 (mod. 2)

K} {fll + I> 'V ^ + 2 Pi

Darin durchläuft x, alle ganzen Zahlen von 1 bis n, für welche n 0 (mod. x) wird,
pi ist die Anzahl der zu x, primen Zahlen rgXj, nämlich aus der Zerlegung in
Potenzen von Primfaktoren
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x^fllajk), nach Etiler p, x,]^[(l M
k k \ ^t/i

Ähnlich durchläuft Xj alle ganzen Zahlen von 1 bis n, für welche n 0 (mod. x)^0
(mod. 2x) wird; daraus erhält man p; in derselben Weise wie Pj aus x,. Berücksichtigt

man noch, dass jede Operation nur einmal gezählt werden darf, auch wenn
sie bei der Auflösung mehrerer übergeordneter Operationen in Erscheinung tritt,
so wird die Formel einer Gruppe von der Ordnung N genau N Symmetrieoperationen

enthalten.

Allgemein kommen für eine gegebene Ordnung n die folgenden
Symmetrieoperationen in Frage:

im R1 für n 1 f1; für n 2 s2 ;

im R11 für n 2 f2 oder s2, für n H= 2 fn ;

im Rm für n 1 (mod. 2) fn, für n 2 (mod. 4) fn oder sn oder s^,

für n s 0 (mod. 4) fn oder sn s^).

In Tabelle 1 sind die Anzahlen und Klassenzahlen der
Symmetrieoperationen verschiedener Ordnung für alle endlichen dreidimensionalen

Gruppen zusammengestellt. Für die bei den n-gonalen Gruppen
auftretende Grösse g ist 1, wenn n 0 (mod. 2), bzw. 0, wenn n 1 (mod. 2),
einzusetzen. Nach der üblichen Bezeichnungsweise sind die Symbole Sn

nur für n 0(mod. 4), 1>,i nur für n 0(mod. 2), und Cni nur für n=l
(mod. 2) sinnvoll. Als zweckmässig erweist sich eine Zusammenfassung
der Punktgruppen zu den mit römischen Ziffern bezeichneten Kolonnen.

Die entsprechenden Werte für die ebenen Gruppen können ebenfalls
aus der Tabelle 1 abgelesen werden, und zwar für Cn unter I., für Cnv unter
II. wie bei den dreidimensionalen wirteligen Gruppen. Im R1 schliesslich
erhalten C1 und Cg die Symmetrieformeln 1 Ft bzw. 1 Fx + 1 F2. Damit
lassen sich aus diesen Angaben die verallgemeinerten Symmetrieformeln
aller Punktgruppen endlicher Ordnung aufstellen; ebenso ist ersichtlich,
welche Gruppen im Sinne von S. 27 isozyklisch sind. Im Falle der
kristallographischen Punktgruppen etwa zeigt sich, dass die Werte
folgender Kolonnen in der Tabelle zusammenfallen: II. und II', für n 1 mit
I. für n 2, III. für n 1 mit II. und II', für n 2, II', für n 3 mit I. für
n 6, III. für n 3 mit II. für n 6. Daraus leitet man ab, dass sich
die 2 kristallographischen Punktgruppen des R1 in 2, die 10 des R11 in 9,

und die 32 des R111 in 18 Typen von isozyklischen Gruppen gliedern.
Im Hinblick auf die spätere Einführung der Charakterentafeln muss

noch eine andere Art der Darstellung betrachtet werden. Bei geeigneter,
d.h. symmetriegerechter Wahl des Bezugssystems (etwa wie in der
Kristallographie üblich) lässt sich nämlich für alle Punktgruppen die
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Tabelle 1. Symmetrieoperationen der dreidimensionalen Punktgruppen

a) wirtelig I. II. II'. III.
(inkl. 1- und 2-gonal) cn,sn V,v> cnh,cnl Dn„

Zahl der Fj 1 1 1 1

f2 g n + g l + 2g 2n+l + 2g
Fj x > 2 n-l-g n-l-g 2n —2 —2g 2 n — 2 — 2g

total Gruppenordnung: n 2n 2n 4n

Klassen von Ft 1 1 1 1

f2 g l + 2g l + 2g 3 + 4g
Fl» x> 2 i(n-l-g) 1

2 (n-l-g) n-l-g n-l-g
total Klassenzahl: i(n+l + g) i(n+ 3 + 3g) n+l+g n -{- 3 + 3g

b) isometrisch Ia. Ib. Ib'. Ic. IIa. IIb.
T Th Td,0 oh I I,

Zahl der F4 1 1 1 1 1 1

f2 3 7 9 19 15 31

f3 8 8 8 8 20 20

f4 — — 6 12 — —
f5 — — — — 24 24

f6 — 8 — 8 — 20
F10 24

total Gruppenordnung: 12 24 24 48 60 120

Klassen von Fx 1 1 1 1 1 1

f2 1 3 2 5 1 3

f3 1 1 1 1 1 1

f4 — — 1 2 — —
f5 — — — — 2 2

F6 — 1 — 1 — 1

F10 2

total Klassenzahl: 3 6 5 10 5 10

Zuordnung der Punktkoordinaten, Flächen- oder Richtungsindices
einer Form zu den einzelnen Symmetrieoperationen sehr übersichtlich
gestalten. Dazu fasst man jene Operationen, welche für sich genommen
nur Vorzeichenwechsel ohne Änderung der absoluten Beträge zur Folge
haben, mit der Identitätsoperation zu einer Grundeinheit als

Untergruppe zusammen; im Rn mit n> 1 werden durch ihre Nebengruppen
nach Bedarf ähnliche Einheiten gebildet. Die n linear unabhängigen
Koordinaten bzw. Indices des Rn ermöglichen 2n verschiedene
Vorzeichenkombinationen. Insbesondere enthalten die Grundeinheiten
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im R1 die 21 2 Operationen von Cg,
im R11 die 22 4 Operationen von C2v,
im Rm die 23 8 Operationen von I)2h

Sehreibt man nun jede Symmetrieoperation mit dem zugehörigen Koordi-
naten-n-Tupel auf eine Zeile, so kann man weiter je die beiden
Operationen, die jede Ausgangskoordinate in zwei Koordinaten von
entgegengesetztem Vorzeichen überführen, paarweise zu einer Doppelzeile
zusammenfügen. Man erhält so im Rn für jede Einheit eine Tafel
(Koordinatentafel oder Indicestafel) von 2(n_1) Doppelzeilen. Diese Zahl stimmt
für n 1 und n 2 mit der Dimensionszahl überein; im Rm nimmt man
diejenige Doppelzeile, welche in der Grundeinheit die Identitätsoperation
enthält, heraus und kommt so ebenfalls auf drei Doppelzeilen in der Tafel.
Da andrerseits im Rn die Spaltenzahl, d.h. die Anzahl der linear
unabhängigen Bestimmungsstücke, n beträgt, nimmt die Tafel dann die Form
einer n-reihigen quadratischen Matrix an. Sie bildet die Leerform
für die Charakterentafeln im Teil II, wo die Zweckmässigkeit dieser
Darstellungsweise erst völlig deutlich wird.

Zur Abklärung der Frage, auf wie viele Tafeln sich die Operationen einer
Punktgruppe endlicher Ordnung verteilen, geht man am besten von denjenigen
(im allgemeinen holoedrischen) Gruppen aus, welche die von den Operationen der
Grundtafel gebildete Gruppe als Untergruppe enthalten. Die Ordnung N solcher
Gruppen — es sind im R1 Ca, im Rn CIT mit n 0 (mod. 2), im Rm Dnh mit n 0
(mod. 2), Th, Oh, Ih — ist stets durch die Zeilenzahl einer Tafel — im R1 2, im R11 4,
im Rnl 8 — teilbar. Da die genannten Gruppen die zu sämtlichen Zeilen einer Tafel
gehörigen Operationen umfassen, wird die Anzahl der zur Beschreibung von Gruppen

ihres Systems notwendigen Tafeln im R1 N/2= 1, im R11 N/4 ^ und im Rln
N/8, also ~ für Dnh, 3 für Th, 6 für 0„ und 15 für Ih. Insbesondere werden Gruppen
mit Hauptoperationen von ungerader Ordnung, d. h. p-gonale Gruppen mit p= 1

(mod. 2), durch ebenso viele Tafeln beschrieben wie die 2p-gonalen Gruppen mit
den entsprechenden Operationen von doppelter Ordnung. So sind allgemein der
Gesamtheit der zu einem System gehörigen Punktgruppen dieselben Tafeln
zugeordnet, nur fällt für die Meroedrien ein Teil der Zeilen gesetzmässig aus.

In ähnlicher Weise lassen sich diese Überlegungen hinsichtlich der
Überschriften der Tafeln durchführen. Sie enthalten die Grössen (Punktkoordinaten,
Flächen- oder Richtungsindices), auf welche durch die Operationen der Tafel alle
möglichen VorzeichenWechsel ausgeübt werden. Nun liefert etwa im Rm jede
p-zählige Achse mit psl (mod. 2) genau p verschiedene Überschriften, die nicht
durch Vorzeichenwechsel allein auseinander hervorgehen können. Eine q-zählige
Achse mit q 0 (mod. 2) dagegen schliesst eine Digyre als Unterachse in sich,
deren Decktransformation nur VorzeichenWechsel zur Folge hat; es gehören ihr
demnach | verschiedene Überschriften zu. Bei der Kombination von Achsen ver-
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schiedener Zähligkeit ergibt sich allgemein, dass die Zahl der zur Beschreibimg
erforderlichen Tafeln gleich dem Produkt aus den ungeraden und den halbierten
geraden Zähligkeiten ist.

Nach den getroffenen Festsetzungen nehmen nun die Tafeln folgende
Form an:

im R1 im R11 im R111

+ Ol + + +

- o2 «1 - + +
Tl t a2 +
T2 H— „ßi + - +

ß2 - + -
Yi + + -
72 +

o2

Dabei sind nur die VorzeichenWechsel angegeben, die auf die als
Überschriften zu setzenden Grössen ausgeübt werden; die Bezeichnung der
Zeilen erfolgt durch griechische Buchstaben. Quadratische Matrizen, die
für den Rhr, für den Rncr und r, und für den RIIIa, ß und y als Doppelzeilen

enthalten, bilden so das Schema für die Koordinaten- und Indices-
tafeln und später auch die Leerform für die Charakterentafeln. Im Falle
des R111 ist die Aufteilung von er auf je eine Kopf- und Endzeile aus der
Darstellung ersichtlich.

Geht man bei der Ableitung vom R1 aus, so wird durch Hinzunahme einer
zweiten Dimension die Zeile <j1 in a1 und r2, die Zeile a2 in cr2 und tl aufgespalten.
Dementsprechend stehen im R11 die Zeilen dieser beiden Paare in der Beziehung
CB zueinander. Nimmt man nun die dritte Dimension hinzu, so ergibt sich in
ähnlicher Weise die Aufspaltung von o1 in a1 und yt, von r2 in a2 und ßx, von cr2 in cr2

und y2, und von ti in a.x und ß2. Dadurch stehen im Rm die Zeilen at, a2, ßx, y,
einerseits und cr2, <x1, ß2, y2 andererseits zueinander in der Beziehung C2t. Es sei
noch darauf hingewiesen, dass die Verteilung einer Elementenmannigfaltigkeit auf
verschiedene Tafeln eine der Möglichkeiten darstellt, sie in hypokorrelate Formen
aufzulösen. Das folgt aus der Verknüpfung der Grössen sämtlicher Tafeln im R11

und Rm durch die Symmetrieoperationen von C2v bzw. D2h.

Um nun jeder einzelnen Zeile eindeutig eine Symmetrieoperation
zuzuordnen, werden die verschiedenen Koordinatentafeln, die zur
Verwendung gelangen, durch die in der Zeile oy eiiizusetzenden Punktkoordinaten

als Überschrift gekennzeichnet. Dann führt die zu irgendeiner
Zeile £ gehörige Operation den Ausgangspunkt x bzw. x, y bzw. x, y, z,
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d. h. den Punkt mit der Überschrift der Grundtafel als Koordinaten, in
den Punkt mit den Koordinaten der Zeile £ über. Die Tafeln selbst werden
mit grossen Buchstaben bezeichnet, z. B. die Grundtafeln mit G. So ergibt
sich die folgende Übersicht der Symmetrieoperationen in ihrer durch die
Tafeln bedingten Anordnung:

Im R1 tritt nur eine Grundtafel G (mit der Überschrift x) auf; ihren
Zeilen sind die Operationen o1 fx (Identität) und a2 s2 (Spiegelung am
Nullpunkt) zugeordnet.

Im R11 sind neben der Grundtafel G zur Beschreibung der n-gonalen
Gruppen mit n > 2 noch weitere Tafeln vom Typus W notwendig. Die
Zuordnung der Symmetrieoperationen geht aus Tabelle 2 a hervor.

Tabelle 2a: Zweidimensionale wirtelige Tafeln

G (x, y)

ffj fx (Identität)
ct2 f2 (Drehung um tt)
t! s2 (Spiegelung an y-Achse)
t2 s2 (Spiegelung an x-Achse)

W (x cos <p + y sin <p, y cos 93 — x sin 99)

cr1 fp (Drehung um 93)

cr2 fq (Drehung um 93 + 77-)

r1 s2 (Sp. an um — | cp gedr. y-Achse)
t2 s2 (Sp. an um — J <p gedr. x-Achse)

Besondere Bedeutung für die Behandlung der Netzgruppen kommt
den zwei kristallographischen Spezialfällen des Typus W zu, nämlich der

tetragonalen Tafel T mit <p ^, und den hexagonalen Tafeln H1 und H2

mit 93 ^ bzw. 93 — ^77-. Sie sind in Tabelle 2b dargestellt.

Tabelle 2b: Zweidimensionale Jcristallographische Tafeln

T (y> x) -Hj (xi> yd H2 (x2, y2)

Ol f4 (0°) Ol. f3 (00) Uj f3 (00)
u2 f4 (00) a2 f6 (00) C72 f6 (00)
Ti S2 (11) Ti S2 (11) T! S2 (11)
T2 S2 (11) T2 S2 (31) T2 S2 (31)

Die Lagen der Symmetrieelemente sind hier und im folgenden durch die
in der Kristallographie üblichen Indices angegeben, die sich leicht auf
andere als dreidimensionale Räume übertragen lassen. Dabei sind die
hexagonalen Tafeln auf ein orthohexagonales Elementarparallelogramm

mit a= )/3 b bezogen; so gelten für sie die Transformations-
gleichungen x4 -l(x-y), yx -£(3x + y) bzw. x2=-£(x + y),
y2 l(3x —y).
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Im R111 schliesslich liegen die Verhältnisse für die Grundtafel G

besonders einfach: die Operationen, durch welche die a-, b- und c-Achse
des Bezugssystems ausgezeichnet werden, gehören zu den Doppelzeilen œ

bzw. ß bzw. y, und die keine Richtung auszeichnenden Operationen liefern
die Kopfzeile a1 als Überschrift und die Endzeile ex2 (Tabelle 2 c).

Tabelle 2c: Dreidimensionale Grundtafel

G (x, y, z)

cr1 fj (Identität)
<%! s2 (100) (Spiegelung an y-z-Ebene)
oc2 f2 [100] (Drehung um 7r um x-Achse)
ßl s2 (010) (Spiegelung an x-z-Ebene)
ß2 f2 [010] (Drehung um 77 um y-Achse)
Yi s2 (001) (Spiegelung an x-y-Ebene)
y2 f2 [001] (Drehung um 77 um z-Achse)

ct2 s2 (Inversion am Nullpunkt)

In der Reihenfolge wechseln Operationen I. Art und II. Art miteinander
ab; das ist in sämtlichen Tafeln des R111 der Fall. Die zur Beschreibung
wirteliger Gruppen erforderlichen Tafeln W, für deren Symmetrieelemente
natürlich im allgemeinen keine kristallographischen Indices angegeben
werden können, nehmen die Form der Tabelle 2d an.

Tabelle 2d: Dreidimensionale wirtelige Tafeln

W (x', y', z') mit :

<jl fs1 [001] (Drehung um x' x costVi — y sin -jl-

ai s2 (Spiegelung an Nebensymmetrieebene) y' y cos -Vi + x sin -^7T

oc2 f2 (Drehung um Nebendigyre) z' z

s2 (wie ai) und i > 0.
ß2 f2 (wie a2)

y1 sni [001] ^ürehinversion um

y2 fp [001] (Drehung um VV)

a2 en' [001] (Drehspiegelung um

Für die Behandlung der Schicht- und Raumgruppen gewinnen wiederum
die Spezialfälle der kristallographischen Tafeln W mit n 4 und n 6 eine
besondere Bedeutung. Sie geben Anlass zu einer tetragonalen Tafel K, die
auch im kubischen System Verwendung findet, und zu den (auf ein ortho-
hexagonales Elementarparallelepiped bezogenen) hexagonalen Tafeln H1
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und H2 mit den Transformationsgleichungen x4 — |(x — y), yt
-$(3x + y), z1 z; xa -£(x + y), ya i(3x-y), z2 z. Diese Tafeln
sind in Tabelle 2e dargestellt.

Tabelle 2e: Dreidimensionale tetra- und hexagonale Tafeln

K (y, x, z) H1 (x1; y4, z4) H2 (xs, y2, z2)

q1 f4 [001] ffl f3 [001] ax f3 [001]

<*! s2 (110) ax s2 (110) ax s2 (110)
a2 f2 [110] a2 f2 [130] a2 f2 [130]
ßx s2 (110) ßt s2 (310) ßx s2 (310)
j83 f2 [110] ß2 f2 [110] & fa [110]

yi s4 [001] yi s6 [001] yi s6 [001]
y2 f4 [001] y2 f„ [001] y2 fe [001]

ct2 s4 [001] cr2 s3 [001] <t2 s6 [001]

In den isometrischen Gruppen werden die Achsenrichtungen gleichwertig
bezüglich Operationen von der Ordnung 3; das führt zu neuen Tafeln mit
zyklisch vertauschten Überschriften. So werden zur Beschreibung des

kubischen Systems neben G die Tafeln G' und G" sowie neben K die Tafeln
K' und K" der Tabelle 2f verwendet.

Tabelle 2f: Dreidimensionale hubische Tafeln

G' (y, X, z) O" (z, x, y) K' (z, y» x)

tw5IIHb [111] °i fs [ill] o-i f4 [010]

<*1 S6 [Hl] otj s6 [Hl] OCi s2 (10T)

a2 f3 [111] a2 f3 [111] a2 f2 [101]
ßl S6 [111] ßl S6 [ill] ßi *i [010]
ßi ^3 [111] ßi t3 [ill] ßi= I4 [010]

yi s6 [111] Yl s6 [ill] yx s2 (101)

Ji ^3 [111] Yi f3 [ill] Yi f3 [101]

cr2 — Sß [111] Oi Sg [ill] 0*2 — S4 [010]

K" (x, z, y)

gl f4 [100]

ai s4 [100]
a2 f4 [100]
ßi s2 (011)
ß2 {2 [011]
7i:
Vi:

: S2 (011)
f2 [011]

a2 s4 [100]

Zur Behandlung des ikosaedrischen Systems geht man mit Vorteil von
einer der fünf korrelaten Th-Beziehungen aus. Dann ergeben sich neben
G, G' und G" weitere zwölf Tafeln, indem die Operationen einer
herausgegriffenen Pentagyre auf den Ausgangspunkt ausgeübt und die so
entstehenden Überschriften von 71; I2, I3 und /4 überdies zyklisch
vertauscht werden. Da in diesen Tafeln eine kristallographische Indizierung
nicht möglich ist, sind die Symmetrieelemente in Tabelle 2 g willkürlich
numeriert.

4 Schweiz. Hin. Petr. Mitt., Bd. 33, Heft 1, 1953
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Tabelle 2g: Dreidimensionale ikosaedrische Tafeln

7i (xj, yx » zi) Ii (x2> y2 » z2) I3 (x3, y3, z3) Ii (x4> y4, z4)

ax f5i (i) Ol U (1) Ol — fg2 (i) Ol f5> (i)
OCl s2 (7) a! s2 (8) 0£i ®2 (ii) OCi ®2 (10)
CC2 ^2 (7) 0C2 f2 (8) ÖC2 ^2 (ii) OC2 ~ f*2 (10)
ßl ~ S6 (3) ßl 8103 (3) ßl ~ S103 (6) ßl Sß (6)
ßz f3 (3) ß% — u (3) • ß2= I51 (6) ßz ^3 (6)
Yi 4 (5) yi= s6 (5) yi Se (2) Yi — sioJ (^)
y2 U (5) y2 fs (5) y2 I3 (2) 72 — ^52 (2)

0*2 — Sl03 (1) 0*2 — s10x (1) 02 SjQl (1) °"2 ^ S103 (1)

Ii (yi. zi> xx) 12 (y2 » z2 x2) I3 (y3> z3 » x3) ^4 (y4, z<1. x4)

<?1 U (2) Ol U (4) Ol f3 (3) ox f3 (1)
oci — s10i (3) <*i s2 (2)' OCl — 8101 (2) al ^ S6 (4)
a2 f5a (3) cc2 — f2 (2) œ2 I52 (2) «2 I3 (4)
ßl S2 (4) ßl S6 (6) ßl — ®103 (4) ßl ~ 8103 (5)
ß2 fa (4) ßi — fl (6) ß2 u (4) ß2 fs (5)

yi s6 (4) yi 4 (5) yi s2 (5) yi= 8io» (6)
Y2 — fj (4) y2 U (5) y2 f2 (5) y2 f.2 (6)

cr2 Sio3 (2) Or2 Sj03 (4) o2 s3 (3) <r2 ~ s2 (1)

Ii' (zl> X1 yd 4' (z2 > x2, y2) I3 (Z3> X; y3) -^4 (Z4 » 1. y4)

o-i f2 (3) Ol f3 (1) Ol U (5) Ol f5i (3)

ai S101 (4) ax s2 (12) aj s(0i (3) <"l s6 (2)
a2 f52 (4) a2 f2 (12) a2 fö3 (3) oc2 f3 (2)
ßl < (5) ßl S101 (6) ßl S2 (9) ßl 8 III1 (4)
ß2 f3 (5) ßi — 152 (6) ß2 1*2 (9) ß2 u (4)

yi 4 (6) yi= 8ios (2) yi= s6 (1) yi= s2 (6)
y2 tö1 (6) y2 U (2) y2 f3 (1) y2 f2 (6)
cr2 s2 (3) cr2 sé (1) cr2 Sj08 (5) cr2 s103 (3)

Mit den angegebenen Tafeln kommt man bei der Beschreibung sämt-
Echer Punktgruppen von endMcher Ordnung aus. Unendliche
Punktgruppen würden natürhch auch unendlich viele Tafeln bedingen. Man sieht
nun, dass die Holoedrien in folgenden Tafeln zum Ausdruck kommen:

imß1 Cs in G ;

im R11 Cnv mit n s 0 (mod. 2) in G + — lj W, insbesondere C2v in G,

C4v in G + T, C6v in G + H1 + ;

im Rm Dnh mit n= 0 (mod. 2) in G + ^ — lj W, insbesondere D2h in G,

D4hin G + K, D6hin G +H^H^ Th in G+ G' + G", Ohin G+ G'
+ G" + K+K' + K", 4 in G + G' + G" + I1 + I1' + I1" + I2 + I2' +
I% + 4 + 7g' + 7g" + 74 + II + 7/
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Wo mehrere Möglichkeiten bestehen, wurde die Wahl der Überschriften
so getroffen, dass sich für die Untergruppen eine möglichst einheitliche
Auswahl der massgebenden Zeilen ergibt. Bei den Tafeln W ist besonders
darauf zu achten, dass im n-gonalen System mit n 0 (mod. 2) die

Überschrift einer Operation (I. Art) von der Ordnung ^ entspricht; in einer
2t

andern Zeile der Tafel wird dann von selbst eine Operation der Ordnung n
auftreten.

In den meroedrischen Punktgruppen fehlen gewisse
Symmetrieoperationen der Holoedrien. Dementsprechend fällt ein Teil der Zeilen in
den verwendeten Tafeln gesetzmässig aus. Die Auswahl der für eine
Gruppe geltenden Zeilen kann dann auf verschiedene Weise erfolgen, wenn
die übergeordnete Holoedrie die Gesamtheit der zur betreffenden
Untergruppe gehörigen Symmetrieelemente in mehreren Stellungen enthält. Es
werden aber in der folgenden Übersicht nicht sämtliche Glieder der Syn-
gonien berücksichtigt, sondern nur die Zeilen für in der Kristallographie
übliche oder sonst zweckmässige Aufstellungen, d. h. Bezugssysteme,
angegeben.

Im R1 werden in der einzigen Tafel G Cg durch as + cr2, Gx durch
dargestellt.

Im R11 werden in G + Q- — ' W mit n 2 (mod. 4) C? durch alt Cn

durch 0^ + 02, C°v durch crL +r1; Cnv durch a1 + CT2 + Tx + T2 beschrieben;
für n s 0 (mod. 4) gehört eine ausgezeichnete Tafel von der Form T
vollständig zu Cn bzw. Cnv. Als kristallographische Spezialfälle werden durch
die Zeile oy Cx in G, C3 in G + Hl + II2, durch die Zeilen ax + cr2 C2 in G,

C4 in G+ T, C6 in G + H1 + H2, durch cr1 + r1 Clv in G, C3v in G + H1 + H2,
und durch ax + <r2 + rx + r2 C2v in G, C4v in G + T, C6v in G + H1 + H2
gekennzeichnet.

Im Rm werden zunächst die wirteligen Gruppen mit n 0 (mod. 2)

in den Tafeln G + — lj W durch folgende Zeilen beschrieben: Cn durch

o1 + y2, Cnll durch o1 + cr2 + yx + y2, Cnv durch + ax + ßx + y2, Dn durch
cr1 + oc2 + ß2 + y2, Dnh durch sämtliche Zeilen, und wenn ausserdem

n 2 (mod. 4), C| durch cr1; C|i durch ax-<j2, C|h durch o1 + y1, C?T

durch ax + ax oder a1+ß1, D| durch ax + oc2 oder <tl + ß2, D|h durch
<r1 + <x2 + ß1 + y1 oder <J1 + oc1+ß2 + y1, D°a durch a1 + a2 + oc1 + <x2 oder a1 + a2

+ j81+j82; ist aber n 0(mod. 4), so sind für die ,,Meroedrien II. Art"
Sn und I> d in der einen Hälfte der Tafeln die entgegengesetzten Zeilen
aller Doppelzeilen zu verwenden wie in der andern Hälfte, so dass Sn durch

K+y2)(^ + (^-i)w) + (o-2+yi) (i^)' und durch (^ + «2 + ^2
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+ y2) (^ + (j —1) ^) + (°r2 + œi+jSi + yi) dargestellt wird. Man

sieht, dass in allen Fällen, wo nicht gerade selbständige Gyroiden
auftreten, die Zeilenauswahl für sämtliche verwendeten Tafeln dieselbe ist.
Die Einfachheit der Beziehungen wird besonders augenfällig, wenn man
die kristallographischen Spezialfälle der wirteligen mit den kubischen
Gruppen zusammenstellt. Für die Beschreibung der 32 kristallographischen

Punktgruppen des Rm sind nämlich nach den Tabellen 3 a und 3 b
nur acht verschiedene Tafeln notwendig.

Tabelle 3a: Zeilenauswahl der Kristallklassen ohne seihständige Gyroiden

G + G' + G" +
G G + K G + H1 + H2 G + G' + G" K + K' + K"

nur or1 Ci C3

Oi + <72 c, C«
Ui + ya 1

C2
c4 C6

cr1 + a2 oder <j1 + ß2
1 ^2 D3

Oi + yi C
C3h

<j1 + a4 oder a2 + 0t 1 C3T

CTi + cr2 + yi + y2 1 C«,
<7i + a2 + a.x + oc2 oder c2h

Oi + cr2+ ^i+ ß2 H3d

<Ti + a1+ß1 + y2 I C4T C6T

(Ti + a2 + 0! + yx oder C2v

a1 + x1+ ß2 + yl C*3h

°1 + a2 + 02 + y2 D2 D4 d6 t 0
o1 + a2 + a1 + oc2 +

01 + 02 + Vi + 72
I-hh D4„ ®6h Th o„

Tabelle 3b: Zeilenauswahl der Kristallklassen mit selbständigen Gyroiden

G + G' + G" +
G + K K + K' + K"

<Ti + y2 (G), a2 + y1 (K) s4

Ol + «2 + 02 + y2 (G), a2 + a1 + ß1 + y1 (K) I^2d

cri + a3 + 02 + y2 (G, G', G"), cr2 + a4 + 04 + y4 (K, K', K") Td

Entsprechend ihrer Doppelstellung in der hexagonalen und kubischen Syn-
gonie lassen sich nicht nur C3 und C31, sondern auch die übrigen rhomboedrischen
Gruppen durch die kubischen Tafeln ausdrücken. Die Zeilenauswahl ist dann
allerdings nicht mehr so einfach; sie lautet für D3Oi ((?,(?',fr"), ß2(K), rx2 (K'), y2(K"),
für CSt(t1(G,G',G"), ß^K), aH(K% y}(K"), für D3d a1 + cr2(G,G',G"), ßx +ß2(K),
<*i + ot2(K'), yi + y2(K"). Im ikosaedrischen System schliesslich wird in allen 15
Tafeln I durch die Zeilen a1 + oc2 + ß2 + y2, Ih durch die sämtlichen acht Zeilen
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beschrieben. Für die orthorhombischen sowie für die rhomboedrischen und
kubischen Untergruppen der Ikosaedergruppe gestaltet sich die Zeilenauswahl in G
bzw. G, G', G" gleich wie in der kubischen Syngonie. Ausserdem können natürlich
die pentagonalen Untergruppen durch geeignete Zeilen von G, I,, I2,13 und /4
dargestellt werden.

5. Die Korrelation in den kristallographischen Syngonien

In den vergleichenden Symmetriebetrachtungen der Kristallographie
' spielen nicht nur die üblichen Aufstellungen der Symmetrieelemente eine

Rolle. Darum soll — als Anwendung der Tafeldarstellung im
vorhergehenden Abschnitt — eine vollständige Übersicht der Untergruppen und
hypokorrelaten Nebengruppen beider kristallographischen Syngonien des

Rm gegeben werden. Die Tabelle 4 a zeigt, wie sich der kubische 48-

Punktner-, -Kantner oder -Flächner auf 98 Weisen in 1054 hypokorrelate
Formen auflösen lässt ; ähnlich zerfällt nach Tabelle 4 b die 24-zählige
hexagonale Form allgemeiner Lage auf 54 Weisen in 378 hypokorrelate
Unterformen. Links aussen stehen die Tafelbezeichnungen ; Reihenfolge
der Zeilen und zugeordnete Symmetrieoperationen sind den Tabellen
2c, 2e und 2f zu entnehmen. Am Kopf der Tabellen 4 sind die
Untergruppen angegeben, nach denen die Form zerlegt wird, wobei die Lage der
Symmetrieelemente gegebenenfalls durch die Indices bezeichnet ist. Die
Stellung der in einer Spalte auftretenden Einer entspricht dann der
Zeilenauswahl der betreffenden Untergruppe, während andere Ziffern
ihrerseits zusammengehörige Zeilen bezeichnen und so die Nebengruppen
willkürlich numerieren. Durch Einsetzen der Koordinaten oder Indices
lassen sich damit sämtliche korrelaten Formen der Kristallographie
hinschreiben.

6. Die Beziehung zwischen Form und Punktgruppe

Wie von P. Niggli (18) ausgeführt wurde, können als Symmetriebedingung

der Formen nur die selbständigen Untergruppen einer Punktgruppe

auftreten. Eine Untergruppe ist dann und nur dann selbständig,
wenn es für sie mindestens einen Punkt im Räume gibt, dessen Koordinaten

gegenüber allen Transformationen der Untergruppe, nicht aber
gegenüber andern Operationen der Gesamtgruppe, invariant sind. Die
uneigentlichen Untergruppen, d.h. die Gesamtgruppe und die nur aus
der Identitätsoperation gebildete Untergruppe der Ordnung 1, sind offenbar

stets selbständig. Von den eigentlichen Untergruppen dagegen können
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Tabelle 4 a. Hypokubische Syngonie

Oh O Td Th T 1 ); h D4 (Ii h l'i v

001 010 100 001 010 100 001 010 100 001 010 100

G ox
«i
tr2
Px
ß2

Yx
y2
cr2

G' ox
ai
a2
Pi
P2

Yx
Y*
cr2

G"ox
ai
a2
Pi
p2

Yi
72
<*2

K crx

ai
a2
Px
ß2

Yi
y2
<x2

K'ox
ai
a2
Px
P2

Yx
Yi
02

K"ox
«i
a2
Px
ß2

Yx
Y2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 1 2 1 1 1 2 2 2 2 2 1 1 1 2
1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 1
1 2 2 1 2 1 1 1 2 2 2 2 1 2 1 2 1
1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2
1 2 2 1 2 1 1 1 2 2 2 1 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2
1 2 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3
1 2 2 1 2 2 2 2 4 4 4 4 4 3 3 3 4
1 1 1 1 1 2 2 2 3 3 3 4 4 3 4 4 3
1 2 2 1 2 2 2 2 4 4 4 4 3 4 3 4 3
1 1 1 1 1 2 2 2 3 3 3 4 3 4 4 3 4
1 2 2 1 2 2 2 2 4 4 4 3 4 4 4 3 3
1 1 1 1 1 2 2 2 3 3 3 3 4 4 3 4 4
1 2 2 1 2 2 2 2 4 4 4 3 3 3 4 4 4

1 1 1 1 1 3 3 3 5 5 5 5 5 5 5 5 5
1 2 2 1 2 3 3 3 6 6 6 6 6 5 5 5 6
1 1 1 1 1 3 3 3 5 5 5 6 6 5 6 6 5
1 2 2 1 2 3 3 3 6 6 6 6 5 6 5 6 5
1 1 1 1 1 3 3 3 5 5 5 6 5 6 6 5 6
1 2 2 1 2 3 3 3 6 6 6 5 6 6 6 5 5
1 1 1 1 1 3 3 3 5 5 5 5 6 6 5 6 6
1 2 2 1 2 3 3 3 6 6 6 5 5 5 6 6 6

1 1 2 2 3 1 3 2 1 5 3 1 6 3 1 6 3
1 2 1 2 4 1 3 2 2 6 4 2 5 3 1 6 4
1 1 2 2 3 1 3 2 1 5 3 2 5 3 2 5 3
1 2 1 2 4 1 3 2 2 6 4 2 6 4 1 5 3
1 1 2 2 3 1 3 2 1 5 3 2 6 4 2 6 4
1 2 1 2 4 1 3 2 2 6 4 1 5 4 2 6 3
1 1 2 2 3 1 3 2 1 5 3 1 5 4 1 5 4
1 2 1 2 4 1 3 2 2 6 4 1 6 3 2 5 4

1 1 2 2 3 2 1 3 3 1 5 3 1 6 3 1 6
1 2 1 2 4 2 1 3 4 2 6 4 2 6 3 1 5
1 1 2 2 3 2 1 3 3 1 5 4 2 6 4 2 6
1 2 1 2 4 2 1 3 4 2 6 4 1 5 3 2 6
1 1 2 2 3 2 1 3 3 1 5 4 1 5 4 1 5
1 2 1 2 4 2 1 3 4 2 6 3 2 5 4 1 6
1 1 2 2 3 2 1 3 3 1 5 3 2 5 3 2 5
1 2 1 2 4 2 1 3 4 2 6 3 1 6 4 2 5

1 1 2 2 3 3 2 1 5 3 1 6 3 1 6 3 1
1 2 1 2 4 3 2 1 6 4 2 5 4 1 6 3 2
1 1 2 2 3 3 2 1 5 3 1 5 4 1 5 4 1
1 2 1 2 4 3 2 1 6 4 2 5 3 2 6 4 1
1 1 2 2 3 3 2 1 5 3 1 5 3 2 5 3 2
1 2 1 2 4 3 2 1 6 4 2 6 4 2 5 3 1
1 1 2 2 3 3 2 1 5 3 1 6 4 2 6 4 2
1 2 1 2 4 3 2 1 6 4 2 6 3 1 5 4 2
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Tabelle 4 a (Fortsetzung)

n<H)-Uäd •n(N) Ct XJ2

43

001 010 100 001 010 100 001 010 100 001 010 100

tVn>JJüh

001 010 100

G ax
«i
<*2

ßl
ßl
yi
72
&l

G' (71

<*1

a2
ßi
ßi
Yi
72
^2

G" ax

ai

Hl
71
72
cr2

K (Tx

al
a2

71
72
cr2

K'ax
<*i
0C2

ßl
71
72
O-2

KVi
OCl

<*2

71
72

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 1 1 2 2 2 2 2 2 2 1 2 2 1
1 1 1 2 2 1 3 3 1 3 3 1 1 2 2 1
2 2 2 1 2 1 2 4 3 2 4 3 1 2 1 2
1 1 1 2 1 2 3 1 4 3 1 4 1 2 1 2
2 2 2 2 1 1 4 2 3 4 2 3 1 1 2 2
1 1 1 1 2 2 1 3 4 1 3 4 1 1 2 2
2 2 2 2 2 2 4 4 2 4 4 2 1 1 1 1

3 3 3 3 3 3 5 5 5 5 5 5 2 3 3 3
4 4 4 3 3 4 6 6 6 6 6 6 2 4 4 3
3 3 3 4 4 3 7 7 5 7 7 5 2 4 4 3
4 4 4 3 4 3 6 8 7 6 8 7 2 4 3 4
3 3 3 4 3 4 7 5 8 7 5 8 2 4 3 4
4 4 4 4 3 3 8 6 7 8 6 7 2 3 4 4
3 3 3 3 4 4 5 7 8 5 7 8 2 3 4 4
4 4 4 4 4 4 8 8 6 8 8 6 2 3 3 3

5 5 5 5 5 5 9 9 9 9 9 9 3 5 5 5
6 6 6 5 5 6 10 10 10 10 10 10 3 6 6 5
5 5 5 6 6 5 11 11 9 11 11 9 3 6 6 5
6 6 6 5 6 5 10 12 11 10 12 11 3 6 5 6
5 5 5 6 5 6 11 9 12 11 9 12 3 6 5 6
6 6 6 6 5 5 12 10 11 12 10 11 3 5 6 6
5 5 5 5 6 6 9 11 12 9 11 12 3 5 6 6
6 6 6 6 6 6 12 12 10 12 12 10 3 5 5 5

2 6 4 2 5 4 4 10 6 1 11 5 4 2 5 4
1 5 3 2 5 3 3 9 5 2 12 6 4 1 6 4
2 6 4 1 6 4 2 12 6 3 9 5 4 1 6 4
1 5 3 2 6 4 3 11 8 2 10 7 4 1 5 3
2 6 4 1 5 3 2 10 7 3 11 8 4 1 5 3
1 5 3 1 5 4 1 9 8 4 12 7 4 2 6 3
2 6 4 2 6 3 4 12 7 1 9 8 4 2 6 3
1 5 3 1 6 3 1 11 5 4 10 6 4 2 5 4

4 2 6 4 2 5 8 4 11 5 1 12 5 4 2 5
3 1 5 4 2 6 7 3 12 6 2 11 5 3 1 5
4 2 6 3 1 5 6 2 11 7 3 12 5 3 1 5
3 1 5 4 1 5 7 1 9 6 4 10 5 3 2 6
4 2 6 3 2 6 6 4 10 7 1 9 5 3 2 6
3 1 5 3 2 5 5 3 9 8 2 10 5 4 1 6
4 2 6 4 1 6 8 2 10 5 3 9 5 4 1 6
3 1 5 3 1 6 5 1 12 8 4 11 5 4 2 5

6 4 2 6 4 2 10 8 2 11 5 1 6 6 4 2
5 3 1 6 4 1 9 7 1 12 6 2 6 5 3 2
6 4 2 5 3 2 12 6 2 9 7 1 6 5 3 2
5 3 1 6 3 2 9 5 4 12 8 3 6 5 4 1
6 4 2 5 4 1 12 8 3 9 5 4 6 5 4 1
5 3 1 5 4 2 11 7 4 10 6 3 6 6 3 1
6 4 2 6 3 1 10 6 3 11 7 4 6 6 3 1
5 3 1 5 3 1 11 5 1 10 8 2 6 6 4 2
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Tabelle 4 a (Fortsetzung)

D D2K> C C£> C??

ooi oio îoo ooi oio îoo ooi oio îoo no no îoT îoi on oil
G o1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ax 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1
«2 1 3 3 1 2 2 1 3 3 1 3 3 3 3 2 2
ft 2 2 4 3 1 2 1 2 4 3 3 3 1 1 3 3
ß2 1 3 1 4 2 1 2 3 1 4 2 2 4 4 4 4
7i 2 4 2 3 2 1 1 4 2 3 1 1 3 3 4 4
Y2 1 1 3 4 1 2 2 1 3 4 4 4 2 2 3 3
<*2 2 4 4 2 2 2 2 4 4 2 4 4 4 4 2 2

G' ol 3 5 5 5 3 3 3 5 5 5 5 5 5 5 5 5
aî 4 6 6 6 3 3 4 6 6 6 6 6 6 6 5 5
«2 3 7 7 5 4 4 3 7 7 5 7 7 7 7 6 6
ßl 4 6 8 7 3 4 3 6 8 7 7 7 5 5 7 7
ßz 3 7 5 8 4 3 4 7 5 8 6 6 8 8 8 8
Yi 4 8 6 7 4 3 3 8 6 7 5 5 7 7 8 8
Yz 3 5 7 8 3 4 4 5 7 8 8 8 6 6 7 7
<Jz 4 8 8 6 4 4 4 8 8 6 8 8 8 8 6 6

G" 5 9 9 9 5 5 5 9 9 9 9 9 9 9 9 9
6 10 10 10 5 5 6 10 10 10 10 10 10 10 9 9

a2 5 11 11 9 6 6 5 11 11 9 11 11 11 11 10 10
ßi 6 10 12 11 5 6 5 10 12 11 11 11 9 9 11 11
ßz 5 11 9 12 6 5 6 11 9 12 10 10 12 12 12 12
Yi 6 12 10 11 6 5 5 12 10 11 9 9 11 11 12 12
Yz 5 9 11 12 5 6 6 9 11 12 12 12 10 10 11 11
e*2 6 12 12 10 6 6 6 12 12 10 12 12 12 12 10 10

K O*! 7 3 9 8 7 7 7 2 12 7 2 3 12 9 8 7
«1 8 4 10 7 7 7 8 1 11 8 4 1 10 11 8 7
a2 7 1 11 8 8 8 7 4 10 7 1 4 11 10 7 8
ft 8 4 12 6 7 8 7 1 9 5 1 4 12 9 5 6
ft 7 1 9 5 8 7 8 4 12 6 4 1 9 12 6 5
yi 8 2 10 6 8 7 7 3 11 5 2 3 11 10 6 5
7a 7 3 11 5 7 8 8 2 10 6 3 2 10 11 5 6
f2 8 2 12 7 8 8 8 3 9 8 3 2 9 12 7 8

K'<j1 9 7 3 9 9 9 9 6 2 10 7 6 2 3 9 10
«1 10 8 4 10 9 9 10 5 1 9 5 8 4 1 9 10
«2 9 5 1 9 10 10 9 8 4 10 8 5 1 4 10 9
ft 10 8 2 11 9 10 9 5 3 12 8 5 2 3 12 11
ft 9 5 3 12 10 9 10 8 2 11 5 8 3 2 11 12
yi 10 6 4 11 10 9 9 7 1 12 7 6 1 4 11 12
72 9 7 1 12 9 10 10 6 4 11 6 7 4 1 12 11
a2 10 6 2 10 10 10 10 7 3 9 6 7 3 2 10 9

K'ffl 11 11 7 4 11 11 11 12 6 3 9 12 7 6 3 4
12 12 8 3 11 11 12 11 5 4 11 10 5 8 3 4

a2 11 9 5 4 12 12 11 10 8 3 10 11 8 5 4 3
ft 12 12 6 2 11 12 11 11 7 1 10 11 7 6 2 1
ft 11 9 7 1 12 11 12 10 6 2 11 10 6 7 1 2
7i 12 10 8 2 12 11 11 9 5 1 9 12 8 5 1 2
72 11 11 5 1 11 12 12 12 8 2 12 9 5 8 2 1
0-2 12 10 6 3 12 12 12 9 7 4 12 9 6 7 4 3
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Tabelle 4a (Fortsetzung)

WH) n(N) WH)
1^21» ^2h

001010100 110110101 101011011 001010100 110110101 101011011

G ox 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CCi 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

a2 2 2 1 2 2 2 2 2 2 3 3 1 3 3 3 3 3 3
ßi 2 1 2 3 3 3 3 3 3 2 4 3 4 4 4 4 4 4
02 2 1 2 3 3 3 3 3 3 3 1 4 5 5 5 5 5 5

7i 1 2 2 4 4 4 4 4 4 4 2 3 6 6 6 6 6 6

Yi 1 2 2 4 4 4 4 4 4 1 3 4 7 7 7 7 7 7

o-2 1 1 1 1 1 1 1 1 1 4 4 2 8 8 8 8 8 8

G' ax 3 3 3 5 5 5 5 5 5 5 5 5 9 9 9 9 9 9
ocx 4 4 3 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10
œ2 4 4 3 6 6 6 6 6 6 7 7 5 11 11 11 11 11 11

ßi 4 3 4 7 7 7 7 7 7 6 8 7 12 12 12 12 12 12

ft 4 3 4 7 7 7 7 7 7 7 5 8 13 13 13 13 13 13

yi 3 4 4 8 8 8 8 8 8 8 6 7 14 14 14 14 14 14

72 3 4 4 8 8 8 8 8 8 5 7 8 15 15 15 15 15 15
tr2 3 3 3 5 5 5 5 5 5 8 8 6 16 16 16 16 16 16

G"ax 5 5 5 9 9 9 9 9 9 9 9 9 17 17 17 17 17 17

«i 6 6 5 10 10 10 10 10 10 10 10 10 18 18 18 18 18 18

a2 6 6 5 10 10 10 10 10 10 11 11 9 19 19 19 19 19 19
ßi 6 5 6 11 11 11 11 11 11 10 12 11 20 20 20 20 20 20
ßt 6 5 6 11 11 11 11 11 11 11 9 12 21 21 21 21 21 21

7i 5 6 6 12 12 12 12 12 12 12 10 11 22 22 22 22 22 22
72 5 6 6 12 12 12 12 12 12 9 11 12 23 23 23 23 23 23
°2 5 5 5 9 9 9 9 9 9 12 12 10 24 24 24 24 24 24

K ax 7 7 7 3 2 11 9 7 8 13 13 13 5 3 21 17 13 15
<*i 8 8 7 1 4 10 12 8 7 14 14 14 8 6 18 22 14 12

8 8 7 1 4 10 12 8 7 15 15 13 1 7 19 23 15 13
ßl
02

8 7 8 4 1 9 11 6 5 14 16 15 6 8 24 20 10 16
8 7 8 4 1 9 11 6 5 15 13 16 7 1 17 21 11 9

7i 7 8 8 2 3 12 10 5 6 16 14 15 2 4 22 18 16 10
72 7 8 8 2 3 12 10 5 6 13 15 16 3 5 23 19 9 11
0-2 7 7 7 3 2 11 9 7 8 16 16 14 4 2 20 24 12 14

K'ox 9 9 9 6 7 4 2 9 10 17 17 17 11 13 7 3 17 19

«l 10 10 9 8 5 1 3 10 9 18 18 18 14 16 8 4 18 24
a2 10 10 9 8 5 1 3 10 9 19 19 17 15 9 1 5 19 17
ßi 10 9 10 5 8 2 4 12 11 18 20 19 16 14 2 6 22 20
ß2 10 9 10 5 8 2 4 12 11 19 17 20 9 15 3 7 23 21

7i 9 10 10 7 6 3 1 11 12 20 18 19 12 10 4 8 20 22
72 9 10 10 7 6 3 1 11 12 17 19 20 13 11 5 1 21 23
0-2 9 9 9 6 7 4 2 9 10 20 20 18 10 12 6 2 24 18

K'Oi 11 11 11 9 12 8 6 4 3 21 21 21 17 23 11 15 7 5
«1 12 12 11 11 10 7 5 3 4 22 22 22 20 18 12 16 4 6
œ2 12 12 11 11 10 7 5 3 4 23 23 21 21 19 13 9 5 7
ßi 12 11 12 10 11 8 6 1 2 22 24 23 18 20 14 10 8 2
ß2 12 11 12 10 11 8 6 1 2 23 21 24 19 21 15 11 1 3

7i 11 12 12 12 9 5 7 2 1 24 22 23 22 24 16 12 2 8

72 11 12 12 12 9 5 7 2 1 21 23 24 23 17 9 13 3 1

0-2 11 11 11 9 12 6 8 4 3 24 24 22 24 22 10 14 6 4
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Tabelle 4 a (Fortsetzung)

C® C, Cx Ds

001 010 100 110 110 101 101 011 011 111 111 111 111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
3 3 2 3 3 3 3 3 3 2 3 2 2 2 2
3 1 3 4 4 4 4 4 4 3 4 3 3 3 3
2 4 4 5 5 5 5 5 5 3 5 3 3 3 3
1 3 4 6 6 6 6 6 6 4 6 4 4 4 4
4 2 3 7 7 7 7 7 7 4 7 4 4 4 4
4 4 2 8 8 8 8 8 8 1 8 1 1 1 1

5 5 5 9 9 9 9 9 9 5 9 1 4 2 3
6 6 5 10 10 10 10 10 10 6 10 3 2 4 1
7 7 6 11 11 11 11 11 11 6 11 3 2 4 1
7 5 7 12 12 12 12 12 12 7 12 4 1 3 2
6 8 8 13 13 13 13 13 13 7 13 4 1 3 2
5 7 8 14 14 14 14 14 14 8 14 2 3 1 4
8 6 7 15 15 15 15 15 15 8 15 2 3 1 4
8 8 6 16 16 16 16 16 16 5 16 1 4 2 3

9 9 9 17 17 17 17 17 17 9 17 1 3 4 2
10 10 9 18 18 18 18 18 18 10 18 4 2 1 3
11 11 10 19 19 19 19 19 19 10 19 4 2 1 3
11 9 11 20 20 20 20 20 20 11 20 2 4 3 1
10 12 12 21 21 21 21 21 21 11 21 2 4 3 1

9 11 12 22 22 22 22 22 22 12 22 3 1 2 4
12 10 11 23 23 23 23 23 23 12 23 3 1 2 4
12 12 10 24 24 24 24 24 24 9 24 1 3 4 2

13 13 13 4 2 20 24 12 14 13 25 2 3 3 2
14 14 13 1 7 19 23 15 13 14 26 4 1 1 4
15 15 14 8 6 18 22 14 12 14 27 4 1 1 4
15 13 15 7 1 17 21 11 9 15 28 1 4 4 1
14 16 16 6 8 24 20 20 16 15 29 1 4 4 1
13 15 16 3 5 23 19 9 11 16 30 3 2 2 3
16 14 15 2 4 22 18 16 10 16 31 3 2 2 3
16 16 14 5 3 21 17 13 15 13 32 2 3 3 2

17 17 17 10 12 6 2 24 18 17 33 4 2 4 2
18 18 17 15 9 1 5 19 17 18 34 1 3 1 3
19 19 18 14 16 8 4 18 24 18 35 1 3 1 3
19 17 19 9 15 3 7 23 21 19 36 2 4 2 4
18 20 20 16 14 2 6 22 20 19 37 2 4 2 4
17 19 20 13 11 5 1 21 23 20 38 3 1 3 1
20 18 19 12 10 4 8 20 22 20 39 3 1 3 1
20 20 18 11 13 7 3 17 19 17 40 4 2 4 2

21 21 21 24 22 10 14 6 4 21 41 3 3 4 4
22 22 21 21 19 13 9 5 7 22 42 4 4 3 3
23 23 22 20 18 12 16 4 6 22 43 4 4 3 3
23 21 23 19 21 15 11 1 3 23 44 2 2 1 1
22 24 24 18 20 14 10 8 2 23 45 2 2 1 1
21 23 24 23 17 9 13 3 1 24 46 1 1 2 2
24 22 23 22 24 16 12 2 8 24 47 1 1 2 2
24 24 22 17 23 11 15 7 5 21 48 3 3 4 4
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Tabelle 4a (Schluss)

Do C3t C31 C3

111 111 111 111 111 111 111 111 111 Hl Hl m m m m m

G CTl

<*1

«2
ft
ft
Yi
Y2

ct2

G'Uj
a1

a2

Yi
Y2

G"ai
ai
a2
i3i
ft
Yi
Y2

<^2

-K ff!
ai
a2

yi
Y2
a2

-K'Ui
«i
a2
ßi
ft
Yi
Y2
a2

A"CTl
«i
a2
ft
ft
yi
y2
a2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3

4 4 4 4 4 4 4 4 3 3 3 3 4 4 4 4
5 5 5 5 5 5 5 5 3 3 3 3 5 5 5 5

6 6 6 6 6 6 6 6 4 4 4 4 6 6 6 6

7 7 7 7 7 7 7 7 4 4 4 4 7 7 7 7

8 8 8 8 8 8 8 8 1 1 1 1 8 8 8 8

1 7 3 5 1 7 3 5 1 4 2 3 1 7 3 5
4 2 6 8 4 2 6 8 3 2 4 1 4 2 6 8

5 3 7 1 5 3 7 1 3 2 4 1 5 3 7 1

6 8 4 2 6 8 4 2 4 1 3 2 6 8 4 2

7 1 5 3 7 1 5 3 4 1 3 2 7 1 5 3

2 4 8 6 2 4 8 6 2 3 1 4 2 4 8 6
3 5 1 7 3 5 1 7 2 3 1 4 3 5 1 7

8 6 2 4 8 6 2 4 1 4 2 3 8 6 2 4

1 5 7 3 1 5 7 3 1 3 4 2 1 5 7 3

6 2 8 4 6 2 8 4 4 2 1 3 6 2 8 4
7 3 1 5 7 3 1 5 4 2 1 3 7 3 1 5
2 6 4 8 2 6 4 8 2 4 3 1 2 6 4 8
3 7 5 1 3 7 5 1 2 4 3 1 3 7 5 1
4 8 2 6 4 8 2 6 3 1 2 4 4 8 2 6

5 1 3 7 5 1 3 7 3 1 2 4 5 1 3 7

8 4 6 2 8 4 6 2 1 3 4 2 8 4 6 2

3 5 5 3 2 4 4 2 5 5 5 5 9 9 9 9

6 8 8 6 7 1 1 7 6 6 6 6 10 10 10 10
7 1 1 7 6 8 8 6 6 6 6 6 11 11 11 11

8 6 6 8 1 7 7 1 7 7 7 7 12 12 12 12
1 7 7 1 8 6 6 8 7 7 7 7 13 13 13 13

4 2 2 4 5 3 3 5 8 8 8 8 14 14 14 14
5 3 3 5 4 2 2 4 8 8 8 8 15 15 15 15
2 4 4 2 3 5 5 3 5 5 5 5 16 16 16 16

7 3 7 3 6 2 6 2 6 8 7 5 11 15 13 9

8 4 8 4 1 5 1 5 7 5 6 8 12 16 10 14
1 5 1 5 8 4 8 4 7 5 6 8 13 9 11 15
2 6 2 6 3 7 3 7 5 7 8 6 16 12 14 10
3 7 3 7 2 6 2 6 5 7 8 6 9 13 15 11

4 8 4 8 5 1 5 1 8 6 5 7 14 10 16 12
5 1 5 1 4 8 4 8 8 6 5 7 15 11 9 13
6 2 6 2 7 3 7 3 6 8 7 5 10 14 12 16

5 5 7 7 4 4 6 6 8 5 7 6 15 9 13 11
6 6 4 4 7 7 5 5 6 7 5 8 10 12 16 14
7 7 5 5 6 6 4 4 6 7 5 8 11 13 9 15
2 2 8 8 3 3 1 1 5 8 6 7 16 14 10 12
3 3 1 1 2 2 8 8 5 8 6 7 9 15 11 13

8 8 2 2 1 1 3 3 7 6 8 5 12 10 14 16
1 1 3 3 8 8 2 2 7 6 8 5 13 11 15 9
4 4 6 6 5 5 7 7 8 5 7 6 14 16 12 10
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Tabelle 4b. Hypohexagonale Syngonie

II« h D6 Ceh l'fi v C6 D3h D3d D3 CSH

100 010 100 010 100010

c3i c3

1
2
1
2
1
2
1
2

1
2
1
2
1
2
1
2

1
2
1
2
1
2
1
2

H'2 h

1
2
2
2
2
1
1
1
1
2
2
2
2
1
1
1
1
2
2
2
2
1
1
1

1
1
2
1
2
2
1
2
1
1
2
1
2
2
1
2

1
1
2
1
2
2
1
2

1
2
3
2
3
4
1
4
1
2
3
2
3
4
1
4
1
2
3
2
3
4
1
4

1
2
1
1
2
1
2
2
1
2
1
1
2
1
2
2
1
2
1
1
2
1
2
2

1
1
2
2
1
1
2
2

1
1
2
2
1
1
2
2

1
1
2
2
1
1
2
2

1
1
1
2
2
2
2
1

1
1
1
2
2
2
2
1
1
1
1
2
2
2
2
1

Dû

'1
2
2
1
1
2
2
1

1
2
2
1
1
2
2
1

1
2
2
1
1
2
2
1

n<H>

1
2
1
3
4
3
4
2
1
2
1
3
4
3
4
2
1
2
1
3
4
3
4
2

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

1
2
3
3
2
1
4
4
1
2
3
3
2
1
4
4
1
2
3
3
2
1
4
4

1
1
2
3
4
4
3
2

1
1
2
3
4
4
3
2

1
1
2
3
4
4
3
2

1
2
3
1
4
3
2
4
1
2
3
1
4
3
2
4
1
2
3
1
4
3
2
4

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7

8
1
2
3
4
5
6
7

100 110 110 100 110 110 100 110 110 100 010 110 310 110 310

G oi 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ai 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2
a2 1 2 2 1 3 3 2 3 3 1 2 3 3 3 3

ft 1 2 2 2 2 2 1 2 2 1 2 3 3 3 3

ft 1 2 2 1 3 3 2 3 3 2 1 2 2 2 2

yi 1 1 1 2 4 4 '2 4 4 1 1 1 1 1 1

y*
o-2

1 1 1 1 1 1 1 1 2 2 4 4 4 4
1 1 1 2 4 4 2 4 4 2 2 4 4 4 4

ffio-i 2 3 2 3 5 3 3 5 2 3 3 5 5 3 2

ai 2 1 3 4 4 5 3 1 5 4 3 4 1 5 5
a2 2 1 3 3 1 6 4 4 6 3 4 1 4 6 6

ft 2 1 3 4 4 5 3 1 5 3 4 1 4 6 6

ft 2 1 3 3 1 6 4 4 6 4 3 4 1 5 5

yi 2 3 2 4 6 2 4 6 3 3 3 5 5 3 2

YÏ 2 3 2 3 5 3 3 5 2 4 4 6 6 2 3
2 3 2 4 6 2 4 6 3 4 4 6 6 2 3

#2°1 3 2 3 5 3 6 5 2 5 5 5 3 2 6 5

ai 3 3 1 6 6 4 5 5 1 6 5 6 5 4 1
«2 3 3 1 5 5 1 6 5 4 5 6 5 6 1 4
ft
ft

3 3 1 6 6 4 5 6 1 5 6 5 6 1 4
3 3 1 5 5 1 6 6 4 6 5 6 5 4 1

yi 3 2 3 6 2 5 6 3 6 5 5 3 2 6 5
ya 3 2 3 5 3 6 5 2 5 6 6 2 3 5 6
0-2 3 2 3 6 2 5 6 3 6 6 6 2 3 5 6
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Tabelle 4 b (Fortsetzung)

WH)
v^2h riv02 CT

100 010 110 310 110 310 100 010 110 310 110 310

G CTi 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 2 1 2 2 2 2 2 2 2 2 2 2 2 2
<*2 2 1 2 2 2 2 2 3 1 3 3 3 3 3

ft 2 2 1 3 3 3 3 2 3 4 4 4 4 4
ft 2 2 1 3 3 3 3 3 4 1 5 5 5 5
Yi 1 2 2 4 4 4 4 4 3 2 6 6 6 6

Y2 1 2 2 4 4 4 4 1 4 3 7 7 7 7
1 1 1 1 1 1 1 4 2 4 8 8 8 8

Hl0l 3 3 3 5 5 2 3 5 5 5 9 9 3 5
0i 4 3 4 1 4 5 5 6 6 6 8 6 9 9
«2 4 3 4 1 4 5 5 7 5 7 1 7 10 10
ft 4 4 3 4 1 6 6 6 7 8 6 8 11 11

ft 4 4 3 4 1 6 6 7 8 5 7 1 12 12
7x 3 4 4 6 6 3 2 8 7 6 10 10 4 2
72 3 4 4 6 6 3 2 5 8 7 11 11 5 3
02 3 3 3 5 5 2 3 8 6 8 12 12 2 4

H201 5 5 5 2 3 5 6 9 9 9 3 5 10 12
«1 6 5 6 5 6 1 4 10 10 10 9 10 8 6
a-2 6 5 6 5 6 1 4 11 9 11 12 11 1 7

ft 6 6 5 6 5 4 1 10 11 12 10 12 6 8
ft 6 6 5 6 5 4 1 11 12 9 11 9 7 1

7i 5 6 6 3 2 6 5 12 ; 11 10 4 2 ii 9
72 5 6 6 3 2 6 5 9 12 11 5 3 12 10
02 5 5 5 2 3 5 6 12 10 12 2 4 9 11

er C N)
3 c, Cx

100 010 110 3l0 1T0 310

G Oi 1 1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2 2

«2 3 2 3 3 3 3 3 2 3

ft
ft

3 3 1 4 4 4 4 3 4
2 4 4 5 5 5 5 3 5

7i 1 4 3 6 6 6 6 4 6

7a 4 3 2 7 7 7 7 4 7

o2 4 2 4 8- 8 8 8 1 8

Ht01 5 5 5 9 9 2 4 5 9
6 5 6 1 7 9 9 6 10

«2 7 6 7 8 6 10 10 6 11

ft 7 7 5 7 1 11 11 7 12
ft 6 8 8 6 8 12 12 7 13

7i 5 8 7 10 10 5 3 8 14
7a 8 7 6 11 11 4 2 8 15
o2 8 6 8 12 12 3 5 5 16

H201 9 9 9 2 4 9 11 9 17
0-1 10 9 10 9 11 1 7 10 18
02 11 10 11 12 10 8 6 10 19
ßl 11 11 9 11 9 7 1 11 20
ß2 10 12 12 10 12 6 8 11 21

Yi 9 12 11 5 3 12 10 12 22
7a 12 11 10 4 2 11 9 12 23
02 12 10 12 3 5 10 12 9 24
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im Rn und Rm nur Cuv (einschliesslich Cs) und Cn (soweit nicht in einem
CnT enthalten) selbständig werden. Den Formen kommen dann folgende
Anzahlen von Freiheitsgraden zu:

im R1 für die Symmetriebedingung Cx 1, für Cg 0

im R11 für Cj 2, für Cg 1, für Cn und Cnv (n > 1) 0

im R111 für C± 3, für Cg 2, für Cn und Onv (n > 1) 1, für alle übrigen 0.

Die im Abschnitt 2 gegebene Aufzählung der möglichen Formenelemente
erfährt damit die Einschränkung, dass als Formen ohne Freiheitsgrad nur
Punktner in Frage kommen.

Denkt man sich ein einzelnes Formenelement aus der Konfiguration
herausgenommen, so besitzt es selbst wieder Symmetrieeigenschaften.
Dieser Eigensymmetrie der Formenelemente entspricht eine

Untergruppe von Kh, wenn es sich um einen Punkt, bzw von Dœh, wenn es

sich um eine Richtung oder Ebene handelt. Insbesondere ist die
höchstmögliche Eigensymmetrie für Punkte im R1 als Cg, im R11 als Cx v, im
Rm als Kh, für Richtungen im R11 als C2v, im Rm als Dxh, und für
Ebenen im R111 als Dxh gegeben. Natürlich muss stets die Symmetriebedingung

der Form in der Eigensymmetrie ihrer Elemente als

Untergruppe enthalten sein.
Andererseits lässt sich einer gegebenen Form als ganzes, bei beliebiger

Annahme über die Eigensymmetrie der Elemente, die höchstsymmetrische

mit ihr verträgliche Punktgruppe als Anordnungs- oder Lage-
symmetrie eindeutig zuordnen. In diesem Sinne haben H. A. Jahn
und E. Teller (12) die Symmetriebedingungen für die zur Erzeugung
der meisten dreidimensionalen Lagesymmetriegruppen notwendigen und
hinreichenden Formen oder Formenkombinationen angegeben. Dabei ist
zu berücksichtigen, dass in den Punktgruppen unendlicher Ordnung
nur die ein- und zweizähligen Formen

Z 1 Kh in Kh, K in K, D^in Dœh, Cœv in C^, D„ in D„, CoohinCooh,
Cœ in C«, ;

Z 2 Coov in Do,],, Cœ in Dœ, Cœ in Cœh

eine endliche Zahl von Elementen besitzen. Beschränkt man sich aber
auf endliche Zähligkeit und damit auf diese Spezialformen, so verliert die
Unterscheidung von Kh und K, von Dooh, Dx und Cxll, sowie von Cœv

und Ca, ihren Sinn; als Lagesymmetriegruppen unendlicher Ordnung sind
dann nur Cœv, Dxh und Kh möghch.

Wenn ungleichwertige Elemente auseinandergehalten werden können,

sind die einzelnen Lagesymmetriegruppen durch Formen bzw.
Kombinationen folgender Symmetriebedingung eindeutig bestimmt:
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im R1 Cx durch 2 Ct, Cg durch 1 (Cx, Cg) ;

im R11 Cx durch 3 Cx, Cg durch 2 (Cx, Cg) ; für n > 1 Cn durch 2 Cnv
durch l(Cx,CB); C00v durch lCœv;

im R111 Cx durch 4 Cx, C4 durch 3 Cx, Cg durch 3 (Cx, Cg) ; für n > 1 Cn
durch 2C1; Sn durch 2C1; Cnh durch 2(C1,CS), Cni durch 1C1;
Cnv durch 1 (C1;Cg) + 1 (C1;ög,Cnv), Dn durch 1 Cj, Dnd durch
1(C1}CS), Dnh durch 1 (C1; Cg, C2v); T durch lC^, Th durch
1 (C1; Cg), Td durch 1 (C1; Cs, C3v), O durch 1 Cx, Oh durch 1 (C1;

cS'C2vC3v'C4v)'1 durch 1C1; Ih durch 1 (C1? Cg, C2v, C3v, C5v);
ClX,v durch 2Co0v, Dœh durch 1COOV, Kh durch lKh.

Wie im übrigen Eigensymmetrie und Lagesymmetrie zusammenhängen,

ist; — besonders im Hinblick auf die Deutung von Schwingungsspektren

— schon an anderer Stelle (14) aufgezeigt worden; dort findet
sich auch eine vollständige Aufzählung der möglichen Punktsymmetrie-
gruppen für zwei- bis zwölfzählige Formen. Um nun aber auf die
Zyklendarstellung der Abschnitte 2 und 4 zurückzukommen, seien nachstehend
die Symmetrieformeln und Bezeichnungen sämtlicher allgemeiner und
spezieller Formen gegeben, die durch ein- bis dreidimensionale
Punktgruppen endlicher Ordnung erzeugt werden können. Man ersieht daraus,
dass in allen Fällen (für sich oder in zusammengesetzten Symbolen) genau
N Einerzyklen auftreten, wobei N wieder die Ordnung der gesamten
Gruppe bedeutet. Die römischen Ziffern beziehen sich auf die im Abschnitt
4 (Tabelle 1) eingeführten Typen von isozyklischen Punktgruppen, und
für g ist wieder 1 bei geradem, 0 bei ungeradem n zu setzen. {Fn} steht
für die Summe der Zyklen einer Ordnung x > 2, welche durch die bereits
erläuterte Auflösung der Hauptachse in ihre Unterachsen erhalten werden.

Formen eindimensionaler Punktgruppen:

1. Z 2

j [i f;+1 F|]
Cd in Cs (symmetrisch)

2. Z 1

1 [1 Fj]
Cx in Cj (asymmetrisch)

\ [2Fj]
Cg in Cs (zentral)
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Formen zweidimensionaler Punktgruppen:
1. Z N

I. ^[lFJ + gPf + fl^}]
Cx in Cn (n-gonal)

II. 2^ [1 Ffn + (n + g) F£ + {F2n/X}]

Cj in Cnv (di-n-gonal)

2. Z N/2

II. J- [l F? + g f F2 F^n_2)/2 + g (| + l) F£/2 + 1 - g) n Fi F(2n-1)/2

+ {F£/X}]
C8 in Cnv (n-gonal)

3. Z 1

in allen Gruppen ^ [NF}]
Cn in Cn, CnT in Cnv (zentral)

Formen dreidimensionaler Punktgruppen:

a) wirtelig (einschliesslich mono- und digonal):
1. Z N

I. i[lF?+gFf2 + {F^}]
Cx in Cn (für n 1 pedial, für n 2 sphenoidisch, für n > 2

n-gonal-pyramidal); Cx in Sn mit n 0(mod. 4) (f n-gonal-strep-
toedrisch)

II. J-[lF2- + (n + g)F» + {F2^}]
Cx in Cnv (für n 1 (Cg) domatisch, für n > 1 di-n-gonal-pyra-
midal); Cx in Dn (für n=l (C2) sphenoidisch, für n 2 disphe-
noidisch, für n>2 n-gonal-trapezoedrisch); Cx in D?d mit n 0

(mod. 2) (für n 2 (C2h) didigonal-prismatisch, für n>2 di-|n-
gonal-skalenoedrisch)

II'. ^ [1 F2n + (1 + 2g)F2 + {F2n/X}]

Cx in Cnh (für n 1 (Cs) domatisch, für n 2 didigonal-prismatisch,

für n > 2 n-gonal-dipyramidal) ; Cx in Cni mit n s 1 (mod. 2)

(für n 1 (Cj) pinakoidal, für n 3 rhomboedrisch, für n > 3

n-gonal-streptoedrisch)
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III'. -- [Ff!1 + (2 n + 1 + g) F2n + {Fi»'*}]
Cx in Dnh (für n 1 (C2v) didigonal-pyramidal, für n> 1 di-n-
gonal-dipyramidal)

2. Z N/2

II. ^ [1 F? + g | Ff F^,n_2)/2 + g (| + l) + (1-g) nFfF + {F^J]
Cs in Cnv (für n 1 (Cs) pedial, für n 2 sphenoidisch, für n > 2

n-gonal-pyramidal); C2 in Dn (für n=l (C2) pedial, für n 2

pinakoidal, für n>2 n-gonal-prismatisch); Cs in Dnd mit n 0

(mod. 2) (für n 2 (C2h) pinakoidal, für n 4 tetragonal-di-
sphenoidisch, für n 6 rhomboedrisch, für n > 6 Jn-gonal- strep-
toedrisch); C2 in !>(] mit n 0 (mod. 2) (fürn 2 (C211)pinakoidal,
für n > 2 n-gonal-prismatisch)

II'. 2^ [2 Fj + 2 g F2/2 + {F£/x}]

Cs in Cnh (für n 1 (Cs) pedial, für n 2 pinakoidal, für n > 2

n-gonal-prismatisch)

III. ~ [2Ffn + 2 (n + g)F2 + {F2n'x|]

Cs(h) in Dnh (für n=l (C2v) sphenoidisch, für n> 1 di-n-gonal-
prismatisch)

^ [l F2"+ gfFf F^n_2) + g(^-+ 2)F|+( 1-g) (nFf F(2n_1)+nF2)+(F2n/xj]

Cg (v) in Dnh (für n 1 (C2v) sphenoidisch, für n 2 didigonal-
prismatisch, für n < 2 n-gonal-dipyramidal)

3. Z N/4

III. ^ [2 Ff + g n Ff F^n_2)/2 + g (n- 2) F£/2 + 1 - g) 2 n Ff F<,n~1W2 + {Fff/X}]

C2v in Dnh (für n 1 (C2v) pedial, für n 2 pinakoidal, für n > 2

n-gonal-prismatisch)
4. Z 2

in allen Kolonnen ^ Ff + ^ Ff j
G| in Sn mit n 0 (mod. 4), Cn in Dn, Cs in D?a mit n 0 (mod. 2),
Cn in Cnh, Cn in Cnl mit n 1 (mod. 2), CI1V in T)nh (basis-pina-
koidal)

5. Z 1

in allen Kolonnen ^ [NFj]
Cn in Cn, Cnv in Cnv (basispedial); Sn in Sn mit n 0(mod. 4),

Dn in Dn, D?d in D?d mit n 0(mod.2), Cnh in Cnh, Cni in
mit n 1 (mod. 2), Dnh in Dnh (zentral)

5 Schweiz Min. Petr. Mitt.,Bd. 33, Heft 1, 1953
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b) isometrisch :

1. Z N

la. ^[1F42 + 3F« + 8F4]

Cx in T (tetraedrisch-pentagondodekaedrisch)

Ib. [1 Ff4 + 7F22 + 8F| + 8Fg]

Ci in Th (dyakisdodekaedrisch)

Ib'. ^[1F24 + 9F42 + 8F8 + 6F®]

Cx in Td (hexakistetraedrisch) ; Cx in O (pentagonikositetra-
edrisch)

le. ^[lF48 + 19F24 + 8F46+12F42 + 8F8]

Cx in Oh (hexakisoktaedrisch)

Ha. ^[lFf + 15Ff° + 20F20 + 24F42]

Cx in I (pentagonoid-hexekontaedrisch)

II b. ^ [1 F420 + 31 Ff + 20 F40 + 24 F24 + 20 F20 + 24 F42]
lâU

Cx in Ih (hekatonikosaedrisch)

2. Z N/2

la. ^[1F« + 3F2F2 + 8F2]

C2 in T (hexaedrisch)

Ib. ~[1F42 + 4F8 + 3F4F4 + 8F4 + 8F2]

Cs in Th (pentagondodekaedrisch)

Ib'. ^[1F42 + 3F« + 6F2F| + 8F4 + 6F8]

Cg in Td (triakistetraedrisch oder deltoiddodekaedrisch); C2 in O

(rhombendodekaedrisch

le. [1 F24 + 16 F22 + 3F8F| + 8F3 + 12 F® + 8Fd]

Cs (H) in Oh (tetrakishexaedrisch)

^[1F24 + 13F42 + 6F4F40 + 8F8 + 12F® + 8F4]

Cs (N) in Oh (triakisoktaedrisch oder deltoidikositetraedrisch)

Ha. ~[1F80 + 15 F2 F44+ 20 F40+ 24 F®]

C2 in I (rhombentriakontaedrisch)

II b. [1 F«° +16 F80 + 15 F4 F28 + 20 F20 + 24 F42 + 20 F40 + 24 F?0]
1AV

Cg in Ih (dodekakispentaedrisch oder ikosakistriedrisch oder

deltoidhexekontaedrisch)
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3. Z N/3

Ia. ^[lF* + 3F! + 8F}Fi]
C3 in T (tetraedrisch)

Ib. ^[lF« + 7F| + 8F?F^ + 8FiFi]
C3 in Th (oktaedrisch)

lb'. [1F® + 9 F2 + 8 F2 F3 + 6F2]

C3 in 0 (oktaedrisch)

IIa. ^[lFj° + 15Fj° + 20FfF§ + 24Fj]
C3 in I (ikosaedrisch)

4. Z N/4

Ib. ^ [1F® + 1 F| + 3 F2 F| + 3 F4 F2 + 8 F| + 8 F3]

C2v in Th (hexaedrisch)

lb'. [1F® + 9 F2 F| + 8 F| + 6 F2F|]
C2v in Td (hexaedrisch)

~ [1F® + 6 F2 + 3 Fj F| + 8 F| + 6 Fj F^]

C4 in O (hexaedrisch)

le. ^ [1 F}2 + 4F® + 3 F4 F|+ 12F2 F2 + 8F3 + 12F| + 8F3]

C2v in Oh (rhombendodekaedrisch)

IIb. [1 F®°+1 F25 + 15Ff F24+15F4F2s+20F|°+24F® + 20F| + 24F®0]

C2v in Ih (rhombentriakontaedrisch)

5. Z N/5

IIa. ^[lFi2 + 15F® + 20F| + 24FfF|]
C5 in I (dodekaedrisch)

6. Z N/6

Ib'. ~[1Fj + 3F| + 6F2F2 + 8FJF| + 6F4]

C3v in Td (tetraedrisch)

le. [1 F® + 13F2 + 6F4 F2 + 8 F2F2 + 12F|+ 8F2F3]

C3v in Oh (oktaedrisch)

II b. ^ [1 Ff + 16 Y\° + 15 Ff F® + 20 F2 F® + 24F* + 20 F2 F® + 24 F20]

C3t in Ih (ikosaedrisch)
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7. Z N/8

le. ^[lF8 + 7F| + 9F?Fl + 3F^Fi + 8Fl + 6r2Fi + 6FiFi + 8Fi]
C4v in Oh (hexaedrisch)

8. Z N/10

IIb. î|0[lF112 + 16F«+15F^F| + 20F| + 24FfF| + 20F| + 24F^FÎ0]

C5t in Ih (dodekaedrisch)

9. Z 1

in allen Kolonnen ^ [NFj]
Vollsymmetrie in allen Gruppen (zentral)

Schliesslich ist zu beachten, dass bei geeigneter Ausnützung von
Freiheitsgraden die Elemente gewisser Formen spezielle Lagen einnehmen
können, ohne dass sich dabei ihre Symmetriebedingung ändert. Damit
bleiben auch Zähligkeit und Symmetrieformel der Form erhalten. Zu
einer derartigen Bildung von Grenzformen stehen die folgenden
Übergangsmöglichkeiten zur Verfügung:

im R1 asymmetrisch -> zentral,
im R11 di-n-gonal 2n-gonal,
im R111 di-n-gonale Formen —> 2n-gonale Formen; pedial -> zentral;
sphenoidisch oder domatisch -> pinakoidal; n-gonal-pyramidal oder |n-
gonal-streptoedrisch -> n-gonal-prismatisch; n-gonal-trapezoedrisch ->
n-gonal-streptoedrisch oder di-n-gonal-prismatisch oder n-gonal-dipyra-
midal; di - | n -gorial -skalenoedr i sc h —> di-n-gonal-prismatisch oder n-gonal-
dipyramidal; disphenoidisch -> tetraedrisch; rhomboedrisch ->
hexaedrisch; tetragonal-dipyramidal -> oktaedrisch; tetraedrisch-pentagon-
dodekaedrisch —> pentagondodekaedrisch oder deltoiddodekaedrisch oder
triakistetraedrisch; pentagondodekaedrisch —> dodekaedrisch (regulär);
pentagonikositetraedrisch oder dyakisdodekaedrisch -> triakisokta-
edrisch oder deltoidikositetraedrisch; pentagonikositetraedrisch oder
hexakistetraedrisch —^ tetrakishexaedrisch; pentagonoidhexekontaedrisch

dodekakispentaedrisch oder ikosakistriedrisch oder deltoidhexekonta-
edrisch.

Dieser Überblick zeigt, dass eine Form im allgemeinen mit mehreren
Punktgruppen verträglich ist. Bei unbekannter Symmetriebedingung
herrscht also Vieldeutigkeit bezüglich der erzeugenden Gruppe; daher
rührt ja die Bedeutung der zehn kristallographischen zweidimensionalen
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Punktgruppen als möglichen Flächensymmetrien der Kristalle. Immerhin
kann die Vieldeutigkeit durch das Auftreten von Kombinationen
verschiedener Formen eingeschränkt werden, und schliesslich lassen sich bei
Kenntnis der Eigensymmetrie die erlaubten Symmetriebedingungen der
Formenelemente wenigstens nach oben abgrenzen.

II. Translative Charaktere: Raumgruppen

7. Die Bedeutung der Charaktere; fixpunktfreie Operationen und
Translationsgruppe

Es gibt Systeme, deren Symmetrieeigenschaften sich nicht vollständig

durch die Operationen einer Punktgruppe beschreiben lassen. So sind
die Elemente der im folgenden zu behandelnden Anordnungen gegenüber
den entsprechenden Formen elementen einer Punktsymmetriegruppe
gesetzmässig verschoben oder verdreht; damit wird das Verhalten des

Systems zu den Symmetrieelementen der Punktgruppe entscheidend.
Allerdings ist es nur eine Frage der Ausdrucksweise, ob man verschiedenes
Verhalten zu den Punktsymmetrieelementen einführen will, oder
überhaupt neuartige Symmetrieelemente, deren Operationen (gekoppelt)
zusätzliche Translationen oder Rotationen enthalten. Die Physik ist bei
der Darstellung der Molekülschwingungen den ersten Weg gegangen, die
Kristallographie bei der Ableitung der Raumgruppen den zweiten. Da
die Symmetrieelemente ohnehin nur in der Vorstellung existieren, ist der
Unterschied beider Betrachtungsweisen durchaus unwesentlich; doch
dürfte er der Hauptgrund dafür sein, dass man die weitgehende Analogie
der erwähnten Sachgebiete lange übersehen hat. Diese Analogie, die sich
sogar als Isomorphie fassen lässt, wird im IV. Teil deutlich werden.

Durch die Einführung sogenannter Charaktere ergibt sich nun die
Möglichkeit einer „neutralen" Darstellung derartiger Verhältnisse. Der
Charakter einer Symmetrieoperation soll die zusätzliche Verschiebung
(translative Charaktere) oder Drehung (rotative Charaktere) des
Formenelements gegenüber seiner Lage in der starren Punktsymmetrie-
gruppe zum Ausdruck bringen. Die Eigenschaft der Periodizität legt
dafür eine Verwendung von Winkelfunktionen nahe; wegen der auftretenden

Vieldeutigkeit erweist sich die cos-Funktion als besonders geeignet.
Eine strenge Bestimmung des Charakterenbegriffs bleibt den Abschnnitte
9 und 12 vorbehalten. Hier sei lediglich betont, dass der Charakter zwar
die Zusatztranslation bzw. Zusatzrotation festlegt, aber die Frage offen
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lässt, ob man für sie ein Symmetrieelement als solches oder das Verhalten
des Systems verantwortlich machen will.

In der Theorie der Schwingungsspektren ist die Verwendung von Charakteren
seit der Einführung gruppentheoretischer Methoden durch E. Wigner (37) üblich;
zur Darstellung der Raumgruppen wurde sie erst kürzlich von P. Niggli (24)
vorgeschlagen. Die Behandlung der translativen Charaktere kann sich hier auf
das wesentliche beschränken, da schon an anderer Stelle (15) anhand zahlreicher
Beispiele darüber berichtet worden ist. Da überdies die Anordnung der im Abschnitt
4 aufgestellte» Koordinatentafeln unmittelbar als Leerform dient, sind die
formalen Grundlagen für die Einführung der Charakterentafeln bereits gegeben.

Durch geeignete Kombination von Punktsymmetrieoperationen mit
Translationen entstehen die im Abschnitt 1 erwähnten fixpunktfreien
Symmetrieoperationen, welche keinen Punkt des Raumes in sich
selbst überführen, nämlich:

im R1 Identität + Translation Translation,
im R11 Identität + Translation Translation, Spiegelung + Trans¬

lation (parallel zur Spiegelgeraden) Gleitspiegelung,
im Rm Identität + Translation Translation, Spiegelung + Trans -

lation (parallel zur Spiegelebene) Gleitspiegelung, Drehung +
Translation (parallel zur Drehungsachse) Schraubung.

Andere Kombinationen führen nicht zu neuartigen
Symmetrieoperationen: man überzeugt sich leicht davon, dass eine Kombination
von Translation mit Spiegelung im R1, mit Drehung im R11, mit
Drehinversion, Drehspiegelung oder Inversion im Rm, sowie das Hinzufügen
von Translationen senkrecht zu den andern Symmetrieelementen gar
keine fixpunktfreien Operationen ergeben, sondern lediglich die Lage des

Symmetrieelements verändern. Ein fixpunktfreies Symmetrieelement ist
offenbar durch seine Lage allein nicht vollständig gekennzeichnet: bei
Gleitspiegelgeraden ist der Betrag der Gleitkomponente, bei Gleitspiegelebenen

der Betrag und die Richtung der Gleitkomponente, und bei
Schraubenachsen der Betrag der Schraubungskomponente zusätzlich
anzugeben.

Das Auftreten von Verschiebungen als Deckoperationen hat natur-
gemäss zur Folge, dass nicht nur die Anordnung der Formenelemente sich
ins Unendliche erstreckt, sondern auch dass die Symmetrieelemente
unendliche Parallelscharen bilden. In jedem Falle erfüllen die
sämtlichen reinen Decktranslationen einschliesslich der Identitätsoperation
die im Abschnitt 1 aufgezählten Gruppenpostulate. Daher lassen sie sich
als die Elemente einer diskreten kommutativen Gruppe unendlicher
Ordnung, der Translationsgruppe, auffassen. Wird die Translations-
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gruppe durch t linear unabhängige Verschiebungsvektoren erzeugt, so ist
sie t-dimensional; die Dimensionszahl des betrachteten Raumes stellt
offenbar die obere Grenze für t dar. Sieht man vom Trivialfall t 0 ab,
in welchem die Translationsgruppe zur Identitätsoperation entartet, so

bildet die Gesamtheit der bezüglich ihrer Operationen gleichwertigen,
d.h. translativ identischen Punkte für t l eine einfach-unendliche
Kette, für t 2 ein zweifach-unendliches Netz, und für t 3 ein
dreifach-unendliches Gitter.

Die kürzesten linear unabhängigen Translationsvektoren spannen
den Bereich der Nichtidentität auf als den grössten Raumteil, in welchem
— ausser den nur partiell dazuzurechnenden Grenzpunkten — keine zwei
Punkte translativ identisch sind. Er ist im R1 eine primitive Strecke, im
R11 ein primitives Parallelogramm, und im R111 ein primitives Parallelepiped.

Der betrachtete Raum lässt sich aufbauen, indem man unendlich
viele solcher primitiven Bereiche je nach der Dimensionszahl der
Translationsgruppe zu Ketten, Netzen oder Gittern aneinanderreiht.
Ganz im Sinne der zu Beginn zitierten PASCALschen Symmetriedefinition
genügt deshalb die Kenntnis der Elemente eines einzigen primitiven
Bereichs, um die ganze unendliche Anordnung zu beherrschen. Der
Elementarbereich, auf den man sich bei der Beschreibung einer Struktur

bezieht, indem seine Kanten zu Einheitsvektoren gewählt werden,
fällt allerdings nicht immer mit einem primitiven Bereich zusammen. Die
Beziehungen zur phänomenologischen Kristallographie legen es nämlich
nahe, die Einheitsvektoren in jedem Falle in kristallographische Achsen
zu legen; eine solche symmetriegerechte Wahl des Bezugssystems führt
aber oft zu n-fach primitiven (zentrierten) Elementarparallelogrammen
und (flächen- oder raumzentrierten) Elementarparallelepipeden, deren
jedes n translativ identische Elemente enthält.

Die Gestalt der Elementarbereiche wird durch die Symmetrie der
Translationsgruppe bestimmt, die ihrerseits mit der isomorphen Punktgruppe

verträglich sein muss. Damit ist die Möglichkeit gegeben, die
jeweils mit Translationsgruppen von gleicher Symmetrie kombinierbaren
kristallographischen Punktgruppen zu Systemen zusammenzufassen;
einfache Analogiebeziehungen gestatten die Übertragung des Systemsbegriffs

auf nichtkristallographische Punktgruppen im Sinne von S. 28.

Die mögliehen Translationsgruppen winden für dreidimensionale Gitter
erstmals von Bravais abgeleitet. Im folgenden seien die verschiedenen Typen des ein-
bis dreidimensionalen Raumes zusammengestellt, wobei für jeden Fall auch die
Punktsymmetriegruppe und gegebenenfalls das Raumgruppensymbol der Anordnung

von Ketten-, Netz- oder Gitterpunkten angegeben wird:
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Für einfach-periodische Anordnungen kommt nur die primitive Kette
mit der Punktsymmetrie Cs im R1, C2 v im R11 und Dv h im R111 in Frage.

Für zweifach-periodische Anordnungen bestehen schon fünf Möglichkeiten,

nämlich das primitive allgemeine Netz mit C2 im R11 bzw. C2h im R111, das

primitive Rechtecknetz mit C2t im R11 bzw. D2h im Rnl, das zentrierte Rechtecknetz

mit denselben Punktsymmetrien, das quadratische Netz mit C4t im R11 bzw.
D4h im R111, und das hexagonale Netz mit C6v im R11 bzw. D6h im Rm.

Für dreifach-periodische Anordnungen sind insgesamt 14 verschiedene
Typen möglich, nämlich das primitive trikline Gitter mit Cj, das primitive mono-
kline Gitter mit C2h, das (basis-)flächenzentrierte monokline Gitter mit C2h, das

primitive orthorhombische Gitter mit D2 h, das )flächenzentrierte orthorhombische

Gitter mit D, allseitig flächenzentrierte orthorhombische Gitter mit
D21 > das raumzentrierte orthorhombische Gitter mit Dji'J,, das primitive tetragonale
Gitter mit D4h, das (basisflächen- oder raumzentrierte) tetragonale Gitter mit D4^,
das rhomboedrische Gitter mit Dgd, das hexagonale Gitter mit Djh, das primitive
kubische Gitter mit OJ, das allseitig flächenzentrierte kubische Gitter mit 0(j, und

Abweichend von der in den „Internationalen Tabellen" (11) üblichen
Darstellungsweise sollen hexagonale und trigonal-rhomboedrische Anordnungen im
folgenden stets auf das von P. Niggli (18) verwendete doppeltprimitive ortho-
hexagonale Elementarparallelogramm bzw. Elementarparallelepiped bezogen
werden. Dabei stehen die Einheitsvektoren zueinander in der Beziehung a ]/3 b ;

die entsprechenden Transformationsgleichungen für die Überschriften der Tafeln
wurden bereits im Abschnitt 4 gegeben. Die orthohexagonale Darstellung bietet
den Vorteil der einfacheren Behandlung durch die Charakterentafeln, und ausserdem

tritt in ihr der Zusammenhang mit den orthorhombisch-basisflächenzentrierten
Gruppen klarer zutage.

Zur Erleichterung der Umrechnung seien noch die Transformationsmatrizen
für den Übergang vom (in der beschreibenden Kristallographie üblichen) hexa-
gonalen zum orthohexagonalen Bezugssystem und umgekehrt angegeben. Lässt
man in den viergliedrigen hexagonalen Symbolen des R111 die dritte Grösse — die
ja gleich der negativen Summe der beiden ers'ten ist — einfach weg, so erhält man :

I
i 0 0

-i 1 0
0 0 1

II
2 0 0
1 1 0
0 0 1

III
2 1 0

0 10
0 0 1

IV
i i nt -s u
0 1 0
0 0 1

Die Transformationen sind nicht orthogonal. Von den Matrizen sind I und II
sowie III und IV zueinander invers, I und IV sowie II und III zueinander
transponiert, I und III sowie II und IV zueinander kontragredient. Für die
Transformation von hexagonalen Punktkoordinaten xyz und Richtungsindices [uvw]
in orthohexagonale findet die Matrix I Anwendung, für die Rücktransformation
von orthohexagonalen Punktkoordinaten und Richtungsindices in hexagonale die
Matrix II. Demgegenüber ist für die Transformation hexagonaler Flächenindices
(hkl) in orthohexagonale die Matrix III massgebend, und für die Rücktransformation

orthohexagonaler Flächenindices in hexagonale die Matrix IV. Im R11 fallen
bei sämtlichen Matrizen die dritten Zeilen und Spalten weg.
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Bekanntlich entstehen nun die Raumgruppen durch geeignete
Kombination einer Punktsymmetriegruppe mit einer Translationsgruppe.
Dabei ist die Punktgruppe (endlicher Ordnung) Faktorgruppe der Raumgruppe

bezüglich der Translationsgruppe (unendlicher Ordnung) als
Normalteiler; sie ist zur Raumgruppe isomorph. Sehr schön kommt diese

Beziehung etwa in der Operatorendarstellung von F. Seitz (33) für die
dreidimensionalen Raumgruppen der Kristalle zum Ausdruck. Offenbar
sind bei der Beschreibung einer Raumgruppe ausser der isomorphen
Punktgruppe und der Translationsgruppe auch die allfälligen Zusatz -

translationen der Punktsymmetrieoperationen, also die Gleit- und
Schraubungskomponenten, sowie die Lagebeziehungen der
Symmetrieelemente zueinander wesentlich. Solche Grössen wurden denn auch
von C. Hermann (9) als sogenannte „Kennvektoren" zur Ableitung der
Raumgruppen herangezogen. Sie sind jedoch nicht voneinander
unabhängig, sondern, wie P. Niggli (16) gezeigt hat, durch Symmetriesätze
verknüpft. Auf die Symmetriesätze soll im Teil IV noch besonders

eingegangen werden; schon hier sei aber angedeutet, dass die Zweckmässigkeit
der Charakterendarstellung wohl vor allem auf der Tatsache beruht,

dass sie den Symmetriesätzen in einfacher Weise Rechnung trägt.
Übrigens ist die im Abschnitt 2 gegebene Definition der Ordnung n

einer Symmetrieoperation für die fixpunktfreien Operationen insofern zu
erweitern, als ihre n-malige Ausführung erstmals sämtliche Punkte des
Raumes in translativ identische Punkte überführt. So werden den
geschlossenen Zyklen der Punktsymmetrielehre die offenen Zyklen
gegenübergestellt, welche in diskontinuierlichen Gruppen ebenfalls von
endlicher Ordnung sind. Das bedeutet aber, dass sich alle im Teil I an
Punktgruppen angestellten, mit der Zyklengliederung zusammenhängenden

Überlegungen ohne weiteres auf die Raumgruppen übertragen lassen.

8. Systematik der Raumgruppen und Untergruppen

Im Abschnitt 2 wurden die Punktgruppen von den Raumgruppen
abgegrenzt durch die Forderung, dass alle ihre Symmetrieoperationen
mindestens einen Punkt des Raumes fest lassen. Die gleichfalls übliche
Ausdrucksweise, dass ihre sämtlichen Symmetrieelemente sich in einem
Punkte schneiden, führt bei den asymmetrischen Gruppen Cj zu
Schwierigkeiten, da ja das Symmetrieelement der Identitätsoperation durch den

ganzen Raum gegeben ist. In allen übrigen Fällen sieht man allerdings
leicht ein, dass zwei Symmetrieelemente, die sich nicht schneiden, einander

gegenseitig zu Parallelscharen vervielfachen. So entspricht denn auch
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dem Hauptsymmetriepunkt der Punktgruppen, der auf sämtlichen
Symmetrieelementen hegt, in den Raumgruppen im allgemeinen nicht nur
eine Kette, ein Netz oder ein Gitter von translativ identischen
Hauptpunkten, sondern mehrere derartige Punktscharen, die je einem Teil
der Scharen von Symmetrieelementen angehören. Die durch ihre
Symmetrieeigenschaften ausgezeichneten Hauptpunkte wurden für die

Raumgruppen der Kristalle von K. Weissenberg (36) angegeben; auf ihre
Bedeutung für die Nullpunktswahl des Bezugssystems soll im folgenden
Abschnitt eingegangen werden.

Es wurde bereits erwähnt, dass die Punktgruppen als Spezialfälle
von Raumgruppen mit nulldimensionaler Translationsgruppe aufgefasst
werden können. Betrachtet man überhaupt eine Raumgruppe im r-dimen-
sionalen Raum, so dürfen von den r Koordinaten, welche die Lage eines

Punktes beschreiben, 0,1,2,. .,r gegenüber den Operationen der
Translationsgruppe invariant sein; dementsprechend wird die Translationsgruppe

selbst r,r-l,r-2,.., 0-dimensional, allgemein t-dimensional mit
t^r. Die Anordnung gleichwertiger Raumpunkte allgemeiner Lage ist
dann in (r — t) Dimensionen endlich begrenzt, während sie sich nach

t Dimensionen — von willkürhchen Randbedingungen abgesehen — ins
Unendliche erstreckt.

Mit den Dimensionszahlen des betrachteten Raumes und der

Translationsgruppe, r und t, bietet sich nun eine erste Möglichkeit für die

Einteilung der Raumgruppen. W. v. Eengelharut (7) hat die Gruppen
des ein- bis dreidimensionalen Raumes, die sich anschaulich verwirklichen
lassen, nach diesem Gesichtspunkt bezeichnet, doch können seine
„Zylinderklassen" mit den Zylindergruppen des Abschnitts 3 verwechselt werden.

Hier sollen die folgenden Namen Verwendung finden:

r l, t 0 eindimensionale Punktgruppen
r l, t l Reihengruppen
r 2, t 0 zweidimensionale Punktgruppen
r 2, t l Bandgruppen
r 2, t 2 Flächengruppen
r 3, t 0 dreidimensionale Punktgruppen
r 3, t l Balkengruppen
r 3, t 2 Schichtgruppen
r 3, t 3 Gittergruppen

Wegen ihrer kristallographischen Bedeutung werden die Gittergruppen
meist kurzweg „Raumgruppen" genannt. Als Oberbegriffe sind weiter
die Bezeichnungen Kettengruppen für t l, Netzgruppen für t 2,
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Gittergruppen für t 3 gebräuchlich. Im ein- bis dreidimensionalen
Raum zerfallen somit die Kettengruppen in Reihen-, Band- und
Balkengruppen, die Netzgruppen in Flächen- und Schichtgruppen.

Ein Komplex von gleichwertigen Punkten allgemeiner Lage, d. h. die
allgemeine Form der Raumgruppe, liegt im Falle einer

eindimensionalen Punktgruppe auf einer Strecke,
zweidimensionalen Punktgruppe in einer ebenen Kreisfläche,
dreidimensionalen Punktgruppe in einer Kugel,
Reihengruppe auf einer Geraden,
Bandgruppe in einer Ebene zwischen zwei parallelen Geraden,
Balkengruppe in einem geraden Kreiszylinder,
Flächengruppe in einer Ebene,
Schichtgruppe zwischen zwei parallelen Ebenen,
Raumgruppe im dreidimensionalen Raum.

Bei der Kombination einer Punktgruppe mit einer Translationsgruppe

gilt nun bekanntlich die Einschränkung, dass nur dann eine
diskontinuierliche Raumgruppe entsteht, wenn die Gesamtheit der
Translationsvektoren gegenüber allfälligen Operationen der Ordnungen 5 oder
> 6 invariant ist. Diese Bedingung lässt sich nur für eindimensionale
Translationsgruppen erfüllen. Berücksichtigt man weiter die Vervielfachung

der Translationsrichtungen durch die Symmetrieoperationen der
Punktgruppe, so folgt daraus, dass zu Netz- und Gittergruppen nur
kristallographische Punktgruppen mit Drehungen (Drehspiegelungen,

Drehinversionen) der Ordnungen 1, 2, 3, 4, 6 isomorph sein können,
dass in Bandgruppen nur Operationen der Ordnungen 1 und 2 auftreten
dürfen, und dass schliesslich in Balkengruppen den allfälligen Operationen
einer Ordnung > 2 nur ein einziges Symmetrieelement zugeordnet sein
kann. Dabei muss in den Balkengruppen die > 2-zählige Symmetrieachse
in der Translationsrichtung liegen, und in den Schichtgruppen steht die
Gesamtheit derartiger Achsen auf den beiden Translationsrichtungen
senkrecht.

Die Punktgruppen, welche nach diesen Vorbehalten zu den verschiedenen

Arten von Raumgruppen isomorph sein können, werden — in nicht
besonders glücklicher Weise — „geometrische" oder g-Klassen genannt.
Ihre Kombination mit den passenden Translationsgruppen des Abschnitts
7 liefert zunächst die „arithmetischen" oder a-Klassen. Untersuchungen
über die g- und a-Klassen der dreidimensionalen Raumgruppen sind von
P. Niggli und W. Nowacki (26) angestellt worden; auch J. J. Burgk -

Hardt (5) bedient sich ihrer zur Ableitung der Raumgruppen. Grundsätzlich

entsprechen einer g-Klasse mehrere a-Klassen, da die Punktgruppe
im allgemeinen mit mehreren Translationsgruppen kombiniert werden
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kann, oder, was auf dasselbe herauskommt, in verschiedenen Orientierungen

der Punktsymmetrieelemente zu den Translationsrichtungen. Die
Mannigfaltigkeit der Raumgruppen selbst entsteht aus den a-Klassen
durch Hinzufügung von Zusatztranslationen; auch hier bieten sich in der
Regel mehrere Möglichkeiten. Für den Spezialfall der nulldimensionalen
(entarteten) Translationsgruppe fallen natürlich die g-Klassen, die a-
Klassen und die Raumgruppen in den Begriff der Punktgruppe zusammen.

Die Tabelle 5 gibt eine Übersicht der Anzahlen von Systemen,
Klassen und Gruppen im ein- bis dreidimensionalen Raum. Zueinander
enantiomorphe Gruppen I. Art sind darin getrennt gezählt; wird der
entgegengesetzte Windungssinn ihrer Schraubenachsen nicht als wesentlicher
Unterschied gewertet, so erniedrigt sich die Zahl der kristallographischen
Balkengruppen von 75 auf 67, die Zahl der wirteligen Raumgruppen von
194 auf 183, und die Gesamtzahl der dreidimensionalen Raumgruppen
von 230 auf 219.

Ausser den Dimensionszahlen von Raum und Translationsgruppe und der
g- bzw. a-Klassenzugehörigkeit gibt es noch weitere Einteilungsmöglichkeiten für
die Raumgruppen. Da sind zunächst die Eigenschaften der isomorphen
Punktgruppe, welche ebenso als Unterscheidungsmerkmale herangezogen werden können,

wie dies im Abschnitt 3 für die Punktgruppen selbst geschah. So wird man
etwa von kristallographischen und nichtkristallographischen Balkengruppen oder
von wirteligen und isometrischen Raumgruppen (im engeren Sinn, d. h.
Gittergruppen) sprechen, und da ja die Translationsgruppe nur Operationen I. Art
enthält, ist der Gegenüberstellung von reinen Drehungsgruppen und Punktgruppen
II. Art eine Unterscheidung von reinen Bewegungsgruppen und Raumgruppen
II. Art analog. Immerhin sei nicht verschwiegen, dass man bei Hinzunahme einer
weiteren Raumdimension überhaupt auf die Gruppen II. Art verzichten könnte:
wie Moebitjs als erster erkannt hat, lässt sich nämlich jede Spiegelung im n-dimen-
sionalen Raum als Drehung im (n + l)-dimensionalen Raum mit einer verschwindenden

Koordinate darstellen. Der kristallographischen Denkweise ist dieser

Gesichtspunkt zwar wesensfremd, doch wurde er von G. Polya (29) zur Herleitung
der Flächengruppen als speziellen dreidimensionalen Gruppen (mit Klappachsen
anstelle der Spiegelgeraden in der „durchsichtigen" Ebene), sowie von H. Heesch
(8) zur Darstellung der dreidimensionalen Raumgruppen als Bewegungsgruppen
mit vierdimensionalen Drehungen benützt.

Eine weitere kennzeichnende Eigenschaft der Raumgruppen ist
durch die Beziehung zwischen isomorpher Punktgruppe und Faktorgruppe

bezüglich der Translationsgruppe gegeben; sie wird durch die
Zusatztranslationen bestimmt. Sind isomorphe Punktgruppe und
Faktorgruppe identisch, ist also die Raumgruppe direktes Produkt aus
Punktgruppe und Translationsgruppe, so treten keine Zusatztranslationen

auf. Sämtliche Symmetrieelemente der Punktgruppe schneiden sich
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Tabelle 5. Anzahlen ein- bis dreidimensionaler Symmetriegruppen

Dimensions¬
zahl

Transi.-Raum gruppe

endlicher Ordnung
kristallographisch nichtkristailogr.
wirtelig isometr. wirteiig isometr.

unendl. Ordnung

wirtelig isometr. total davon
krist.

a) Systeme
1 1 1 1

2 4 00 — 1 00 4
3 6 1 00 1 1 1 co 7

b) Punktg ruppen
1 2 2 2

2 10 00 2 — oo 10
3 27 5 oo 2 5 2 oo 32

c) Translationsgruppen
— 1 1 1 1

— 2 5 — — — — — 5 5

— 3 11 3 — — — — 14 14

d) g-Klass en
1 1 2 2 2

2 1 4 4 4
2 2 10 — — — — — 10 10

3 1 27 00 — 5 — oo 27
3 2 27 27 27

3 3 27 5 _ _ — — 32 32

e) a-Klassen
1 1 2 2 2

2 1 5 5 5
2 2 13 13 13

3 1 31 00 — 5 — 00 31
3 2 42 42 42
3 3 58 15 — — — — 73 73

f) Raumgruppen
•

1 1 2 2 2
2 1 7 7 7

2 2 17 17 17

3 1 75 00 — 5 — 00 75
3 2 80 80 80
3 3 194 36 — — — — 230 230

auch in der Raumgruppe in einem Hauptpunkt, dem als Symmetriebedingung

die volle isomorphe Punktgruppe zukommt. Man sieht leicht
ein, dass jede a-Klasse genau eine derartige, nach v. Federow als sym-
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morph bezeichnete Raumgruppe enthält. Sind dagegen Zusatztranslationen

vorhanden, so erreicht keiner der Hauptpunkte die Symmetriebedingung

der g-Klasse, und die Raumgruppe ist asymmorph. Die
historische Entwicklung der Ableitung kristallographischer Raumgruppen
hat es mit sich gebracht, dass die Raumgruppen mit der höchsten reinen
Drehungsuntergruppe der isomorphen Punktgruppe als Symmetriebedingung

von Hauptpunkten ausgezeichnet und hemisymmorph
genannt wurden. Es dürfte sich aber empfehlen, solche Raumgruppen
drehungssymmorph zu nennen; der übergeordnete Begriff der hemi-
symmorphen Raumgruppen bezieht sich dann auf alle jene Fälle, in
denen die höchste Symmetriebedingung der Hauptpunkte eine

Untergruppe vom Index 2 der isomorphen Punktgruppe ist.
Übrigens haben P. Niggli und W. Nowacki (26) noch den weiteren

Begriff der systemssymmorphen Raumgruppen eingeführt, deren
höchste Symmetriebedingung wenigstens dem System der isomorphen
Punktgruppe angehört; in ihnen wird die Translationsgruppe der a-Klasse
schon durch die translationsfreien Punktsymmetrieoperationen
ausgewählt. So ist die Symmorphie nicht mehr auf die isomorphe Punktgruppe
selbst, sondern auf ihr System bzw. auf die übergeordnete Holoedrie
bezogen. Nach diesem Gesichtspunkt lässt sich aber das Begriffssystem
erweitern, indem man den holoedrisch-systemssymmorphen Raumgruppen

allgemein die meroedrisch-systemssymmorphen und im besondern
die hemiedrisch-, tetartoedrisch-systemssymmorphen Raumgruppen usw.
gegenüberstellt.

Die Zusammenfassung der Raumgruppen in Systeme entspricht
genau derjenigen ihrer g-Klassen, wobei die Auswahl der geeigneten
Translationsgruppen ein einfaches Kriterium abgibt. Für die Syngonie-
beziehung dagegen trifft das nicht völlig zu. Definiert man nämlich als

Syngonie (im engeren Sinne) einer Raumgruppe die Gesamtheit ihrer
Unter-Raumgruppen, so werden nicht alle zu einer der Punktgruppen-
syngonie angehörenden Punktgruppe isomorphen Raumgruppen erfasst.
Symmetrieelemente, die bezüglich der Ausgangsgruppe gleichwertig
waren, dürfen sich in ihren Zusatztranslationen ja nicht unterscheiden.
So ist es sehr wohl möglich, dass beispielsweise eine tetragonale Raum-
gfuppe nicht der kubischen Raumgruppensyngonie angehört, also nicht
als hypokubisch bezeichnet werden darf. Ebenso schliesst die weitere
Zusammenfassung zu einer tetragonalen Syngonie nicht alle orthorhom-
bischen Raumgruppen ein; somit lassen sich etwa aus den orthorhom-
bischen die orthorhombisch-hypotetragonalen und aus diesen wiederum
die orthorhombisch-hypokubischen Raumgruppen herausgreifen.
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Tabelle 6. Zähligkeiten selbständiger Icristallographischer Untergruppen

Selbsständige Un tergruppen
„ Voll

6v symnSymmetriebedingung : C4 c2 c3 c4 C6 c8 C2y c3v c4t
geometr. Wertigkeit : 1 2 3 4 6 2 4 6 8 12 N

N F Freiheitsgrade : 3 1 1 1 1 2 1 1 1 1 F

1 3 Ci — — — — — — — — — — 1

2 0 C. 2 — — — — — — — — — 1

2 2 Ce 2 1

2 1 C2 2 — 1

4 0 c2* 4 2 — — — 2 — — — — 1

4 1 c2. 4 — — — — 2 — — — — 1

4 0 d2 4 2 1

8 0 D2* 8 — — — — 4 2 — — — 1

4 1 C4 4 1

4 0 s4 4 2 — — — — — — — — 1

8 0 D2d 8 4 — — — 4 2 — — — 1

8 1 c4y 8 4 1

8 0 C4h 8 — — 2 — 4 — — — — 1

8 0 D4 8 4 — 2 1

16 0 D4h 16 — — — — 8 4 — 2 — 1

3

6

1

1

c3
C6

3

6

1

6 0 Da 6 3 2 1

6 1 C3T 6 — — — — 3 — — — — 1

6 0 C31 6 — 2 1

6 0 C3h 6 — 2 — — 3 — — — — 1

12 0 D3h 12 — — — — 6 3 2 — — 1

12 0 D3d 12 6 — — — 6 — 2 —-- — 1

12 1 C6v 12 — — — — 6 — — — — 1

12 0 Ce* 12 — — — 2 6 — — — — 1

12 0 De 12 6 — — 2 1

24 0 De h 24 — — — — 12 6 — — 2 1

12 0 T 12 6 4 1

24 0 Ta 24 — — — — 12 6 4 — — 1

24 0 Th 24 — 8 — — 12 6 — — — 1

24 0 O 24 12 8 6 1

48 0 oh 48 — — — — 24 12 8 6 — 1

Eine Systematik der Untergruppen hat C. Hermann (9)

vorgeschlagen. Nach ihm werden zu einer gegebenen Raumgruppe die

Untergruppen mit unveränderter Translationsgruppe zellengleich, und die

zur selben g-Klasse gehörigen Untergruppen klassengleich genannt;

allgemeine Untergruppen sind weder zellen- noch klassengleich. Die

Translationsgruppe einer allgemeinen oder einer klassengleichen Unter-
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gruppe ist offenbar selbst eine eigentliche Untergruppe der ursprünglichen
Translationsgruppe. Nicht-zellengleiche Untergruppen, bei denen wenigstens

die Dimensionszahlen des Raumes und der Translationsgruppe
erhalten bleiben, könnten als dimensionsgleich ausgezeichnet werden.
Im allgemeinen Fall wird nämlich der Dimensionsabbau der Translationsgruppe,

also etwa die Frage nach Schicht-, Balken- und Punktgruppen
als Untergruppen einer dreidimensionalen Raumgruppe, für die Strukturanalyse

von Bedeutung sein, und auch der Übergang zu Unterräumen
wird gelegentlich vollzogen. Beispiele von dimensionsgleichen
Untergruppen sind etwa durch die einfach primitiven klassengleichen
Untergruppen einer Raumgruppe mit mehrfach primitiver Elementarzelle
gegeben.

Zwischen den Dimensionszahlen des Raumes und der Translationsgruppe,
r bzw. t, einer Raumgruppe und denjenigen einer nicht-dimensionsgleiehen
Untergruppe, r' bzw. t', gilt mindestens eine der Ungleichungen r'<r, t'ct. Diese
Beziehung sei für den ein- bis dreidimensionalen Raum durch das folgende Schema
verdeutlicht, in welchem die Pfeile von Gruppe zu Untergruppe weisen:

Raumgruppen -> Schichtgruppen -> Balkengruppen -> Punktgruppen im Rln

\i i I
Flächengruppen -» Bandgruppen -> Punktgruppen im Rn

\ I I
Reihengruppen Punktgruppen im R1

Schliesslich ist noch auf den wichtigen Begriff der Selbständigkeit,
wie er S. 41 erläutert wurde, hinzuweisen. Im Bereiche der

Punktgruppen und der symmorphen Raumgruppen sind uneigentliche
Untergruppen offenbar stets selbständig. Wegen ihrer grossen Bedeutung sind
die selbständigen Untergruppen der 32 dreidimensionalen kristallogra-
phischen Punktgruppen in der Tabelle 6 mit ihren Zähligkeiten
zusammengestellt. N bedeutet die Ordnung der Gruppe, F die Zahl der Frei-
heitsgrade.

9. Form und Deutung der translativen Charakterentafeln

Bs wurde bereits erwähnt, dass die in den Koordinatentafeln des Abschnitts 4

getroffene Anordnung der Punktsymmetrieoperationen als Leerform der
Charakterentafeln benützt wird. So handelt es sich nun darum, die Charaktere selbst zu
definieren, sie in die Leerform der Tafeln einzusetzen, und sie schliesslich — trans-
lativ oder rotativ — zu deuten. Zunächst soll gezeigt werden, wie die Eigenschaften
und verschiedenen Einteilungsmöglichkeiten der Raumgruppen und der Unter-
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gruppen in den Charakterentafeln zum Ausdruck kommen. Die Einfachheit und
Übersichtlichkeit der Zusammenhänge beruht wieder darauf, dass die Charakteren-
tafeln im Gegensatz etwa zu den Symbolen nach Hermann-Maugiun eine
vollständige Aufzählung der Gtuppenelemente enthält. Auch andere Bezeichnungs-
weisen wie z. B. die von W. H. Zachariasen (40) verwendeten Raumgruppensymbole

ziehen zur Beschreibimg nur eine mehr oder weniger willkürliche Auswahl
von erzeugenden Operationen heran. Die Verhältnisse liegen aber bei den
Raumgruppen ähnlich, wie sie im Abschnitt 4 für die Punktgruppen dargestellt wurden :

dort waren es die Symmetrieformeln, hier sind es die Charakterentafeln, welche
die vollständige Beschreibung liefern.

Um eine angemessene Darstellung der translativen Zusatzgrössen
einer Raumgruppe zu erhalten, werden die in Richtung der Koordinatenachsen

auftretenden Verschiebungsgrössen v, die von gegenseitiger
Versetzung der Symmetrieelemente oder von Gleitungen und Schraubungen
herrühren können, einheitlich auf die Kantenlängen d des Elementarbereichs

als 2 TT bezogen und durch den Cosinuswert ihres Winkels
ausgedrückt. Die so entstehenden Charaktere y, für welche also die
Definitionsgleichung

y cos 2 7t ^

gilt, werden dann in die zur Symmetrieoperation gehörige Zeile und die
zur Koordinatenachse gehörige Spalte der beschriebenen Leerform der
Charakterentafel eingesetzt. Die Gesamtheit der Raumgruppen lässt sich
so darstellen, dass nur die einfachen Werte y 1 für v 0, y — 1 für
v= 1/2, y 0 für v 1/4 oder 3/4 auftreten; andere Verschiebungsgrössen
können durchwegs in die Tafelüberschriften eingeführt werden. Man sieht,
dass infolge der Periodizität der cos-Funktion alle translativ identischen
Raumpunkte, deren Verschiebungsgrössen sich ja um ganze Zahlen
unterscheiden, durch dieselben Charaktere gekennzeichnet sind. Umgekehrt
verleiht die unendliche Vieldeutigkeit der inversen Funktion in der

Gleichung v 2^ arccos y der unendlichen Mannigfaltigkeit von Ketten-,
Netz- oder Gitterpunkten unmittelbaren Ausdruck.

Einfache Überlegungen, wie sie in der zitierten Arbeit (15) für den
Fall dreidimensionaler Raumgruppen angestellt wurden, schreiben die
bei einer Deutung translativer Charaktere vorzunehmende Aufteilung
der gesamten Verschiebungsgrössen in zwei Teilbeträge vor, nämlich in
raumgruppencharakteristische Zusatztranslationen T und zufällige,
durch die Nullpunktswahl bedingte Lageverschiebungen V. Werden
die Koordinatenrichtungen durch Indices bezeichnet, so treten in den
verschiedenen Zeilen die folgenden Charaktere auf:

6 Schweiz. Min« Petr. Mitt., Bd. 33, Heft 1, 1953
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im R1

ctj) für x y cos 0=1
oa) fürx^' cos 277V

im R11

01) für x ^n cos0= 1, für y ^12 cos0= 1

02) für x Xu cos 277 Vj, für y yJ2 cos277V2
Tj) fürx ^2i cos277(Ti + V1), für y y22 cos 27tT2
t2) für x x^1 cos277T1, für y y22 cos 277 (T2 + V2)

im R111

01) fürx ^„i cosO= 1, füry y02 cosO= 1, für z y03 cosO= 1

ai) für x x11 cos277(T1i +Vj), für y y12 cos 277 T12, für z ^13 cos 277 T13

a2) für x ^ij cos 277Tu, für y yj2 cos 277 (T12 + Y2), für z y(3 cos 277 (T13 +V3)
/Sj) für x y21 cos277T21, füry y22 cos 277 (T22 + V2), für z y23 cos 277T23

ß2) für x y21 cos277 (T2i +Vj), für y y^2 cos 277 T22, für z ^3 cos 277 (T23 + V3)

yd für x y31 cos 277 T31, für y y32 cos 277T32, für z y33 cos277 (T33 +V3)
y2) für x ^1 cos277(T31 + V1), für y y^2 cos 277 (T32 +V2), für z x'33 cos 277T33

02) für x x'ol cos277Vl füry ^2 cos277V2, für z y£3 cos 277 V3

Durch Einsetzen dieser Grössen in die Leerform erhält man ohne
weiteres die Charakterentafeln. Ihre Typen sind im folgenden für
alle möglichen ein- bis dreidimensionalen Raumgruppen dargestellt; dabei
sind noch die für verschiedene Translationsgruppen in Frage kommenden
Operatoren, mit denen die Charaktere zeilenweise multipliziert werden
müssen, in geschweiften Klammern hingeschrieben:

a) Reihengruppen:

x {1} für primitive Ketten P

b) Bandgruppen:

x y oder x y {1} für primitive Ketten P

CTi X11 —

°2 Xll
"D X21 —

T2 X21 —

—
X12

X12

X22

X22
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c) Flächengruppen:

X y
°1 X11 X12

a2 Xu X21

Tl X21 X22

T2 X21 X22

{ll} für primitive Netze P

{ll}, {ll} für zentrierte Netze Z

d) Balkengruppen:

X y z oder X y z oder X y z

°i X01 — — — X02 — — — Xo3

«i X11 — — — X12 — — — Xl3

a2 Xu — — — X12 — — — Xl3

ßi X21 — — — X22 — — — X23

ß2 X21 — — — X22 — — — X23

7i X31 — — — X32 — — — X33

72 X31 — — — X32 — — — X33

aZ X01 — — — X02 — — — Xo3

{l} für primitive Ketten P

e) Schichtgruppen:

X y z oder X y z

CT1 — X02 X03 X01 — X03

«1 — X12 Xl3 X11 — Xl3

oe2 — X12 Xl3 Xu — Xl3

ßi — X22 X23 X21 — X23

ßz — X22 X23 X21 — X23

7i — X32 X33 X31 — X33

72 — X32 X33 X31 •— X33

aZ — X02 X03 X01 — Xo3

oder X y z

X01 X02 —

X11 X12 —

Xu X12 —

X21 X22 —

X21 X22 —

X31 X32 —
X31 X32 —

X01 XÔ2 —

(11} für primitive Netze P; {ll}, {ll} für zentrierte Netze Z
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f) Gittergruppen:
X y z

°1 X01 X02 X03

«1 Xu X12 Xl3

a2 Xu X12 x'l3

ßl X21 X22 X23

ß2 X21 X22 X23

Vi X31 X32 X33

72 X31 X32 X33

°2 X01 X02 Xo3

{ill} für primitives Gitter P

{ill}, {ill} für flächenzentriertes Gitter A
{ill}, {ill} für flächenzentriertes Gitter B
{ill}, {ill} für basisflächenzentriertes

Gitter C

{ill}, {Hl} für raumzentriertes Gitter I
{ill}, {m}, {m}» {m} für allseitig flä¬

chenzentriertes Gitter F

Durch Benützung verschiedener Spalten der Matrix sind in den Fällen,
wo die Dimensionszahl der Translationsgruppe kleiner als die des Raumes
ist, alle möglichen Aufstellungen, d. h. Orientierungen der Translationsrichtungen

berücksichtigt. Aus den Definitionsgleichungen ist ersichtlich,
dass in den unterstrichenen Hauptcharakteren unmittelbar die für
die Raumgruppe kennzeichnenden Zusatztranslationen, unabhängig von
der Nullpunktswahl, gegeben sind.

Offenbar lassen sich alle Lageverschiebungen V zum Verschwinden
bringen, indem man den Koordinatenursprung
im R1 in einen vorhandenen oder hinzufügbaren Spiegelpunkt,
im R11 in einen vorhandenen oder hinzufügbaren zweizähligen Drehpunkt,
im Rm in ein vorhandenes oder hinzufügbares Symmetriezentrum legt.
Dann fallen nach Definition die entsprechenden gestrichenen und
ungestrichenen Charaktere der Doppelzeilen zusammen, und als gemeinsamer
Charakter tritt jeweils unmittelbar der Hauptcharakter auf. So erhält
man die reduzierte Form der Charakterentafeln. Die reduzierten
Tafeln für Reihen-, Flächen- und Gittergruppen, aus denen alle andern
durch Ausfall einzelner Spalten hervorgehen, zeigen demnach folgende
Gestalt:

X11 X12

X21 X22

Xii

X21

X31

X12

X22

X32

Xl3

X23

X33

Dabei werden in den dreidimensionalen Tafeln die trivialen Charaktere
der Doppelzeile a weggelassen, weil sie ohnehin den Wert 1 haben müssen.
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Von den möglichen Transformationen des Bezugssystems seien nur die
häufig gebrauchten Nullpunktsverschiebungen und Achsenvertauschungen erläutert;

für Einzelheiten muss wieder auf P. Niggli (24) und die schon erwähnte
Arbeit (15) verwiesen werden. Eine Verschiebung des Nullpunkts wirkt sieh nur in
den negativen Koordinaten aus, und zwar tragen die doppelten Verschiebungs-
komponenten additiv zu den V-Werten der entsprechenden Koordinatenrichtung
bei; so liegt etwa in einer nicht-reduzierten dreidimensionalen Grundtafel der
Koordinatenursprung, bezogen auf ein — vorhandenes oder zusätzlich mögliches —
Symmetriezentrum, in % Vt, \ V2, £ V.s. Im allgemeinen Falle einer dreidimensionalen

Tafel, deren Überschrift die Koordinaten auch vertauscht enthalten kann,
geht der Einfluss einer Nullpunktsverschiebung von 0, 0, 0 nach r, s, t aus der
Tabelle 7 hervor.

Tabelle 7. Einfluss der Nullpunktswahl

alte neue Koordinate
Koordinate in 1. Spalte in 2. Spalte in 3. Spalte

X X x-f r — s x + r — t
X -> x — 2r x —r —s x —r —t

y y-r+ s y y + s-t
y -> y-r-s y- 2s y-s-t
z -> z — r+ t z — s + t Z

z -> z —r —t z —s —t z — 2t

Additive Konstanten sind gegenüber dieser Transformation invariant.
Eine symmetriegemäss erlaubte Vertauschimg der Bezugsachsen dagegen

wird einfach durch die entsprechende Vertauschung der Zeilen unter sich sowie
der Spalten unter sich in der Matrix erreicht, wobei natürlich die Elemente der
Hauptdiagonale wieder auf die Hauptdiagonale zu liegen kommen und in
nichtreduzierten Tafeln die zusammengehörigen Werte einer Doppelzeile nicht getrennt
werden. Wenn keine Fälle durch die Symmetrie gleichwertig sind, erhält man auf
diese Weise für die Gittergruppen sechs, für die Schicht-, Balken- und Flächengruppen

je zwei verschiedene Aufstellungen.

Überhaupt sind in dreidimensionalen Matrizen die Elemente der

Hauptdiagonalen insofern ausgezeichnet, als hei ihnen die Vorzeichenwechsel

von Koordinaten oder Indices sich gerade umgekehrt auf die
Halbzeilen verteilen wie bei den übrigen Matrixelementen. Das geht
schon aus dem Vorzeichenschema im Abschnitt 4 hervor und hängt damit
zusammen, dass in der Grundtafel G die Zusatztranslationen Tü mit
i l,2, 3 sich auf Schraubungskomponenten, die Ty mit j =t=i hingegen,
sich auf Gleitkomponenten beziehen. Dementsprechend nennt man in der
reduzierten Charakterentafel die xn Drehungs- oder d-Charaktere und
die Xu mit i=|=j Spiegelungs- oder s-Charaktere ; die d-Charaktere sind
im Schema der reduzierten Tafel besonders umrandet.
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Von P. Niggli (16) formulierte Symmetriesätze, auf die im Teil IV
noch näher eingegangen wird, legen die gegenseitigen Lage be Ziehungen
translationshaltiger Symmetrieelemente in den Raumgruppen fest; sie
bilden das Gegenstück zum Hauptsymmetriepunkt der Punktgruppen
und symmorphen Raumgruppen, in welchem sich alle translationsfreien
Symmetrieelemente schneiden. Man kann das etwa durch die Feststellung
umschreiben, eine Raumgruppe sei entweder durch die Translationskomponenten

oder durch die Abstände der Symmetrieelemente bestimmt.
Dieser Zusammenhang kommt in den Charakterentafeln elegant zum
Ausdruck. Die Zusatztranslationen T, welche nicht gerade die Bedeutung
einer Gleit- oder Schraubungskomponente haben, entsprechen nämlich
dem doppelten Abstand des Symmetrieelements vom Symmetriezentrum
bzw. Dreh- oder Spiegelpunkt. So lässt sich etwa in der reduzierten
dreidimensionalen Grundtafel die Lage der Symmetrieebenen aus den d-Cha-
rakteren, die Lage der Symmetrieachsen aus den s-Charakteren ablesen;
derselbe Charakter beschreibt also in der einen Halbzeile eine
Translationskomponente und in der andern einen Abstand. Allgemein gibt
natürlich die Summe (T^ + Vj) die doppelte Entfernung des Symmetrieelements

vom gewählten Nullpunkt an.
Weitere Einzelheiten und Beispiele der Deutung translativer Charaktere

sind in den zitierten Arbeiten (15, 24) enthalten. Nur ein Problem
muss hier noch behandelt werden. Es ist die Frage nach der Äquivalenz
von Charakterentafeln, die offenbar gegeben ist, wenn eine und dieselbe

Raumgruppe verschieden orientiert oder auf verschiedene Nullpunkte
bezogen wird. Gerade der letztere Fall tritt häufig ein, indem sich in
nicht-symmorphen Raumgruppen mehrere Hauptpunkte zur Nullpunktswahl

anbieten. Da Translationskomponenten und relative Lagebeziehungen
der Symmetrieelemente gegenüber den Transformationen des

Bezugssystems invariant sein müssen, stimmen die in diesem Sinne äquivalenten
Charakterentafeln bis auf symmetriegemäss erlaubte Achsenvertau-
schungen in allen ihren Hauptcharakteren überein; äquivalente
reduzierte Tafeln lassen sich durch Vertauschung der Bezugsachsen überhaupt
ineinander überführen. Bei mehrfach primitivem Elementarbereich sind
natürlich auch alle Darstellungen äquivalent, die durch Multiplikation
mit den entsprechenden Operatoren auseinander hervorgehen. So lässt
sich ohne weiteres entscheiden, ob zwei Charakterentafeln wirklich zwei
verschiedene Raumgruppen darstellen, oder ob sie eine Raumgruppe
auf zwei verschiedene Koordinatensysteme beziehen.

Eine zusammenfassende Übersicht soll zeigen, wie die Merkmale der
Raumgruppen in den Charakterentafeln zum Ausdruck kommen :
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Die Dimensionszahl des Raumes erscheint als Reihenzahl der Matrix.
Die Dimensionszahl der Translationsgruppe entspricht der Anzahl

benutzter Spalten.
Die Translationsgruppe selbst wird durch die Art der benützten Tafeln

und durch die zusätzlichen Operatoren bestimmt.
Die g-Klasse ist nach Abschnitt 4 durch die Zeilenauswahl gegeben.
Die a-Klasse wird durch Zeilenauswahl und Operatoren gemeinsam

festgelegt; Unterschiede innerhalb einer g-Klasse entstehen im allgemeinen durch
verschiedene Operatoren, gelegentlich aber (z. B. in D3(J) auch durch verschiedene
Zeilenauswahl.

Die Eigenschaft der Symmorphie kommt in den Charakteren selbst zum
Ausdruck. Für symmorphe Raumgruppen nehmen alle Hauptcharaktere, für
drehungssymmorphe Raumgruppen wenigstens die d-Charaktere den Wert cos 0=1
an; von 1 verschiedene d-Charaktere kennzeichnen eine Raumgruppe als asym-
morph.

Die Raumgruppe in ihrer Gesamtheit wird schliesslich durch die gesamte
Charakterentafel dargestellt. Weil diese Art der Beschreibimg von
Symmetrieverhältnissen erschöpfend ist, müssen sich umgekehrt alle symmetriebedingten
Eigenschaften auf irgendeine Weise der Charakterentafel entnehmen lassen; der
Abschnitt 11 wird dafür Beispiele liefern.

Der Vollständigkeit halber sei noch erwähnt, dass sich die Ober - und
Untergruppen im Falle der Zellengleichheit aus der Zeilenauswahl, im Falle der
Klassengleichheit dagegen aus Operatoren und Spaltenauswahl ableiten lassen.

10. Die Tafeln der ein- bis dreidimensionalen Raumgruppen

Die folgende Übersicht der Typen von translativen Charakterentafeln

beschränkt sich der Einfachheit wegen auf reduzierte Formen;
allgemeinere Tafeln lassen sich daraus mühelos durch Nullpunktsverschiebungen

bilden. Von mehreren bezüglich der Achsenvertauschung
gleichwertigen Darstellungen wird in der Regel nur ein Beispiel

angegeben.

Für die Fälle, in denen die Dimensionszahl der Translationsgruppe kleiner
als die des Raumes ist, sind noch einige Festsetzungen zu treffen. Zunächst soll
eine durch die Translationsgruppe ausgezeichnete Richtung zur c-Achse
dreidimensionaler oder zur a-Achse ein- und zweidimensionaler Koordinatensysteme
gewählt werden. Bei den Balken- und Bandgruppen betrifft dies die Translationsrichtung

selbst, bei den Schichtgruppen dagegen die zu den Translationsrichtungen
senkrechte Richtung. Um weiter die zu den Punktgruppen C8, C2, C2h und C2v

isomorphen Ketten- und Netzgruppen nach der Stellung ihrer Symmetrieelemente
zu den Translationsrichtungen zu ordnen, wie das ja beim Übergang von den
g-Klassen zu den a-Klassen notwendig ist, wird ihre Hauptsymmetrieachse, die
natürlich auch einzählig sein kann, einheitlich in die ausgezeichnete Koordinatenrichtung

gelegt. Damit zerfallen C, in Clh und ClT, C2 in C2 und D1; C2h in C21l und
Did > C2v in C'2v und Dlh. Diese Bezeichnuügsweise, die C. Hebmann (9) für die
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Balken- und Sehichtgruppen eingeführt hat, wird hier — unbekümmert um die
Dimensionszahl des betrachteten Raumes — auf alle Ketten- und Netzgruppen
ausgedehnt. Nun entarten allerdings die Symmetrieebenen und Symmetrieachsen
des dreidimensionalen Raumes in zwei Dimensionen zu Symmetriegeraden und
Drehpunkten, und in einer Dimension zu Spiegelpunkten. Der Einfachheit halber
sollen aber trotzdem nur die Bezeichnungen der dreidimensionalen Gruppen
verwendet werden; die tatsächlichen Symmetrieelemente ergeben sich dann in den
Flächen-, Band- und Reihengruppen als Schnitt der durch das Symbol gegebenen
Elemente mit dem betrachteten Raum, also mit der Ebene oder der Geraden. Auch
die Kristallographie geht ja, etwa bei der Behandlung der Flächensymmetrien, auf
diese Weise vor.

a) Reihengruppen:
Die Reihengruppen werden zum Trivialfall, indem für sie einzig die

symmorphe Matrix m in Frage kommt. Cx und Cs (als Clh) treten gleichzeitig

als g- und a-Klassen auf und geben zu je einer Gruppe Anlass.

b) Bandgruppen:
Von den Bandgruppen an aufwärts sind auch nichtsymmorphe

Tafeln zulässig. Da als g-Klassen nur die Untergruppen von C2v
vorkommen, hat man also die a-Klassen Ca, Clv, Clh, Dx und Dlh mit den
beiden Matrizen

1 —
1 —

und
1 —
T —

zu kombinieren. Dabei führen Clv und Dlh zu je zwei, die übrigen Klassen

zu je einer Gruppe, und man erhält die von P. Niggli (17) beschriebene

Mannigfaltigkeit der 7 Bandgruppen.

c) Flächengruppen:
Das Translationsnetz der Flächengruppen kann erstmals zentriert

sein; der zu {11} dann hinzutretende Operator {11} führt von den
möglichen Matrizen

I II III
l l
l l

1 l
1 Ï

oder
1 1

Ï 1

l 1

ï T
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die Typen I und III ineinander und den Typ II in sich selbst über. Als
g-Klassen stehen Cn und Cnv mit n l,2,3,4, 6 zur Verfügung, als
a-Klassen demnach Cx, C2, C3, C4, C6, ClT(P), Clv(Z), C2v(P), C2v(Z),
C®T, G*. C4v und C6v. Die Ableitung zeigt, dass C3v und C4t zu je zwei,
ClT zu drei, C2v zu vier Gruppen, und die übrigen Klassen zu je einer
Gruppe Anlass geben. So ergibt sich die Mannigfaltigkeit der 17 Flächengruppen

in Übereinstimmung mit G. Polya (29) und P. Niggli (17).

d) Balkengruppen:
Die Translationskette der Balkengruppen lässt keine Zentrierung zu.

Bei allen dreidimensionalen reduzierten Tafeln finden aber die im Teil IV
zu erläuternden Symmetriesätze ihren Ausdruck in der Forderung, dass

in jeder einzelnen Spalte ein von 1 verschiedener Charakter entweder
überhaupt nicht oder zweimal auftreten muss. Demnach sind die folgenden

Matrizen möglich:

I II III
— — 1

— — I
— — T

oder
— — T

— — I
— — l

Die bei q-zähliger Hauptachse allenfalls auftretenden Zusatztranslationen

i • 2 7r/q mit i < \ q in der c-Richtung gehen einfach in die
Überschriften der IC-Tafeln ein. Als g-Klassen kommen die Untergruppen
von Dooh, d.h. alle —- auch nichtkristallographischen — digonalen und
wirteligen Gruppen in Frage; von der zu Beginn des Abschnitts erwähnten

Aufspaltung von Cs, C2, C2h und C2v abgesehen, liefern sie je eine
a-Klasse, die mit den drei Typen von Matrizen kombiniert werden kann.
Immerhin ist zu beachten, dass sich der Typ II nicht auf m-zählige Hauptachsen

mit m 0 (mod. 4) anwenden lässt, da sonst die Forderung der
Gleichwertigkeit von aufeinander senkrechten Nebenachsenrichtungen
verletzt würde. Wie C. Hermann (9) gezeigt hat, führen dann die Klassen

Cph, Cpi und zu je einer Gruppe, Cnh, Cpv, Dph und Dqd zu je zwei,
Cnv und Dnh zu je drei, CQ und Dq zu je q verschiedenen Gruppen; dabei
gilt wieder p=l(mod. 2), n 0 (mod. 2), m 0(mod. 4), während q eine

beliebige natürliche Zahl bedeutet. Man erhält so die unendliche
Mannigfaltigkeit der Balkengruppen, von denen 75 zu kristallographischen
Punktgruppen isomorph sind.
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e) Schichtgruppen:
Das Translationsnetz der Schichtgruppen kann wieder zentriert sein.

Als Typen von Matrizen kommen in Frage:

II III IV
1 1 —
1 1 —
1 1 —

V

T 1 —
T 1 —
1 1 —

T 1 —

ï Ï —
1 l —

VI

T l —

l l —
T 1 —

I 1 — 1 ï —

l I — I 1 —
T ï — T ï —

VII VIII
1 1 — ï 1 —

ï 1 — 1 T —
T 1 — T —

IX X

1 T —
T T —
T 1 —

1 1 —
1 T —
T ï —

Wegen der Bedingung, dass die aufeinander senkrechten Nebenachsen

gleichwertig sein müssen, sind nur die Typen I—IV auf m-zählige
Hauptachsen mit m 0 (mod. 4) in der c-Richtung anwendbar. Die
Translationsgruppe bringt eine Beschränkung der g-Klassen auf kristallogra-
phische, nichtisometrische Punktgruppen mit sich. Da nun auch die
Symmetrieelemente der trigonalen Punktgruppen C3v, D3, D3h und D3d
zwei verschiedene Lagen zum Bezugssystem der Translationsvektoren
einnehmen können, führen die 27 nichtkubischen Kristallklassen zu
insgesamt 42 a-Klassen. Aus diesen leitet sich die Mannigfaltigkeit der
80 Schichtgruppen ab ; ihre nähere Beschreibung .findet sich etwa bei
H. Heesch (8), C. Hermann (9) und L. Weber (35).

f) Gittergruppen :

Die Darstellung der Raumgruppen (im engeren Sinne) hat schon
P. Niggli (24) mit Hilfe von Charakterentafeln durchgeführt, und ausser-
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dem finden sich zahlreiche Beispiele dafür in (15). So mag es genügen,
eine Übersicht des Ableitungsprinzips zu geben. Als g-Klassen stehen die
32 KristallMassen zur Verfügung; wie sie im einzelnen zu den 73 a-Klassen
führen, wurde von P. Niggli und W. Nowacki (26) erläutert. Einer
Aufstellung der hypokubischen, hypotetragonalen und hypoorthorhom-
bischen Syngonien einerseits und der hypohexagonalen Syngonie andrerseits

hat die Einteilung nach der Translationsgruppe zu folgen; bezieht
man dabei die hypohexagonalen Gruppen durchwegs auf ein basisflächen-
zentriertes orthohexagonales Elementarparallelepiped, so lassen die
Translationsgitter insgesamt Zentrierungen I, P und C (bzw. A oder B)
mit den entsprechenden Zusatzoperationen nach Abschnitt 10 zu. Es
erscheint dann zweckmässig, die Raumgruppen der Typen P, I und F in
der isometrischen (kubischen) Syngonie, die eine Translationsrichtung
auszeichnenden Gruppen des Typs C dagegen in der wirteligen (hexa-
gonalen) Syngonie abzuleiten. Das hat etwa zur Folge, dass von den
orthorhombisch-holoedrischen Raumgruppen D^16 und D|^-28 in den
hypokubischen, D^/'22 aber in den hypohexagonalen Zusammenhang
gestellt werden. Die tetragonalen Raumgruppen nehmen dann insofern
eine Sonderstellung ein, als sie in der kubischen Syngonie nur mit den
Translationsgruppen P und I oder F erscheinen; eine selbständige tetra-
gonale Syngonie würde die Gruppen D^16 natürlich auch mit der
Translationsgruppe C liefern. Die rhomboedrischen Raumgruppen schliesslich
lassen sich zwanglos teils der kubischen, teils der hexagonalen Syngonie
entnehmen. Die möglichen reduzierten Matrizen sind (in abgekürzter
Form) in der Tabelle 8 zusammengestellt. Es sind die 64 mit den unter d)
erwähnten Symmetriesätzen verträglichen Kombinationen der Charaktere

1 und 1 ; dazu tritt als Typ LXV die nur auf allseitig flächenzentrierte
Gruppen F anwendbare Matrix mit den Charakteren 0, die einer
Zusatztranslation von 1/4 oder 3/4 entsprechen. Andere Werte gehen in die
Überschriften ein.

Bei der Verwendung der Matrizen als hypotetragonale und
hypokubische Tafeln ist natürlich wieder auf die Gleichwertigkeit der Charaktere

in allen drei bzw. in den beiden ersten Spalten zu achten; sind sämtliche

Spalten ungleichwertig, so ist die Tafel hypoorthorhombisch. Auch
wenn als Überschrift der G-Tafel nur xyz zugelassen wird, ermöglicht
eine geeignete Wahl der Operatoren und der Überschriften zu den K-
und H-Tafeln doch die Darstellung mehrerer Holoedrien mit ihren
Untergruppen durch dieselbe Matrix. So führt schon eine beschränkte Auswahl
von Tafeln — etwa nach dem Beispiel der Tabelle 9 — zur gesamten
Mannigfaltigkeit der 230 Raumgruppen.
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Tabelle 8. Dreidimensionale translative Charakterentafeln

I
1 1 1

1 1 1

1 1 1

II III IV V VI VII VIII IX
Til 1 1 1 T l T 1 1 1 1 T 1 l l T l l 1

T l l I 1 1 l l T 1 1 T 1 1 1 l l T l l T

l l l T l l T l 1 1 1 T 1 T 1 l 1 l l l T

X XI XII XIII XIV XV XVI XVII
1 1 T T T l T l T l 1 T 111 1 T l T T l
I l l I I l T I l l T T T T I T l 1 l T 1

l l T l l l l I T l T l T T l T T l T l l
XVIII XIX XX XXI XXI XXIII XXIV XXV
T l l III 1 I T l 1 T l l T 1 1 1 1 1 T

l I l l 1 l 1 T T T l T l T T 1 T T l T l
T I l T I l 1 1 l T l l l T l l T T l T ï
XXVI XXVII XXVI I XXIX XXX XXXI XXXII XXXII
1 T I 1 I 1 1 T l T T I T l T l 1 T l l l
1 1 I 1 1 I 1 1 l T T l T l l ï l T T l T
1 I 1 1 I T 1 I l l 11" l l T T 1 l T l T

XXXIV XXXV XXXVI XXXVIIXXXV II XXXIX XL XLI
1 1 I III T 1 l T TT" T T l ï T T T 1 ï
T 1 1 1 1 I 1 1 l l TT" T T T T T l T T T
T 1 T T 1 1 T 1 l ï 1 1 l l T l 1 ï l T l
XLII XLIII XLIV XLV XLV XLVII XLVIII IL
T 1 1 I 1 T IT" T 1 TT" 1 T T l T l l T T

ITT Til II- 1 T T 1 T ï T ï T T T T lill 1 1 1 1 1 1 1 1 1 1 l l l l 1 ill
L LI LU LIII LIV LV LVI LVII

ill 111 11" T T 1 T l T T T T T T T 1

l l l 1 1 1 1 1 1 1 1 1 l l l l T T 1 T T

III TIT T T T 1 TT" T T T T 1 l T 1 T

LVIII TJX LX LXI LXII LXIII LXIV
I I ï T l T 1 T 1 T T T T T l T T T
1 I l l T T T 1 ï 1 1 T l l T l l 1

1 1 l l l l l 1 1 1 1 1 l 1 1 1 1 1

LXV
10 0
0 1 0
0 0 1
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Tabelle 9. Tafeln der 230 Raumgruppen

Tafel: P F I C

LIII Q2.4 1)4,12
h ' J-hh :

LXV
LVII T£, O6'7,1

VIII T)2,10 T}3
4 h > 2 h

XVI T)3,ll [)4
4 h ' 2 h

XI I V.ia T)9--hi ' ^3 h

XXXVIII D6,14 y) 12
4 h » 2 11

XVIII T)7,15 .IIS
4 h ' 2 h

LIX ds-I", «.y;
XXXIV Df
X T)5

2 h

LXII D2h
XIII Dk
XXVII D8-^2 h

XXI T)11-^2 h

XLI D14
2 h

XXXIX D16
2 h

IX
XXXIII
III
XXXII

D2

}15
2 h

O9 D2i
2

O10 T)27Wh ' -*-^2 h
D26

2 h

"D28•^2 h

n5,6 -n17»i8 -r*23
» 4 h > -L,21i-'h

^7,807,8 -n19.2o r>24
» 4 h » -L72h

T)1 T)19
6 h » 2h

Dft

D,\,DÏ
D&
D21

2 h
D22J-'o V.

11. Verwendungsmöglichkeiten bei der Strukturbestimmung

Grundsätzlich umfasst der Bestimmungsgang irgendeiner Struktur mehrere
Teilschritte, die sich etwa folgendermassen in ein Schema bringen lassen : einerseits
hat vom Standpunkte der Symmetrie die Ermittlung der isomorphen Punktgruppe

der Bestimmung der Raumgruppe voranzugehen, und andererseits ist
in metrischer oder wenigstens topologischer Hinsicht zunächst die Gestalt des

Elementarbereichs, dann die gesuchte Verteilung der Elemente (etwa die
Massen- oder Elektronenverteilung) im Elementarbereich zu beschreiben. Dabei
verleiht die Struktur der festen Körper im dreidimensionalen Raum der Behandlung

dreidimensionaler Systeme, vor allem der Gittergruppen, eine besondere
Bedeutung; auf die Untersuchung abgeschlossener, molekularer Systeme soll im
Abschnitt 18 noch eingegangen werden.

Nach den bisherigen Ausführungen stellen die translativen
Charakterentafeln nichts anderes als eine zweckmässige Anordnung von Rechengrössen

dar, die mit dem Übergang von der Punktgruppe zur
Raumgruppe zusammenhängen; sie beschreiben so eigentlich die (mehrstufige)
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Isomorphiebeziehung zwischen der gröberen Struktur im Schein-
kontinuum und der feineren diskontinuierbchen Struktur. Dementsprechend

wird sich das Anwendungsgebiet der Charakterentafeln bei der
Strukturbestimmung auf alle jene Methoden erstrecken, die eine
Aufstellung und Benützung von Raumgruppenkriterien zum Ziele haben.
Darunter fällt auch die Ermittlung der Elementverteilung, die sich ja
der Raumgruppensymmetrie unterordnet. Die mehrmals betonte
Vollständigkeit der Beschreibung einer Raumgruppe durch die Charakterentafeln

hat dabei zur Folge, dass sich grundsätzlich alle einschlägigen
Methoden auf diese Weise erfassen lassen. An anderer Stelle (15) sind die
bekannten Verfahren der Kristallstrukturbestimmung schon daraufhin
untersucht worden; der Hinweis auf die zahlreichen Beispiele, welche

jener Arbeit entnommen werden können, rechtfertigt den zusammenfassenden

Charakter der folgenden Übersicht.
Der geometrische Teil einer Deutung der Interferenzerscheinungen
geeigneter Wellen an einer t-fach periodischen Verteilung von

streuender Materie läuft stets irgendwie auf Summationen von Funktionen
t

der Winkel 2 77 ]>] xt hinaus. Für den Fall der Gittergruppen etwa lautet
i=l

der entsprechende Ausdruck 277(hx + ky-|-lz); seine Symmetrie erlaubt
es, von den beiden Tripeln (hkl) und xyz das eine festzuhalten und über
die Werte des andern zu summieren. So ergeben sich zwei verschiedene
Verfahren: erstreckt sich die Summe über alle Punkte xyz der Elementarzelle,

so gelangt man zum Strukturfaktor, der die Intensität der an
der Netzebenenschar (hkl) reflektierten Strahlung bestimmt; summiert
man dagegen über alle möglichen Flächen indices (hkl), so liefert die
Fouriersynthese die Dichte der streuenden Materie — bei Verwendung
von Röntgenstrahlen also die Elektronendichte — im Punkte xyz. In
beiden Fällen empfiehlt sich eine Gliederung der unendlichen
Mannigfaltigkeit von Wertetripeln (hkl) bzw. xyz in Formen, die der
Charakterendarstellung zugänglich sind. Wie in (15) ausgeführt wurde, vereinfacht

sich das Resultat für jede einzelne Form durch die
Symmetriebeziehungen wesentlich, und man hat schliesslich nur noch über die
verschiedenen Formen zu summieren.

Der Strukturfaktor eines allgemeinen Gitterkomplexes lässt sich

— nach der üblichen Aufteilung in einen durch cos 2 77-(hx + ky+lz)
bestimmten A-Anteil und einen durch sin 2 v (hx + ky + Iz bestimmten
B-Anteil — als Summe aus folgenden (positiv oder negativ genommenen)
Rechengrössen darstellen, deren Definitionsgleichungen sich zu einem
der G-Tafel verwandten Schema ordnen:
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a0 cos 2 77 hx • cos 2 77 ky • cos 2 771 z

ax cos 2 77 h (x + Tn + Vj) • sin 2 77 k (x + T12) • sin 2 77 1 (z + T13)

b-L sin 277 h (x + Tn) -cos 277k (y + T12 + V2) • cos 277 1 (z +T13 + V3)

a2 sin 2 77 h (x + T21) • cos 2 77 k (y + T22 + V2) • sin 2 77 1 (z + T23)

b2 cos 2 77 h (x + T21 + Vi) • sin 2 77 k (y + T22) • cos 2 77 1 (z + T23 + V3)

a3 sin 2 77 h (x + T31) • sin 2 77 k (y + T32) • cos 2771 (z+T33 + V3)
b3 cos 2 77 h (x + T31 + Vx) • cos 2 77 k (y + T32 + V2) • sin 2 77 1 (z + T33)

b0 sin 2 77 h (x + Vx) • sin 2 77 k (y + V2) • sin 2 77 1 (z + V3)

Bezeichnet man diese Grössen im folgenden als a0 (G), ax (G),..., so
lassen sich aus a0 (K) cos 2 77 hy • cos 2 77 kx • cos 2 77 lz usf. leicht die
analogen Rechengrössen für die K- und //-Tafeln definieren. Dabei wird
deutlich, was für eine entscheidende Bedeutung in jeder Zeile £ einer
Charakterentafel der Summe aller mit den zugehörigen Flächenindices
multiplizierten Zusatzgrössen Ty bzw. (Ty+Vj) zukommt. Die
entsprechenden, durch (h-arccosx£1 + k-arccosx£2+ l-arccosy^3) erklärten
Ausdrücke sollen daher kurz Pç genannt werden. Dann ergibt sich der
Strukturfaktor eines Gitterkomplexes durch einfache Addition der Rechengrössen

aus allen ausgewählten Zeilen der Tabelle 10, wobei je nach den

Teilbarkeitseigenschaften der P^ die folgenden Regeln einzuhalten sind:

Tafel A liefert den A-Anteil für P^ 0 (mod. 2)/2
B-Anteil für Pj 1 (mod. 4)/4

sowie mit durchwegs umgekehrten Vorzeichen
den A-Anteil für P^ 1 (mod. 2)/2

B-Anteil für Pç 3 (mod. 4)/4
Tafel B liefert den B-Anteil für P^ 0 (mod. 2)/2

A-Anteil für P^ 3 (mod. 4)/4
sowie mit durchwegs umgekehrten Vorzeichen

den B-Anteil für P^ 1 (mod. 2)/2
A-Anteil für Pç 1 (mod. 4)/4

Mit zunehmender Symmetrie der isomorphen Punktgruppe heben sich
immer mehr Rechengrössen gegenseitig auf. Das führt zu einer
auffallenden Einfachheit etwa der in (15) gegebenen Darstellung der
Strukturfaktoren aller einfachen symmorphen Raumgruppen. Tabelle 11 gibt
sie in etwas veränderter Anordnung wieder, die besonders leicht den
Zusammenhang mit der Zeilenauswahl übersehen lässt, indem man sie
der Tabelle 3 des Abschnitts 4 gegenüberstellt. Die 11 Laue-Klassen, in
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Tabelle 10. Ableitung des Strukturfaktors

Tafel A Zeile Tafel B

a0 äi a2 a3 bo bi b2 b3

a0 äi a2 a3 ai bo bi b2 b3

a0 äx a2 a3 a2 b« bi b2 b3

a0 »i a2 a3 ßi b0 bi b2 b3

a0 ai a2 a3 ß2 b. bi b2 b3

a0 ai a2 a3 Yi b0 bi b2 b3

a0 ai a2 a3 72 b„ bi b2 b3

a0 ii a2 a3 u2 b0 bi b2 b3

Tabelle 11. Strukturfaktoren der Kristallklassen

Strukturfaktor: in den Tafeln:
G G + G + G+G'+G"+

A B G + K Hx+H2 G' + G" K+K'+K"

ao bo b>2 d4 Do T O

a0 b3 c2v C4v C6V

a0 bl D3h

a0 ± (bo) Td

a„ 0 D2h D4h Dot Th oh

a0 + aj bo + bi d3
a0 -f- a2 b2 + b3 C3v

a0 + ax 0 D3(j

a0 + a2 b„ + b2 c2
a0 + a2 bx + bg C8

a0 a2 0 C2h

a0 T a3 b0 + b3 c4 C6

a0 + a3 bi + b2 C30

ao + a3 ± (b0 + b3) s4

a„ + a3 0 C4i- C6h

ao "t" ai t a2 + a3 bo + bx + b2 + b3 Cx C3

a„ -T ax + a2 + a3 0 Ci C3i

welche sich — wie im Abschnitt 17 näher ausgeführt werden soll — die
32 Kristallklassen infolge der Zentrosymmetrie des Beugungsvorganges
am Gitter gliedern, kommen durch die eingerahmten Felder zum
Ausdruck.
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Man kann nun die P-Werte der Zeilen auch getrennt für die s- und
d-Charaktere zusammenstellen. Die so entstehenden Grössen Pg bzw. Pd
gestatten, aus dem Verschwinden des Strukturfaktors für gewisse Indices-
kombinationen (hkl) unmittelbar die zonalen bzw. serialen
Auslöschungsgesetze abzulesen. Sie sind, ebenso wie die — den allfälligen,
durch die Operatoren der Translationsgruppe bedingten Zusatzfaktoren
entsprechenden — integralen Auslöschungsgesetze, von der
Nullpunktswahl unabhängig und können deshalb nach P. Niggli (16) als

Raumgruppenkriterien Verwendung finden. E. Bkandenbeeuee und
P. Niggli haben die Auslöschungsgesetze in den „Internationalen Tabellen"

(11) systematisch zusammengestellt; eine Erklärung der üblichen
Ableitung findet sich etwa bei E. Brandenberger (3).

Die Auswertung der Gesamtheit von Auslöschungserscheinungen
für die Raumgruppenbestimmung, wie sie schon von P. Niggli und
E. Brandenberger in den „Internationalen Tabellen" (11) systematisch
und vollständig dargestellt wurde, lässt sich in dem von M. J. Buergeb
(4) geprägten Begriff der Auslöschungseinheiten zusammenfassen.
Eine solche Einheit enthält alle jene Raumgruppen, die sich in den
Auslöschungsgesetzen nicht unterscheiden und ausserdem derselben Laue-
Klasse angehören. Buerger hat für die 120 Einheiten der Gittergruppen
zweckmässige „Auslöschungssymbole" eingeführt und gezeigt, dass sich

von den 230 Gruppen nur 50 + 9 enantiomorphe Paare) aus den
Auslöschungen eindeutig ermitteln lassen. Am Beispiel der von W. Nowacki
(28) abgeleiteten „ebenen Auslöschungseinheiten" kann man sich davon
überzeugen, dass die Charakterentafel als ganzes ebenfalls die
Auslöschungseinheit beschreibt: aus der Tabelle 12 geht hervor, wie die
17 Flächengruppen in 10 Einheiten und 6 Laue-Klassen zerfallen, wobei
die 4 eindeutig bestimmbaren Gruppen unterstrichen sind.

Das skizzierte Berechnungsverfahren für den Strukturfaktor lässt
sich auch auf die Fouriersynthese der Elektronendichte übertragen.
Durch den oben erwähnten Ausdruck (hx + ky + lz) ist der Zusammenhang

insofern gegeben, als man nun einfach über die Flächen (hkl) bzw.
über ihre Formen zu summieren hat. Dabei wird der Raumgruppensymmetrie

durch die gleichen Grössen P^ Rechnung getragen, so dass

etwa die Tabelle 10 in unveränderter Form anwendbar bleibt. Es ist
einzig zu berücksichtigen, dass bei Geltung des Friedeischen Gesetzes
die nicht-zentrosymmetrischen Flächenformen zu zentrosymmetrischen
ergänzt gedacht werden müssen, da ja für die Interferenzerscheinungen
Richtung und Gegenrichtung gleichwertig sind.

Abschliessend sei erwähnt, dass auch die Methode von A. L. Patter-

7 Schweis. Min. Petr. Mitt., Bd. 33, Heft 1, 1953
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Tabelle 12. Ebene Auslöschungseinheiten

Auslöschungseinheit Fläehengruppen
Laue-
Klasse

1. 1 1

xy
CÏ

2. 1

1 xy

3. 1

1 xy

4. 1

1 xy

5. 1 {H}. {H)
1 xy

6. 1

xy, yx

7. 1

1 xy, yx

8. 1

1 xy; y + i, x +J

9. 1 {11}, {TT}
xy, x' y', x" y"

10. I {»}. {n}
1 xy, x' y', x" j"

CÏ

CS

ClV

C?T

r^ni

C1^2v

rii,n^3v

(ST

pn4v

son, die aus dem Interferenzversuch nicht bestimmbaren
Phasenbeziehungen der Streuwellen zu vernachlässigen, einer einfachen Darstellung

durch die Charakterentafeln zugänglich ist. Fasst man nämlich
gleichwertige Vektoren zwischen behebigen Punkten der Elementarzelle
wieder zu Formen zusammen, so hefern die s- und d-Charaktere unmittelbar

die Lage der ÜARKERschen Linear- und Planarkonzentrationen von
Pattersonpunkten. Das Vorgehen ist in der zitierten Arbeit näher
erläutert (15).
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III. Rotative Charaktere: Schwingiingssysteine

12. Symmetrieeigenschaften der Normalschwingungen; rotative
Charakterentafeln

Die folgenden Ausführungen über Schwingungssysteme beschränken sich
darauf, eine Grundlage für den Teil IV zu schaffen; ihre Kürze rechtfertigt sich
durch den Hinweis auf die Arbeiten von P. Niggli (23) und dem Verfasser (14),
in denen sich die Anwendung der Symmetrielehre auf Molekülschwingungen
erläutert findet.

Untersucht man die Symmetrieeigenschaften der Normalschwingungen,

aus denen sich ja jede beliebige Schwingung eines Systems
zusammensetzen lässt, so gelangt man zu einem bemerkenswerten Ergebnis.

Es zeigt sich nämlich, dass die Anordnung der Schwingungsvektoren,
und damit das Verrückungsbild, in jedem Moment einer Normalschwingung

vollständig durch die Grundsymmetrie des Gleichgewichtszustandes

gesteuert wird. Man kann das auch so ausdrücken, dass der
Abbau zur Restsymmetrie, d.h. zur Punktsymmetrie der Schwingungsform,

keineswegs eine erschöpfende Beschreibung der Symmetrieverhältnisse

liefert, sondern dass ausserdem die Abweichungen von der
Grundsymmetrie durch gesetzmässige Drehungen der Schwingungsvektoren
festgelegt sind. Die Symmetrie des Grundzustandes wird also nicht
zerstört; sie geht nur in eine neue, komplexere Art von Symmetrie mit
rotativen Zusatzkomponenten über, so dass man für die
Normalschwingungen recht eigentlich einen „Erhaltungssatz der Symmetrie"
fordern könnte.

Dass die Symmetrien der Schwingungsformen einer gruppentheoretischen

Behandlung zugänglich sind, versteht sich von selbst. So ist
denn auch seit der grundlegenden Arbeit von E. Wigner (37) ihre
Beschreibung durch Charaktere üblich; aus der reichhaltigen Literatur,
die G. Herzberg (10) zitiert, soll in diesem Zusammenhang die Arbeit
von J. E. Rosenthal und G. M. Murphy (31) hervorgehoben werden.
Erst kürzlich aber hat P. Niggli (23) gezeigt, wie einfach sich solche

rotative Charaktere als Cosinuswerte der Winkel deuten lassen, um
welche die Schwingungsvektoren nach Ausführung der Punktsymmetrie-
operationen zusätzlich gedreht werden. Die entsprechende Definitionsgleichung

x cos P mit dem rotativen Anteil p legt schon durch ihre
Ähnlichkeit mit der Gleichung für die translativen Charaktere (S. 69) eine

gegenüberstellende Betrachtung nahe, die dem Teil IV vorbehalten bleibt.
Die 3 n — 6 Freiheitsgrade der Schwingung, die einem dreidimensionalen

System von n Massenpunkten zur Verfügung stehen, verteilen
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sich auf verschiedene Typen oder Klassen von Normalschwingungen
mit in sich gleicher Symmetrie und Frequenz, und zwar gibt es jeweilen

genau so viele solcher Schwingungsklassen, wie die Punktgruppe der

Grundsymmetrie Klassen konjugierter Elemente, d. h. gleichwertiger
Operationen enthält. Da überdies die Charaktere eine Klasseneigenschaft
darstellen, nehmen rotative Charakterentafeln in ihrer üblichen Gestalt
die Form einer k-reihigen quadratischen Matrix an, wenn man die
Charaktere nach den Klassen von Symmetrieoperationen in Spalten und
nach den Schwingungsklassen in Zeilen ordnet. Die Reihenzahl k stimmt
mit der Anzahl gleichwertiger Zyklen nach Tabelle 1 (S. 32) überein.
Eine Zusammenstellung der Charakterentafeln aller dreidimensionalen
Punktgruppen lässt sich den Tabellen III der zitierten Arbeit (14)
entnehmen; man findet sie auch bei P. Niggli (23) in den Haupttabellen I—V.

Jeder einzelne Charakter stellt den rotativen Anteil und damit die

Symmetrieart eines Schwingungstyps bezüglich einer Klasse von Operationen

dar. Somit liest man aus ihm unmittelbar ab, wie die Schwingung
zum Punktsymmetrieelement verläuft, oder was für ein rotationshaltiges
Symmetrieelemenb selbst die Schwingung beschreiben würde. Die
Äquivalenz dieser beiden Ausdrucksweisen geht aus dem Abschnitt 7 hervor;
im übrigen soll vom Begriff der rotationshaltigen Anti- und Ent-
artungs-Symmetrieelemente erst im Teil IV Gebrauch gemacht
werden.

Die Forderung, dass die n-malige Ausführung auch einer rotations-
haltigen Symmetrieoperation von der Ordnung n zur Identität führen
müsse, hat eine Beschränkung der Drehungskomponenten auf diskrete
Werte zur Folge: die Drehwinkel dürfen nur ganzzahlige Vielfache von

^ betragen. Natürlich ist damit auch der Wertevorrat der Charaktere

empfindlich beschnitten. Diese Überlegung entspricht genau derjenigen,
die bei den Raumgruppen zu diskreten Gleit- und Schraubungskompo-
nenten führte, denn beiden Fällen ist der Grundsatz geschlossener Zyklen
gemeinsam. Um so eher scheint es gerechtfertigt, den Erhaltungssatz der

Symmetrie für zeitlich-periodische Schwingungsvorgänge neben das

Korrespondenzprinzip von räumlich-periodischer Anordnungssymmetrie und
scheinkontinuierlicher Punktsymmetrie zu stellen.

Auf die Schwingungssymmetrie selbst soll nur kurz eingegangen werden.
Bei einer totalsymmetrischen Schwingung sind Restsymmetrie und Grundsymmetrie

identisch, da sie zu allen Symmetrieelementen symmetrisch verläuft
(verschwindende Drehungskomponenten, y cos 0=1); insbesondere ist jede
Schwingung zur Identitätsoperation symmetrisch. Unter den abweichenden
Möglichkeiten wird das antisymmetrische Verhalten durch einfache Richtungs-
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Umkehr der Schwingungsvektoren cos n — 1) ausgezeichnet; es lässt sich
offenbar nur auf Operationen von gerader Ordnung beziehen. So geben die
Untergruppen von D2h zu symmetrischen und antisymmetrischen Schwingungstypen
Anlass. Wenn aber Operationen von einer Ordnung > 2 vorhanden sind, treten
zueinander entartete Doppelschwingungen auf. Ihre Drehungskomponenten
unterscheiden sich nur durch das Vorzeichen, so dass die entsprechenden Ver-
rückungsbilder enantiomorphe Paare darstellen. Dabei sind die Doppelschwingungen

parasymmetrischer Systeme zufällig oder trennbar, diejenigen holosymmetri-
scher dagegen untrennbar entartet. Die Einteilung erfolgt nach dem direkten
Produkt der Punktgruppe mit Cs, also nach dem Hinzufügen eines Symmetriezentrums,
das im Falle der parasymmetrischen Gruppen eine Paramorphie Cnl mit n> 2, d. h.
Cnh für n 0 (mod. 2) und Cnl für nsl (mod. 2) oder Th, im Falle der holosym-
metrischen Gruppen eine Holoedrie Dnl mit n> 2, d. h. Dnh für n 0 (mod. 2) und
Dnd für n 1 (mod. 2) oder Oh liefert. Bei den mono- und digonalen sowie bei den
ikosaedrischen Gruppen, wo dieses Einteilungsprinzip versagen würde, treten
überhaupt keine Doppelschwingungen auf. Dagegen gibt die Kombination von
mehreren > 2-zähligen Symmetrieachsen in den isometrischen Gruppen zu
weitergehender Entartung Anlass : kubische Systeme weisen dreifach entartete, ikosa-
edrische drei-, vier- und fünffach entartete Schwingungstypen auf. Der Charakter
einer n-fach entarteten Schwingungsklasse ist stets gleich der Summe der Charaktere

aller n zusammengehörigen Teilschwingungen, so dass etwa der Charakter
gegenüber der Identitätsoperation n wird.

Bei wirteliger Symmetrie lässt sich die Zahl der verschiedenen Schwingungsklassen

wieder unmittelbar aus der Tabelle 1 ablesen. Es gibt nämlich ebenso viele
totalsymmetrische Schwingungstypen wie Klassen von Einerzyklen F1( ebenso viele
antisymmetrische Typen wie Klassen von Zweierzyklen F2, und ebenso viele zweifach

entartete Typen wie Klassen von höheren Zyklen Fx, x> 2.

Zwischen den Einzelelementen der rotativen Charakterentafeln herrschen
mannigfache Beziehungen, die im wesentlichen auf der Orthogonalität der
Normalschwingungen beruhen. Sie finden sich bei P. Niggli (23) oder A. Niggli (14)
zusammengestellt. In diesem Zusammenhang soll nur ein Fehler berichtigt werden,
der auf S. 917 der Arbeit von P. Niggli (23) unterlaufen ist. Die Summe der
Cosinusquadrate aller zu einer m-zähligen Symmetrieachse gehörigen Drehwinkel
(einschliesslich 0) ist jra mit der Bedingung m> 2. Dieser Satz ist als Spezialfall in
einem allgemeineren Satze enthalten, der im Abschnitt 17 bewiesen wird.

13. Freiheitsgrade der Schwingungsklassen und Auswahlregeln

Zunächst sei an einem Beispiel erläutert, wie allfällige Symmetrieeigenschaften
das Geschehen in einem schwingenden System beeinflussen. Eine dreidimensionale

Anordnung von 120 Massenpunkten besitzt 3.120 — 6 Freiheitsgrade der
Schwingung, die beim Fehlen jeglicher Symmetrie zu 354 verschiedenen
(totalsymmetrischen) A-Schwingungstypen, Anlass geben. Sind aber die 120 Massenpunkte

gleichwertig und durch die Symmetrie der Punktgruppe Ih verknüpft, so
verteilen sich die Freiheitsgrade auf 3 Ag-, 3 Au-, 8 F, g-, 8 Flu-, 9 F2g-, 9 F2u-,
12 Gg-, 12 Ga-, 15 Hg- und 15 Hu-Typen, also auf insgesamt 94 Schwingungsklassen.
Die Anzahl verschiedener Normalfrequenzen wird damit ganz beträchtlich herabgesetzt

; für die Bedeutung der Symbole sei aufdie zitierte Literatur (lOusw.) verwiesen.
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Wie schon an anderer Stelle (14) betont wurde, ist die Verteilung der
Freiheitsgrade auf die Schwingungstypen eine reine Angelegenheit der

Symmetrie. In der Anwendung auf Moleküle bedeutet das aber, dass

Zahl und Art der Normalschwingungen von allen Annahmen über
die Kräfte, von den schwingenden Massen und sogar von der Metrik des

Systems völlig unabhängig sind. Dasselbe gilt von den Auswahlregeln
der Schwingungsspektren. Im Infrarotspektrum sind ja nur die
Normalschwingungen, welche das elektrische Moment des Moleküls, und im
Ramaneffekt nur jene, die seine Polarisierbarkeit verändern, beobachtbar.

Beide Kriterien lassen sich durch die Transformationseigenschaften
des Vektors des elektrischen Moments einerseits und des Polarisierbar -

keitstensors andererseits so ausdrücken, dass sie einer unmittelbaren
Beschreibung durch die Symmetrielehre zugänglich sind.

Schon E. Wigner (37) hat das erkannt, als er die Darstellungstheorie zur
Deutung der Schwingungsspektren heranzog. Seine Methode wurde auch in (14)
benützt, wo sich alle zur Berechnung erforderlichen Unterlagen zusammengestellt
finden. Es sei nur noch darauf hingewiesen, dass die dort c und c' genannten
Grössen nichts anderes darstellen als Spezialfälle der im Abschnitt 17 zu
behandelnden Charaktere für die Verknüpfung eines Skalars mit einem Vektor oder
Tensor. Damit fügt sich die ganze Berechnungsweise zwanglos in das von S. Bhaga-
vantam und D. SuryAnarayana (2) — allerdings nur für Kristalle — angegebene
Verfahren der Behandlung physikalischer Eigenschaften ein.

14. Die symmetriebedingte Vieldeutigkeit in der

Schwingungsspektroskopie

In der Lösung einer unter diesem Titel gestellten Preisaufgabe durch den
Verfasser (14) erfährt das Problem eine Dreiteilung: den Vieldeutigkeiten von
Aussagen der Symmetrielehre über den Molekülbau einerseits und über die
Normalschwingungen andererseits ist die weitere Vieldeutigkeit der Verbindung beider
Gebiete, d. h. des Schlusses vom Schwingungsspektrum auf die Molekülstruktur,
überlagert. Auf eine Wiederholung eingehender Erörterungen kann hier um so mehr
verzichtet werden, als im Abschnitt 18 die gleichen Fragen nochmals in einem
allgemeineren Zusammenhang erscheinen.

Da nur die Zyklensymbole der Symmetrieformeln in die Rechnimg
eingehen, hat man bei der Beurteilung von Aussagen der Symmetrielehre

über die Molekülstruktur vor allem die Vieldeutigkeit der Formen

gemäss Tabelle 1 und Abschnitt ü zu berücksichtigen; weiter ist die
ebenfalls behandelte Beziehung zwischen Eigensymmetrie und
Lagesymmetrie in Rechnung zu stellen. Wenn nicht einmal über die
Gleichwertigkeitsverhältnisse der konstituierenden Teilchen Klarheit besteht,
macht sich eine zusätzliche Vieldeutigkeit bemerkbar. Sie kommt in der
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Tabelle II der zitierten Arbeit (14) zum Ausdruck, die alle denkbaren
Formenkombinationen für zwei- bis zwölfatomige Moleküle enthält. Eine
Zusammenstellung der Zähligkeiten dreidimensionaler Punktgruppen und
der daraus ableitbaren Kombinationen geben die Tabellen 13 a und 13 b;
darin bedeuten wieder p eine ungerade, n eine gerade und q allgemein
eine ganze positive Zahl, während a 0 oder 1 und b, e,... 0,1, 2,...
sein können.

Über all diesen Überlegungen dürfen die grundsätzlichen Grenzen
jeder Symmetriebetrachtung bei der Beschreibung einer Anordnung nicht
vergessen werden. In metrischer Hinsicht muss sich die Symmetrielehre
darauf beschränken, für Spezialformen geometrische Örter der Punktlagen

anzugeben; darüber hinaus lässt sie alle Parameter der geometrischen

Freiheitsgrade unbestimmt. Was schliesslich die Vieldeutigkeit von
Aussagen der Symmetrielehre über die Normalschwingungen für sich
und in Beziehung auf den Molekülbau betrifft, muss für weitergehende
Angaben, als sie im Teil III gemacht wurden, auf die zitierte Arbeit (14)
verwiesen werden.

Tabelle 13 a. Mögliche Formenzähligkeiten im R111

Punktgruppe Cp c2 c3 c4 c5
Symmetriebedingung
eq c8 c2t C3v C4t C5v

Voll-
Cqv symm.

c. q 1

cPT 2p P 1

c„ 2n n, n 1

Dr 2p P 2 1

Dp 2n n, n 2 1

Sp n 2 1

Cp, 2p 2 1

Cpj, 2n 2 n 1

Dp- 4p 2p 2p 2 1

D„- 4n 2n 2n 2 1

Dph 4p 2p, 2p P 2 1

Dp, 4n 2n, 2n, 2n n, n 2 1

T 12 6 4 1

Th 24 8 12 6 1

Td 24 12 6 4 1

O 24 12 8 6 1

O, 48 24, 24 12 8 6 1

I 60 30 20 12 1

ü 120 60 30 20 12 1

Ccov 1

Dooh 2 1

Kh 1
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Tabelle 13b. Zähligkeiten der Kombinationen

C, b + cq
Cqr b+(c + 2d)q

a + 2b + (c + 2d)q
a + 2b + cn

cPl a + 2 b + 2 cp
Ca a + 2b + (c + 2d)n
T-V a + 2b + 2(c + 2d)q
JV a + 2b + (c +2d + 4e)q
T a-f 4b + 6c + 12d
Th,0 a + 6b + 8c+12d + 24e
Td a + 4b + 6c+12d + 24e
oh a+ 6b + 8c + 12d + 24e + 48f
I a+12b + 20c + 30d-f-60e
Ih a+12b + 20c + 30d + 60e+120f
Vo. b
Rah a + 2b

a

IV. Allgemeine Symmetriesätze

15. Die Isomorphic der translations- und rotationshaltigen
Symmetrieoperationen

Ein Vergleich zwischen den Teilen II und III zeigt eine weitgehende
Analogie der translativen und rotativen Charaktere, sowie überhaupt
der translations- und rotationshaltigen Symmetrieoperationen. Der
Zusammenhang erscheint um so deutlicher, als die Verschiebungs- wie die
Drehungskomponenten in Winkeln ausgedrückt wurden, um der ihnen
gemeinsamen Eigenschaft der Periodizität Rechnung zu tragen. Die
Analogiebeziehung beider Operationsarten unter sich und mit den

Punktsymmetrieoperationen soll nun näher geprüft werden.
Am einfachsten liegen die Verhältnisse — immer unter Beschränkung

auf den dreidimensionalen Raum — bei den Operationen I. Art.
Einer n-zähligen Drehung als Punktsymmetrieoperation entsprechen
nämlich einerseits n verschiedene Schraubungen als Deckoperationen von
Raumgruppen, und andererseits n verschiedene Rotationsdrehungen als

Deckoperationen von Schwingungsbildern; die Beziehung der Zyklen ist
in beiden Fällen die einer (mehrstufigen) Isomorphie. Gleichgültig, ob es

sich um Translationen oder Rotationen handelt, stehen den Zusatzkomponenten

dieselben diskreten Werte ^ 2 7t,x= 1, 2,.. .n zur Verfügung.
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Das erlaubt aber die ein-eindeutige Zuordnung von Schraubungen und
Rotationsdrehungen, so dass ihre Gesamtheiten durch die Beziehung
einer (einstufigen) Isomorphie verbunden sind.

Da die Charaktere kristallographischer Operationen rationale Werte aufweisen,

sind in der Tabelle 14 beispielhaft alle translativen Charaktere yT und rota-
tiven Charaktere zusammengestellt, die sich auf 1-, 2-, 3-, 4- und 6-zählige
Achsen beziehen können. In den Charakterentafeln treten sie allerdings nur zum
Teil auf. Das hat hei den translativen Tafeln seinen Grund darin, dass die Schrau-
bungskomponenten > 2-zähliger Achsen in die Überschriften eingehen; hei den
rotativen Tafeln dagegen finden sich die Charaktere der zueinander entarteten
Sell wingungen je zu einem Summencharakter vereinigt, so dass für dreizählige
Achsen — §-| \ —1, für vierzählige Achsen 0 + 0 0, für sechszählige Achsen

| + \ 1 und — 1 H i=—1 erscheint.

Es liegt nun nahe, die in der Kristallographie gebräuchlichen Schrau-
benindices zum Ausbau der Zyklensymbole heranzuziehen. In diesem
Sinne soll fortan frix sowohl eine n-zählige Schraubung mit der

Komponente ^ 2 it wie eine n-zählige Rotationsdrehung mit derselben

Komponente darstellen; die Erweiterung auf s- und s'-Zyklen ergibt sich von
selbst. Weniger leicht gestaltet sich die Einführung von zeichnerischen

Tabelle 14. Charaktere kristallographischer Achsen

Winkel

1 2 2i 3 3i 3a 4
Xt

4i 42 43 6 6i 62 63 64 65

XB

1

ÏÏ77 — — — — — — — — — — 1 1
2

1
2 -1 ~2

1
2

1
2

1

2^ 1 0 -1 0 0

2

3
77 _ _ — 1 1

2 -$ — — — — 1 1
2

1
S 1 1

S
1

~s
1

TT — 1 -1 — — — 1 -1 I -1 1 -I 1 -1 1 -1 -I
4
3

77 — — — 1 1
~S — — — — 1 1 1

~S 1 1 1
~s

1

3
S!77 I 0 -1 0 0

S

3
77 — — — — — — — — — 1 1

2
1
S -1 1

2
1
2

1
s

2 TT 1 1 I 1 1 1 1 1 I 1 1 1 1 1 1 1 1

Symbolen, wie sie P. Niggli in einem noch nicht veröffentlichten
Vortrage entworfen hat, für die rotationshaltigen Symmetrieelemente. Wegen
des Gewinns an Anschaulichkeit ist es trotzdem oft von Vorteil, mit
solchen Anti- und Entartungssymmetrieelementen, die in nicht-
totalsymmetrischen Schwingungen den Platz der Grundsymmetrieele-
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mente einnehmen, zu arbeiten; für die zugrunde liegende Betrachtungsweise

sei auf den Abschnitt 7 verwiesen.
Bei den Operationen II. Art findet einzig die Antispiegelung ihr

Gegenstück in der Gleitspiegelung, wobei allerdings der Antispiegelebene
eine ganze Mannigfaltigkeit von Gleitspiegelebenen mit verschieden

gerichteter Gleitkomponente gegenübersteht. Die übrigen
Punktsymmetrieoperationen II. Art — Symmetriezentrum, Drehspiegel- und
Drehinversionszentren höherer Zähligkeit — können zwar vollumfänglich mit
Zusatzrotationen kombiniert werden, bilden aber keine eigentlich trans-
lationshaltigen Symmetrieelemente, da eine Verschiebungskomponente
sich nach Abschnitt 7 nur auf die Lage und nicht auf die Art der Elemente
auswirkt.

Zusammenfassend erhält man so für die kristallographischen Zählig-
keiten die Operationen der Tabelle 15. Bei den Raumgruppen sind
zueinander enantiomorphe, bei den Schwingungssystemen zueinander
entartete Operationen durch +-Zeichen verbunden, und der Deutlichkeit

halber sind die translations- und rotationsfreien Zyklen mit dem
Index 0 bezeichnet.

Tabelle 15. Kristallographische Punkt-, Translations- und Rotations-
Symmetrieoperationen

Punktgruppen Raumgruppen Schwingungssysteme

fl fl0 fXo

f. f20> Lj f2„- f2j
f, fV f3l + fv
f« V ^41 + ^4! fV fV fh + f43

f. ffi ffl ffi 4-fß fß
®0 03 2 64 61 f'O' f«3' f«2 + f«4' +

Sa' q'
k_2o

s2 s2 s2 als a, b, c, n, d S2„> ®2j

>4 sJ % V sv s4l+s43
s6 8®o sv sv s62 + s64, ai,+ 8,',

s6 80 s6g» V Sg2 + Sg4, Sgi + S6|

Mit derartigen Symbolen lässt sich nun auf einfache Weise rechnen. So liest
man aus ihnen etwa ab, dass f2() in f4(), fg(), f,2, f^, fg4 enthalten ist, f2l dagegen in
f4i, f,3, f63, f6i, fg5 ; in ähnlicher Weise sind f6(), fg3 mit f3() verbunden, f6<> f6i aber
mit f3l, und f6a> f6s mit f^. Ferner zeigen sie beispielsweise, dasß in Schwingungssystemen

s^, Sg3, s'e. mit einem Symmetriezentrum s£o, oder s6j, Sg3> s6_ mit einer
Spiegelebene s2o senkrecht zur Achse unverträglich sind, usf.

Die Verfolgung der Isomorphiebeziehungen lässt sich nun noch einen
Schritt weiter treiben, indem Kombinationen von translations- und
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rotationshaltigen Symmetrieoperationen, also ganze Raumgruppen und
Schwingungstypen einander zugeordnet werden. Dies gelingt zumindest,
solange man von einer Untergruppe von D2h als Grundsymmetrie
ausgeht. Setzt man nämlich, um keine Richtung willkürlich auszuzeichnen,
als Gegenstück der Antispiegelebene stets die Symmetrieebene mit
diagonaler Gleitkomponente ein, so lässt sich die rotative Charakterentafel
von D2h, deren übliche Form die Tabelle 16 a darstellt, gemäss Tabelle
16b in Einzeltafeln für die Schwingungstypen auflösen.

Tabelle 16 a. Rotative Charakterentafel von Dsh
o „wfr f?

1 1

Aiu 1 1

A2g 1 1

A2u 1 1

Bis 1 -1
Blu 1 -1
B2s 1 -1
b2u 1 -1

Q(z)
2

Tabelle 16b. Charakterentafeln der Schwingungstypen von D2h

"Ag Au A2g Au
1 1 1 1 -l -l -1 -1 -1 -1 l l
1 1 1 -1 l -l 1 -1 -1 1 -l l
1 1 1 -1 -l l 1 1 1 -1 -l l

Big Biu B2g B2u

1 1 1 1 -1 -1 -1 -1 -1 -1 l l
-1 -1 --1 1 -1 1 1 1 1 -1 l -l
-1 -1 --1 1 1 -1 -1 -1 -1 1 l -l

Die Einzeltafeln der Tabelle 16 b können jetzt translativ gedeutet
werden: Alg. entspricht der symmorphen Raumgruppe D2h —Pmmm,
Alu der hemisymmorphen D|h—Pnnn, während A2g, Blg, B2g der
Raumgruppe D2| in den Aufstellungen Pnnm, Pmnn, Pnmn und A2u,
Blu, B2u der Gruppe D2| in den Aufstellungen Pmmn, Pnmm, Pmnm
entsprechen. Weitere Überlegungen dieser Art werden im Abschnitt 16

folgen.
Rückblickend kann man das angewandte Verfahren etwa folgender-

massen beschreiben: Zunächst werden die möglichen Charakterensysteme

der Punktsymmetriegruppen aufgestellt. Dann lassen sich die
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Charaktere entweder traïislativ oder rotativ deuten, wobei im ersten Fall
Punkte, im zweiten Vektoren als Elemente des Systems anzusehen sind.
Von untergeordneter Bedeutung ist die allfällige Beschränkung auf kri-
stallographische Punktgruppen im translativen und die Festlegung einer
ausgezeichneten Zusatzgrösse für die Antispiegelebenen im rotativen
Fall. Je nach der Deutung gelangt man zu den Raumgruppen oder zu
den Schwingungssystemen; eine Kombination beider Möglichkeiten
müsste sich wohl auf die Normalschwingungen von Kristallgittern
anwenden lassen.

16. Beispiele von Symmetriesätzen

Die klassischen Symmetriesätze der phänomenologischen Kristallographie,

die ja einen Bestandteil der Punktsymmetrielehre bilden, finden
sich etwa bei P. Niggli (19) zusammengestellt. Ihre Erweiterung auf die
translationshaltigen Operationen des homogenen Diskontinuums hat
erstmals P. Niggli (16) vollständig durchgeführt; als erweiterte
Symmetriesätze für rotationshaltige Operationen können schon die Berechnungen

des vorigen Abschnitts (S. 94) angesprochen werden. Im folgenden

sei die Analogie der Symmetriesätze auf allen drei Gebieten
am Beispiel der Untergruppen von D2h erläutert.

Jeder Symmetriesatz verknüpft Operationen, die nebeneinander als Elemente
einer Symmetriegruppe auftreten können, oder, was dasselbe bedeutet, die
entsprechenden Symmetrieelemente; er sagt so etwas über die Struktur der zugrundeliegenden

Gruppe aus. Beispiele aus der Punktsymmetrielehre sind etwa die
Sätze :

a) Von den (zu F2 gehörigen) drei Symmetrieelementen f2, s2 (Spiegelebene
senkrecht zur Digyre) und s2 bedingen zwei das dritte, so dass C2h 1 ft + I f2 +
ls2+ ls2 entsteht.

b) Eine Digyre parallel zu einer Spiegelebene erzeugt eine weitere Spiegelebene

parallel zu sich und senkrecht zur ersten, mit dem Ergebnis C2v 1 fj +
1 f2 + 1 s2 + 1 s2.

c) Die Punktgruppe D2 ergibt bei Hinzufügen eines Symmetriezentrums
wegen ?2 • s2 s2 das direkte Produkt (fx + f2 + f2 + f2) (ft + s2) f-, + f2 -I- f2 + f2 +
s£ + s2 + s2 + s2 D2h.

Die Erweiterung der Punktsymmetriesätze auf Raumgruppen und
Schwingungssysteme schliesst eine zusätzliche Aussage über die
Translations- bzw. Rotationskomponenten ein. Der Einfluss dieser Zusatz-
komponenten erstreckt sich im Falle der Raumgruppen nach Abschnitt
7 sowohl auf die Art wie auf die Lage der Symmetrieelemente; die
Tabelle 17 soll deshalb die doppelte Bedeutung der translativen Charaktere

einer nicht-reduzierten Grundtafel nochmals zum Ausdruck bringen.
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Tabelle 17. Translative Deutung der Grundtafel G

<71 Identität

ocj Ebene (100)
a2 Achse [100]

ßl Ebene (010)
ß2 Achse [010]

y1 Ebene (001)

y2 Achse [001]

cr2 Zentrum

Im Abschnitt 9 wurde für die Gittergruppen die Forderung erhoben, dass in
jeder Spalte der reduzierten Tafel entweder keine oder dann zwei Charaktere
von 1 verschieden sein müssen. Diese einfache Bedingung lässt sich anhand der
Tabelle 17 in die folgende Mannigfaltigkeit von Symmetriesätzen übertragen:

Die Lage einer Symmetrieachse ist bestimmt durch Lage und Schrau-
bungskomponenten der beiden andern Symmetrieachsen (in D2), oder durch
Gleitkomponente der zu ihr senkrechten Symmetrieebene und Lage des Symmetriezentrums

(in C2i), oder durch Lage und Gleitkomponenten der beiden zu ihr
parallelen Symmetrieebenen (in C2v).

Die Sehraubungskomponente einer Symmetrieachse ist bestimmt durch
die Lage der beiden andern Symmetrieachsen (in D2), oder durch die Lage der zu
ihr senkrechten Symmetrieebene und des Symmetriezentrums (in C2h), oder durch
die Gleitkomponenten in Achsenrichtung der beiden zu ihr parallelen Symmetrie-
ebenen (in C2v).

Die Lage einer Symmetrieebene ist bestimmt durch die Gleitkomponenten

der andern zwei Symmetrieebenen (in D2h), oder durch Schraubungs-
komponente der zu ihr senkrechten Symmetrieachse und Lage des Symmetriezentrums

(in C2h), oder durch Lage der zu ihr parallelen Symmetrieachse und
Gleitkomponente der andern Symmetrieebene (in C2v).

Die Gleitkomponente einer Symmetrieebene ist bestimmt durch Lage und
parallele Gleitkomponenten der andern zwei Symmetrieebenen (in Dah), oder durch
die Lage der zu ihr senkrechten Symmetrieachse und des Symmetriezentrums
(in C2h), oder durch Lage und Gleitkomponente der zu ihr senkrechten Symmetrieebene

sowie Lage und Schraubungskomponente der zu ihr parallelen Symmetrieachse

(in C2t).
Die Lage des Symmetriezentrums ist bestimmt durch Lage und

Schraubungskomponente der Symmetrieachse sowie Lage und Gleitkomponente der zu
ihr senkrechten Symmetrieebene (in C2h), oder durch Lage und Schraubungs-
komponenten aller Symmetrieachsen, oder durch die Lage aller Symmetrieebenen
und die Schraubungskomponenten aller Symmetrieachsen (in D2h).

Durch Auswertung dieser Gesetzmässigkeiten gelangt man im besondern zu
den folgenden Symmetriesätzen über Raumgruppen, die den drei als Beispiel
gewählten Punktsymmetriesätzen entsprechen :

a') Das Symmetriezentrum liegt vom Schnittpunkt der Symmetrieebene mit
der zu ihr senkrechten Symmetrieachse um den Betrag der halben Schraubungs-

Lage Gleitung Gleitung
Schraubung Lage Lage

Gleitung Lage Gleitung
Lage Schraubung Lage

Gleitung Gleitung Lage
Lage Lage Schraubimg

Lage Lage Lage
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komponente und der halben Gleitkomponente entfernt. Wählt man die
Achsenrichtung als c-Richtung und die a-Richtung zur Gleitriehtung, so entstehen die
vier Raumgruppen

lfi+ lfs0 + ls1#+ ls2 (SZ in 0) Cjh

lf1+lf2o+ls2l(|)+ls^(SZin5) Cjh

lf1+lf2i + ls2o+ ls2' (SZ in S) Cjh

1 ft + 1 f2i + 1 s2l (I) + 1 sj (SZ in »±°) C2h

Zu diesen vier C2h (P) treten noch mehrfach-primitive : wählt man I zur
Translationsgruppe, so wird f2l neben f2(), s2l in j neben s2o, und s2j
neben s2l um | davon entfernt, erzeugt, woraus sich C211 und C2h ergeben.

b') Die zweizählige Symmetrieachse ist von der Schnittlinie der Symmetrieebenen

um den Betrag der halben Gleitkomponenten entfernt; ihre Schraubungs-
komponente ist gleich der Differenz der Gleitkomponenten in der Achsenrichtung.
Legt man die Achse in die c-Richtung, so entstehen daraus 10 verschiedene C2t(P) :

f2„ ergibt mit den Gleitkomponenten 0/0 Cjv, mit 0/| oder |CJT, mit

f /1 G®v, mit |/| Cjv, mit mit ocjer CJV; f2j ergibt mit

a/|cmit °/^ oder C2v mit I oder C2t, und mit | oder \j^~
oder C®v.

Dazu treten 12 weitere Gruppen mit mehrfach-primitiver Elementarzelle, so
dass sich die Zahl der zu C2t isomorphen Raumgruppen auf 22 erhöht.

c') Die d-Charaktere der Symmetrieachsen sind voneinander unabhängig und
im Raum vertauschbar. Das führt zunächst zu vier Gruppen D2(P):

(kein f2i) 1 f, + 1 f2o + 1 f2o + 1 f2o DJ
(ein f2i) 1 fx + 1 f2o + 1 f2o + 1 f2i DJ
(zwei f2l) lfL+lf2o + 1 f2l + 1 f2l DJ
(alle f2i) lfi+1 f2l + 1 f2i + 1 f2i DJ

Hinzufügen eines Symmetriezentrums in 000, in £00 (mit zyklischer
Vertauschung), in 0 £ £ (mit zyklischer Vertauschung), oder in £ £ £ führt insgesamt
zu 16 Gruppen D2h(P):

In DJ sind die drei Achsen bezüglich der zyklischen Vertauschung
gleichwertig, so dass aus ihm nur die vier Gruppen Dj^4 entstehen. DJ enthält zwei
gleichartige Schnittpunkte von Digyre und Schraubenachse; so gibt es ebenfalls
nur zu vier Gruppen Djj^8 Anlass. In DJ gibt es nur einen Schnittpunkt von Digyre
und Schraubenachse, und die Schraubenachsenrichtungen sind gleichartig; daher
werden zwei der zyklischen Vertauschungen gleich, und es entstehen die sechs

Gruppen Dj^14. In DJ schliesslich schneiden sich die Schraubenachsen überhaupt
nicht; je nachdem, ob das Symmetriezentrum auf einer der drei gleichartigen
Achsen liegt oder nicht, ergibt sich die Gruppe Dj5h oder Dj6h. Da noch weitere
12 mehrfach-primitive Gruppen hinzukommen, beträgt die Zahl der zu D2h
isomorphen Raumgruppen 28.

Die Erweiterung der Symmetriesätze auf Schwingungssysteme gestaltet
sich wieder einfacher, weil die zusätzliche Aussage sich lediglich auf die Rotations-
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komponenten bezieht. Die Anti- und Entartungs-Symmetrieelemente schneiden
sich ja nach wie vor im Hauptpunkt der Grundsymmetrie. So können ohne weiteres
die rotativen Gegenstücke der drei erwähnten Punktsymmetriesätze angegeben
werden :

a") Von den drei F2-Zyklen sind keiner oder zwei vom Typus F2l- Das führt
zu den vier Schwingungsklassen von C2h, nämlich :

1 fi + 1 f2o + 1 s2„ + 1 s2q Ag

lf1+lf2o+ls2l + ls^ A„
lf1+lf2l+ls2i+lS^o Bg
1 fi + 1 f2l + 1 s2o + 1 s2i B„

b") Dieselbe Forderung wie unter a") führt hier zu den vier Schwingungsklassen

von C,„ :
lfi+lf2o+ls2o + ls2o A,
1 fx + 1 f2o + 1 s2l + 1 s2i A.
1 fi + 1 f2l + 1 s2() + 1 s2i B
1 fi + 1 f2l + 1 s2l + 1 s2o B

c") Wiederum dieselbe Forderung wie unter a") und b") führt zunächst zu den
vier Schwingungsklassen von D2 :

lfi+lf2o+lf2,+ lf2o A
lfi+lfj +lf2 +lf2l Bt
lfi+lf^+lf, +lf2 B2
1 fi + 1 fSl + 1 f2l + 1 f2(| B3

Daraus lassen sich die 8 Schwingungsklassen von D2h auf einfache Weise
ableiten: die vier g-Klassen entstehen durch Multiplikation mit (fi + s2o), die vier
u-Klassen durch Multiplikation mit (^ + 8^) nach den Verknüpfungen ^8^=8^,
flS2l SV f2„S20 S20. f20S21 S2l, f2lS^0=FS2l, f2lS^ Sv

Diese Beispiele mögen genügend gezeigt haben, wie die Punktsymmetrie,

die translative und die rotative Symmetrie durch den
Charakterenbegriff auf eine gemeinsame Wurzel zurückgeführt werden.

V. Charaktere für physikalische Eigenschaften

17. Die Anzahl unabhängiger Konstanten einer Eigenschaft

Zur Ausnützung der Symmetriebeziehungen hat man nach W. Voigt
die physikalischen Eigenschaften daraufhin zu untersuchen, was für zwei
mathematische Grössen sie miteinander verknüpfen. Je nachdem, ob es
sich dabei um Skalare, Vektoren oder Tensoren verschiedener Ordnung
handelt, unterscheiden sich ja ihre Transformationseigenschaften.
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Im Falle linearer Beziehungen ist allgemein die Anzahl der zur Beschreibung

einer Eigenschaft notwendigen Koeffizienten gleich dem Produkt
aus den Koeffizientenzahlen der beiden verknüpften Grössen. Durch
Symmetrieeigenschaften des Systems wird diese Anzahl aber erniedrigt,
indem — bei Forderung der Invarianz (oder des Vorzeichenwechsels)
gegenüber den Deckoperationen — ein Teil der Koeffizienten gleich werden,

ein anderer Teil verschwinden muss; gelegentlich verbietet die
Symmetrie sogar überhaupt das Auftreten einer Eigenschaft.

S. Bhagavantam, D. Stjryavaravana und T. Venkatarayudu
(1, 2) haben nun eine elegante gruppentheoretische Methode zur Ermittlung

der Anzahlen unabhängiger Koeffizienten für die Eigenschaften der
Kristallphysik entwickelt, die im folgenden auf sämtliche dreidimensionalen

Punktgruppen und auf einige weitere Eigenschaften ausgedehnt
werden soll. Die Einteilung und Bezifferung der verschiedenen Fälle von
physikalischen Eigenschaften geschieht nach der zitierten Arbeit (2).
Sind die Koeffizienten gegenüber allen Symmetrieoperationen invariant,
so erfolgt die Bezeichnung durch ungestrichene Zahlen; treten bei
Operationen II. Art Vorzeichenwechsel auf, so werden gestrichene Zahlen
verwendet. In nachstehender Übersicht, die auch Beispiele aus der
Kristallphysik enthält, entsprechen so die physikalischen Eigenschaften
einer Beziehung zwischen:

1 oder 1') Skalar und Skalar (z.B. I Dichte, 1'Enantiomorphie)
2 oder 2') Skalar und Vektor (z. B. 2 Pyroelektrizität)
3 oder 3') Skalar und symm. Tensor (z. B. 3 thermische Ausdehnung,

3' optische Aktivität)
3a oder 3a') Vektor und Vektor mit der Zusatzbedingung clk ckl, wo

i, k von 1 bis 3 (z. B. 3a optische, dielektrische, magnetische
Polarisation; thermische, elektrische Leitfähigkeit;
Thermoelektrizität)

4 oder 4') Skalar und unsymm. Tensor
5 oder 5') Vektor und Vektor
6 oder 6') Vektor und symm. Tensor (z. B. 6 Piezoelektrizität, elektro-

optischer Kerr-Effekt)
7 oder 7') Vektor und unsymm. Tensor
8a oder 8a') symm. Tensor und symm. Tensor mit clk ckl, wo i, k von

1 bis 6 (z. B. 8a Elastizität)
8 oder 8') symm. Tensor und symm. Tensor (z. B. 8 Photoelastizität)
9 oder 9') symm. Tensor und unsymm. Tensor

10 oder 10') unsymm. Tensor und unsymm. Tensor
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11 oder 11') Vektor und Quadrat von symm. Tensor mit 0^ 0^, wo
i,k von 1 bis 6 (z.B. 11 piezoelektrische Koeffizienten)

12 oder 12') symm. Tensor und Quadrat von symm. Tensor mit cikl
°kü ciik ekii • • • > wo i> k, 1 von 1 bis 6 (z. B. 12 elastische
Koeffizienten)

13 oder 13') symm. Tensor und Quadrat von symm. Tensor mit 0^ 0^,
wo i,k von 1 bis 6 (z.B. 13 photoelastische Koeffizienten).

Die Zahl der unabhängigen Konstanten einer Eigenschaft lässt
sich nun berechnen als die Anzahl n1; wie oft die i-te irreduzible
Darstellung in der vollständig reduziblen Darstellung der Punktsymmetriegruppe

enthalten ist. Sie ergibt sich zu

ni=^S[hJXj'(R)Xi(R)]>

worin N die Ordnung der Gruppe, hj die Zahl der zur j-ten Klasse gehörigen

Gruppenelemente, x/(R) den Charakter der Transformations-
matrix für die Symmetrieoperation R, und yt(R) den Charakter der
Operation R in der i-ten irreduziblen Darstellung bedeutet; summiert
wird über alle Klassen j.

Alle nötigen Angaben sind in Tabelle 18 zusammengestellt. Die
Charaktere x (R)> die man im übrigen nicht mit den translativen oder rota-
tiven Charakteren verwechseln darf, sind als Produkte der Spuren von
Transformationsmatrizen Klasseneigenschaft, d. h. für alle gleichwertigen
Symmetrieoperationen dieselben. Wo drei Vorzeichen angegeben sind,
bezieht sich jeweils das obere auf die reine Drehung, das mittlere auf die
Drehinversion, und das untere auf die Drehspiegelung um den Winkel <p.

Als irreduzible Darstellung wird für die Fälle 1,2,. die totalsymmetrische,

für die Fälle 1', 2',. die antisymmetrische Darstellung verwendet,
so dass die Charaktere Xj(R) den Wert 1 bzw. ±1 annehmen. Es sei
noch erwähnt, dass für die in kristallographischen Gruppen ausschliesslich
auftretenden Operationen der Ordnungen 1, 2, 3, 4 und 6 sämtliche
Charaktere x' ganzzahlig werden.

Sofern nicht wie in den Fällen 3 a, 8 a, 11, 12 und 13 besondere Zusatzbedingungen

an die Tensoren gestellt werden, lassen sich übrigens die Charaktere der
Tabelle 18 auf eine einfache Formel bringen. Auf die Verknüpfung zweier Tensoren
der Grade g und g', wovon s symmetrisch sind, bezieht sich nämlich der Charakter

[( ± l)k + ®
~S) (2 cos «pjte+g'-idj

wobei für reine Drehungen das obere und für Drehspiegelungen das untere
Vorzeichen zu nehmen ist. Die in der Formel auftretenden Grössen g + g' und g + g' —s

S Schireiz. Mi:]. Petr. Mitt., B>i. 33, Heft 1, 1953
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Tabelle 18. Charaktere für physikalische Eigenschaften

isotrop
ni l5>

Xi max. min. ç>

-f* -!-
— 2cos<p-l

4cos2<p+2cosç>

4cos2qj+4cosç> + 1

— 8 cos3 cp- 8 cos2 cp- 2 cos (p

I ~t~ *1" ~f"

j-
— 8cos3<p-12cos2qo—ôcosqj—1

| 16cos4ç>+8cos3çj — 4cos2<p + 1

16 cos4 (pf 16 cos3 ç) + 4 cos2 cp

+ *4"

16 cos4 cp+24 cos3cp + 12 cos2 cp+2 cos cp

+ +
16cos4g)+32cos3çj + 24eos2ç)+8eosç)+ 1

+ + — + +
— 32cos5<p-32cos4<p+4cos2<p-2cos<p— 1

+
-7

12

19

+
-11

64 cos8 qs+32 cos5 <p—48 cos4 q?- 8 cos3qj +16 cos2qs 10

64cos6ç)+64cos6çi—8cos3qs + 4cos2<p+2 cos <p 22

1 i 1

+-1 i (1

1 3 (1
+-1 3 (1

1 6 1

ii 6 (1

i 6 1

ii 6 (1

i 9 1

ii 9 (1

i 9 1

ii 9 (1

i 18 (1

ii 18 (1

i 27 (1

ii 27 1

i 21 2

ii 21 (1

i 36 2

ii 36 (1

i 54 2

ii 54 (1

i 81 3

ii 81 (1

i 63 (1

ii 63 (1

i 56 3

ii 56 (1

i 126 3

ii 126 (1
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werden dann für den Fall 1 0 und 0, für 2 1 und 1, für 3 2 und 1, für 4, 5 2 und 2,
für 6 3 und 2, für 7 3 und 3, für 8 4 und 2, für 9 4 und 3, und für 10 4 und 4. Das
abweichende Verhalten der übrigen Fälle kommt schon in den negativen
Koeffizienten eines Teils der Cosinuspotenzen zum Ausdruck.

77 2-4-6 2n

Aus den bestimmten Integralen
77/2 77/2

r „ 77 1-3-5 (2n-l) r
J cos"rix--- 2 4 6 2n Jcos"+'3!dx- 2 13 5 (2n+1)
0 0

erhält man die Mittelwerte über den ganzen Bereich von 0 bis 277 zu
77/2

cos2nx — cos2nxdx, cos2n+1x 0, insbesondere

cos x 0, cos2 x ^, cos3 x 0, cos4 x |, cos5 x 0, cos6 x ^.Ji o 4o

Daraus ergeben sich die in Tabelle 18 unter x aufgeführten Mittelwerte
der Charaktere. Für genügend grosse m darf nun die Charakterensumme
für alle zu einer m-zähligen Achse gehörigen Operationen (einschliesslich
der identischen Drehung um 2 77) gleich dem Produkt aus Mittelwert des
Charakters und Zähligkeit gesetzt werden:

Sx'(^)
<1=1 \ m /

m x

Das ist definitionsgemäss bei zylindrischer Symmetrie mit m 00,
tatsächlich aber schon bei endlichen m>r zulässig, wo r den höchsten im
Polynom des Charakters auftretenden cos-Exponenten bedeutet. Da eine
Symmetrieachse von entsprechender Zähligkeit sich bezüglich der
Charaktere und damit auch der Konstantenzahlen gleich verhält wie eine
Zylinderachse, werden bei zunehmender Achsenzähligkeit für die
Eigenschaften 1 und 1' Monogyren, 2 und 2' Digyren, 3 bis 5' Trigyren, 6 bis 7'
Tetragyren, 8a bis 10' Pentagyren, 11 und 11' Hexagyren, 12 bis 13'

Heptagyren erstmals zu Achsen der Isotropie. (Tabelle 18, Spalte
rechts aussen.)

Nim soll noch nachgewiesen werden, dass das zur Ermittlung der isotropen
Achsenzähligkeit eingeschlagene Verfahren wirklich zulässig ist. Dazu genügt es
offenbar, den folgenden Satz zu beweisen:

Die durch die Zähligkeit dividierte Summe der p-ten Potenzen aller zu den
Drehungen einer Symmetrieachse gehörigen Cosinuswerte hängt nicht mehr von
der Zähligkeit ab, sobald diese grösser als p wird; sie wird dann gleich dem Mittelwert

der Funktion, wie das ja bei einer unendlichzähligen Achse der Fall ist.
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Es gilt nämlich

in k 1 n

- VcosP-2t7 - V [i(ek27ri/n + e-k2wi/n)]P
nk=1 n nk=l

_L y A y /P | e(p-j)k2iri/ne-jk2jri/n
nA A \ j }

1

y | P| y e(P~2h k2wi/n
2pnjéJ0\j/k=l

Für n>p verschwinden alle Summanden einzeln, mit Ausnahme des nur bei

geradem p auftretenden Gliedes mit 2 j p ; dieses wird gleich (^)n. Daher
verschwindet der ganze Ausdruck für p 1 (mod. 2), und für p 0 (mod. 2) wird er

1 /p\ p! l-3-5....(p-l)2iP(|p)! 1 • 3 • 5. (p — 1)
zu — I I ; ; also

2P \ip/ 2P(Jp)!(|p)! 2*P 2*P (£p) (£p) 2-4-6....P
in jedem Falle zum Mittelwert cospx. Damit ist gleichzeitig der auf S. 89 erwähnte
Satz als Spezialfall für p 2 bewiesen.

Wie wirksam Symmetrieeigenschaften die Konstantenzahlen n;
heruntersetzen und dadurch die Beschreibung physikalischer Eigenschaften

im Sinne des Abschnitts 1 vereinfachen können, geht schon aus einem
Vergleich der Extremzahlen in Tabelle 18 hervor. Der Maximalwert gilt
für den symmetrielosen Fall, und ein eingeklammerter Minimalwert
bedeutet, dass die Eigenschaft nicht bei allen Symmetrien möglich ist.
Das Ergebnis der Berechnung für alle denkbaren dreidimensionalen
Punktgruppen ist schliesslich in Tabelle 19 gegeben. Dort steht n für
gerade, p für ungerade Zahlen; die Konstantenzahl 0 erscheint dann,
wenn die betreffende Eigenschaft gar nicht auftritt, weil sie mit der
Symmetrie unvereinbar wäre.

Die Tabelle 19 offenbart mannigfache Zusammenhänge, von denen

einige herausgegriffen seien. So kann man etwa die Eigenschaften der
Fälle 1,2,... als Eigenschaften I. Art, jene der Fälle 1', 2',. als
Eigenschaften II. Art bezeichnen. Dann zeigt sich, dass bei ungerader Minimal-
zähligkeit einer Achse der Isotropie die Eigenschaften I.Art zentro-
symmetrisch, diejenigen II. Art dagegen azentrisch, d.h. mit einem
Symmetriezentrum unvereinbar sind; bei gerader Minimalzähligkeit sind
umgekehrt die Eigenschaften II. Art zentrosymmetrisch und diejenigen
I. Art azentrisch. Eine Sonderstellung nehmen darüberhinaus der
symmetrieunabhängige Fall 1 und der mit gar keinen Operationen II. Art
verträgliche Fall 1' ein. Oft werden die physikalischen Eigenschaften
geradezu nach den entsprechenden mathematischen Grössen als unge-

=_L 2 (p)2pnA\j/ e(p-2j)27ri/n
e(P-b)2wi_ i

e(P-2j)2jri/n_ 2
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Tabelle 19. Konstantenzahlen für dreidimensionale Punktgruppen

P Cr Cr, cPl Dp cpv Dph Dpd isometrisch
Fall n cn S2n CU Dn cnv Dnd A* T Th Td O 0h I Ih K Kh

1 > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1' > 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0
2 1 3 2 0 1 2 1 0 0 0 0 0 0 0

5: 2 1 0 0 0 1 0 0

2' 1 3 1 3 1 1 0 1 0 0 0 0 0 0

S2 1 1 1 0 0 0 0
3 1 6 4 6 4 4 3 4 1 1 1 1 1 1 1 1 1

2 4 2 4 3 3 2 3

2: 3 2 2 2 2 2 2 2

3' 1 6 2 0 4 2 1 0 1 0 0 1 0 1 0 1 0
2 4 2 0 3 1 1 0

3:3 2 0 0 2 0 0 0

3a 1 6 4 6 4 4 3 4 1 1 1 1 1 1 1 1 1

2 4 2 4 3 3 2 3

S3 2 2 2 2 2 2 2

3a' 1 6 2 0 4 2 1 0 1 0 0 1 0 1 0 1 0
2 4 2 0 3 1 1 0

S3 2 0 0 2 0 0 0

4 1 9 5 9 5 5 3 5 1 1 1 1 1 1 1 1 1

2 5 3 5 3 3 2 3

2:3 3 3 3 2 2 2 2

4' 1 9 4 0 5 4 2 0 1 0 0 1 0 1 0 1 0
2 5 2 0 3 2 1 0

S3 3 0 0 2 1 0 0
5 1 9 5 9 5 5 3 5 1 1 1 1 1 1 1 1 1

2 5 3 5 3 3 2 3

S3 3 3 3 2 2 2 2

5' 1 9 4 0 5 4 2 0 1 0 0 1 0 1 0 1 0
2 5 2 0 3 2 1 0

S3 3 0 0 2 1 0 0
6 1 18 10 0 8 10 5 0 1 0 1 0 0 0 0 0 0

2 8 4 0 3 5 2 0
3 6 2 0 2 4 1 0

S4 4 0 0 1 3 0 0

6' 1 18 8 18 8 8 3 8 1 1 0 0 0 0 0 0 0
2 8 4 8 3 3 1 3

3 6 4 6 2 2 1 2

S 4 4 4 4 1 1 1 1

7 1 27 14 0 13 14 7 0 2 0 1 1 0 1 0 1 0
2 13 6 0 6 7 3 0
3 9 2 0 4 5 1 0

S4 7 0 0 3 4 0 0
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Tabelle 19. (Fortsetzung)

Fall P
n

cP
cn

c*
s2a

cPi
Cp*

DP
Dp CpT

Dph
Dpd

Dpd
Dph T T„ Td

isometrisch
O Oh I Ih K

7' 1 27 13 27 13 13 6 13 2 2 1 1 1 1 1 1 1

2 13 7 13 6 6 3 6

3 9 7 9 4 4 3 4

^4 7 '7 7 3 3 3 3
8a 1 21 13 21 13 13 9 13 3 3 3 3 3 2 2 2 2

2 13 7 13 9 9 6 9
3 7 5 7 6 6 5 6
4 7 5 7 6 6 5 6

£5 5 5 5 5 5 5 5
8a' 1 21 8 0 13 8 4 0 3 0 0 3 0 2 0 2 0

2 13 6 0 9 4 3 0
3 7 2 0 6 1 1 0
4 7 2 0 6 1 1 0

g 5 5 0 0 5 0 0 0
8 1 36 20 36 20 20 12 20 4 4 3 3 3 2 2 2 2

2 20 10 20 12 12 7 12
3 12 8 12 8 8 6 8

4 10 8 10 7 7 6 7

^5 8 8 8 6 6 6 6

8' 1 36 16 0 20 16 8 0 4 0 1 3 0 2 0 2 0
2 20 10 0 12 8 5 0
3 12 4 0 8 4 2 0
4 10 2 0 7 3 1 0

ê5 8 0 0 6 2 0 0
9 1 54 28 54 28 28 15 28 5 5 3 3 3 2 2 2 2

2 28 14 28 15 15 8 15
3 18 12 18 10 10 7 10
4 14 12 14 8 8 7 8

ï: 5 12 12 12 7 7 7 7

9' 1 54 26 0 28 26 13 0 5 0 2 3 0 2 0 2 0
2 28 14 0 15 13 7 0
3 18 6 0 10 8 3 0
4 14 2 0 8 6 1 0

ï: 5 12 0 0 7 5 0 0
10 1 81 41 81 41 41 21 41 7 7 4 4 4 3 3 3 3

2 41 21 41 21 21 11 21
3 27 19 27 14 14 10 14
4 21 19 21 11 11 10 11

è5 19 19 19 10 10 10 10
10' 1 81 40 0 41 40 20 0 7 0 3 4 0 3 0 3 0

2 41 20 0 21 20 10 0
3 27 8 0 14 13 4 0
4 21 2 0 11 10 1 0

^5 19 0 0 10 9 0 0
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Tabelle 19. (Fortsetzung)

p cP Cp* Cp, Dp Cpv Dph Dpd

n cn S2n Dn C„T D„d D^

1 63 34 0 29 34 17 0

2 29 14 0 12 17 7 0

3 21 10 0 8 13 5 0

4 15 4 0 5 10 2 0

5 13 2 0 4 9 1 0

è« 11 0 0 3 8 0 0
1 63 29 63 29 29 12 29
2 29 15 29 12 12 5 12

3 21 11 21 8 8 3 8

4 15 11 15 5 5 3 5

5 13 11 13 4 4 3 4
11 11 11 3 3 3 3

1 56 32 56 32 32 20 32
2 32 16 32 20 20 12 20
3 20 12 20 14 14 10 14

4 16 10 16 12 12 9 12

5 12 10 12 10 10 9 10
6 12 10 12 10 10 9 10

^7 10 10 10 9 9 9 9

1 56 24 0 32 24 12 0
2 32 16 0 20 12 8 0

3 20 8 0 14 6 4 0

4 16 6 0 12 4 3 0

5 12 2 0 10 2 1 0
6 12 2 0 10 2 1 0

10 0 0 9 1 0 0
1 126 68 126 68 68 39 68
2 68 34 68 39 39 22 39
3 42 24 42 26 26 17 26
4 34 22 34 22 22 16 22
5 26 22 26 18 18 16 18

6 24 22 24 17 17 16 17

22 22 22 16 16 16 16
1 126 58 0 68 58 29 0
2 68 34 0 39 29 17 0
3 42 18 0 26 16 9 0

4 34 12 0 22 12 6 0

5 26 4 0 18 8 2 0

6 24 2 0 17 7 1 0

^7 22 0 0 16 6 0 0

isometrisch
T T„ Td O Oh I Ih K K*

8 8 6

8 0

13 0

1 0 0 0 0 0

1 0 0 0 0

13 13 9 9 9

9 0
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richtete (skalare) und gerichtete (vektorielle, tensorielle Eigenschaften
erster und höherer Ordnung) bezeichnet, wobei weiter zwischen skalaren
(Fall 1) und pseudoskalaren (Fall 1'), zwischen polar-vektoriellen (Fall 2)
und axial-vektoriellen (Fall 2') Eigenschaften usf. unterschieden werden
kann.

Auch von der höchsten Symmetrie Kh können die Eigenschaften
der Fälle 1, 3, 3a, 4, 5, 7', 8a, 8, 9, 10, 12 und 13 nicht zum Verschwinden
gebracht werden. Das sind aber gerade alle zentrosymmet'rischen
Eigenschaften mit Ausnahme der Fälle 2', 6' und 11', welche nicht mehr
auftreten, sobald mehr als eine Achse der Isotropie vorhanden ist. Ebenfalls
ist aus der Tabelle ersichtlich, wie für die Betrachtung zentrosymmetri-
scher Eigenschaften die wirteligen Symmetriesysteme und das kubische
System in je zwei Untersysteme zerfallen. Wie bereits auf S. 89 ausgeführt

wurde, nennt man sie para- und holo-n-gonal bzw. -kubisch, je
nachdem ob ihre Gruppen bei allfälligem Hinzufügen eines Symmetrie-
Zentrums die Paramorphie oder die Holoedrie ergeben. So gliedern sich

ja die 32 Kristallklassen in die 11 zentrosymmetrischen Obergruppen,
die in der Röntgenkristallographie unter dem Namen der „Laue-Klassen"
bekannt sind. Damit nun ein System sich bezüglich einer Eigenschaft
isotrop verhält, muss es für r=l mindestens orthorhombische
Symmetrie, für r 2 mindestens parakubische, für r 3 mindestens holo-
kubische, für r 4 oder 5 mindestens ikosaedrische, und für r 6

Kugelsymmetrie besitzen; dabei bedeutet r wieder den höchsten Exponenten
im Charakterenpolynom.

18. Anwendung der Symmetrielehre auf Moleküle und Kristalle

Die Ausnützung von Symmetriebeziehungen zur Beschreibung der
räumlichen Anordnung von Teilchensystemen, wie sie Moleküle und
Kristalle ja darstellen, zieht sich als Leitgedanke durch alle bisherigen
Betrachtungen; als „geometrische Kristallographie" bildet sie ein Hauptthema

der kristallographischen Literatur. Neben sie tritt nach dem
vorhergehenden Abschnitt die Anwendung der Symmetrielehre auch auf die
physikalischen Eigenschaften solcher Systeme. Sie fällt unter den Begriff
der „physikalischen Kristallographie" und befasst sich mit dem
geometrischen Anteil physikalischer Grössen, der durch die Symmetrie
der Anordnung allein beeinflusst wird.

Die Anisotropie einer gerichteten Eigenschaft kommt ja schon in
ihrer Eigensymmetrie, d.h. in den Symmetrieeigenschaften der
Bezugsflächen, zum Ausdruck. Soll einem System eine Eigenschaft zu-
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kommen, so darf jedenfalls die Punktsymmetrie des Systems nicht höher
sein als die Symmetrie der Eigenschaft; das kann zur Spezialisierung der
Bezugsflächen führen, wie etwa nach der Reihe: dreiachsiges Ellipsoid—
Rotationsellipsoid—Kugel. Ist aber die Symmetrie des Systems niedriger,
dann können für das „Einpassen" der Bezugsflächen in das symmetriegerechte

Koordinatensystem Freiheitsgrade auftreten, welche sich als

Lagendispersion bemerkbar machen können und naturgemäss die Anzahl
der zur Beschreibung erforderlichen Konstanten erhöhen. Wenn sich
verschiedene Punktsymmetriegruppen in dieser Hinsicht gleich verhalten,
fallen sie zu den schon aus Tabelle 19 ersichtlichen Obergruppen mit
einheitlicher Konstantenzahl zusammen.

Die Tabelle 20 gibt diese Verhältnisse noch übersichtlicher wieder.
Unter a) sind die höchsten mit einer Eigenschaft verträglichen
Punktsymmetrien angegeben. Die Spalte b) enthält die Anzahl sämtlicher, die
Spalte c) dagegen die Anzahl der kristallographischen Punktsymmetrie-
Obergruppen mit gleicher Konstantenzahl. Unter d) schliesslich sind die
Höchstsymmetrien der Obergruppen mit nichtverschwindender
Konstantenzahl zusammengestellt, und zwar in der Reihenfolge abnehmender
Konstantenzahlen, d.h. wachsender Symmetrie. Dabei ist zu beachten,
dass sich die Obergruppen aus den angegebenen Höchstsymmetrien und
allen ihren Untergruppen zusammensetzen, die nicht schon in einer
andern angegebenen Gruppe von geringerer Symmetrie enthalten sind;
gehören mehrere Höchstsymmetrien derselben Obergruppe an, so stehen
sie in einer gemeinsamen Klammer.

Um sowohl den Gebrauch der Tabellen wie die Tragweite der Symmetrie -

bedingten Aussagen zu erläutern, sei als Beispiel die Eigenschaft der (optischen,
dielektrischen oder magnetischen) Polarisation herausgegriffen. Sie verknüpft zwei
Vektoren mit der Zusatzbedingung clt ckl und fällt daher unter den Typ 3 a mit
den Charakteren y; 1, y' 4cos2<p -r2eoscp gemäss Tabelle 18. Derselben Tabelle

entnimmt man weiter, dass die Zahl der zur Beschreibung notwendigen unabhängigen

Konstanten sich je nach der Symmetrie zwischen 1 und 6 bewegt, und dass
jede Symmetrieachse mit einer Zähligkeit A 3 Achse der Isotropie ist. Die Tabelle 19

gibt Aufschluss über die einzelnen, den verschiedenen Punktsymmetriegruppen
zugeordneten Konstantenzahlen ; sie bestätigt die Aussagen von S. 108, dass nämlich
die betrachtete Eigenschaft auch bei der höchstmöglichen Punktsymmetrie Kh
vorhanden ist, und dass sich, weil der höchste Exponent im Polynom von y' 2

beträgt, die Punktgruppen von mindestens parakubischer Symmetrie isotrop
verhalten. Nach Tabelle 20 schliesslich zerfallen sowohl sämtliche wie die
kristallographischen Punktgruppen bezüglich der Eigenschaft in fünf Obergruppen mit
einheitlicher Konstantenzahl, die durch die Höchstsymmetrien C,, C211, D2h, Dœh
und Kh gekennzeichnet sind. Bei verschiedenen Werten wäre natürlich die Anzahl
von Spalte b) auf Moleküle und die Anzahl von Spalte c) auf Kristalle anzuwenden.
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Tabelle 20. Obergruppen für physikalische Eigenschaften

Fall a) b) c) d)

1 Kh 1 1 Kh
1' K 2 2 K
2 Coov 4 4 Ci,C„ C^,
2' Ccoh 3 3 Ci.C^h
3 K„ 5 5 Ci, c2h, 152h» Ogoh» Kh
3' D2d,K 6 6 Cj, C2, D2, (C„ S4, DJ, (D2d, K)
3a Kh 5 5 Ci» C2h, D2h, Dooh, Kh
3a' 6 6 C1; C2, D2, (C„ S4, DJ,(D,d, K)
4 K„ 5 5 C„C2h, (D2h, Cooh), Dooh, Kh
4' D2d» Cqq,, 7 7 Cx, C2, C„ (D2, Cqq), (C2„ S4, D„), (D2d, Coo,, K)
5 Kh 5 5 Ci, C2h, (D2h, CJ,Drt,Kh
5' l-*2d> Coo,, K 7 7 Cj, C2, C„ (D2, Co,,), (C2„ S4, DOO), (D2d, Coo,, K)
6 1^3h' C^,, T(1 10 10 Ci, C„ C2, C„ C2„ (C3„ S4, Cœ), (D2, Coo,), (D2d, D3,

C311)» (O311» Ooo, Td)
6' Dooh' l'h 8 8 Ci» C2i, C31, Cooh, D2h, D3d, (DKll, Th)
7 ®3h> Coo,» Td, K 12 12 Ci, C„ C2, C„ (C2„ CQQ), (D2, S4), C3t, (D3, CJ,

(D2d, b«), (C3h, T), (D3d, Td, K)
7' Kh 9 9 Ci» C2h, C3i, Cœh, D2h» D3d, Dooh, Th, Kh
8a K„ 8 7 Ci» C2h, D2t, (C,„ C4i), (D3d, 554h), Dooh, Oh, Kh
8a' 02d,D3h,D4d, K 12 12 Cj, C„ D2, C„ (C3, C4), (D3, D4), Dot,, C2„ (D2d, O),

(C3i, S8, K), (D3h, D4d)
8 Kh 10 9 Ci» C2h, (D2h,C3I), C4h, (D3d,Cooh), D4h, Dooh,Th,Oh,Kh
8' ®3h> 1^4d' C^,, 14 14 Cj, C2, C„ (D2, C3), (C4, S4), (C2„ D3, COO), D4, Dot,, D2d,

Td,K (C3„ C3h, T), (C4„ O), (S„ Dsh, Coo,, K), (D4d, Td)
9 Kh 12 11 Ci» C2h, C3i, D2h, C4h, Cooh» D3d, D4h, Dooh» Th, Oh, Kh
9' I^3h' D4d> Coo,, 17 16 Cj, C2, C„ C3, D2, (C4, S4), C2„ Coo, Da. (C3„ D4), (D2d,

Td,K DJ, (C3h. c4,), (Coo,, T), (D3d, O), (S8, Td, K), D4d
10 Kh 11 10 Ci» C2h, C31, (D2h, C4h), Cooh» D3d, D4h,Dooh» Th, Oh, Kh
10' D4d> Coq,, 19 17 Cj, C2, C8, C„ (D2, C4), (C2„ S4), Coo» 15s» C3„ D4, (C4,,

Td, K ®2d» DJ, Coo,, C3h» T, (D3h, O), (Td, K), S8, D4d
11 15sh> D4d, D5h, 20 18 Cj, C„ C2, C3, C2v, C4, S4, (C3„ C5), D2, Coo, (C3h> C4,),

Coot, Hoo> Td> 0 C5,, (D3, Coo,)» D2d» (D3h, D4), (S8, Dä, T), (DOO, Td),
(Csh, D4d), (D5h, O)

11' 15ooh> Oh 13 11 Ci,C2h, C3I, C4h, C51, D^,Cooh, D3d, Djh, (D5d,Th),Dooh, Oh
12 Kh 12 9 Ci» C2h, (D2h, C3i), C4h, D3d, (D4i, C5i, C6h), (D5d, Dsh,

Cooh), 15„oh» Th, Oh, Ih» Kh
12' D3h. 154d> 15gh, 16 13 Cj, Cä, C8, (Da, C3), (C4, S4), D3, (C2„ D4, C5, C6), (Ds,

Osd, Coo„ Td, K D8, Cqo), I5oo» (D2d, C3h, T), (C3„ S8,0), (D3h, C4,, I),
(D4d, K), (C5„ C5h, C6„ S12, Td), (D6h, D6d, Coo,)

13 Kh 15 11 Ci» C2h, C31, D2h, C4h» (D3d, C51), C6h, (D4h, Cooh), D5d,
I5eh» Dooh» Th» Oh, Ih> Kh

13' 153h> 154d, Dsh» 25 21 Cj, C2, C„ C3, D2, (C4, S4), C2„ (D3, C6), C„ (D4, Cot,),

Oed, Co;,,, Td, K (C3h> D5), (D2d, D6), (C3„ DJ,T, (C4„ S8), (D3h, O),
Csv> C6„ (l-^4d> Cooy), I, (C5h, Td), K, (D5h, S12), D#d
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Man sieht, dass mit dem Zerfall der Mannigfaltigkeit in die
Obergruppen das Problem der Vieldeutigkeit von physikalischen Aussagen
bezüglich der Struktur angeschnitten wird. Es kann sich hier allerdings
nicht darum handeln, die einzelnen Konstantenzahlen anschaulich zu
deuten; zwar liesse sich damit in manchen Fällen die Vieldeutigkeit
wenigstens einschränken. Ein paar abschliessende Betrachtungen mögen
hingegen der Anwendung auf molekulare Systeme gelten.

Die eben vorgenommene Erweiterung der darstellungstheoretischen
Methode von S. Bhagavantam und D. Suryanaravana auf nichtkri-
stallographische Punktgruppen führt ja über die Kristallphysik, für die
sie zunächst gedacht war, hinaus. Die völlig analogen Aussagen der
Theorie über die physikalischen Eigenschaften von Molekülen ergeben
sich indessen zwanglos. Symmetriebetrachtungen drängen sich in der
Molekularphysik um so eher auf, als sie sich sowohl bezüghch der Struktur

wie der Eigenschaften im Rahmen dreidimensionaler Punktgruppen
halten; der Schritt vom Diskontinuum zum phänomenologischen Schein -

kontinuum braucht gar nicht erst vollzogen zu werden. Dass sich die

ganze Forschungsrichtung doch vor allem an der Kristallphysik
entwickelt hat, dürfte seinen Grund einmal in der makroskopischen
Augenfälligkeit der Kristallsymmetrie und in ihrer Bearbeitung durch die
Kristallographie haben, zudem aber wohl in der relativen Einfachheit
der wichtigsten Moleküleigenschaften, deren Symmetrie sich meist ohne
mathematischen Aufwand qualitativ übersehen lässt. Fragestellungen
wie etwa nach dem Auftreten enantiomorpher Formen oder nach der
Polarität (Fälle 1' und 2) wirken allerdings trivial, doch besteht durchaus
die Möglichkeit, dass auch bei den Molekülen komplexere Eigenschaften
Bedeutung gewinnen könnten. In diesem Sinne dürfen gerade die
Auswahlregeln der Schwingungsspektren als molekularphysikalisches
Beispiel angeführt werden.

Nach Abschnitt 13 setzt die Beobachtbarkeit einer Grundschwingung im
Ultrarotspektrum eine Veränderung des elektrischen Moments, und im Raman-
effekt eine Veränderung des Polarisierbarkeitstensors voraus. Um die in (14)
eingeführten Bezeichnungen zu gebrauchen, handelt es sich daher bei den die Auswahlregeln

bestimmenden Grössen c und c' um nichts anderes als um die Charaktere y'
der Fälle 2 und 3 a gemäss Tabelle 18. Der Gedanke liegt nun nahe, die Auswahlregeln

unmittelbar durch Anwendimg der Tabellen 19 und 20 auf die — in der
zitierten Arbeit (14) und auch schon bei P. Niggli (23) vollständig angegebenen —
Restsymmetrien der Schwingungsformen ableiten zu wollen. Da indessen die
Veränderung von Vektor- oder Tensorkomponenten nicht an eine Änderung der
Konstantenzahl gebunden ist, führt dieser Weg kaum weiter als zu einigen trivialen
Aussagen wie etwa über die Ultrarot-Inaktivität der totalsymmetrischen Schwin-
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gungen unpolarer Moleküle. Der im Abschnitt 12 geforderte „Erhaltungssatz der
Symmetrie" lässt sich nun in der Form aussprechen, dass gleichwertige Operationen
gleichwertig bleiben müssen, oder mit andern Worten, dass die Klassenzugehörigkeit

der Operationen in der Grundsymmetrie gegenüber allen Deformationen
invariant ist. Das hat zur Folge, dass als Restsymmetrien nur Normalteiler der
Grundsymmetrie in Frage kommen ; wie sich durch Symmetriesätze erklären lässt,
tritt aber nicht jeder Normalteiler tatsächlich als Restsymmetrie in Erscheinung.
Wenn schliesslich die Gesamtheit der Restsymmetrien auch gegeben ist, so steht
sie doch in keiner eindeutigen Beziehung zu den Transformationseigenschaften der
Komponenten von elektrischem Moment und Polarisierbarkeit, die etwa von
J. E. Rosenthal und G. M. Murphy (31) untersucht wurden. Eine erschöpfende
Beschreibung der Verhältnisse liefert die Restsymmetrie eben erst in Verbindung
mit der Grundsymmetrie, aus der sie hervorgegangen ist. Daher gehen auch die
rotativen Charaktere yrot in die Auswahlregeln ein; die Formeln lauten nach (14)

worin y./ für c und für c' geschrieben ist. Demgegenüber enthält die Formel
von S. 101 keine rotativen Charaktere.

Diese Beispiele mögen gezeigt haben, wie sich die Bedeutung ,,kri-
stallphysikalischer" Gedankengänge auch auf die Molekularphysik
erstreckt. So erscheinen Moleküle und Kristalle als ein geschlossenes

Anwendungsgebiet der Symmetrielehre, und die Darstellungstheorie
öffnet ihr ein weites Feld.
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