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Charakterentafeln als Ausdruck der Symmetrie-

eigenschaften von Molekiilen und Kristallen

Von Alfred Niggli (Ziirich)
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Einleitung

Die Méglichkeiten einer Darstellung der Symmetrielehre liegen zwischen zwei
Grenzformen, welche durch abstrakte gruppentheoretische Formulierung einerseits
und anschauliche Kombination von Symmetrieelementen andererseits gegeben
sind. Wiahrend die erste Methode durch ihre Geschlossenheit besticht, erlaubt die
zweite ohne mathematischen Aufwand eine unmittelbare Einsicht in die Bedeu-
tung ihrer Ergebnisse. So ist es wobhl kein Zufall, dass die Physik der ersten und die
Kristallographie der zweiten Betrachtungsweise den Vorzug gegeben hat; aller-
dings beschrénkte sich das Anwendungsgebiet im wesentlichen auf Punktgruppen
etwa von Schwingungssystemen und auf die Raumgruppen der Kristalle.

Bei der Behandlung héherdimensionaler Réume versagt das Vorstellungs-
vermdgen und damit die anschauliche Methode. Aber auch wenn man nicht tber
den dreidimensionalen Raum hinausgeht, wird mindestens fiir Berechnungen eine
mathematische Formulierung erforderlich. s scheint nun, dass die Verwendung
von Symmetrieformeln und Charakterentafeln einen zweckmaéssigen Mittelweg fur
die Darstellung der Symametrielehre abgibt. Thre Erlduterung ist die Aufgabe der
vorliegenden Arbeit. Zur Erfassung des gesamten Gebietes miissen sowohl gruppen-
theoretische wie kristallographische Begriffe und Gedankenginge nicht nur heran-
gezogen, sondern gelegentlich auch erweitert und aufeinander abgestimmt werden.
In verschiedenen Fillen wird dadurch eine Vereinheitlichung der Bezeichnungs-
weise nahegelegt. Jedenfalls rechtfertigt sich das geschilderte Vorgehen ausser
durch seine Einfachheit vor allem damit, dass es manche Zusammenh#nge in neu-
artiger Weise beleuchtet.

Die Gliederung des Stoffes richtet sich nach der Deutung des Charakteren-
begriffs. Noch ohne Charaktere kommt man im Teil I aus, wo die Punktsymmetrie-
lehre eine Darstellung vom Standpunkte der Zyklengliederung erfdhrt. Mit der
Einfuhrung translativer und rotativer Charaktere gelangt man weiter zur Beschrei-
bung der komplexeren Symmetrie von Raumgruppen und Schwingungssystemen
in den Teilen IT und III. Anschliessend wird im Teil IV versucht, durch gemein-
same Symmetrieséitze die zumindest formale Analogie von translativer und rota-
tiver Deutung der Charaktere aufzuzeigen; fir die Betrachtung der Symmetrie-
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eigenschaften ist damit eine Verbindung zwischen den Gebieten der molekularen
und kristallinen Systeme sowie ihrer Normalschwingungen hergestellt. Das komrmt
auch im Teil V zum Ausdruck, der die Anwendung von Charakteren héherer
Ordnung auf physikalische Eigenschaften behandelt.

Auch an dieser Stelle méchte ich meinem verehrten Lehrer, Herrn Prof. Dr.
P. Nicari, danken, und zwar sowohl fiir sein Interesse an dieser Arbeit wie Uber-
haupt fur seine Einfubrung in die Denkweise der Symmetrielehre.

I. Grundlagen der Punktsymmetrieiehre

1. Der Symmetriebegriff; Decktransformationen und Symmetrieelemente

Der Begriff der Symmetrie ist schon nach mannigfaltigen Gesichtspunkten
bestimmt worden. So unterstreicht etwa PAscaL in seiner geistreichen Erklirung
die Bedeutung des Satzes vom zureichenden Grunde fiir die Symmetrielehre:
,»Symétrie, en ce gu’on voit d’une vue, fondée sur ce qu’il n’y a pas de raison de
faire autrement‘* (Fragment 28).

In der Mathematik wird ein Ausdruck ,,symmetrisch in x,y,..." genannt,
wenn eine beliebige Vertauschung der Variablen x, y, ... seinen Wert nicht dndert.
Diese Definition macht deutlich, dass die Auszeichnung einer symmetrischen
Grosse stets willkiirlich sein muss. Durch Symmetrieeigenschaften verkniipfte
Elemente sind gleichwertig, und die HErfahrung zeigt denn auch, dass ihre
gemeinsame und gleichartige Behandlung nicht nur eleganter wirkt, sondern mei-
stens auch bequemer ist. Es lohnt sich immer, Symmetriebeziehungen nicht ohne
zwingenden Grund zu zerstéren, sie aber nach Moglichkeit auszuniitzen. Fasst
man den Symmetriebegriff mit P. Nicer: (19) als ,,Wiederholung von Gleich-
artigem, sei es, dass sich an ein und demselben Gegenstand ein Motiv bzw. Ver-
halten wiederholt, oder dass verschiedene Gegenstiénde weitgehend einander gleich-
gesetzt werden koénnen‘, so dringt sich eine geometrische Verwirklichung auf.
Allerdings lassen sich je nach der Deutung des Wortes ,,gleichartig™ verschiedene
Symmetriesysteme im Sinne von K. L. Wovrr (38) aufstellen. Die folgenden Aus-
fithrungen beschrinken sich durchwegs auf den Fall ununterscheidbar gleicher
Elemente.

Als Symmetrie- oder Deckoperationen bezeichnet man die-
jenigen Operationen, welche aus einem vorgegebenen Element symme-
trische Elementensysteme erzeugen oder, was auf dasselbe hinausliduft,
ein solches System mit sich selbst zur Deckung bringen. Ihre Gesamtheit
bildet in jedem Falle eine Gruppe, denn '

jedem geordneten Paar von nacheinander ausgefithrten Symmetrie-
operationen entspricht eindeutig wieder einer Symmetrieoperation;
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die Verkniipfung der Operationen ist assoziativ (nicht aber im allgemeinen
kommutativ); ‘

als Einheitselement ist die Trivialoperation der Identitéit vorhanden ;

zu jeder Symmetrieoperation gibt es eine und nur eine inverse Operation.

In geometrischer Betrachtungsweise ldsst sich jede Deckoperation
als lineare orthogonale Koordinatentransformation auffassen
und durch eine zugehérige Transformationsmatrix beschreiben. Man kann
nun die Symmetrieoperationen nach zwei verschiedenen Gesichtspunkten
einteilen. Einmal kénnen den Operationen, welche mindestens einen Punkt
im Raume fest lassen, die fixpunktfreien Operationen, welche Trans-
lationen enthalten, gegeniibergestellt werden. Oder es kénnen je nach-
dem, ob die Determinante der Transformationsmatrix den Wert + 1 oder
— 1 annimmt, die orientierungserhaltenden Operationen I. Art von den
Operationen I11. Art unterschieden werden, welche die Reihenfolge der
Koordinatenachsen vertauschen. -

Fir den dreidimensionalen Raum ergeben sich, wenn man von den im Teil 1L
zu behandelnden fixpunktfreien Operationen der Verschiebung, Schraubung und
Gleitspiegelung vorldufig absieht, die folgenden Punktsymmetrieoperationen:

Drehung Drehspiegelung Drehinversion
coscpisinqo 0 cosq,o?sin(p 0 —costpisin(p 1)
isingo cos @ 0 isinq) cos @ 0 isin(p—cosgo 0
0 o 1 0 0 -1 0 0 -1

Dabei ist die c-Achse des rechtwinkligen Koordinatensystems in die durch
die Operation ausgezeichnete Richtung gelegt. Die Matrizen fiir beliebige Lage des
Bezugssystems werden erhalten, indem man zweimal mit analogen Matrizen trans-
formiert, die den EurLerschen Drehungen um die a- und b-Achse entsprechen. Aus
den angegebenen Transformationsmatrizen geht hervor, dass nur die reinen
Drehungen Operationen I. Art sind. Einé Drehung um ein ganzzahliges Vielfaches
von 2 7 liefert die Einheitsmatrix der Identitidtstransformation. Die Operationen
II. Art enthalten als Spezialfille fiir die Drehung um ein ganzzahliges Vielfaches
von 27 oder 7 die Inversion und die Spiegelung. An sich kénnte man iibrigens
wegen der Beziehungen zwischen Drehinversion und Drehspiegelung auf eine dieser
beiden Operationsarten verzichten.

Zur Veranschaulichung wird fiir jede Operation ein zugehoriges
Symmetrieelement definiert als der geometrische Ort aller Punkte,
deren Koordinaten gegeniiber der Transformation invariant sind. Im
n-dimensionalen Raum wird die Lage eines Punktes durch n linear unab-
hingige Koordinaten beschrieben ; von der uneigentlichen Operation der
Identitét abgesehen, werden also den Symmetrieelementen selbst 0 bis
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n—1 Dimensionen zukommen. Um eine einheitliche Bezeichnungsweise
zu gewihrleisten, soll im folgenden von der Spiegelung an einem (n—1)-
dimensionalen, der Drehung um ein (n — 2)-dimensionales und der Inver-
sion an einen (n— 3)-dimensionalen Element gesprochen werden. Dann
sind als Punktsymmetrieelemente moglich

im R!  Spiegelpunkte,

im R Drehpunkte und Spiegelgeraden,

im RM! Inversionspunkte (Symmetriezentren), Drehachsen bzw. Dreh-
inversions- oder Drehspiegelachsen, und Spiegelebenen.

Gegeniiber Drehinversionen und Drehspiegelungen sind zwar im allge-
meinen nur die Koordinaten eines Punktes invariant, doch ist zur
Beschreibung der Operation ausser diesen Drehinversions- oder Dreh-
spiegelzentren auch die Achsenrichtung anzugeben.

2. Formen und Zyklengliederung

Ist n die kleinste positive ganze Zahl, fiir welche die n-te Potenz
einer Transformationsmatrix mit der Einheitsmatrix identisch wird, so
fuhrt eine n-malige Ausfiihrung der Symmetrieoperation erstmals den
ganzen Raum in seine Ausgangslage zuriick. n wird als die Ordnung
der Operation bezeichnet. Um den fixpunktfreien Operationen der
Raumgruppen ebenfalls eine Ordnung zuschreiben zu kénnen, wird diese
Betrachtungsweise im Teil IT etwas abgeindert werden miissen. Werden
aber nur Symmetrieoperationen, die mindestens einen Punkt im Raume
fest lassen, zu einer Punktgruppe kombiniert, so haben sie wenigstens
einen Fixpunkt gemeinsam. Samtliche Symmetrieelemente schneiden sich
also in einem Punkt, dem Hauptsymmetriepunkt. Es liegt nahe, ihn
zum Nullpunkt des Bezugssystems zu wihlen; immerhin kénnen dabei
f Freiheitsgrade auftreten, wenn der Schnitt simtlicher Symmetrieele-
mente selbst f-dimensional wird. Die Anzahl N der verschiedenen Symme-
trieoperationen als Gruppenelemente definiert die Ordnung der
Gruppe. Da die einzelnen Operationen zyklische Untergruppen erzeugen,
sind ihre Ordnungen n Teiler von N.

Als Form wird ein Komplex von allen unter sich gleichwertigen
geometrischen Elementen bezeichnet. Bei gegebener Symmetrie ist die
Form also durch eines ihrer Elemente bestimmt. Fiir allgemeine Lage
der Z Formenelemente gegeniiber den Symmetrieelementen gibt es ausser
der Identitit keine Symmetrieoperation, die ein Einzelelement in sich
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selbst tiberfiithren wiirde, und die Z&hligkeit Z der Form entspricht der
Gruppenordnung N. Liegen aber die Elemente einer speziellen Form
auf Symmetrieelementen, so haben sie der Symmetriebedingung der
durch die zugehérigen Symmetrieoperationen gebildeten selbstindigen
Untergruppe zu geniigen, und die Ordnung dieser Untergruppe setzt als

geometrische Wertigkeit w die Zihligkeit der Form auf Z =% her-

unter. Zugleich sinkt die Zahl der Freiheitsgrade unter die Dimensions-
zahl des Raumes.

Im R™ etwa sind, je nachdem es sich beim erzeugenden Element um einen
Punkt xyz, eine Richtung [uvw] oder eine Fliche (hkl) handelt, folgende Arten
von Formen méglich:

(xyz) Punktform, Punktner
([uvw])} Kantenform, Kantner
{(hkl)} Flachenform, Flichner.

Im R™ kommen nur Punktner und Kantner, im R! nur Punktner vor.

Als Grundlage fiir manche Berechnungen, etwa von Isomerenzahlen,
ist die von G. PorLya (30) eingefiihrte und von P. N1geLI (22) weiter aus-
gebaute Zyklengliederung angemessen. Es ist zwar iblich, eine Symmetrie-
gruppe nur durch die Angabe einer Mindestzahl von erzeugenden Opera-
tionen zu beschreiben; in die Rechnung gehen aber alle N Operationen
ein. Die Zyklendarstellung verbindet nun eine vollstindige Aufzih-
lung der Symmetrieoperationen mit einer Beschreibung der Form. Einen
Zyklus beziiglich einer herausgegriffenen Symmetrieoperation bilden
diejenigen Formenelemente, die durch wiederholte Ausfithrung der Opera-
tion ineinander iibergefiihrt werden. Thre Anzahl definiert die Ordnung
des Zyklus.

Es sind nun folgende drei Fille zu unterscheiden :

a) Keine Formenelemente liegen auf dem zur betrachteten Operation gehé-
rigen Symmetrieelernent. Dann ist die Zyklenordnung gleich der Ordnung n der

Operation, und die Z-zdhlige Form zerféllt beziiglich der Operation in p =% gleich-

wertige Zyklen. Dieser Tatbestand findet seinen Ausdruck im Zyklensymbol
FE2. F bedeutet eine beliebige Symmetrieoperation; soll unterschieden werden, so
schreibt man f fir Drehung, s fiir Drehinversion und s’ fiir Drehspiegelung. Als
Index steht die Zyklenordnung, als Exponent die Zyklenzahl.

b) Samtliche Formenelemente liegen auf dem betrachteten Symmetrieele-
ment. Die Zyklen sind ebenfalls gleichwertig, aber im Symbol F} wird die Zyklen-
ordnung m = 2, wenn bei Drehinversion oder Drehspiegelung die Formenelemente
auf der Achse, nicht im Zentrum liegen; in allen Gbrigen Fillen fithrt die Operation
jedes Element in sich selbst tiber, und die Zyklenordnung wird m=1. Die Zyklen-

zahl ergibt sich entsprechend zu q = % bzw. q="Z.
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¢) Von den Z Formenelementen liegen r auf dem betrachteten Symmetrie-
element. Jetzt zerfillt die Form beziiglich der Operation in zweierlei ungleich-
wertige Zyklen von verschiedener Ordnung, Das zusammengesetzte Zyklensymbol

F? FY ist als Produkt aufzufassen. n ist wieder die Ordnung der Operation, und
Z—r

fir m gilt das unter b) gesagte. Die Exponenten werden zu p = und ¢q = i
erhalten. Insgesamt gilt natiirlich pn+qm=2. Man sieht, dass die einfachen
Zyklensymbole aus den zusammengesetzten als Spezialfall hervorgehen, wenn einer
der Exponenten verschwindet.

Die durch die Gruppenordnung N dividierte Summe der Zyklensymbole fiir
alle N Symmetrieoperationen bildet die Symmetrieformel, Da die Operationen,
die zu gleichwertigen Zyklen eines Symmetrieelementes oder gleichwertiger Sym-
metrieelemente gehoren, im gruppentheoretischen Sinne eine Klasse konjugierter
Elemente bilden, kénnen sie in der Symmetrieformel zusammengefasst werden.
Dazu schreibt man ihr Zyklensymbol nur einmal hin und versieht es dafiir mit
einem entsprechenden Koeffizienten. Wird nicht zwischen den Operationsarten
unterschieden, so vereinigt man dariuberhinaus alle gleichartigen F-Symbole auf
diese Weise. Die Symmetrieformel ist charakteristisch fiir Form und Punkt-
symmetriegrippe. Vieldeutigkeit ergibt sich stets beziiglich der Stellung einer
Form, und bei Verwendung der allgemeinen F-Symbole gelegentlich auch beziiglich
der Punktgruppe. Anordnungen, denen trotz Verknupfung durch verschiedene
Symmetrie die gleiche allgemeine Symmetrieformel zukommt, werden isozyklisch
genannt. '

Nun rechtfertigt es sich auch, Drehinversionen und Drehspiegelungen neben-
einander als Symmetrieoperationen zu. verwenden. Ist nédmlich fiir einen Dreh.

winkel ¢ die Achsenzahhgkelt =7 ganzzahlig, aber nicht durch 4 teilbar, so unter-

scheidet sie sich bei beiden Operatlonsarten um den Faktor 2. Man katin dann
einheitlich die Operation mit dem héheren Wert beniitzen, weil fiir sie die Achsen-
zéhligkeit der Ordnung entspricht. So wird etwa die Spiegelung durch s, und die
Inversion durch s, dargestellt.

3. Punktéymmetriegruppen, Systeme und Syngonien

Fiir die Punktgi‘uppen, die durch geeignete Kombination vou (trans-
lationsfreien) Symmetrieoperationen entstehen, kommen zunichst fol-
gende Einteilungsmoglichkeiten in Frage:

nach der Dimensionszahl des betrachteten Raumes; hier soll nur auf
die anschaulich darstellbaren 1- bis 3-dimensionalen Gruppen ein-
gegangen werden;

nach der Zahl der Operationen in Gruppen endlicher oder unend-
licher Ordnung;

nach 'dem Fehlen bzw. Auftreten von (mit einer nicht in die Achsenrich-
tung fallenden Translation unvertriglichen) Operationen der Ord-
nung 5 oder >6 in kristallographische und nichtkristallo-
graphische Gruppen;
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nach dem Fehlen oder Vorhandensein von Operationen II. Art in reine
Drehungsgruppen und Gruppen 1I. Art;

speziell im RIT nach dem Auftreten keiner, einer oder mehrerer durch
Operationen der Ordnung < 2 ausgezeichneter Richtungenin mono-
bis digonale, wirtelige und isometrische Gruppen; dabei
konnen die Gruppen mit 1- oder 2-zéhliger Hauptachse auch als
Spezialfille zu den wirteligen gerechnet werden.

In Erweiterung der in der Kristallographie iiblichen Bezeichnungs-
weise werden Gruppen, die gleiche wesentliche Elemente (hoherer Ord-
nung) enthalten, zu Systemen zusammengefasst. Kine schirfere Defi-
nition des Systemsbegriffs hat von den zur Beschreibung verwendeten,
der Symmetrie angepassten Koordinatensystemen auszugehen; im Teil 11
wird das am Elementarbereich der Raumgruppen deutlich. Die hochst-
symmetrische Gruppe eines solchen Systems, die Holoedrie, lisst sich
durch gesetzmissige Unterdriickung von Elementen zu den Meroedrien
abbauen; diese sind als Hemiedrien von der Ordnung N/2, als
Tetartoedrien von der Ordnung N/4, wenn N die Ordnung der
Holoedrie bedeutet. Untergruppen der Holoedrie mit einem Index 3 oder
> 4 konnen dem System nicht mehr angehéren, solche mit dem Index
2 oder 4 miissen es nicht.

Eine Ubersicht iiber die dreidimensionalen Punktgruppen ist von W. NowAckI1
(27) gegeben worden. In der folgenden Zusammenstellung sind sémtliche Punkt-
symmetriegruppen des RY, R und R™ in ihre Systeme gegliedert aufgefiihrt. Die
Bezeichnungsweise schliesst sich an die der Kristallklassen an; insbesondere ent-
sprechen die Symbole der linearen und ebenen Gruppen einem Schnitt des betrach-
teten Raumes mit den Symmetrieelementen der analogen dreidimensionalen
Gruppe.

A.Punktgruppen endlicher Ordnung:

I. Eindimensionaler Raum: nur ein System (Holoedrie C,, Hemiedrie C,).

II. Zweidimensionaler Raum: nur n-gonale Systeme (Holoedrie C,,, Hemiedrie

Q,).

III. Dreidimensionaler Raum:

nv?

a) Wirtelig: n-gonale Systeme (Holoedrie D,, fiir n=0 (mod. 2) bzw. D, fiir
n=1 (mod. 2), Hemimorphie C,,, Enantiomorphie D , Paramorphie C,
fiir n=0 (mod. 2) bzw. C,; fiir n=1 (mod. 2), Hemiedrie IT. Art nur ng
far n=0 (mod. 4) bzw. Dz, fir n=2 (mod. 4), Tetartoedrie (I. Art) C,,
Tetartoedrie II. Art nur S, fiir n=0 (mod. 4) bzw. Cgh fiir n=2 (mod. 4)).

b) Speziell fiir n=2 oder 1: drei Systeme.

1. Orthorhombisches System (Holoedrie D,,, Hemimorphie C,,, Hemi-
edrie D,).
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2. Monoklines System (Holoedrie C,,,, Hemimorphie C,, Hermniedrie C,).
3. Triklines System (Holoedrie C;, Hemiedrie C,).

¢) Isometrisch: zwei Systeme.
1. Kubisches System (Holoedrie O,, Enantiomorphie O, Hemimorphie T,
Paramorphie T, , Tetartoedrie T).
2. Tkosaedrisches System (Holoedrie I, Hemiedrie I).

B. Punktgruppen unendlicher Ordnung:

I. Emdimensionaler Raum: keine.

II. Zweidimensionaler Raum: System der Kreisgruppen (Holoedrie C Hemi-

edrie C_).

I11. Dreidimensionaler Raum:

wov?

a) Wirtelig: System der Zylindergruppen (Holoedrie D_,, Hemimorphie
C.v» Enantiomorphie D_, Paramorphie C_,, Tetartoedrie C).

b) Isometrisch: System der Kugelgruppen (Holoedrie K, , Hemiedrie K).

owov ?

Kristallographisch sind nur Punktgruppen endlicher Ordnung, und zwar das
System des R!, im R™ die Gruppen der n-gonalen Systeme mitn = 1, 2, 3, 4, 6, und
im R™ von den wirteligen die tri-, tetra- und hexagonalen sowie die unter b) auf-
gefihrten mono- und digonalen, und schliesslich von den isometrischen die
kubischen Gruppen.

Treibt man nun den Abbau der Symmetrie itber das System hinaus
weiter, so gelangt man zum iibergeordneten Begriff der Syngonie, den
E. S. FEporow eingefiihrt hat. Die zu einer holoedrischen Gruppe geho-
rige Syngonie umfasst die Gesamtheit der in ihr enthaltenen Unter-
gruppen, die uneigentlichen inbegriffen. Wihrend alle Gruppen eines
Systems tiblicherweise in derselben Aufstellung beschrieben werden, er-
weist es sich im Rahmen der Syngonie als zweckmissig, auch Bezugs-
systeme in andern sinnvollen Aufstellungen zu verwenden. Damit wird
die Moglichkeit gegeben, Pseudosymmetrien und Deformationen in ihrem
Zusammenhang zu iiberblicken; Beispiele fiir diese Betrachtungsweise
finden sich bei P. N1gaL1 (19, 20). _

Samtliche ebenen Punktgruppen gehoren der Syngonie von C,,, an;
im R sind die isometrischen Gruppen Glieder der Syngonie von K, und
die wirteligen Glieder der zylindrischen Syngonie, die aber ihrerseits auch
zur Kugelsyngonie gehort. Beschrankt man sich auf die endlichen Gruppen,
so ist allgemein die n-gonale Syngonie in allen m-gonalen Syngonien mit
m = 0 (mod.n) enthalten. Die kubische Syngonie enthilt auch die tri- und
tetragonale, die ikosaedrische die tri- und pentagonale. Dadurch iiber-
schneiden sich die kubische und hexagonale, die ikosaedrische und hexa-
gonale bzw. dekagonale Syngonie.
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Die von einerPunktgruppe und thren Nebengruppen beziiglich einer
Holoedrie erzeugten Formen ergiinzen sich zur holoedrischen Form. Sind
die Einzelformen meroedrisch, so werden sie zueinander korrelat ge-
nannt; wird der Zusammenhang iiber das System hinaus verfolgt, so
spricht man von hypokorrelaten Formen. Natiirlich kann man auch
umgekehrt vorgehen und den Zerfall einer Form in gleichwertige (hypo-)
korrelate Formen betrachten. Beispielhaft soll die Korrelation in den
kristallographischen Syngonien des R im Abschnitt 5 vollstindig behan-
delt werden.

4. Die Symmetrieoperationen der Punktgruppen; Koordinatentafeln

Die in der Kristallographie verwendeten Symbole nach ScHOEN-
¥LIES oder HERMANN-MAUGUIN beschreiben die Punktgruppen durch einen
Satz von im allgemeinen willkiirlich ausgewihlten erzeugenden Symmetrie-
elementen. Es wurde aber schon darauf hingewiesen, dass fiir Berech-
nungen eine vollstindige Aufzihlung der Symmetrieoperationen not-
wendig ist. Diese Aufzihlung wird durch die Glieder der im Abschnitt 2
erliuterten Symmetrieformel gegeben, doch muss die Formel noch
von der Form unabhingig gemacht werden. Das geschieht dadurch, dass
man sie fiir eine Form allgemeiner Lage aufstellt und die Exponenten der
Glieder weglisst. Es bleiben dann nur einfache Zyklensymbole iibrig, und

-die Ordnung ist fiir Zyklus und Operation dieselbe. So liest man aus der
verallgemeinerten F-Symmetrieformel sofort Anzahl und Ordnungen der
Symmetrieoperationen ab; aus der speziellen (f, s, 8" unterscheidenden und
die Klassenzugehorigkeit beriicksichtigenden) Formel sind ausserdem Art

und Gleichwertigkeit der Operationen unmittelbar ersichtlich.

Die Syminetrieformeln von Gruppen unendlicher Ordnung enthalten natur-
gemiiss unendlich viele Glieder. Zur Aufstellung der Formeln fiir endliche Grup-
pen hingegen kann man einige Gesetzméssigkeiten ausnitzen. Zunichst sind die
Ordnungen der in einer Operation von der Ordnung n enthaltenen Untergruppen
ganzzahlige Teiler von n. Bezeichnet man mit {F,} die Gesamtheit der in diesem
Sinne zu F, gehérigen Operationen, so gewinnt man die Glieder der Symmetrie-
formel durch Auflésung des n-zéihligen Symmetrieelementes in seine Unter-
elemente, Die Zahlentheorie liefert dafur die Beziehungen

=2 pifes und fiir n=0 (mod. 2)
i 1
{s.)= {f§}+2j P & {sa} = {f;_l}+zj', Py Sy, -

Darin durchlauft x; alle ganzen Zahlen von 1 bis n, fiir welche n=0 (mod. x) wird.
p; ist die Anzahl der zu x; primen Zahlen =x,;, ndmlich aus der Zerlegung in
Potenzen von Primfaktoren
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1
X = H (a2 k), nach EvLEr p,=x, H (1 - _) .
K k ax /s

Ahnlich durchléuft x, alle ganzen Zahlen von 1 bis n, fiir welche n=0 (mod. x)==0
(mod. 2x) wird; daraus erhélt man p; in derselben Weise wie p; aus x;. Beriick-
sichtigt man noch, dass jede Operation nur einmal gezihlt werden darf, auch wenn
sie bei der Aufldsung mehrerer tibergeordneter Operationen in Erscheinung tritt,
so wird die Formel einer Gruppe von der Ordnung N genau N Symmetrieopera-
tionen enthalten.

- Allgemein kommen fiir eine gegebene Ordnung n die folgenden
Symmetrieoperationen in Frage:

im Rt fiurn=1f{, firn=2s,;

im R firn =21, oders,, fiirn+2f{ ;

im R™ fiir n = 1 (mod. 2) f,, fiir n = 2(mod. 4) f,, oder s, oder s,
fiir n = 0 (mod.4) f oder s, (=s,).

In Tabelle 1 sind die Anzahlen und Klassenzahlen der Sym-
metrieoperationen verschiedener Ordnung fir alle endlichen dreidimen-
sionalen Gruppen zusammengestellt. Fiir die bei den n-gonalen Gruppen
auftretende Grosse gist 1, wenn n = 0.(mod. 2), bzw. 0, wenn n =1 (mod. 2),
einzusetzen. Nach der iiblichen Bezeichnungsweise sind die Symbole S_
nur fir n=0(mod.4), D2q nur fiir n=0(mod. 2), und C,; nur fir n=1
(mod. 2) sinnvoll. Als zweckmissig erweist sich eine Zusammenfassung
der Punktgruppen zu den mit réomischen Ziffern bezeichneten Kolonnen.

Die entsprechenden Werte fiir die ebenen Gruppen kionnen ebenfalls
aus der Tabelle 1 abgelesen werden, und zwar fiir C unter L., fiir C_ unter
II. wie bei den dreidimensionalen wirteligen Gruppen. Im RT schliesslich
erhalten C, und C, die Symmetrieformeln 1 F; bzw. 1 F; + 1 F,. Damit
lassen sich aus diesen Angaben die verallgemeinerten Symmetrieformeln
aller Punktgruppen endlicher Ordnung aufstellen; ebenso ist ersichtlich,
welche Gruppen im Sinne von S. 27 isozyklisch sind. Im Falle der
kristallographischen Punktgruppen etwa zeigt sich, dass die Werte fol-
gender Kolonnen in der Tabelle zusammenfallen: I1. und II'. fiir n = 1 mit
I. fiir n =2, 1. fiir n =1 mit I1. und II'. fitr n=2, I1’. fiir n =3 mit 1. fiir
n=6, I1I. fiir n = 3 mit II. fiir n = 6. Daraus leitet man ab, dass sich
die 2 kristallographischen Punktgruppen des RT in 2, die 10 des R in 9,
und die 32 des R'T in 18 Typen von isozyklischen Gruppen gliedern.

Im Hinblick auf die spédtere Einfiihrung der Charakterentafeln muss
noch eine andere Art der Darstellung betrachtet werden. Bei geeigneter,
d.h. symmetriegerechter Wahl des Bezugssystems (etwa wie in der
Kristallographie iiblich) ldsst sich ndmlich fiir alle Punktgruppen die
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Tabelle 1. Symmetrieoperationen der dreidimensionalen Punkigruppen

a) wirtelig I. IT. IT”. ITI1.
(inkl. 1- und 2-gonal) C,. S, Coys Dy, D2y Gy, Gy D,
Zahl der F, i 1 1 1
F, g n+g 1+2¢ 2n+1+42¢g
F.,x>2 n—-1-g n—1l-—g 2n—2—-2g 2n-2-2g
total = Gruppenordnung: n 2n 2n 4n
Klassen von F, 1 1 1 1
F, g 1+2¢g 1+2¢ 3+4g
F_,x>2 in—-1-g) i(n—-1-—g) n—1l—g n—1l-g
total = Klassenzahl: Yn+14g) +(n+3+3g) n+l+4g n+3+3g
b) isometrisch Ta. Th. Ib’. Ie. ITa. IIhb.
T T, Ty, O 0, I I,
Zahl der F, 1 1 i 1 1 1
F, 3 7 9 19 15 31
F, 8 8 8 8 20 20
F, — — 6 12 — —
F, — - — . 24 24
Fy — 8 — 8 s 20
iy, — — — —_ — 24
total = Gruppenordnung: 12 24 24 48 60 120
Klassen von F, 1 1 1 1 1 1
F, 1 3 2 5 1 3
F, 1 1 1 1 1 1
F, — — 1 2 — —
Fs —- — —— — 2 2
F, — 1 — 1 — 1
Fy — — — — — 2
total = Klassenzahl: 3 6 5 10 5 10

Zuordnung der Punktkoordinaten, Fldchen- oder Richtungsindices
einer Form zu den einzelnen Symmetrieoperationen sehr iibersichtlich
gestalten. Dazu fasst man jene Operationen, welche fiir sich genommen
nur Vorzeichenwechsel ohne Anderung der absoluten Betrige zur Folge
-haben, mit der Identitdtsoperation zu eimer Grundeinheit als Unter-
gruppe zusammen; im R™ mit n>1 werden durch ihre Nebengruppen
nach Bedarf dhnliche Einheiten gebildet. Die n linear unabhingigen
Koordinaten bzw. Indices des R® ermoglichen 2" verschiedene Vorzeichen-
kombinationen. Insbesondere enthalten die Grundeinheiten
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im RT die 2! = 2 Operationen von C,
im RY  die 22 = 4 Operationen von C,_,
im RIM die 2% = 8 Operationen von D, .

Schreibt man nun jede Symmetrieoperation mit dem zugehérigen Koordi-
naten-n-Tupel auf eine Zeile, so kann man weiter je die beiden Opera-
tionen, die jede Ausgangskoordinate in zwei Koordinaten von entgegen-
gesetztem Vorzeichen iiberfithren, paarweise zu einer Doppelzeile
zusammenfiigen. Man erhilt so im R® fiir jede Einheit eine Tafel (Koor-
dinatentafel oder Indicestafel) von 2@ Doppelzeilen. Diese Zahl stimmt
fiir n=1 und n =2 mit der Dimensionszahl iiberein; im RII nimmt man
diejenige Doppelzeile, welche in der Grundeinheit die Identitidtsoperation
enthilt, heraus und kommt so ebenfalls auf drei Doppelzeilen in der Tafel.
Da andrerseits im R™ die Spaltenzahl, d.h. die Anzahl der linear unab-
héngigen Bestimmungsstiicke, n betrigt, nimmt die Tafel dann die Form
einer n-reihigen quadratischen Matrix an. Sie bildet die Leerform
fir die Charakterentafeln im Teil 11, wo die Zweckmaissigkeit dieser
Darstellungsweise erst vollig deutlich wird.

Zur Abklirung der Frage, auf wie viele Tafeln sich die Operationen einer
Punktgruppe endlicher Ordnung verteilen, geht man am besten von denjenigen
(im allgemeinen holoedrischen) Gruppen aus, welche die von den Operationen der
Grundtafel gebildete Gruppe als Untergruppe enthalten. Die Ordnung N solcher
Gruppen — es sind im R' C,, im R"™ C_, mit n=0 (mod. 2), im R™ D,, mit n=0
(mod. 2), Ty, Oy, I, — ist stets durch die Zeilenzahl einer Tafel — im R* 2, im R™ 4,
im R™ 8 — teilbar. Da die genannten Gruppen die zu simtlichen Zeilen einer Tafel
gehorigen Operationen umfassen, wird die Anzahl der zur Beschreibung von Grup-

pen ihres Systems notwendigen Tafeln im RT N/2=1, im R" N/4=2E , und im R™

N/8, also 151 fir D, 8 fiir Ty, 6 fir O, und 15 fur I, . Insbesondere werden Gruppen
mit Hauptoperationen von ungerader Ordnung, d. h. p-gonale Gruppen mit p=1
(mod. 2), durch ebenso viele Tafeln beschrieben wie die 2p-gonalen Gruppen mit
den entsprechenden Operationen von doppelter Ordnung. So sind allgemein der
Gesamtheit der zu einem System gehérigen Punktgruppen dieselben Tafeln zuge-
ordnet, nur fillt fiir die Meroedrien ein Teil der Zeilen gesetzmiissig aus.

In dhnlicher Weise lassen sich diese Uberlegungen hinsichtlich der Uber-
schriften der Tafeln durchfiihren. Sie enthalten die Gréssen (Punktkoordinaten,
Fidchen- oder Richtungsindices), auf welche durch die Operationen der Tafel alle
méglichen Vorzeichenwechsel ausgeiibt werden. Nun liefert etwa im R™ jede,
p-zdhlige Achse mit p=1 (mod. 2) genau p verschiedene Uberschriften, die nicht
durch Vorzeichenwechsel allein auseinander hervorgehen kénnen. Eine g-zdhlige
Achse mit q=0 (mod. 2) dagegen schliesst eine Digyre als Unterachse in sich,
deren Decktransformation nur Vorzeichenwechsel zur Folge hat; es gehoéren ihr

demnach% verschiedene Uberschriften zu. Bei der Kombination von Achsen ver-
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schiedener Zihligkeit ergibt sich allgemein, dass die Zahl der zur Beschreibung
erforderlichen Tafeln gleich dem Produkt aus den ungeraden und den halbierten
geraden Zihligkeiten ist.

Nach den getroffenen Festsetzungen nehmen nun die Tafeln folgende
Form an;

im R! im R im R
o] + o| ++ oy ++ +
G| — Oa| — — o —+ +
T — + oy + - —

T | +—
: Bi| +—+
By —+—
Y1 + 4+ —
Ye| —— +
Uzl___

Dabei sind nur die Vorzeichenwechsel angegeben, die auf die als Uber-
schriften zu setzenden Grissen ausgeiibt werden; die Bezeichnung der
Zeilen erfolgt durch griechische Buchstaben. Quadratische Matrizen, die
fiir den Rlo, fiir den R!'o und =, und fiir den R™x, B und y als Doppel-
zeilen enthalten, bilden so das Schema fiir die Koordinaten- und Indices-
tafeln und spéter auch die Leerform fiir die Charakterentafeln. Im Falle
des R ist die Aufteilung von ¢ auf je eine Kopf- und Endzeile aus der
Darstellung ersichtlich.

Geht man bei der Ableitung vom R! aus, so wird durch Hinzunahme einer
zweiten Dimension die Zeile o, in g, und T,, die Zeile g, in o, und r; aufgespalten.
Dementsprechend stehen im R™ die Zeilen dieser beiden Paare in der Beziehung
C, zueinander. Nimmt man nun die dritte Dimension hinzu, so ergibt sich in &hn-
~licher Weise die Aufspaltung von g, in ¢, und Y1» VON T, in oy und 8,, von o, in o,
und y,, und von 7, in o; und B,. Dadurch stehen im R™ die Zeilen g,, s, By, ¥1
einerseits und o, &,, B, v, andererseits zueinander in der Beziehung C, . Es sei
noch darauf hingewiesen, dass die Verteilung einer Elementenmannigfaltigkeit auf
verschiedene Tafeln eine der Maoglichkeiten darstellt, sie in hypokorrelate Formen
aufzulésen. Das folgt aus der Verkniipfung der Gréssen simtlicher Tafeln im RY
und R™ durch die Symmetrieoperationen von C,, bzw. Dy,.

Um nun jeder einzelnen Zeile eindeutig eine Symmetrieoperation
zuzuordnen, werden die verschiedenen Koordinatentafeln, die zur Ver-
wendung gelangen, durch die in der Zeile o, eihzusetzenden Punktkoordi-
naten als Uberschrift gekennzeichnet. Dann fiihrt die zu irgendeiner
Zeile { gehorige Operation den Ausgangspunkt x bzw. x,y bzw. x, y, z
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d. h. den Punkt mit der Uberschrift der Grundtafel als Koordinaten, in
den Punkt mit den Koordinaten der Zeile £ iiber. Die Tafeln selbst werden
mit grossen Buchstaben bezeichnet, z. B. die Grundtafeln mit G. So ergibt
sich die folgende Ubersicht der Symmetrieoperationen in ihrer durch die
Tafeln bedingten Anordnung:

Im RI tritt nur eine Grundtafel G (mit der Uberschrift x) auf; ihren
Zeilen sind die Operationen o, =f, (Identitét) und o, =s, (Spiegelung am
Nullpunkt) zugeordnet.

Im R sind neben der Grundtafel @ zur Beschreibung der n-gonalen
Gruppen mit n> 2 noch weitere Tafeln vom Typus W notwendig. Die
Zuordnung der Symmetrieoperationen geht aus Tabelle 2a hervor.

Tabelle 2a: Zweidimensionale wirtelige Tafeln

G (x,y) W (x cos @ +y sin @, y cos ¢ —x sin )
o, = f; (Identitit) 0; = f, (Drehung um g)
o, = f, (Drehung um ) g, =1f; (Drehung um @+ )
Ty = 8y (Spiegelung an y-Achse) 7, =8, (Sp. an um — 4 @ gedr. y-Achse)
Ty =8; (Spiegelung an x-Achse) 7,=s, (Sp.an um —} ¢ gedr. x-Achse)

Besondere Bedeutung fiir die Behandlung der Netzgruppen kommt
den zwei kristallographischen Spezialfillen des Typus W zu, namlich der

tetragonalen Tafel 7' mit ¢ = %, und den hexagonalen Tafeln H, und H,
mit ¢ = gbzw. p=— %77. Sie sind in Tabelle 2b dargestellt.

Tabelle 2b: Zweidimensionale kristallographische Tafeln

T (3_73 X) H, (x4, yy) H, (x5 ¥,)
o, =1, (00) o, =15 (00) o, =1; (00)
oy = f; (00) g, = f; (00) oy, =1, (09)
T1= 82 (11) T1 =8y (11) T =8, (11)
Ty =8y (11) T2 =8, (3I) Ty =8y (31)

Die Lagen der Symmetrieelemente sind hier und im folgenden durch die
in der Kristallographie iiblichen Indices angegeben, die sich leicht auf
andere als dreidimensionale Réume iibertragen lassen. Dabei sind die
bhexagonalen Tafeln auf ein orthohexagonales Elementarparallelo-
gramm mit a = y3b bezogen; so gelten fiir sie die Transformations-
gleichungen x;, = —3(x—y), y,= —18x+y) bzw. x,= —§x+y),
Yo = 3(3x—y). '
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Im RM! schliesslich liegen die Verhiltnisse fiir die Grundtafel ¢
besonders einfach: die Operationen, durch welche die a-, b- und c¢-Achse
des Bezugssystems ausgezeichnet werden, gehoren zu den Doppelzeilen «
bzw. 8 bzw. v, und die keine Richtung auszeichnenden Operationen liefern
die Kopfzeile o, als Uberschrift und die Endzeile o, (Tabelle 2¢).

Tabelle 2¢: Dreidimensionale Grundtafel

g (x,y,z)

o, =1 (Identitit)

o =8, (100) (Spiegelung an y-z-Ebene)
oy =%, [100] (Drehung um 7 um x-Achse)
B =8, (010) (Spiegelung an x-z-Ebene)
By =1, [010] (Drehungum 77 um y-Achse)
Y1 =8, (001) (Spiegelung an x-y-Ebene)
vy2 =f; [001] (Drehung um 7r um z-Achse)
gy =8, (Inversion am Nullpunkt)

In der Reihenfolge wechseln Operationen I. Art und II. Art miteinander
ab; das ist in simtlichen Tafeln des RI'I der Fall. Die zur Beschreibung
wirteliger Gruppen erforderlichen Tafeln W, fiir deren Symmetrieelemente
natiirlich im allgemeinen keine kristallographischen Indices angegeben
werden kénnen, nehmen die Form der Tabelle 2d an. :

Tabelle 2d: Dreidimensionale wirtelige Tafeln

W (x",y’,2z") mit:
o, = ' [001] (Drehung um 14—”) x' =x cosﬂ —ys mli’I
oy =8, (Spiegelung an Nebensymrmetrieebene) y =y cos =T 4 xsin ﬁ’—'
oy =1y, (Drehung um Nebendigyre) z' =z
Br=s8, (Wie o) und i> 0.
B: = f,  (wie o)
v =8 [001] (Drehmversmn um 227
yy="fs [001]  (Drehung um 27

oy =158 [001] (Drehsplegelung um —)

Fiir die Behandlung der Schicht- und Raumgruppen gewinnen wiederum
die Spezialfille der kristallographischen Tafeln W mit n =4 und n =6 eine
besondere Bedeutung. Sie geben Anlass zu einer tetragonalen Tafel K, die
auch im kubischen System Verwendung findet, und zu den (auf ein ortho-
hexagonales Elementarparallelepiped bezogenen) hexagonalen Tafeln H,
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und H, mit den Transformationsgleichungen x, = —}(x—y), y, =

—38x+y), z,=2; X3 = —}X+Y), ¥ = }(3x—y), z;=2. Diese Tafeln
sind in Tabelle 2e dargestellt.

Tabelle 2e: Dreidimensionale tetra- und hexagonale Tafeln

K (y, x, z}) H, (x4, ¥, 24} H; (X3, ¥ 22)
c,=1, [001] o, =1f; [001] o, =1; [001]
oy =8, (110) oy =8, (110) oy = S, (IIO)
oy = f, [110] o, =1, [130] - oy = £, [130]
Bi=38,; (IIO) BL=% (310) B =8, (310)
By =1f; [110] B, =1, [110] B, =1, [110]
Y1 =8, [001] ¥1= s8¢ [001] Y1 =8¢ [001]
yo=£f, [001] ye=f, [001] o =1f, [001]
o, =8, [001] o, = 8§ [001] o, = 8; [001]

In den isometrischen Gruppen werden die Achsenrichtungen gleichwertig
beziiglich Operationen von der Ordnung 3; das fiihrt zu neuen Tafeln mit
zyklisch vertauschten Uberschriften. So werden zur Beschreibung des
kubischen Systems neben G die Tafeln G’ und G” sowie neben K die Tafeln
K’ und K” der Tabelle 2f verwendet.

Tabelle 2f: Dreidimensionale kubische Tafeln

G’ (y, x, z) G” (z, x,y) K’ (z,y, x) K" (%, 2, i)
S oy =1£; [111] o, =1, [111] o, = f, /[010] o, =f, [100]
oy =8¢ [111] o, =8 [111] oy =8, (101) o, =8, [100]
oy =1F, [111] oy =T, [111] oty = f, [101] o, = f, [100]
By =84 [_T_ll] Br =84 [111] B =18, [010] Br=s, (011)
By=f, [111] By =1, [11T] B, =1, [010] B =1, [011]
Y1= % [111] Y1=75 [111] y1=8; (101) y1=28; (O11)
ya=F; [111] yy =1, [T11] ye=£, [101] yp=f, [011]
o, =s, [111] 0y =8¢ [111] oy =s, [010] oy =8, [100]

Zur Behandlung des ikosaedrischen Systems geht man mit Vorteil von
einer der fiinf korrelaten T, -Beziehungen aus. Dann ergeben sich neben
G, @ und @" weitere zwolf Tafeln, indem die Operationen einer heraus-
gegriffenen Pentagyre auf den Ausgangspunkt ausgeiibt und die so ent-
stehenden Uberschriften von I,, I,, I, und I, iiberdies zyklisch ver-
tauscht werden. Da in diesen Tafeln eine kristallographische Indizierung
nicht moglich ist, sind die Symmetrieelemente in Tabelle 2g willkiirlich
numeriert.

4 B8chweiz, Min, Petr. Mitt,, Bd. 33, Heft 1, 1953
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Tabelle 2g: Dreidimensionale ikosaedrische Tafeln

Iy (X4, ¥15 74) Iy (%35 ¥as Zo) L3 (X3, Va» Zs) I (%4, Y45 24)
g =% (1) gy =1x (1) g = (1) op=1x (1)
=8 (7) o =8, (8) oy =8, (11) op =8, (10)
o, =1 (7) oy =1f, (8) oy =1, (11) o, =Tf, (10)
Bi=s; (3) B1=-s1¢ (3) By =813 (8) Bi=s; (6)
B,=1; (38) Ba=1fu (3) - By =fz (6) B,=1; (6)
Y1 =810, (5) vi=8¢ (5) vi=8 (2) Y1 = s1¢ (2)
Yo = 152 (5) V2 = fs  (5) Ve = f; (2) Ve = 152 (2)
gy =813 (1) o =81 (1) oy =510 (1) oy = 81 (1)

Iy (y1, 20, %4) I, (25 23, X3) Iy (y3 23, X,) 1y (Va5 24, X4)
oy=1fa (2) o =1 (4) op=1; (3) or=1 (1)
oty = Sig (3) 0 =8 (2) o =8 (2) o =85 (4)
oy =T (3) as =1, (2) oty =1 (2) oy =15 (4)
Bi=s, (4) Br=s5 (6) By =sigs {4) B1=sip (5)
B=1, (4) By =13 (6) By=1a (4) B = f51 (5)
Yi=58 (4) Y11= S{ql (5) Vi =8, (B) Y1 =Sip (6)
ve=1; (4) ve =13 (5) va=1, (5) Ys =1z (6)
oy =810 (2) Gy =8y (4) gr =85 (3) oy =8; (1)

I (24, X¢, ¥1) 1," (23, X5, ¥2) 13" (23, X3, ¥3) 1,7 (24, X4, y4)
a=1f (3) on=1% (1) gy =1y (5)_ oy =1z (3)
o = Sypt (4) o =8, (12) oy = 81t (3) o =85 (2}
oy =152 (4) oy =1, (12} oy =1 (3) =1 (2)
Bi=s; (5) B = 8100 (6) Bi=s8, (9) Bi=sip (4)
Ba=1, (5) B, =1z (6) Be=1f, (9) B = fsa (4)
Y1 =S1gs (6) Y1 =81 (2) yi=8 (1) Y1="8; (6)
v =1z (8) ve =1z (2) Y2 = fy (1)_ Y2 = f, (6)
gy =8; (3) oy =85 (1) gy = 818 (5) oy = Sis (3)

Mit den angegebenen Tafeln kommt man bei der Beschreibung samt-
licher Punktgruppen von endlicher Ordnung aus. Unendliche Punkt-
gruppen wiirden natiirlich auch unendlich viele Tafeln bedingen. Man sieht
nun, dass die Holoedrien in folgenden Tafeln zum Ausdruck kommen:

imRI C, in G;

im RT C_  mit n = 0 (mod. 2) in G + (%-— 1) W, insbesondere C, in &,
Civin @+ T,Ce,in G +H, + H,;

im RE Dy, mit n= 0(mod. 2) in & + (3 —1) W, inshesondere D, in @,
Dypin G+ K, Dgyin G+ Hy+ H,; Tyin G+ G + 67,0, in G+ ¢
+G"+K+K'+K", Iy in G+@ +GF"+ 1+ 1,/ +1,"+1,+1, +
I+ Lt I+ I+ I+ 1, + 1,
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Wo mehrere Moglichkeiten bestehen, wurde die Wahl der Uberschriften
so getroffen, dass sich fiir die Untergruppen eine maglichst einheitliche
Auswahl der massgebenden Zeilen ergibt. Bei den Tafeln W ist besonders
darauf zu achten, dass im n-gonalen System mit n = 0 (mod. 2) die Uber-

schrift einer Operation (I. Art) von der Ordnung % entspricht; in einer

andern Zeile der Tafel wird dann von selbst eine Operation der Ordnung n
auftreten.

In den meroedrischen Punktgruppen fehlen gewisse Symmetrie-
operationen der Holoedrien. Dementsprechend fillt ein Teil der Zeilen in
den verwendeten Tafeln gesetzméssig aus. Die Auswahl der fiir eine
Gruppe geltenden Zeilen kann dann auf verschiedene Weise erfolgen, wenn
die iibergeordnete Holoedrie die Gesamtheit der zur betreffenden Unter-
gruppe gehorigen Symmetrieelemente in mehreren Stellungen enthilt. Es
werden aber in der folgenden Ubersicht nicht simtliche Glieder der Syn-
gonien beriicksichtigt, sondern nur die Zeilen fiir in der Kristallographie
iibliche oder sonst zweckmissige Aufstellungen, d. h. Bezugssysteme,
angegeben.

Im RT werden in der einzigen Tafel ¢ C, durch ¢, +0,, C; durch o,
dargestellt.

Im RY werden in G + (%— 1) W mit n = 2(mod. 4) C:= durch oy, C,
durch o, +0,, Civ durch o,+7,, C,, durch o;+0,+7, +7, beschrieben ;
fiir n = 0 (mod. 4) gehort eine ausgezeichnete Tafel von der Form 7' voll-
stindig zu C, bzw. C_,. Als kristallographische Spezialfille werden durch
die Zeile o, C, in @, C; in G+ H, + H,, durch die Zeilen o, + 0, C, in G,
C,inG+7T,Cqin G+ H,+ H,, durch o, 4+, C,,in G, C,_ in G+ H + H,,
und durch o;+oy,+7 +7, sz in ¢, C,, in G+7, C’Gv in G+H,+H,
gekennzeichnet.

Im R™I werden zunichst die wirteligen Gruppen mit n = 0 (mod. 2)
in den Tafeln G + (% — 1) W durch folgende Zeilen beschrieben: C, durch

61 +vs, Cpn durch o, +oy+7y;+y,, C,, durch o, +oy+8;+y, D, durch
oy+oy+By+ys, Dy, durch séimtliche Zeilen, und wenn ausserdem
n = 2 (mod. 4), C: durch o,, Cx; durch o;+ gy, Cen durch o;+7y;, Civ
durch o+, oder o,+f,;, Dz durch o,+a, oder o,+f, Dzn durch
o1+ oy + Py + v, oder oy + oy + 5+ vy, Dea durch o, + 03+ «, + o, oder o, + 0,
+B;+B.; ist aber n = 0(mod. 4), so sind fiir die ,,Meroedrien II. Art*
S, und Dzq in der einen Hilfte der Tafeln die entgegengesetzten Zeilen
aller Doppelzeilen zu verwenden wie in der andern Hilfte, so dass S durch

(o1+ys) (G’ + (%-— 1) W) + (o3 +7y4) (%W) , und Drg durch (o; + o+ B;
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+75) (G +(G -1 W) + (0 + oy + By + 1) (%W) dargestellt wird. Man
sieht, dass in allen Fillen, wo nicht gerade selbstindige Gyroiden auf-
treten, die Zeilenauswahl fiir simtliche verwendeten Tafeln dieselbe ist.
Die Einfachheit der Beziehungen wird besonders augenfillig, wenn man
die kristallographischen Spezialfille der wirteligen mit den kubischen
Gruppen zusammenstellt. Fiir die Beschreibung der 32 kristallographi-
schen Punktgruppen des R sind niémlich nach den Tabellen 3a und 3b
nur acht verschiedene Tafeln notwendig.

Tabelle 3a: Zeilenauswahl der Kristallklassen ohne selbstindige Gyroiden

G+ +G" +
G G+K G+H,+H, G+G'+6& EK+K+K’

nur o, C, Cy
o1+ 0, C; Cy -
o1+ Y, C C, Cq

o, + o, oder o, + 8, 2 D,

o1+ C Can

01+ a, oder o, +8; * Cs,
0'1+0'2+'}/1+'y2 C

oy + 05+ oy + oy oder

Q
~
I3
&

)
=
)
B

o1t o+ B+ By
oytoy+ B+ ys Cyy Cey
o1+ o+ B+, oder Cs,
oyt o+ B+ Dgy
oy tog+ Byt D, D, Dg T o
2 X P e A ol S o
By 855 5 Dy, Dy Dgy Ly Oy

Tabelle 3b: Zeilenauswahl der Kristallklassen mit selbstindigen Gyroiden

G+GF+G +
G+ K K+ K +K”

a1ty (@), o, + (K) S,
o1+ oty + By + Y2 (G), 03+ oy + By + 91 (K) Dyq _
O+ o+ B4y (G, G, G"), 00+, + B +y, (K, K, K”) T,

Entsprechend ihrer Doppelstellung in der hexagonalen und kubischen Syn-
gonie lassen sich nicht nur C; und C,;, sondern auch die iibrigen rhomboedrischen
Gruppen durch die kubischen Tafeln ausdriicken. Die Zeilenauswahl ist dann aller-
dings nicht mehr so einfach; sie lautet fiir Dyoy (G, G, G"), By (K), oz (K’), y2(K"),
fir C:hr G (G’ G” G”)’ 181 (K)s 51 (K’)9 Y1 (K”)1 fur Dsd a1t o, (G9 0’9 G”)’ Bl + ﬁ2 (K)’
oy + oty (K), Y1+ v2(K”). Im ikosaedrischen System schliesslich wird in allen 15
Tafeln I durch die Zeilen g,+oy+8;+7ys, I, durch die samtlichen acht Zeilen
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beschrieben. Fiir die orthorhombischen sowie fiur die rhomboedrischen und kubi-
schen Untergruppen der lkosaedergruppe gestaltet sich die Zeilenauswahl in G
bzw. G, G’, G” gleich wie in der kubischen Syngonie. Ausserdem kénnen natiirlich
die pentagonalen Untergruppen durch geeignete Zeilen von G, I,,1,,I; und I,
dargestellt werden. T

5. Die Korrelation in den kristallographischen Syngonien

In den vergleichenden Symmetriebetrachtungen der Kristallographie
spielen nicht nur die {iblichen Aufstellungen der Symmetrieelemente eine
Rolle. Darum soll — als Anwendung der Tafeldarstellung im vorher-
gehenden Abschnitt — eine vollstindige Ubersicht der Untergruppen und
hypokorrelaten Nebengruppen beider kristallographischen Syngonien des
R™M gegeben werden. Die Tabelle 4a zeigt, wie sich der kubische 48-
Punktner-, -Kantner oder -Flachner auf 98 Weisen in 1054 hypokorrelate
Formen auflésen ldsst; dhnlich zerfiallt nach Tabelle 4b die 24-zdhlige
hexagonale Form allgemeiner Lage auf 54 Weisen in 378 hypokorrelate
Unterformen. Links aussen stehen die Tafelbezeichnungen; Reihenfolge
der Zeilen und zugeordnete Symmetrieoperationen sind den Tabellen
2¢, 2e und 2f zu entnehmen. Am Kopf der Tabellen 4 sind die Unter-
gruppen angegeben, nach denen die Form zerlegt wird, wobei die Lage der
Symmetrieelemente gegebenenfalls durch die Indices bezeichnet ist. Die
Stellung der in einer Spalte auftretenden Einer entspricht dann der
Zeilenauswahl der betreffenden Untergruppe, wihrend andere Ziffern
ihrerseits zusammengehorige Zeilen bezeichnen und so die Nebengruppen
willkiirlich numerieren. Durch EKinsetzen der Koordinaten oder Indices
lassen sich damit simtliche korrelaten Formen der Kristallographie hin-
schreiben.

6. Die Beziechung zwischen Form und Punktgruppe

Wie von P. NigerLr (18) ausgefiihrt wurde, kénnen als Symmetrie-
bedingung der Formen nur die selbstindigen Untergruppen einer Punkt-
gruppe auftreten. Eine Untergruppe ist dann und nur dann selbsténdig,

wenn es fiir sie mindestens einen Punkt im Raume gibt, dessen Koordi-

naten gegeniiber allen Transformationen der Untergruppe, nicht aber
gegeniiber andern Operationen der Gesamtgruppe, invariant sind. Die
uneigentlichen Untergruppen, d.h. die Gesamtgruppe und die nur aus
der Identitdtsoperation gebildete Untergruppe der Ordnung 1, sind offen-
bar stets selbsténdig. Von den eigentlichen Untergruppen dagegen kénnen
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‘Tabelle 4a. Hypokubische Syngonie
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Tabelle 4a (Fortsetzung)
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Tabelle 4a (Fortsetzung)

M
D D of? of s

"

001 010100 001 010 100 001 010 100 . 110 170 101 101 011 01T

Go, | 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1
o | 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1
ag | 1 3 3 1 ,2 2 1 3 3 1 3 3 3 3 2 2
B, | 2 2 4 3 1 2 1 2 4 3 3 3 1 1 3 3
B, | 1 3 1 4 2 1 2 3 1 4 2 2 4 4 4 4
vl 2 4 2 3 2 1 1 4 2 3 1 1 3 3 4 4
yo | 1 1 3 4 1 2 2 1 3 4 4 4 2 2 3 3
oy | 2 4 4 2 2 2 2 4 4 2 4 4 4 4 2 2

Go | 3 5 5 5 3 3 3 5 5 5 5 5 5 b5 5 5
o | 4 6 6 6 3 3 4 6 6 6 6 6 6 6 5 5
o | 3 7 7 5 4 4 3 7 7 5 77 7 7 6 6
B, | 4 6 8 7 3 4 3 6 8 7 77 5 5 7T 7
B, | 3 7 5 8 4 3 4 7 5 8 6 6 8 8 8 8
| 4 8 6 7 4 3 3 8 6 7 5 5 7 7 8 8
Yo | 3 5 7 8 3 4 4 5 7 8 8 8 6 6 7 7
o, | 4 8 8 6 4 4 4 8 8 6 8 8 8 8 6 6

Go,| 5 9 9 9 5 5 5 9 9 9 9 9 9 9 9 9
| 6 10 10 10 5 5 6 10 10 10 10 10 10 10 9 9
@ | 5 11 11 9. 6 6 5 11 11 9 11 11 11 11 10 10
B, 6 10 12 11 5 6 5 10 12 11 11 11 9 9-11 11
B,| 5 11 9 12 6 5 6 11 9 12 10 10 12 12 12 12
yi| 6 12 10 11 6 5 5 12 10 11 9 9 11 11 12 12
va| 5 9 11 12 5 6 6 9 11 12 12 12 10 10 11 11
o, 6 121210 6 6 6 12 12 10 12 12 12 12 10 10

Ko, | 17 3 9 8 77 1 2 12 7 2 312 9 8 7
a, | 8 4 10 7 7 7 8 1 11 8 4 11011 8 7
a | 7 111 8 8 8 7 4 10 7 1 41110 7 8
B, | 8 4 12 6 7 8 7 1 9 5 1 412 9 5 6
B | T 1 9 5 8 7 8 412 6 4 1 912 6 5
yi| 8 2 10 6 8 7 7 3 11 5 2 311 10 6 5
Yo | T 3 11 & 7 8 8 2 10 6 3 21011 5 6
o, | 8 2 12 7 8 8 8 3 9 8 3 2 912 7 8

Ko, | 9 7 3 9 9 9 9 6 2 10 7 6 2 3 9 10
a | 10 8§ 410 9 9 10 5 1 9 5 8 4 1 9 10
a ! 9 5 1 9 10 10 9 8 4 10 8 5 1 410 9
B, | 10 8 211. 910 9 5 3 12 8 5 2 3 12 11
By | 9 5 312 10 9 10 8 2 11 5 8 3 2 11 12
v, | 10 6 411 10 9 9 7 1 12 7 6 1 4 11 12
Yo ! 9 7 1 12 9 10 10 6 4 11 6 7 4 112 11
oy | 10 6 210 10 10 10 7 3 9 6 7 3 210 9

Koy | 11 11 7 4 11 11 11 12 6 3 9 12 7 6 3 4
@] 12 12 8 3 11 11 12 11 5 4 11 10 5 8 3 4
a, | 11 9 5 4 121211 10 8 3 1011 8 5 4 3
Bl 12 12 6 2 11 12 11 11 7 1 1011 7 6 2 1
. | 11 9 7 1 12 1112 10 8 2 11 10 6 7 1 2
yo1 12 10 8 2 12 11 11 9 5 1 912 8 5 1 2
y. 11 11 5 1 111212 12 8 2 12 9 5 8 2 1
o, | 12 10 6 3 12 12 12 9 7 4 12 9 6 7 4 3
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Tabelle 4a (Fortsetzung)

or o G Oy Dsa

001 010 100 110 1T0 101 101 011 01T 111 T11 171 11T

QGo,| 1 1 1 1 1 1 1 1 1 1 1 11 1 1
u| 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
| 3 3 2 3 3 3 3 3 3 2 3 2 2 2 2
“B| 3 1 3 4 4 4 4 4 4 3 4 3 3 3 3
Bs 2 4 4 5 5 5 5 5 b 3 5 3 3 3 3
y.| 1 3 4 6 6 6 6 6 6 4 6 4 4 4 4
y:| 4 2 3 T 7T T F F ¥ 4 7 4 4 4 4
o, | 4 4 2 8 8 8 8 8 8 1 8 1 1 1 1
@o,| 5 5 5 9 9 9 9 9 9 5 9 1 4 2 3
", | 6 6 5 10 10 10 10 10 10 6 10 3 2 4 1
oty 7 T 6 11 11 11 11 11 11 6 11 3 2 4 1
B, 7 5 7 12 12 12 12 12 12 7 12 4 1 3 2
B,| 6 8 8 13 13 13 13 13 13 7 13 4 1 3 2
Y1 5 7 8 14 14 14 14 14 14 8 14 2 3 1 4
Y2 8 6 7 15 15 15 15 15 15 8 15 2 3 1 4
o,| 8 8 6 16 16 16 16 16 16 5 16 1 4 2 3
G’ o, 9 9 9 17 17 17 17 17 17 9 17 1 3 4 2
| 10 10 9 18 18 18 18 18 18 10 18 4 2 1 3
0ty 11 11 10 19 19 19 19 19 19 10 i9 4 2 1 3
B, i 11 9 11 20 20 20 20 20 20 11 20 2 4 3 1
Ba 10 12 12 21 21 21 21 21 21 11 21 2 4 3 1
y.| 9 11 12 22 22 22 22 22 22 12 22 3 1 2 4
ys| 12 10 11 23 23 23 23 23 23 12 23 3 1 2 4
Oy 12 12 10 24 24 24 24 24 24 9 24 1 3 4 2
Ko, | 13 13 13 4 2 20 24 12 14 13 25 2 3 3 2
oy 14 14 13 1 7 19 23 15 13 14 26 4 1 1 4
o, | 15 15 14 8 6 18 22 14 12 14 27 4 1 1 4
B 15 13 15 7 1 17 21 11 9 15 28 1 4 4 1
B 14 16 16 6 8 24 20 20 16 15 29 1 4 4 1
yi.| 13 15 16 3 52319 9 11 16 30 3 2 2 3
Va 16 14 15 2 4 22 18 16 10 16 31 3 2 2 3
o, | 16 16 14 5 3 21 17 13 15 13 32 2 3 3 2
Ko, | 17 17 17 10 12 6 2 24 18 17 33 4 2 4 2
oy | 18 18 17 15 9 1 5 19 17 18 34 1 3 1 3
o | 19 19 18 14 16 8 4 18 24 18 35 1 3 1 3
B, | 19 17 19 9 15 3 7 23 21 19 36 2 4 2 4

.| 18 20 20 16 14 2 6 22 20 19 37 2 4 2 4

yo| 17 19 20 13 11 5 1 21 23 20 38 3 1 3 1
ya| 20 18 19 12 10 4 8 20 22 20 39 3 1 3 1
(o 2 20 20 18 11 13 7 3 17 19 17 40 4 2 4 2
K’ay 21 21 21 24 22 10 14 6 4 21 41 3 3 4 4
oy | 22 22 21 21 19 13 9 5 7 22 42 4 4 3 3
oy 23 23 22 20 18 12 16 4 6 22 43 4 4 3 3
B, | 23 21 23 19 21 1511 1 3 23 44 2 2 1 1

2 22 24 24 18 20 14 10 8 2 23 45 2 2 1 1

V1 21 23 24 23 17 9 13 3 1 24 46 i1 2 2
Y2 | 24 22 23 22 24 16 12 2 8 24 47 1 1 2 2
o, | 24 24 22 17 23 11 15 T 5 21 48 3 3 4 4
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Tabelle 4a (Schluss)
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Tabelle 4b. Hypohexagonale Syngonie
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Tabelle 4b (Fortsetzung)

(H) 0 (H).
Cen Can Cs

100 010 110 310 110 310

N,
P

49

100 010 110 310 110 310

Go,| 1 1 11 1 1 1 1 1
o | 2 1 2 2 2 2 2 2 2
o | 2 1 2 2 2 2 2 3 1
B, | 2 2 1 3 3 3 3 2 3
B, | 2 2 1 38 3 3 3 3 4
yi| 1 2 2 4 4 4 4 4 3
ys | 1 2 2 4 4 4 4 1 4
g, | 1 1 1 1 1 1 1 4 2

Ho, | 3 3 3 5 5 2 3 5 5
o | 4 3 4 1 4 5 5 6 6
o | 4 3 4 1 4 5 5 7 5
B, | 4 4 3 4 1 6 6 6 7
B, | 4 4 3 4 1 6 6 7 8
yi| 3 4 4 6 6 3 2 8 7
Y2 3 4 4 6 6 3 2 5 8
g | 3 3 3 5 5 2 3 8 6

H,o, | 5 5 5 2 3 5 6 9 9
| 6 5 6 5 6 1 4 10 10
a | 6 5 6 5 6 1 4 11 9
B, | 6 6 5 6 5 4 1 10 11
B, | 6 6 5 6 5 4 1 11 12
.| B 6 6 3 2 6 5 12 211
Yo | 5. 6 6 3 2 6 5 9 12
o, | B 5 5 2 3 5 6 12 10

o= cm G 18
100 010 110 310 110 310

qQ o, 1 1 1 1 1 1 1 1 1
o 2 T 2 2 2 2 2 2 2
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Y1 1 4 3 6 6 6 6 4 6
Va 4 3 2 7 7 7 7 4 7
o 4 2 4 8 8 8 8 1 8

H,o, 5 5 5 9 9 2 4 5 9
o 6 5 6 1 7 9 9 6 10
s 7 6 7 8 6 10 10 6 11
8, 7 7 5 7 1 11 11 7 12
Bs 6 8 8 6 8 12 12 7 13
Y1 5 8 7 10 10 5 3 8 14
Ve 8 7 6 11 11 4 2 8 15
oy 8 6 8 12 12 3 5 5 16

H,o, 9 9 9 2 4 9 11 9 17
a, | 10 9 10 9 11 1 7 10 18
ay | 11 10 11 12 10 8 6 10 19
g | 11 11 9 11 9 7 1 11 20
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Y1 9 12 11 5 3 12 10 12 22
ye| 12 11 10 4 2 11 9 12 23
o, | 12 10 12 3 5 10 12 9 24
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im R und R nur C,, (einschliesslich Cy) und C, (soweit nicht in einem
C,, enthalten) selbstindig werden. Den Formen kommen dann folgende
Anzahlen von Freiheitsgraden zu:

im R fiir die Symmetriebedingung C, 1, fiir C,0

im R fiir C, 2, fir C,1, fir C, und C , (n>1)0

im R™ fiir C, 3, fir C.2, fir C, und C,, (n> 1)1, fiir alle éibrigen 0.

Die im Abschnitt 2 gegebene Aufzihlung der méglichen Formenelemente
erfihrt damit die Einschrinkung, dass als Formen ohne Freiheitsgrad nur
Punktner in Frage kommen.

Denkt man sich ein einzelnes Formenelement aus der Konfiguration
herausgenommen, so besitzt es selbst wieder Symmetrieeigenschaften.
Dieser Eigensymmetrie der Formenelemente entspricht eine Unter-
gruppe von K, , wenn es sich um einen Punkt, bzw von D,,;, wenn es
sich um eine Richtung oder Ebene handelt. Insbesondere ist die hochst-
mogliche Eigensymmetrie fiir Punkte im R als C_, im R als C,, im
RII als K, fir Richtungen im RY als C,,, im R als D.,, und fur
Ebenen im RM als D, gegeben. Natiirlich muss stets die Symmetrie-
bedingung der Form in der Eigensymmetrie ihrer Elemente als Unter-
gruppe enthalten sein.

Andererseits lisst sich einer gegebenen Form als ganzes, bei beliebiger
Annahme tiber die Eigensymmetrie der Elemente, die hochstsymme-
trische mit ihr vertrdgliche Punktgruppe als Anordnungs- oder Lage-
symmetrie eindeutig zuordnen. In diesem Sinne haben H. A.JaAnN
und E. TErLER (12) die Symmetriebedingungen fiir die zur Erzeugung
der meisten dreidimensionalen Lagesymmetriegruppen notwendigen und
hinreichenden Formen oder Formenkombinationen angegeben. Dabei ist
zu beriicksichtigen, dass in den Punktgruppen unendlicher Ordnung
nur die ein- und zweizdhligen Formen

Z=1K,inK, ,KinK,D,,inD_,,C
C,in C_;

Z=2C,,inD,,,CrinD,, C,in Cy
eine endliche Zahl von Elementen besitzen. Beschrinkt man sich aber
auf endliche Zihligkeit und damit auf diese Spezialformen, so verliert die
Unterscheidung von K; und K, von D.,, D, und C,, , sowie von C_,
und C,, ihren Sinn; als Lagesymmetriegruppen unendlicher Ordnung sind
dann nur C_, D_, und K, méglich.

Wenn ungleichwertige Elemente auseinandergehalten werden kén-
nen, sind die einzelnen Lagesymmetriegruppen durch Formen bzw. Kom-
binationen folgender Symmetriebedingung eindeutig bestimmt:

we 10 Coics Doy in Dy G 10 G,
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im Rt C; durch 2C,, C, durch 1(C,,C,);
im R C; durch 3C,, C, durch 2(C;,C,); fir n>1C, durch 2C,, C_,
durch 1(Cy, Cy); Cyy, durch 1C, 5 ,
im RUI C, durch 4C,, C; durch 3C,, C, durch 3(C,,C,); fir n>1C,
durch 2C,, S, durch 2C,, C,, durch 2(C,,C,), C,; durch 1C,,
C,, durch 1(C,,C,)+1(C,,0,,C_..), D, durch 1C,, D 4 durch
1(Cy,Cy), Dy, dureh 1(C,,C;,Cyy); T durch 1C;, T, durch
1(Cy,C,), Ty durech 1(C,,C,,C,.), O durch 1C,, O, durch 1(C;,
Cq, Cyy, Oy, Cyy), I dureh 1Cy, I, durch 1(C,,C,,Cyy, Cyy, Cs0)s

‘3v>?

Cyy durch 2C,_, Dy, durch 1C,,,, K, durch 1K, .

Wie im iibrigen Eigensymmetrie und Lagesymmetrie zusammen-
hidngen, ist: — besonders im Hinblick auf die Deutung von Schwingungs-
spektren — schon an anderer Stelle (14) aufgezeigt worden; dort findet
sich auch eine vollstindige Aufzihlung der méglichen Punktsymmetrie-
gruppen fiir zwei- bis zwolfzihlige Formen. Um nun aber auf die Zyklen-
darstellung der Abschnitte 2 und 4 zuriickzukommen, seien nachstehend
die Symmetrieformeln und Bezeichnungen simtlicher allgemeiner und
spezieller Formen gegeben, die durch ein- bis dreidimensionale Punkt-
gruppen endlicher Ordnung erzeugt werden kénnen. Man ersieht daraus,
dags in allen Féllen (fiir sich oder in zusammengesetzten Symbolen) genau
N Einerzyklen auftreten, wobei N wieder die Ordnung der gesamten
Gruppe bedeutet. Die romischen Ziffern beziehen sich auf die im Abschnitt
4 (Tabelle 1) eingefiihrten Typen von isozyklischen Punktgruppen, und
fiir g ist wieder 1 bei geradem, 0 bei ungeradem n zu setzen. {F_} steht
fiir die Summe der Zyklen einer Ordnung x > 2, welche durch die bereits
erliuterte Auflosung der Hauptachse in ihre Unterachsen erhalten werden.

Formen eindimensionaler Punktgruppen:
1. Z =2 '
1
5 [1F]+1F3]
C; in C, (symmetrisch)
2. 2 =1
L[LFY]
C; in C, (asymmetrisch)
1
5 [2F1]
C, In C, (zentral)
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Formen zweidimensionaler Punktgruppen:
1. Z=N

L S [1F}+gFy? 4 (Fox))
C, in C, (n-gonal)
1 n n/x
I o= [1F{" + (n+g) Fg + {F32"]]
C; in C,, (di-n-gonal)

2. Z = N/2

IL . [IF+g o FIFg—Dl4g (3+1) F3?+ (1 —g)n F} Fp-12
+{Fa/)]
C,in C, {n-gonal)
3.Z=1

in allen Gruppen % INF]

C,in C,, C . in C_, (zentral)

Formen dreidimensionaler Punktgruppen:

{ a) wirtelig (einschliesslich mono- und digonal):
1. Z =N

I. Ill [1F} +gFy/2 -+ {Fox}]
C, in €, (fir n =1 pedial, fiir n =2 sphenoidisch, fir n>2
n-gonal-pyramidal); C; in S, mit n =0 (mod. 4) (} n-gonal-strep-
toedrisch)

IL oL [1F3™ 4 (n+g)Fp + (F2o)]
C, in C_, (fiir n=1 (C,) domatisch, fiir n>1 di-n-gonal-pyra-
midal); C; in D, (fiir n=1 (C,) sphenoidisch, fiir n=2 disphe-
noidisch, fiir n> 2 n-gonal-trapezoedrisch); C; in D2q mit n=0
(mod. 2) (fir n=2 (0,,) didigonal-prismatisch, fiir n> 2 di-{n-
gonal-skalenoedrisch)

IT. - [1F" 4+ (1+2g)Fp + [F27%)]
C; in Cy, (fiir n=1 (C,) domatisch, fir n=2 didigonal-prisma-
tisch, fiir n> 2 n-gonal-dipyramidal); C, in C_; mit n=1 (mod. 2)
(fiir n=1 (C;) pinakoidal, fiir n=3 rhomboedrisch, fiir n> 3
n-gonal-streptoedrisch)
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’ 1 n n/x
OT. —[F{"+(2n+1+g) F3* + {F3"~|]
C, in D, (fir n=1 (C,,) didigonal-pyramidal, fir n>1 di-n-
gonal-dipyramidal)
2. Z = Nj2
1 Il n— n, n-—

II. 5-[1 Fi+g ; FIFPp-—212 4o (§+ 1) F22 4 (1-g)nFiF{E-D2 4 {Fﬁlx}]
C,in C,, (fiir n=1 (C,) pedial, fiir n=2 sphenoidisch, fiir n> 2
n-gonal-pyramidal); C, in D (fiir n=1 (C,) pedial, fiir n=2
pinakoidal, fiir n> 2 n-gonal-prismatisch); C; in Dyq mit n=0
(mod. 2) (fir n=2 (C,,) pinakoidal, fiir n=4 tetragonal-di-
sphenoidisch, fiir n =6 rhomboedrisch, fiir n> 6 1n-gonal- strep-
toedrisch); Cyin Dzq mit n =0 (mod. 2) (fiirn = 2 (C,y,) pinakoidal,
fiir n > 2 n-gonal-prismatisch)

’ 1 n mn/a- 11054
I, 5 [2F} +2g Fy%+ {FX}]
C, in C,, (fir n=1 (C,) pedial, fiir n=2 pinakoidal, fir n> 2
n-gonal-prismatisch)
]‘ h )i} nx
OL. - [2F}"+2(m+g) F} + (F2)]
Ci(h) in D, (fiir n=1 (C,,) sphenoidisch, fiir n> 1 di-n-gonal-
prismatisch)
N~ 3 n n— T n/x
[LFP 4 g 3P RO 4 g4 2) P (1) (P B tn B3 (P20 |
Ce(v) in Dy, (fir n=1 (C,,) sphenoidisch, fir n=2 didigonal-
prismatisch, fiir n <2 n-gonal-dipyramidal)
3. Z = N/4
]‘ n— 11, == X
UL [2F +gnFiFE 22 4+ g(n-2) Fy? + (1-g) 2n Fy V2 4 [Fp]]
Cyy in Dy, (fir n=1 (C;,) pedial, fiir n =2 pinakoidal, fiir n> 2
n-gonal-prismatisch)
4. 7 = 2
in allen Kolonnen % [g ¥+ 1; F;]
€rin 8, mit n=0(mod.4), C, in D, Cz in Dzq mit n=0(mod. 2),
C,in C,, C, in C,; mit n=1(mod. 2), C_, in D, (basis-pina-
koidal)
5. Z =1
in allen Kolonnen % [NF]
C, in C,, C,, in C,, (basispedial); S, in S, mit n=0(mod. 4),
D, in Dy, Dz2q in Drg mit n=0(mod. 2), Gy, in Cpp, Cpyy in Cy
mit n=1 (mod. 2), D, in D, (zentral)

1
4in

5 Schweiz. Min, Petr. Mitt., Bd. 33, Heft 1, 1953
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b)isometrisch:
1. Z =N
Ta. 5[1F12+3F§+8F]
C, in T (tetraedrisch- pentagondodekaednsch)
Ib. [1F24+7F12+8F3+8F]
C in T, (dyakisdodekaedrisch)
IVW. o [1F24+9F12+8F3+6F ]
C, in T, (hexakistetraedrisch); C; in O (pentagonikositetra-
“edrisch)
Te. 5o [1F{+19FH+8F+12F}2 +8F5)
C, in O, (hexakisoktaedrisch)
ITa. o5 [1FY +15FY +20F2 4 24 F12]
C, in I (pentagonoid-hexekontaedrisch)

[1F120 L 3170+ 20 F4° + 24 F2* + 20 F3° + 24F
C, in I, (hekatonikosaedrisch)

2. Z = N/2
Ta. [1F6+3F2F3+8F ]
C in T (hexaedrisch)
Tb. 511[1 FI2 L 4TS+ 3F4FL + 8FL + 8 FY
C, in T, (pentagondodekaedrisch)
Ib'. 5 [1F12+3Fﬁ+6F2F +8TFL+6F]
C, in T, (triakistetraedrisch oder deltoiddodekaedrisch); C, in O
(rhombendodekaedrlsch)
Te. 4%[1 F3* + 16 F}® + 3F5 F§ + 8 FS + 12 F¢ + 8 F]
C, (H) in Oy, (tetrakishexaedrisch)
[1 F2 + 13F}2 + 6 F4F10 + 8 F§ + 12 F¢ + 8 Fg]
C, (N) in O,, (triakisoktaedrisch oder deltoidikositetraedrisch)
IMa. & L [1F30 4 15 F2 4 4 20 FL0 + 24 FS]
C, in I (rthombentriakontaedrisch)
7a5 L F1*+16F + 15 F F2 +20F2° + 24 F12 + 20 F5 + 24 FS ]
¢, in I, (dodekakispentaedrisch oder ikosakistriedrisch oder

8

.deltoidhexekontaedrisch)

IIb. 120

ITh.
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3. Z = N/3

Ta. 4 [1F}+3F2+8FF})
C, in T (tetraedrisch)

Ib. o [1F}+7F+8FF;+8F}FY]
C; in T), (oktaedrisch)

Ib'. oy [1FS+9Fs+8F: F:+6F]]
Cs in O (oktaedrisch)

Ila. oo [1FP+15FL0 + 20 F F§+ 24 F4]
C, in T (ikosaedrisch)

4. Z = N/4

Ib. o [1F$+1F3+3F;Fi+3F}F}+8F:+8F}]
C,, in T} (hexaedrisch)
Ib'. o [1F}+9F;F}+8F:+6F}F}]
Cyy in Ty (hexaedrisch)
57 [1F$+ 6 F3 + 3F}F}+8F3+ 6 ¥} F}]
C, in O (hexaedrisch)
To. L[1F*+4F§+3FiFi+12FF+8F)+12F}+ 8 F2)
Cy in O, (rhombendodekaedrisch)
b, i [1FO41FE+15F2F4+15F FS+20 F104+ 24 FS 4 20 FS + 24 F3 ]

© 120
C

5. Z = N/5

5y i I, (rhombentriakontaedrisch)

Ila. oo[1F}?+15F54 20 F+ 24 F3FY]
C; in I (dodekaedrisch)

6. Z = N/6

Ib. o [1Fi+3Fi+6FF}+8FIF+6F]]
C,, in T, (tetraedrisch)
1
Te. [1FS+13F;+6F Fi+8FiF; +12F;+ 8F;Fgl
C,, in O, (oktaedrisch)
ITb. 55[1F;°+16 F3°+ 15 F{ F§+ 20 F; F} 4 24 F3 + 20 F, F{ + 24 FY, ]
C;, in I, (ikosaedrisch)
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7. Z = N/8
1
Te. ZF{+7F3+9FiF;+3F{F;+8F;+6F;Fj+6F,Fi+8F;]

C,, in O, (hexaedrisch)

8. Z = N/10

ITb. 2o [1FE + 16 FS 4 15 F4FS + 20 F + 24 F3 3 4+ 20 F3 4 24 F} ]
C; in I, (dodekaedrisch)

9. Z =1

in allen Kolonnen 1%T[NF}]
Vollsymmetrie in allen Gruppen (zentral)

Schliesslich ist zu beachten, dass bei geeigneter Ausniitzung von
Freiheitsgraden die Elemente gewisser Formen spezielle Lagen einnehmen
konnen, ohne dass sich dabei ihre Symmetriebedingung @ndert. Damit
bleiben auch Zihligkeit und Symmetrieformel der Form erhalten. Zu
einer derartigen Bildung von Grenzformen stehen die folgenden Uber-
gangsmoglichkeiten zur Verfiigung:

im R asymmetrisch — zentral,

im R di-n-gonal — 2n-gonal,

im RMT di-n-gonale Formen — 2n-gonale Formen; pedial — zentral;
sphenoidisch oder domatisch — pinakoidal; n-gonal-pyramidal oder {n-
gonal-streptoedrisch > n-gonal-prismatisch; n-gonal-trapezoedrisch —
n-gonal-streptoedrisch oder di-n-gonal-prismatisch oder n-gonal-dipyra-
midal; di-1 n-gonal-skalenoedrisch — di-n-gonal-prismatisch oder n-gonal-
dipyramidal; disphenoidisch — tetraedrisch; rhomboedrisch — hexa-
edrisch; tetragonal-dipyramidal — oktaedrisch; tetraedrisch-pentagon-
dodekaedrisch — pentagondodekaedrisch oder deltoiddodekaedrisch oder
triakistetraedrisch; pentagondodekaedrisch — dodekaedrisch (reguliir);
pentagonikositetraedrisch oder dyakisdodekaedrisch — triakisokta-
edrisch oder deltoidikositetraedrisch; pentagonikositetraedrisch oder
hexakistetraedrisch — tetrakishexaedrisch; pentagonoidhexekontaedrisch
— dodekakispentaedrisch oder ikosakistriedrisch oder deltoidhexekonta-

edrisch.

Dieser Uberblick zeigt, dass eine Form im allgemeinen mit mehreren
Punktgruppen vertriglich ist. Bei unbekannter Symmetriebedingung
herrscht also Vieldeutigkeit beziiglich der erzeugenden Gruppe; daher
riihrt ja die Bedeutung der zehn kristallographischen zweidimensionalen
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Punktgruppen als moglichen Flachensymmetrien der Kristalle. Tmmerhin
kann die Vieldeutigkeit durch das Auftreten von Kombinationen ver-
schiedener Formen eingeschrinkt werden, und schliesslich lassen sich bei
Kenntnis der Eigensymmetrie die erlaubten Symmetriebedingungen der
Formenelemente wenigstens nach oben abgrenzen.

II. Translative Charaktere: Raumgruppen

7. Die Bedeutung der Charaktere; fixpunktfreie Operationen und
Translationsgruppe

Es gibt Systeme, deren Symmetrieeigenschaften sich nicht vollstidn-
dig durch die Operationen einer Punktgruppe beschreiben lassen. So sind
die Elemente der im folgenden zu behandelnden Anordnungen gegeniiber
den entsprechenden Formenelementen einer Punktsymmetriegruppe
gesetzmissig verschoben oder verdreht; damit wird das Verhalten des
Systems zu den Symmetrieelementen der Punktgruppe entscheidend.
Allerdings ist es nur eine Frage der Ausdrucksweise, ob man verschiedenes
Verhalten zu den Punktsymmetrieelementen einfiithren will, oder iiber-
haupt neunartige Symmetrieelemente, deren Operationen (gekoppelt)
zusitzliche Translationen oder Rotationen enthalten. Die Physik ist bei
der Darstellung der Molekiilschwingungen den ersten Weg gegangen, die
Kristallographie bei der Ableitung der Raumgruppen den zweiten. Da
die Symmetrieelemente ohnehin nur in der Vorstellung existieren, ist der
Unterschied beider Betrachtungsweisen durchaus unwesentlich; doch
diirfte er der Hauptgrund dafiir sein, dass man die weitgehende Analogie
der erwihnten Sachgebiete lange iibersehen hat. Diese Analogie, die sich
sogar als Isomorphie fassen lisst, wird im IV. Teil deutlich werden.

Durch die Einfiihrung sogenannter Charaktere ergibt sich nun die
Moglichkeit einer ,neutralen Darstellung derartiger Verhiltnisse. Der
Charakter einer Symmetrieoperation soll die zusiitzliche Verschiebung
(translative Charaktere) oder Drehung (rotative Charaktere) des
Formenelements gegeniiber seiner Lage in der starren Punktsymmetrie-
gruppe zum Ausdruck bringen. Die Eigenschaft der Periodizitit legt
dafiir eine Verwendung von Winkelfunktionen nahe; wegen der auftreten-
den Vieldeutigkeit erweist sich die cos-Funktion als besonders geeignet.
Eine strenge Bestimmung des Charakterenbegriffs bleibt den Abschnnitte
9 und 12 vorbehalten. Hier sei lediglich betont, dass der Charakter zwar
die Zusatztranslation bzw. Zusatzrotation festlegt, aber die Frage offen
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liisst, ob man fiir sie ein Symmetrieelement als solches oder das Verhalten
des Systems verantwortlich machen will.

In der Theorie der Schwingungsspektren ist die Verwendung von Charakteren
seit der Einfiihrung gruppentheoretischer Methoden durch E. WieNER (37) iblich;
zur Darstellung der Raumgruppen wurde sie erst kiirzlich von P. NiceLr (24)
vorgeschlagen. Die Behandlung der translativen Charaktere kann sich hier auf
das wesentliche beschrinken, da schon an anderer Stelle (15) anhand zahlreicher
Beispiele dariiber berichtet worden ist. Da {iberdies die Anordnung der im Abschnitt
-4 aufgestelltenr Koordinatentafeln unmittelbar als Leerform dient, sind die for-
malen Grundlagen fur die Einfithrung der Charakterentafeln bereits gegeben,

Durch geeignete Kombination von Punktsymmetrieoperationen mit
Translationen entstehen die im Abschnitt 1 erwahnten fixpunktfreien
Symmetrieoperationen, welche keinen Punkt des Raumes in sich
selbst iiberfithren, ndmlich:

im R! Identitdt 4+ Translation = Translation,

im R Identitit + Translation = Translation, Spiegelung + Trans-
lation (parallel zur Spiegelgeraden) = Gleitspiegelung,

im RUI Jdentitdt + Translation = Translation, Spiegelung + Trans-
lation (parallel zur Spiegelebene) = Gleitspiegelung, Drehung +
Translation (parallel zur Drehungsachse) = Schraubung.

Andere Kombinationen fithren nicht zu neuartigen Symmetrie-
operationen: man iiberzeugt sich leicht davon, dass eine Kombination
von Translation mit Spiegelung im RT, mit Drehung im RY, mit Dreh-
inversion, Drehspiegelung oder Inversion im R, sowie das Hinzufiigen
von Translationen senkrecht zu den andern Symmetrieelementen gar
keine fixpunktfreien Operationen ergeben, sondern lediglich die Lage des
Symmetrieelements verindern. Ein fixpunktfreies Symmetrieelemerrt ist
offenbar durch seine Lage allein nicht vollstindig gekennzeichnet: bei
Gleitspiegelgeraden ist der Betrag der Gleitkomponente, bei Gleitspiegel-
ebenen der Betrag und die Richtung der Gleitkomponente, und bei
Schraubenachsen der Betrag der Schraubungskomponente zusitzlich
anzugeben.

Das Auftreten von Verschiebungen als Deckoperationen hat natur-
gemiiss zur Folge, dass nicht nur die Anordnung der Formenelemente sich
ing Unendliche erstreckt, sondern auch dass die Symmetrieelemente
unendliche Parallelscharen bilden. In jedem Falle erfiillen die samt-
lichen reinen Decktranslationen einschliesslich der Identitdatsoperation
die im Abschnitt 1 aufgezihlten Gruppenpostulate. Daher lassen sie sich
als die Elemente einer diskreten kommutativen Gruppe unendlicher Ord-
nung, der Translationsgruppe, auffassen. Wird die Translations-
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gruppe durch t linear unabhingige Verschiebungsvektoren erzeugt, so ist
sie t-dimensional; die Dimensionszahl des betrachteten Raumes stellt
offenbar die obere Grenze fiir t dar. Sieht man vom Trivialfall t =0 ab,
in welchem die Translationsgruppe zur Identititsoperation entartet, so
bildet die Gesamtheit der beziiglich ihrer Operationen gleichwertigen,
d.h. translativ identischen Punkte fiir t =1 eine einfach-unendliche
Kette, fiir t =2 ein zweifach-unendliches Netz, und fiir t =3 ein drei-
fach-unendliches Gitter.

Die kiirzesten linear unabhiingigen Translationsvektoren spannen
den Bereich der Nichtidentitit auf als den gréssten Raumteil, in welchem
— ausser den nur partiell dazuzurechnenden Grenzpunkten — keine zwei
Punkte translativ identisch sind. Er ist im R! eine primitive Strecke, im
RY ein primitives Parallelogramm, und im R ein primitives Parallel-
epiped. Der betrachtete Raum lisst sich aufbauven, indem man unendlich
viele solcher primitiven Bereiche je nach der Dimensionszahl der
Translationsgruppe zu Ketten, Netzen oder Gittern aneinanderreiht.
Ganz im Sinne der zu Beginn zitierten Pascarschen Symmetriedefinition
geniligt deshalb die Kenntnis der Elemente eines einzigen primitiven
Bereichs, um die ganze unendliche Anordnung zu beherrschen. Der
Elementarbereich, auf den man sich bei der Beschreibung einer Struk-
tur bezieht, indem seine Kanten zu Kinheitsvektoren gewihlt werden,
fallt allerdings nicht immer mit einem primitiven Bereich zusammen. Die
Beziehungen zur phianomenologischen Kristallographie legen es ndmlich
nahe, die Einheitsvektoren in jedem Falle in kristallographische Achsen
zu legen; eine solche symmetriegerechte Wahl des Bezugssystems fithrt
aber oft zu n-fach primitiven (zentrierten) Elementarparallelogrammen
und (flichen- oder raumszentriérten) Elementarparallelepipeden, deren
jedes n translativ identische Elemente enthilt.

Die Gestalt der Elementarbereiche wird durch die Symmetrie der
Translationsgruppe bestimmt, die ihrerseits mit der isomorphen Punkt-
gruppe vertridglich sein muss. Damit ist die Moglichkeit gegeben, die
jeweils mit Translationsgruppen von gleicher Symmetrie kombinierbaren
kristallographischen Punktgruppen zu Systemen zusammenzufassen;
einfache Analogiebeziehungen gestatten die Ubertragung des Systems-
begriffs auf nichtkristallographische Punktgruppen im Sinne von 8. 28.

Die mdéglichen Translationsgruppen wurden fiir dreidimensionale Gitter erst-
mals von BrAvAls abgeleitet. Im folgenden seien die verschiedenen Typen des ein-
bis dreidimensionalen Raumes zusammengestellt, wobei fiir jeden Fall auch die
Punktsymmetriegruppe und gegebenenfalls das Raumgruppensymbol der Anord-
nung von Ketten-, Netz- oder Gitterpunkten angegeben wird:
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_ Fur einfach-periodische Anordnungen kommt nur die primitive Kette
mit der Punktsymmetrie C, im RY, C,, im R™ und D, im R™ in Frage.

Fiir zweifach-periodische Anordnungen bestehen schon fiinf Méglich-
keiten, namlich das primitive allgemeine Netz mit C, im R™ bzw. C,, im R™, das
primitive Rechtecknetz mit C,, im R™ bzw. D,, im R™, das zentrierte Rechteck-
netz mit denselben Punktsymmetrien, das quadratische Netz mit C,, im R" bzw.
D,, im R™, und das hexagonale Netz mit Cg, im R™ bzw. Dy, im R".

Fir dreifach-periodische Anordnungen sind insgesamt 14 verschiedene
Typen moglich, nidmlich das primitive trikline Gitter mit C{, das primitive mono-
kline Gitter mit C},, das (basis-)flichenzentrierte monokline Gitter mit C3,, das
primitive orthorhombische Gitter mit Dj,, das (basis-)flichenzentrierte orthorhom-
bische Gitter mit D}, das allseitig flichenzentrierte orthorhombische Gitter mit
D33, das raumzentrierte orthorhombische Gitter mit D3}, das primitive tetragonale
Gitter mit D},, das (basisflichen- oder raumzentrierte) tetragonale Gitter mit D},
das rhomboedrische Gitter mit D3;, das hexagonale Gitter mit Dg,, das primitive
kubische Gitter mit Of, das allseitig flichenzentrierte kubische Gitter mit O}, und
das raumzentrierte kubische Gitter mit Oj.

Abweichend von der in den ,,Internationalen Tabellen‘* (11) ublichen Dar-
stellungsweise sollen hexagonale und trigonal-rhomboedrische Anordnungen im
folgenden stets auf das von P. Nigerr (18) verwendete doppeltprimitive ortho-
hexagonale Elementarparallelogramm bzw. Elementarparallelepiped bezogen
werden. Dabei stehen die Einheitsvektoren zueinander in der Beziehung a = ﬁ b;
die entsprechenden Transformationsgleichungen fiir die Uberschriften der Tafeln
wurden bereits im Abschnitt 4 gegeben. Die orthohexagonale Darstellung bietet
den Vorteil der einfacheren Behandlung durch die Charakterentafeln, und ausser-
dem tritt in ihr der Zusammenhang mit den orthorhombisch-basisflichenzentrierten
Gruppen klarer zutage.

Zur Erleichterung der Umrechnung seien noch die Transformationsmatrizen
fiir den Ubergang vom (in der beschreibenden Kristallographie iiblichen) hexa-
gonalen zum orthohexagonalen Bezugssystern und umgekehrt angegeben. Lisst
man in den viergliedrigen hexagonalen Symbolen des R™ die dritte Grésse — die
ja gleich der negativen Summe der beiden ersten ist — einfach weg, so erhilt man:

I II 11 IV
10 0 2 0 0 2 1 0 1 1-3 o0

11 0 11 0 0 1 0 01 0
0 0 1 0 0 1 0 0 1 0 0 1

Die Transformationen sind nicht orthogonal. Von den Matrizen sind I und IT
gowie IIT und IV zueinander invers, I und IV sowie 11 und III zueinander trans-
pontert, I und III sowie IT und IV zueinander kontragredient. Fiir die Trans-
formation von hexagonalen Punktkoordinaten xyz und Richtungsindices [uvw]
in orthohexagonale findet die Matrix I Anwendung, fiir die Rucktransformation
von orthohexagonalen Punktkoordinaten und Richtungsindices in hexagonale die
Matrix IT. Demgegeniiber ist fiir die Transformation hexagonaler Flichenindices
(hkl) in orthohexagonale die Matrix III massgebend, und fiir die Riicktransfor-
mation orthohexagonaler Flachenindices in hexagonale die Matrix IV. Im R fallen
bei simtlichen Matrizen die dritten Zeilen und Spalten weg.



Charakterentafeln als Ausdruck der Symmetrieeigenschaften 61

Bekanntlich entstehen nun die Raumgruppen durch geeignete
Kombination einer Punktsymmetriegruppe mit einer Translationsgruppe.
Dabei ist die Punktgruppe (endlicher Ordnung) Faktorgruppe der Raum-
gruppe beziiglich der Translationsgruppe (unendlicher Ordnung) als
Normalteiler; sie ist zur Raumgruppe isomorph. Sehr schén kommt diese
Beziehung etwa in der Operatorendarstellung von F. Sgrrz (33) fir die
dreidimensionalen Raumgruppen der Kristalle zum Ausdruck., Offenbar
sind bei der Beschreibung einer Raumgruppe ausser der isomorphen
Punktgruppe und der Translationsgruppe auch die allfilligen Zusatz-
translationen der Punktsymmetrieoperationen, also die Gleit- und
Schraubungskomponenten, sowie die Lagebeziehungen der Symme-
trieelemente zueinander wesentlich. Solche Grossen wurden denn auch
von C. HERMANN (9) als sogenannte ,,Kennvektoren‘ zur Ableitung der
Raumgruppen herangezogen. Sie sind jedoch nicht voneinander unab-
hingig, sondern, wie P. N1caLI (16) gezeigt hat, durch Symmetriesitze
verkntipft. Auf die Symmetriesitze soll im Teil IV noch besonders ein-
gegangen werden; schon hier sei aber angedeutet, dass die Zweckmissig-
keit der Charakterendarstellung wohl vor allem auf der Tatsache beruht,
dass sie den Symmetriesitzen in einfacher Weise Rechnung trigt.

Ubrigens ist die im Abschnitt 2 gegebene Definition der Ordnung n
einer Symmetrieoperation fiir die fixpunktfreien Operationen insofern zu
erweitern, als ihre n-malige Ausfithrung erstmals simtliche Punkte des
Raumes in translativ identische Punkte iiberfiilhrt. So werden den
geschlossenen Zyklen der Punktsymmetrielehre die offenen Zyklen
gegeniibergestellt, welche in diskontinuierlichen Gruppen ebenfalls von
endlicher Ordnung sind. Das bedeutet aber, dass sich alle im Teil T an
Punktgruppen angestellten, mit der Zyklengliederung zusammenhéngen-
den Uberlegungen ohne weiteres auf die Raumgruppen iibertragen lassen.

8. Systematik der Raumgruppen und Untergruppen

Im Abschnitt 2 wurden die Punktgruppen von den Raumgruppen
abgegrenzt durch die Forderung, dass alle ihre Symmetrieoperationen
mindestens einen Punkt des Raumes fest lassen. Die gleichfalls iibliche
Ausdrucksweise, dass ihre simtlichen Symmetrieelemente sich in einem
Punkte schneiden, fiithrt bei den asymmetrischen Gruppen C,; zu Schwie-
rigkeiten, da ja das Symmetrieelement der Identitidtsoperation durch den
ganzen Raum gegeben ist. In allen iibrigen Fillen sieht man allerdings
leicht ein, dass zwei Symmetrieelemente, die sich nicht schneiden, einan-
der gegenseitig zu Parallelscharen vervielfachen. So entspricht denn auch
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dem Hauptsymmetriepunkt der Punktgruppen, der auf simtlichen Sym-
metrieelementen liegt, in den Raumgruppen im allgemeinen nicht nur
eine Kette, ein Netz oder ein Gitter von translativ identischen Haupt-
punkten, sondern mehrere derartige Punktscharen, die je einem Teil
der Scharen von Symmetrieelementen angehéren. Die durch ihre Sym-
metrieeigenschaften ausgezeichneten Hauptpunkte wurden fiir die Raum-
gruppen der Kristalle von K. WEISSENBERG (36) angegeben; auf ihre
Bedeutung fiir die Nullpunktswahl des Bezugssystems soll im folgenden
Abschnitt eingegangen werden. :

Es wurde bereits erwihnt, dass die Punktgruppen als Spezialfille
von Raumgruppen mit nulldimensionaler Translationsgruppe aufgefasst
werden konnen. Betrachtet man iiberhaupt eine Raumgruppe im r-dimen-
sionalen Raum, so diirfen von den r Koordinaten, welche die Lage eines
Punktes beschreiben, 0,1, 2,..,r gegeniiber den Operationen der Trans-
lationsgruppe invariant sein; dementsprechend wird die Translations-
gruppe selbst r,r—1,r-2,.., 0-dimensional, allgemein t-dimensional mit
t <r. Die Anordnung gleichwertiger Raumpunkte allgemeiner Lage ist
dann in (r—t) Dimensionen endlich begrenzt, wihrend sie sich nach
t Dimensionen — von willkiirlichen Randbedingungen abgesehen — ins
Unendliche erstreckt.

Mit den Dimensionszahlen des betrachteten Raumes und der
Translationsgruppe, r und t, bietet sich nun eine erste Méglichkeit fiir die
Einteilung der Raumgruppen. W. v. EENGELHARDT (7) hat die Gruppen
des ein- bis dreidimensionalen Raumes, die sich anschaulich verwirklichen
lassen, nach diesem Gesichtspunkt bezeichnet, doch kénnen seine ,,Zylin-
derklassen‘‘ mit den Zylindergruppen des Abschnitts 3 verwechselt wer-
den. Hier sollen die folgenden Namen Verwendung finden:

r=1, t=0 eindimensionale Punktgruppen

r=1, t=1 Reihengruppen

r=2, t=0 zweidimensionale Punktgruppen
r=2, t=1 Bandgruppen

r=2, t=2 Fladchengruppen

r=3, t=0 dreidimensionale Punktgruppen
r=3, t=1 Balkengruppen

r=3, t=2 Schichtgruppen

r=3, t=3 Gittergruppen

Wegen ihrer kristallographischen Bedeutung werden die Gittergruppen
meist kurzweg ,,Raumgruppen’ genannt. Als Oberbegriffe sind weiter
die Bezeichnungen Kettengruppen fiir t=1, Netzgruppen fir t=2,
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Gittergruppen fiir t=3 gebriduchlich. Im ein- bis dreidimensionalen
Raum zerfallen somit die Kettengruppen in Reihen-, Band- und Balken-
gruppen, die Netzgruppen in Flichen- und Schichtgruppen.
Ein Komplex von gleichwertigen Punkten allgemeiner Lage, d. h. die allge-
meine Form der Raumgruppe, liegt im Falle einer
eindimensionalen Punktgruppe auf einer Strecke,
zweidimensionalen Punktgruppe in einer ebenen Kreisfliche,
dreidimensionalen Punktgruppe in einer Kugel,
Reihengruppe auf einer Geraden,
Bandgruppe in einer Ebene zwischen zwei parallelen Geraden,
Balkengruppe in einem geraden Kreiszylinder,
. Flachengruppe in einer Ebene,
Schichtgruppe zwischen zwei parallelen Ebenen,
Raumgruppe im dreidimensionalen Raum.

Bei der Kombination einer Punktgruppe mit einer Translations-
gruppe gilt nun bekanntlich die Einschrinkung, dass nur dann eine dis-
kontinuierliche Raumgruppe entsteht, wenn die Gesamtheit der Trans-
lationsvektoren gegeniiber allfilligen Operationen der Ordnungen 5 oder
> 6 invariant ist. Diese Bedingung lasst sich nur fiir eindimensionale
Translationsgruppen erfiillen. Beriicksichtigt man weiter die Verviel-
fachung der Translationsrichtungen durch die Symmetrieoperationen der
Punktgruppe, so folgt daraus, dass zu Netz- und Gittergruppen nur
kristallographische Punktgruppen mit Drehungen (Drehspiegelun-
gen, Drehinversionen) der Ordnungen 1, 2, 3, 4, 6 isomorph sein kénnen,
dass in Bandgruppen nur Operationen der Ordnungen 1 und 2 auftreten
diirfen, und dass schliesslich in Balkengruppen den allfélligen Operationen
einer Ordnung > 2 nur ein einziges Symmetrieelement zugeordnet sein
kann. Dabei muss in den Balkengruppen die > 2-zéhlige Symmetrieachse
in der Translationsrichtung liegen, und in den Schichtgruppen steht die
Gesamtheit derartiger Achsen auf den beiden Translationsrichtungen
senkrecht.

Die Punktgruppen, welche nach diesen Vorbehalten zu den verschie-
denen Arten von Raumgruppen isomorph sein kénnen, werden — in nicht
besonders gliicklicher Weise — ,,geometrische’ oder g-Klassen genannt.
Thre K ombination mit den passenden Translationsgruppen des Abschnitts
7 liefert zunéchst die ,,arithmetischen‘‘ oder a-Klassen. Untersuchungen
iiber die g- und a-Klassen der dreidimensionalen Raumgruppen sind von
P. N1icorLt und W. Nowackr (26) angestellt worden; auch J.J. BURCEK-
HARDT (5) bedient sich ihrer zur Ableitung der Raumgruppen. Grundsétz-
lich entsprechen einer g-Klasse mehrere a-Klassen, da die Punktgruppe
im allgemeinen mit mehreren Translationsgruppen kombiniert werden
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kann, oder, was auf dasselbe herauskommt, in verschiedenen QOrientierun-
gen der Punktsymmetrieelemente zu den Translationsrichtungen. Die
Mannigfaltigkeit der Raumgruppen selbst entsteht aus den a-Klassen
durch Hinzufiigung von Zusatztranslationen; auch hier bieten sich in der
Regel mehrere Moglichkeiten. Fiir den Spezialfall der nulldimensionalen
(entarteten) Translationsgruppe fallen natirlich die g-Klassen, die a-
Klassen und die Raumgruppen in den Begriff der Punktgruppe zusammen.

Die Tabelle 5 gibt eine Ubersicht der Anzahlen von Systemen,
Klassen und Gruppen im ein- bis dreidimensionalen Raum. Zueinander
enantiomorphe Gruppen I. Art sind darin getrennt gezihlt; wird der ent-
gegengesetzte Windungssinn ihrer Schraubenachsen nicht als wesentlicher
Unterschied gewertet, so erniedrigt sich die Zahl der kristallographischen
Balkengruppen von 75 auf 67, die Zahl der wirteligen Raumgruppen von
194 auf 183, und die Gesamtzahl der dreidimensionalen Raumgruppen
von 230 auf 219.

Ausser den Dimensionszahlen von Raum und Translationsgruppe und der
2- bzw. a-Klassenzugehdrigkeit gibt es noch weitere Einteilungsmaoglichkeiten fir
die Raumgruppen. Da sind zunéchst die Eigenschaften der isomorphen Punkt-
gruppe, welche ebenso als Unterscheidungsmerkmale herangezogen werden koén-
nen, wie dies im Abschnitt 3 fir die Punktgruppen selbst geschah. So wird man
etwa von kristallographischen und nichtkristallographischen Balkengruppen oder
von wirteligen und isometrischen Raumgruppen (im engeren Sinn, d. h. Gitter-
gruppen) sprechen, und da ja die Translationsgruppe nur Operationen 1. Art ent-
hélt, ist der Gegentiberstellung von reinen Drehungsgruppen und Punktgruppen
I1. Art eine Unterscheidung von reinen Bewegungsgruppen und Raumgruppen
I1. Art analog. Tmmerhin sei nicht verschwiegen, dass man bei Hinzunahme einer
weiteren Raumdimension Gberhaupt auf die Gruppen II. Art verzichten kénnte:
wie MoEBIUS als erster erkannt hat, ldsst sich némlich jede Spiegelung im n-dimen-
sionalen Raum als Drehung im (n + 1)-dimensionalen Raum mit einer verschwin-
denden Koordinate darstellen. Der kristallographischen Denkweise ist dieser
Gesichtspunkt zwar wesensfremd, doch wurde er von G. Poryva (29) zur Herleitung
der Flachengruppen als speziellen dreidimensionalen Gruppen (mit Klappachsen
anstelle der Spiegelgeraden in der ,,durchsichtigen‘ Ebene), sowie von H. HEESCcH
(8) zur Darstellung der dreidimensionalen Raumgruppen als Bewegungsgruppen
mit vierdimensionalen Drehungen beniitzt.

Eine weitere kennzeichnende Kigenschaft der Raumgruppen ist
durch die Beziehung zwischen isomorpher Punktgruppe und Faktor-
gruppe beziiglich der Translationsgruppe gegeben; sie wird durch die
Zusatztranslationen bestimmt. Sind isomorphe Punktgruppe und
Faktorgruppe identisch, ist also die Raumgruppe direktes Produkt aus
Punktgruppe und Translationsgruppe, so treten keine Zusatziranslati-
onen auf. Simtliche Symmetrieelemente der Punktgruppe schneiden sich
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Tabelle 5. Anzahlen ein- bis dreidimensionaler Symmetriegruppen

Dimensions- :
zahl endlicher Ordnung unendl. Ordnung

Transl.-| kristallographisch nichtkristallogr.

total davon
gruppe | wirteliz isometr. wirtelig isometr.

Raum krist.

wirtelig isometr.

a) Systeme

1 1
2 — 4 — [o'e] s 1 — o0 4
3 — 6 1 o0 1 1 1 o0 7
b) Punktgruppen
I 2 — — — — 2 2
2 — 10 — e’ — 2 - o0 10
3 — 27 5 o0 2 5 2 o0 32
c¢) Translationsgruppen
— 1 1 — — — — — 1 1
o 2 5 — — - — — 5 5
— 3 11 3 — — — — 14 14
d) g-Kliassen
1 1 2 — — — — — 2 2
2 1 4 — — — — — 4 4
2 2 10 — — — — — 10 10
3 1 27 — 0 o 5 — o0 27
3 2 27 — — — s — 27 27
3 3 27 5 — — — — 32 32
e) a-Klassen
1 1 2 — — — — — 2 2
2 1 5 — — — — -— 5 5
2 2 13 — — — — — 13 13
3 1 31 — o0 — 5 — o) 31
3 2 42 — — — — — 42 42
3 3 58 15 — — — — 73 73
f) Raumgruppen *
1 1 2 — — — — — 2 2
2 i 7 — — — — — 7 7
2 2 17 — — — — — 17 17
3 1 75 — 0 — 5 —_— o0 75
3 2 80 — — — — — 80 80
3 3 194 36 — — — — 230 230

auch in der Raumgruppe in einem Hauptpunkt, dem als Symmetrie-
bedingung die volle isomorphe Punktgruppe zukommt. Man sieht leicht
ein, dass jede a-Klasse genau eine derartige, nach v. FEDEROW als sym -
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morph bezeichnete Raumgruppe enthilt. Sind dagegen Zusatztrans-
lationen vorhanden, so erreicht keiner der Hauptpunkte die Symmetrie-
bedingung der g-Klasse, und die Raumgruppe ist asymmorph. Die
historische Entwicklung der Ableitung kristallographischer Raumgruppen
hat es mit sich gebracht, dass die Raumgruppen mit der hochsten reinen
Drehungsuntergruppe der isomorphen Punktgruppe als Symmetrie-
bedingung von Hauptpunkten ausgezeichnet und hemisymmorph
genannt wurden. Es diirfte sich aber empfehlen, solche Raumgruppen
drehungssymmorph zu nennen; der iibergeordnete Begriff der hemi-
symmorphen Raumgruppen bezieht sich dann auf alle jene Fille, in
denen die hdochste Symmetriebedingung der Hauptpunkte eine Unter-
gruppe vom Index 2 der isomorphen Punktgruppe ist.

Ubrigens haben P. NigoL1 und W. NowAcKT (26) noch den weiteren
Begriff der systemssymmorphen Raumgruppen eingefiihrt, deren
hichste Symmetriebedingung wenigstens dem System der isomorphen
Punktgruppe angehért; in ihnen wird die Translationsgruppe der a-Klasse
schon durch die translationsfreien Punktsymmetriecperationen ausge-
wiihlt. So ist die Symmorphie nicht mehr auf die isomorphe Punktgruppe
selbst, sondern auf ihr System bzw. auf die iibergeordnete Holoedrie
bezogen. Nach diesem Gesichtspunkt lisst sich aber das Begriffssystem
erweitern, indem man den holoedrisch-systemssymmorphen Raumgrup-
pen allgemein die meroedrisch-systemssymmorphen und im besondern
die hemiedrisch-, tetartoedrisch-systemssymmorphen Raumgruppen usw.
gegeniiberstellt.

Die Zusammenfassung der Raumgruppen in Systeme entspricht
genau derjenigen ihrer g-Klassen, wobei die Auswahl der geeigneten
Translationsgruppen ein einfaches Kriterium abgibt. Fir die Syngonie-
beziehung dagegen trifft das nicht vollig zu. Definiert man néamlich als
Syngonie (im engeren Sinne) einer Raumgruppe die Gesamtheit ihrer
Unter-Raumgruppen, so werden nicht alle zu einer der Punktgruppen-
syngonie angehérenden Punktgruppe isomorphen Raumgruppen erfasst.
Symmetrieelemente, die beziiglich der Ausgangsgruppe gleichwertig
waren, diirfen sich in ihren Zusatztranslationen ja nicht unterscheiden.
So ist es sehr wohl moglich, dass beispielsweise eine tetragonale Raum-
gruppe nicht der kubischen Raumgruppensyngonie angehort, also nicht
als hypokubisch bezeichnet werden darf. Ebenso schliesst die weitere
Zusammenfassung zu einer tetragonalen Syngonie nicht alle orthorhom-
bischen Raumgruppen ein; somit lassen sich etwa aus den orthorhom-
bischen die orthorhombisch-hypotetragonalen und aus diesen wiederum
die orthorhombisch-hypokubischen Raumgruppen herausgreifen.
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Tabelle 6. Zihligkeiten selbstindiger kristallographischer Untergruppen

Selbstindige Untergruppen

Symmetriebedingung: ¢, C€; C; C; Cy C, Gy, Ciy Ciy Ceyeymm.

geometr. Wertigkeit: 1 2 3 4 6 2 4 6 8 12 N
N F | Freiheitsgrade: 3 1 1 1 1 2 1 1 1 1 F
1 3 C, SN T |
2 0 C, B o e e e e o = ]
2 2 C, E e — b et wed e == =
2 1 C, B e mee e e s e mmem e
4 0 Cyn 4 2 — — — 2 — — — — 1
4 1 Cy, 4 — — — — 2 — — — — 1
4 0 D, 4 2 - — — — — — — — 1
8 0 Dy, 8 e o e B B o— e — ]
4 1 C, 4 — — — — e e =
4 0 Sa 4 2 - — — — — — — — 1
8 0 D, 8 4 — — — 4 2 — — — 1
8 1 '+ (R F U |
8 0 Cin g§ — — 2 — 4 — — — — 1
8 0 D, 8 4 — 2 - — — — — — 1
16 0 Dy, 6 — — — — 8 4 — 2 — 1
3 1 Oy (VR S
6 1 Ce 6 — — — — — — — — — 1
6 0 D, 6 3 2 — — = — — — — 1
6 1 Qs f s e men e B e e o ]
6 0 Cyy 6 — 2 — — — — — — — 1
6 0 Cin B s B e — B — e — .
12 0 Dy, 2 - — — — 8 3 2 — — 1
12 0 D, 18 6 — <= — B — F — — "k
12 1 Ce 2 - — — — 8 — — — — 1
12 0 Uss, 12 o — sa= 2 B — — — 21
12 0 D, 12 6 - — 2 — — — — — 1
24 0 Dy, 24 — — — — 12 6 — — 2 1
12 0 T 18 B B o= = o e e o e ]
24 0 Ty 24 — — — — 12 6 4 — — 1
24 0 T 94 e § = — 18 f — — — 1
24 0 0 24 12 8 6 — — — — — — 1
48 0 0, 48 — — — — 24 12 8 6 — 1

Eine Systematik der Untergruppen hat C. HERMANN (9) vorge-
schlagen. Nach ihm werden zu einer gegebenen Raumgruppe die Unter- .
gruppen mit unverinderter Translationsgruppe zellengleich, und die
zur selben g-Klasse gehorigen Untergruppen klassengleich genannt;
allgemeine Untergruppen sind weder zellen- noch klassengleich. Die
Translationsgruppe einer allgemeinen oder einer klassengleichen Unter-
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gruppe ist offenbar selbst eine eigentliche Untergruppe der urspriinglichen
Translationsgruppe. Nicht-zellengleiche Untergruppen, bei denen wenig-
stens die Dimensionszahlen des Raumes und der Translationsgruppe
erhalten bleiben, kénnten als dimensionsgleich ausgezeichnet werden.
Im allgemeinen Fall wird nimlich der Dimensionsabbau der Translations-
gruppe, also etwa die Frage nach Schicht-, Balken- und Punktgruppen
als Untergruppen einer dreidimensionalen Raumgruppe, fir die Struktur-
analyse von Bedeutung sein, und auch der Ubergang zu Unterriumen
wird gelegentlich vollzogen. Beispiele von dimensionsgleichen Unter-
gruppen sind etwa durch die einfach primitiven klassengleichen Unter-
gruppen einer Raumgruppe mit mehrfach primitiver Elementarzelle
gegeben. '

Zwischen den Dimensionszahlen des Raumes und der Translationsgruppe,
r bzw. t, einer Raumgruppe und denjenigen einer nicht-dimensionsgleichen Unter-
gruppe, r’ bzw. t’, gilt mindestens eine der Ungleichungen r’<r, t'<t. Diese
Beziehung sei fiir den ein- bis dreidimensionalen Raum durch das folgende Schema
verdeutlicht, in welchem die Pfeile von Gruppe zu Untergruppe weisen:

Raumgruppen -> Schichtgruppen — Balkengruppen -> Punktgruppen im R™

B
~ v ¥ o
Flachengruppen — Ba,ndgruppén — Punktgruppen im R™
~
\ v v

Reihengruppen — Punktgruppen im R!

Schliesslich ist noch auf den wichtigen Begriff der Selbstindig-
keit, wie er S. 41 erliutert wurde, hinzuweisen. Im Bereiche der Punkt-
gruppen und der symmorphen Raumgruppen sind uneigentliche Unter-
gruppen offenbar stets selbstindig. Wegen ihrer grossen Bedeutung sind
die selbstindigen Untergruppen der 32 dreidimensionalen kristallogra-
phischen Punktgruppen in der Tabelle 6 mit ihren Zihligkeiten zusam-
mengestellt. N bedeutet die Ordnung der Gruppe, F die Zahl der Frei-
heitsgrade.

9. Form und Deutung der translativen Charakterentafeln

Es wurde bereits erwahnt, dass die in den Koordinatentafeln des Abschnitts 4
getroffene Anordnung der Punktsymmetrieoperationen als Leerform der Charak-
terentafeln beniitzt wird. So handelt es sich nun darum, die Charaktere selbst zu
definieren, sie in die Leerform der Tafeln einzusetzen, und sie schliesslich — trans-
lativ oder rotativ — zu deuten, Zundchst soll gezeigt werden, wie die Eigenschaften
und verschiedenen Einteilungsméglichkeiten der Raumgruppen und der Unter-
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gruppen in den Charakterentafeln zum Ausdruck kommen. Die Einfachheit und
Ubersichtlichkeit der Zusammenhinge beruht wieder darauf, dass die Charakteren-
tafeln im Gegensatz etwa zu den Symbolen nach HERMANN-MAUGUIN eine voll-
stindige Aufzihlung der Gtuppenelemente enthiilt. Auch andere Bezeichnungs-
weisen wie z. B, die von W. H. ZacHARIASEN (40) verwendeten Raumgruppen-
symbole ziehen zur Beschreibung nur eine mehr oder weniger willkiirliche Auswahl
von erzeugenden Operationen heran. Die Verhiltnisse liegen aber bei den Raum-
gruppen dhnlich, wie sie im Abschnitt 4 fiir die Punktgruppen dargestellt wurden:
dort waren es die Symmetrieformeln, hier sind es die Charakterentafeln, welche
die vollstandige Beschreibung liefern.

Um eine angemessene Darstellung der translativen Zusatzgrossen
einer Raumgruppe zu erhalten, werden die in Richtung der Koordinaten-
achsen auftretenden Verschiebungsgrossen v, die von gegenseitiger Ver-
setzung der Symmetrieelemente oder von Gleitungen und Schraubungen
herrithren konnen, einheitlich auf die Kantenlingen d des Elementar-
bereichs als 27 bezogen und durch den Cosinuswert ihres Winkels aus-
gedriickt. Die so entstehenden Charaktere y, fiir welche also die Defi-
nitionsgleichung

x =cos2mw g
gilt, werden dann in die zur Symmetrieoperation gehorige Zeile und die
zur Koordinatenachse gehorige Spalte der beschriebenen Leerform der
Charakterentafel eingesetzt. Die Gesamtheit der Raumgruppen ldsst sich
so darstellen, dass nur die einfachen Werte y=1 fiir v=0, y= —1 fiir
v=1/2, x =0 fiir v=1/4 oder 3/4 auftreten; andere Verschiebungsgrissen
konnen durchwegs in die Tafeliiberschriften eingefiihrt werden. Man sieht,
dass infolge der Periodizitat der cos-Funktion alle translativ identischen
Raumpunkte, deren Verschiebungsgrissen sich ja um ganze Zahlen unter-
scheiden, durch dieselben Charaktere gekennzeichnet sind. Umgekehrt
verleiht die unendliche Vieldeutigkeit der inversen Funktion in der Glei-

chung v= % arccos y der unendlichen Mannigfaltigkeit von Ketten-,

Netz- oder Gitterpunkten unmittelbaren Ausdruck.

Einfache Uberlegungen, wie sie in der zitierten Arbeit (15) fiir den
Fall dreidimensionaler Raumgruppen angestellt wurden, schreiben die
bei einer Deutung translativer Charaktere vorzunehmende Aufteilung
der gesamten Verschiebungsgrissen in zwei Teilbstrige vor, namlich in
raumgruppencharakteristische Zusatztranslationen T und zufillige,
durch die Nullpunktswahl bedingte Lageverschiebungen V. Werden
die Koordinatenrichtungen durch Indices bezeichnet, so treten in den
verschiedenen Zeilen die folgenden Charaktere auf:

6 Bchweiz, Mips Petr. Mitt.,, Bd. 33, Heft 1, 1953

/
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im R1
o) firxy =cosl=1
oy) flirx ¥y =ecos2nwV

im RU
o) firx y,;=cos0=1, firy y;p,=cos0=1
;) firx yj;=cos2nwV,, firy yj,=cos 27V,
7y) furx y,y=cos27 (T;+V,), firy ye,=cos27T,
T4) flir x x5, =cos2+w T, fir y yio=cos 27 (T, +V,)

im RHI

a,) fiirx y,, =Cos 0=1, fiir y ygp=cos0=1, _ fiir z yo3=cos0=1
;) fiirx yy3 =cos27 (T, +V,), fiiry y;p=cos27T,,, fiirz y;3=cos 27 Ty,
otp) fiar x yq3, =cos 27Ty, fiiry yjo=co8 27 (Tyy+V,), firz y;z=cos27 (Ty3+Vy)
By) fur x y,; =cos 27Ty, fiiry ya;=c08 27 (T +V,), fiirz yag=cos 27 Ty
B;) firx yj,=cos2m (T, +V,), firy yz,=cos2mwT,,, fiir z yza=cos 277 (T3 + V)
vy) fir x yg, =cos 27Ty, firy yss=cos 27w Ty,, fiir z ;3= cos 277 (T35 + V)
vo) furx xiy=cos 27w (T3, +V,), firy yiz=cos2m (T +V,), firz yza=cos27 Ty
o,) firx yf,=cos27V,, fiir y yge=cos2w'V,, fir z ygs=cos 27V,

Durch Einsetzen dieser Grossen in die Leerform erhdlt man ohne
weiteres die Charakterentafeln. Thre Typen sind im folgenden fir
alle moglichen ein- bis dreidimensionalen Raumgruppen dargestellt; dabei
sind noch die fiir verschiedene Translationsgruppen in Frage kommenden
Operatoren, mit denen die Charaktere zeilenweise multipliziert werden
miissen, in geschweiften Klammern hingeschrieben:

a) Reihengruppen:
x {1} fiir primitive Ketten P

‘0_1

X
X:

g9

b) Bandgruppen:

x y oder x y {1} fiir primitive Ketten P
01 | X | — | X1z
o | X1 | — — | Xtz
1 Xa | T | Xee ’
T2 &;_1 - — | Xaa
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¢) Flichengruppen:

X Y {11} fiir primitive Netze P

oy m {11}, {11} fiir zentrierte Netze Z

’ !
Oy X11 | X21
7 Xz1 | X22

r
To X21 | Xe22

d) Balkengruppen:

X y =z oder x y z oder x ¥ A

01 Xoo — -  Xoz —  Xos
% Xu | — | — | X1z | — = = X13
%o )é — — | X1z | — — = | X3
B Xer | — | — — | Xe2 | — — L 7T Xaes
Boe | X1 — | — - X_é_g — — | — | xes
Y1 Xa1 | — | — — | Xs2 | — — | 7 | Xas
Yo | Xz | — | — | Xs2 | — | — | — | Xas
o  Xn — —  Xoz — — = X3

{1} fiir primitive Ketten P

e) Schichtgruppen:

x y z oder x y z oder x y z
o —  Xoz Xos Xoo — Xos Xor Xoz
o | 7 | X1z | X13 Xu | — | X3 X1 | X1z | —
% | — | Xz | Xis 2@_1 — | x13 X_:Ill Xi2| —
Bi | — | Xa2 | Xes Xo1 | — | Xz3 Xo1 | Xe2 i —
B | — X_éz X23 Xa1 | — | X3 X21 X_éz -
Y1 | 7 | Xaz | Xss Xs1 | — | Xs3 Xs1 | Xs2 | —
Y2 | — | Xse X_:I’,?, X31 | — X_.:s?, Xs1 | Xsz| —
o, — Xoz Xos Xor — Xo3 Xot Xoz —

{11} fiir primitive Netze P; {11}, {11} fiir zentrierte Netze Z
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f) Gittergruppen:

X y z }
o1 Xei Xz  Xos }, {111} fiir flichenzentriertes Gitter A
| 111}, {T11} fiir flichenzentriertes Gitter B
% | X1 | X2 | X123 . e i
, ] 5= b, {111} fiir basisflichenzentriertes
“ x| X | X Gitter C
Bi | X1 | Xea | Xes {111 s
Bs | Xa1 | Xae Xo3 {

7" &:g X3z X33
I 4

Yz | X31 | Xs2 &é_g

’ ’ r
Gy Xot Xo2  Xos

11} fiilr raumzentriertes Gitter 1
1}, {111}, {111} fiir allseitig fli-
chenzentriertes Gitter F

Durch Beniitzung verschiedener Spalten der Matrix sind in den Fillen,
wo die Dimensionszahl der Translationsgruppe kleiner als die des Raumes
ist, alle méglichen Aufstellungen, d.h. Orientierungen der Translations-
richtungen beriicksichtigt. Aus den Definitionsgleichungen ist ersichtlich,
dass in den unterstrichenen Hauptcharakteren unmittelbar die fiir
die Raumgruppe kennzeichnenden Zusatztranslationen, unabhingig von
der Nullpunktswahl, gegeben sind.

Offenbar lassen sich alle Lageverschiebungen V zum Verschwinden
bringen, indem man den Koordinatenursprung
im R! in einen vorhandenen oder hinzufiigbaren Spiegelpunkt,
im R™ in einen vorhandenen oder hinzufiigbaren zweizihligen Drehpunkt,
im R™'in ein vorhandenes oder hinzufiigbares Symmetriezentrum legt.
Dann fallen nach Definition die entsprechenden gestrichenen und unge-
strichenen Charaktere der Doppelzeilen zusammen, und als gemeinsamer
Charakter tritt jeweils unmittelbar der Hauptcharakter auf. So erhalt
man die reduzierte Form der Charakterentafeln. Die reduzierten
Tafeln fiir Reihen-, Flichen- und Gittergruppen, aus denen alle andern
durch Ausfall einzelner Spalten hervorgehen, zeigen demnach folgende
Gestalt:

X I X11 X12 X11 X12 X13

X21 Xaa Xa3

X21 Xo2

Xs1 | Xsz | |Xas

Dabel werden in den dreidimensionalen Tafeln die trivialen Charaktere
der Doppelzeile o weggelassen, weil sie ohnehin den Wert 1 haben miissen.
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Von den méoéglichen Transformationen des Bezugssystems seien nur die
hiufig gebrauchten Nullpunktsverschiebungen und Achsenvertauschungen erldu-
tert; fiir Einzelheiten muss wieder auf P. Nicerr (24) und die schon erwihnte
Arbeit (15) verwiesen werden. Eine Verschiebung des Nullpunkts wirkt sich nur in
den negativen Koordinaten aus, und zwar tragen die doppelten Verschiebungs-
komponenten additiv zu den V-Werten der entsprechenden Koordinatenrichtung
bei; so liegt etwa in einer nicht-reduzierten dreidimensionalen Grundtafel der
Koordinatenursprung, bezogen auf ein --- vorhandenes oder zusétzlich mégliches —
Symmetriezentrum, in §V,, 1V,, 3 V,. Im allgemeinen Falle einer dreidimen-
sionalen Tafel, deren Uberschrift die Koordinaten auch vertauscht enthalten kann,
geht der Einfluss einer Nullpunktsverschiebung von 0, 0, 0 nach r,s,t aus der
Tabelle 7 hervor.

Tabelle 7. Einfluss der Nullpunktswahl

alte neue Koordinate
Koordinate in 1. Spalte in 2. Spalte in 3. Spalte

X — b-d X+T—8 X4r—t
x > x—2r X—r—s X—-r—t
y — y—r+s v y+s—t
y > y—r—s y—2s y—s—t
7z —> z—T+1 z—s+1t Z

7z — Z—r—1% z—8—t z—2¢t

Additive Konstanten sind gegeniiber dieser Transformation invariant.

Eine symmetriegemiss erlaubte Vertauschung der Bezugsachsen dagegen
wird einfach durch die entsprechende Vertauschung der Zeilen unter sich sowie
der Spalten unter sich in der Matrix erreicht, wobei natiirlich die Elemente der
Hauptdiagonale wieder auf die Hauptdiagonale zu liegen kommen und in nicht-
reduzierten Tafeln die zusammengehorigen Werte einer Doppelzeile nicht getrennt
werden. Wenn keine Fille durch die Symmetrie gleichwertig sind, erhélt man auf
diese Weise fiir die Gittergruppen sechs, fiir die Schicht-, Balken- und Flichen-
gruppen je zwel verschiedene Aufstellungen.

Uberhaupt sind in dreidimensionalen Matrizen die Elemente der
Hauptdiagonalen insofern ausgezeichnet, als bei ihnen die Vorzeichen-
wechsel von Koordinaten oder Indices sich gerade umgekehrt auf die
Halbzeilen verteilen wie bei den iibrigen Matrixelementen. Das geht
schon aus dem Vorzeichenschema im Abschnitt 4 hervor und hingt damit
zusammen, dass in der Grundtafel G die Zusatztranslationen T; mit
i=1,2,3 sich auf Schraubungskomponenten, die T;; mit j=i hingegen
sich auf Gleitkomponenten beziehen. Dementsprechend nennt man in der
reduzierten Charakterentafel die x;; Drehungs- oder d-Charaktere und
die y;; mit i+ j Spiegelungs- oder s-Charaktere; die d-Charaktere sind
im Schema der reduzierten Tafel besonders umrandet.
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Von P. Nraarr (16) formulierte Symmetriesitze, auf die im Teil IV
noch néher eingegangen wird, legen die gegenseitigen Lagebeziehungen
translationshaltiger Symmetrieelemente in den Raumgruppen fest; sie
bilden das Gegenstiick zum Hauptsymmetriepunkt der Punktgruppen
und symmorphen Raumgruppen, in welchem sich alle translationsfreien
Symmetrieelemente schneiden. Man kann das etwa durch die Feststellung
umschreiben, eine Raumgruppe sei entweder durch die Translationskom-
ponenten oder durch die Abstinde der Symmetrieelemente bestimmt.
Dieser Zusammenhang kommt in den Charakterentafeln elegant zum
Ausdruck. Die Zusatztranslationen T, welche nicht gerade die Bedeutung
einer Gileit- oder Schraubungskomponente haben, entsprechen nimlich
dem doppelten Abstand des Symmetrieelements vom Symmetriezentrum
bzw. Dreh- oder Spiegelpunkt. So lisst sich etwa in der reduzierten drei-
dimensionalen Grundtafel die Lage der Symmetrieebenen aus den d-Cha-
rakteren, die Lage der Symmetrieachsen aus den s-Charakteren ablesen;
derselbe Charakter beschreibt also in der einen Halbzeile eine Trans-
lationskomponente und in der andern einen Abstand. Allgemein gibt
natiirlich die Summe (T};+ V;) die doppelte Entfernung des Symmetrie-
elements vom gewéhlten Nullpunkt an.

Weitere Einzelheiten und Beispiele der Deutung translativer Charak-
tere sind in den zitierten Arbeiten (15, 24) enthalten. Nur ein Problem
muss hier noch behandelt werden. Es ist die Frage nach der Aquivalenz
von Charakterentafeln, die offenbar gegeben ist, wenn eine und dieselbe
Raumgruppe verschieden orientiert oder auf verschiedene Nullpunkte
bezogen wird. Gerade der letztere Fall tritt hiufig ein, indem sich in
nicht-symmorphen Raumgruppen mehrere Hauptpunkte zur Nullpunkts-
wahl anbieten. Da Translationskomponenten und relative Lagebeziehun-
gen der Symmetrieelemente gegeniiber den Transformationen des Bezugs-
systems invariant sein miissen, stimmen die in diesem Sinne dquivalenten
Charakterentafeln bis auf symmetriegemiiss erlaubte Achsenvertau-
schungen in allen ihren Hauptcharakteren iiberein; dquivalente redu-
zierte Tafeln lassen sich durch Vertauschung der Bezugsachsen tiberhaupt
ineinander iiberfiihren. Bei mehrfach primitivem Elementarbereich sind
natiirlich auch alle Darstellungen #quivalent, die durch Multiplikation
mit den entsprechenden Operatoren auseinander hervorgehen. So lisst
.sich ohne weiteres entscheiden, ob zwei Charakterentafeln wirklich zwei
verschiedene Raumgruppen darstellen, oder ob sie eine Raumgruppe
auf zwei verschiedene Koordinatensysteme beziehen.

Eine zusammenfassende Ubersicht soll zeigen, wie die Merkmale der Raum-
gruppen in den Charakterentafeln zum Ausdruck kommen:
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Die Dimensionszahl des Raumes erscheint als Reihenzahl der Matrix.

Die Dimensionszahl der Translationsgruppe entspricht der Anzahl
beniutzter Spalten.

Die Translationsgruppe selbst wird durch die Art der beniitzten Tafeln
und durch’ die zusétzlichen Operatoren bestimmt.

Die g-Klasse ist nach Abschnitt 4 durch die Zeilenauswahl gegeben.

Die a-Klasse wird durch Zeilenauswahl und Operatoren gemeinsam fest-
gelegt; Unterschiede innerhalb einer g-Klasse entstehen im allgemeinen durch
verschiedene Operatoren, gelegentlich aber (z. B. in Dy,) auch durch verschiedene
Zeilenauswahl.

Die Eigenschaft der Symmorphie kommt in den Charakteren selbst zum
Ausdruck. Fiar symmorphe Raumgruppen nehmen alle Hauptcharaktere, fiir
drehungssymmorphe Raumgruppen wenigstens die d-Charaktere den Wert cos 0=1
an; von 1 verschiedene d-Charaktere kennzeichnen eine Raumgruppe als asym-
morph.

Die Raumgruppe in ihrer Gesamtheit wird schliesslich durch die gesamte
Charakterentafel dargestellt. Weil diese Art der Beschreibung von Symmetrie-
verhiltnissen erschopfend ist, miissen sich umgekehrt alle symmetriebedingten
Eigenschaften auf irgendeine Weise der Charakterentafel entnehmen lassen; der
Abschnitt 11 wird dafir Beispiele liefern.

Der Vollstandiglkeit halber sei noch erwihnt, dass sich die Ober- und Unter-
gruppen im Falle der Zellengleichheit aus der Zeilenauswahl, im Falle der Klassen-
gleichheit dagegen aus Operatoren und Spaltenauswahl ableiten lassen.

10. Die Tafeln der ein- bis dreidimensionalen Raumgruppen

Die folgende Ubersicht der Typen von translativen Charakteren-
tafeln beschrinkt sich der Einfachheit wegen auf reduzierte Formen;
allgemeinere Tafeln lassen sich daraus miihelos durch Nullpunktsver-
schiebungen bilden. Von mehreren beziiglich der Achsenvertauschung
gleichwertigen Darstellungen wird in der Regel nur ein Beispiel ange-
geben.

Fiir die Fille, in denen die Dimensionszahl der Translationsgruppe kleiner
als die des Raumes ist, sind noch einige Festsetzungen zu treffen. Zunichst soll
eine durch die Translationsgruppe ausgezeichnete Richtung zur c-Achse drei-
dimensionaler oder zur a-Achse ein- und zweidimensionaler Koordinatensysteme
gewidhlt werden. Bei den Balken- und Bandgruppen betrifft dies die Translations-
richtung selbst, bei den Schichtgruppen dagegen die zu den Translationsrichtungen
senkrechte Richtung. Um weiter die zu den Punktgruppen C,, C,, C,, und C,,
isomorphen Ketten- und Netzgruppen nach der Stellung ihrer Symmetrieelemente
zu den Translationsrichtungen zu ordnen, wie das ja beim Ubergang von den
g-Klassen zu den a-Klassen notwendig ist, wird ihre Hauptsymmetrieachse, die
natiirlich auch einzihlig sein kann, einheitlich :,in die ausgezeichnete Koordinaten-
richtung gelegt. Damit zerfallen C, in C,, und, C,,, C; in C, und D,, C,; in C,, und
D,,, Gy, in C,, und D,,. Diese Bezeichnuggsweise, die C. HERManx (9) fiir die
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Balken- und Schichtgruppen eingefiihrt hat, wird hier -— unbekiimmert um die
Dimensionszahl des betrachteten Raumes — auf alle Ketten- und Netzgruppen
ausgedehnt. Nun entarten allerdings die Symmetrieebenen und Symmetrieachsen
des dreidimensionalen Raumes in zwei Dimensionen zu Symmetriegeraden und
Drehpunkten, und in einer Dimension zu Spiegelpunkten. Der Einfachheit halber
sollen aber trotzdem nur die Bezeichnungen der dreidimensionalen Gruppen ver-
wendet werden; die tatséchlichen Symmetrieelemente ergeben sich dann in den
Flichen-, Band- und Reihengruppen als Schnitt der durch das Symbol gegebenen
Elemente mit dem betrachteten Raum, also mit der Ebene oder der Geraden. Auch
die Kristallographie geht ja, etwa bei der Behandlung der Flichensymmetrien, auf
diese Weise vor.

a) Reihengruppen:

Die Reihengruppen werden zum Trivialfall, indem fiir sie einzig die
symmorphe Matrix | 1]in Frage kommt. C, und C, (als C,,) treten gleich-
zeitig als g- und a-Klassen auf und geben zu je einer Gruppe Anlass.

b) Bandgruppen:

Von den Bandgruppen an aufwirts sind auch nichtsymmorphe
Tafeln zuldssig. Da als g-Klassen nur die Untergruppen von C,, vor-
kommen, hat man also die a-Klassen C,, C,,, C,;, D; und D, mit den
beiden Matrizen

SN S und

o[-
|

zu kombinieren. Dabei fithren C,, und D, zu je zwei, die iibrigen Klas-
sen zu je einer Gruppe, und man erhilt die von P. NicaLI (17) beschrie-
bene Mannigfaltigkeit der 7 Bandgruppen.

¢) Flichengruppen:

Das Translationsnetz der Flichengruppen kann erstmals zentriert
sein; der zu |11} dann hinzutretende Operator {11} fiihrt von den mog-
lichen Matrizen

1 T TIT
A [ e 2]
1]

I
.~1|,_
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die Typen I und III ineinander und den Typ II in sich selbst iiber. Als
g-Klassen stehen C, und C,, mit n=1,2,3,4,6 zur Verfiigung, als
a-Klassen demnach C,, C,, Cj3, C,, Cq, C,,(P), C;, (%), Cy (P), Cyy (),
CHE , CY,, C,, und Cg, . Die Ableitung zeigt, dass Cy, und C,, zu je zwei,
C,, zu drei, C,, zu vier Gruppen, und die iibrigen Klassen zu je einer
Gruppe Anlass geben. So ergibt sich die Mannigfaltigkeit der 17 Flachen-

gruppen in Ubereinstimmung mit G. PorLya (29) und P. N1eer1 (17).

d) Balkengruppen:

Die Translationskette der Balkengruppen lisst keine Zentrierung zu.
Bei allen dreidimensionalen reduzierten Tafeln finden aber die im Teil IV
zu erliuternden Symmetriesitze ihren Ausdruck in der Forderung, dass
in jeder einzelnen Spalte ein von 1 verschiedener Charakter entweder
tiberhaupt nicht oder zweimal auftreten muss. Demnach sind die folgen-
den Matrizen moglich:

I
—_—1 — | —]1 T 1
——11 ___Toder 1 T
— | —1 — =1 1 |—|—]1]

Die bei g-zdhliger Hauptachse allenfalls auftretenden Zusatztrans-
lationen i-27/q mit i <2 q in der c¢-Richtung gehen einfach in die Uber-
schriften der W-Tafeln ein. Als g-Klassen kommen die Untergruppen
von D, d.h. alle — auch nichtkristallographischen — digonalen und
wirteligen Gruppen in Frage; von der zu Beginn des Abschnitts erwihn-
ten Aufspaltung von C,, C;, C,; und C,, abgesehen, liefern sie je eine
a-Klasse, die mit den drei Typen von Matrizen kombiniert werden kann.
Immerhin ist zu beachten, dass sich der Typ I nicht auf m-zéhlige Haupt-
achsen mit m=0(mod.4) anwenden lasst, da sonst die Forderung der
Gleichwertigkeit von aufeinander senkrechten Nebenachsenrichtungen
verletzt wiirde. Wie C. HERMANN (9) gezeigt hat, fiihren dann die Klas-
sen C,p, C; und 8 zu je einer Gruppe, C;,, C,;, D, und D 4 zu je zwei,
Cny und D zu je drei, C, und D, zu je q verschiedenen Gruppen; dabei
gilt wieder p=1 (mod. 2), n=0(mod. 2), m =0(mod. 4), wihrend q eine
beliebige natiirliche Zahl bedeutet. Man erhélt so die unendliche Mannig-
faltigkeit der Balkengruppen, von denen 75 zu knstallographlschen
Punktgruppen isomorph sind.
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e) Schichtgruppen:

Das Translationsnetz der Schichtgruppen kann wieder zentriert sein.
Als Typen von Matrizen kommen in Frage:

I 1 I v
|11 ] — |T T}m |11 | — 1{T—
11| — |T|T =] |[1]T]|—] |T|1]|—
vl —| (11— [T]T = |T|T|—
v | VI VII VIII
Tl1|— T[]~ j1j1 ] |T][T]—
IT!1— 1|1 |— 11— 11T —
11— |[T|1|—| [T|{1|—=] [T|1|~—
IX X
11| —| |1 1|—
1|71 | — 1)1 | —
T|1 —| 1171 | —

Wegen der Bedingung, dass die aufeinander senkrechten Neben-
achsen gleichwertig sein miissen, sind nur die Typen I—IV auf m-ziihlige
Hauptachsen mit m =0 (mod. 4) in der c-Richtung anwendbar. Die Trans-
lationsgruppe bringt eine Beschrinkung der g-Klassen auf kristallogra-
phische, nichtisometrische Punktgruppen mit sich. Da nun auch die
Symmetrieelemente der trigonalen Punktgruppen C;,, D;, Dy, und D, 4
zwel verschiedene Lagen zum Bezugssystem der Translationsvektoren
einnehmen koénnen, fiihren die 27 nichtkubischen Kristallklassen zu ins-
gesamt 42 a-Klassen. Aus diesen leitet sich die Mannigfaltigkeit der
80 Schichtgruppen ab; ihre nihere Beschreibung findet sich etwa bei
H. HerscH (8), C. HERMANN (9) und L. WEBER (35).

f) Gittergruppen:

Die Darstellung der Raumgruppen (im engeren Sinne) hat schon
P. N1GGr1 (24) mit Hilfe von Charakterentafeln durchgefiihrt, und ausser-
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dem finden sich zahlreiche Beispiele dafiir in (15). So mag es geniigen,
eine Ubersicht des Ableitungsprinzips zu geben. Als g-Klassen stehen die
32 Kristallklassen zur Verfiigung; wie sie im einzelnen zu den 73 a-Klassen
fithren, wurde von P. N1aoLI und W. NowACKI (26) erlautert. Einer Auf-
stellung der hypokubischen, hypotetragonalen und hypoorthorhom-
bischen Syngonien einerseits und der hypohexagonalen Syngonie andrer-
seits hat die Einteilung nach der Translationsgruppe zu folgen; bezieht
man dabei die hypohexagonalen Gruppen durchwegs auf ein basisflichen-
zentriertes orthohexagonales Elementarparallelepiped, so lassen die
Translationsgitter insgesamt Zentrierungen I, F und C (bzw. A oder B)
mit den entsprechenden Zusatzoperationen nach Abschnitt 10 zu. Es
erscheint dann zweckmissig, die Raumgruppen der Typen P, I und F in
der isometrischen (kubischen) Syngonie, die eine Translationsrichtung
auszeichnenden Gruppen des Typs C dagegen in der wirteligen (hexa-
gonalen) Syngonie abzuleiten. Das hat etwa zur Folge, dass von den
orthorhombisch-holoedrischen Raumgruppen D}, '® und D23-%% in den
hypokubischen, D}}~?? aber in den hypohexagonalen Zusammenhang
gestellt werden. Die tetragonalen Raumgruppen nehmen dann insofern
eine Sonderstellung ein, als sie in der kubischen Syngonie nur mit den
Translationsgruppen P und I oder F erscheinen; eine selbstiéndige tetra-
gonale Syngonie wiirde die Gruppen D] ;! natiirlich auch mit der Trans-
lationsgruppe C liefern. Die rhomboedrischen Raumgruppen schliesslich
lassen sich zwanglos teils der kubischen, teils der hexagonalen Syngonie -
entnehmen. Die moglichen reduzierten Matrizen sind (in abgekiirzter
Form) in der Tabelle 8 zusammengestellt. Es sind die 64 mit den unter d)
erwihnten Symmetriesitzen vertriglichen Kombinationen der Charak-
tere 1 und T; dazu tritt als Typ LXV die nur auf allseitig flichenzentrierte
Gruppen F anwendbare Matrix mit den Charakteren 0, die einer Zusatz-
translation von 1/4 oder 3/4 entsprechen. Andere Werte gehen in die
Uberschriften ein. |

Bei der Verwendung der Matrizen als hypotetragonale und hypo-
kubische Tafeln ist natiirlich wieder auf die Gleichwertigkeit der Charak-
tere in allen drei bzw. in den beiden ersten Spalten zu achten; sind simt-
liche Spalten ungleichwertig, so ist die Tafel hypoorthorhombisch. Auch
wenn als Uberschrift der G-Tafel nur xyz zugelassen wird, erméglicht
eine geeignete Wahl der Operatoren und der Uberschriften zu den K-
und H-Tafeln doch die Darstellung mehrerer Holoedrien mit ihren Unter-
gruppen durch dieselbe Matrix. So fiihrt schon eine beschrinkte Auswahl
von Tafeln — etwa nach dem Beispiel der Tabelle 9 — zur gesamten
Mannigfaltigkeit der 230 Raumgruppen.
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Tabelle 8. Dreidimensionale translative Charakterentafeln

I

111

111

111
111 v v VI VII VIII IX
T11 111 111 111 111 111 1171 111
111 111 111 111 171 111 1171 111
111 111 111 111 111 111 111 111
XTI XII X111 X1V XV XVI XVII
111 111 111 111 111 111 111
111 1171 111 111 111 111 111
111 171 111 111 111 111 111

111 111 111 1711 17T 111 111
111 111 111 111 111 111 111
111 111 111 111 111 111 111
XXVII XXVIIIT XXIX XXX XXXI XXXII XXXIII
111 1T1 111 111 111 111 111
1171 111 111 111 111 111 T11
111 1T1 111 111 111 111 T11
XXXV XXXVI XXXVIIXXXVIII XXXIX XL X1
111 111 111 111 111 I111 111
1171 1171 111 111 111 111 111
T11 T11 1171 111 111 1171 111
XLIII XLIV XLV XLVI XLVII XLVIIT IL
1171 111 111 111 1T1 171 111
111 111 T11 T11 111 1171 111
1117 1T1 111 111 T11 T11 111
LI LI LIIT L1V LV LVI LVII
111 1171 111 111 111 111 111
T7T1 111 111 111 111 111 1171
117 1177 1171 111 117 T11 1171
LVIII LIX LX LXI LXII LXIII LXIV
1711 1171 T11 T11 111 111 111
1171 1171 1171 111 111 111 111
T11 1171 111 111 111 1171 111
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Tabelle 9. Tafeln der 230 Raumgruppen

Tafel: P F I ¢

I 0}, D¥Y, D}, 0}, D, [, D, D, D},, Di
LIIT 0, D2, DZ, _

LXV OF8, Do, D2t

LVII Tg, 0%, D, DI oY, b%,

VIIT D%’ DS, D, D, DB
XVI D, DE,

XI Diy’, Dy

XXXVIII D4, D

XVIIT DY, DI

LIX DELs, DI

XXXIV D37

X D}, D%, D},
LXII DS,

XII1 D7,

XXVII D,

XXI DL

XLI - DY

XXXIX DL

1X Di,, DY,
XXXIII D

111 B3

XXXII D2

11. Verwendungsmaéglichkeiten bei der Strukturbestimmung

Grundsidtzlich umfasst der Bestimmungsgang irgendeiner Struktur mehrere
Teilschritte, die sich etwa folgendermassen in ein Schema bringen lassen: einerseits
hat vom Standpunkte der Symmetrie die Ermittlung der isomorphen Punkt-
gruppe der Bestimmung der Raumgruppe voranzugehen, und andererseits ist
in metrischer oder wenigstens topologischer Hinsicht zunéchst die Gestalt des
Elementarbereichs, dann die gesuchte Verteilung der Elemente (etwa die
Massen- oder Elektronenverteilung) im Elementarbereich zu beschreiben. Dabei
verleiht die Strulktur der festen Koérper im dreidimensionalen Raum der Behand-
lung dreidimensionaler Systeme, vor allem der Gittergruppen, eine besondere
Bedeutung; auf die Untersuchung abgeschlossener, molekularer Systeme soll im
Abschnitt 18 noch eingegangen werden.

Nach den bisherigen Ausfithrungen stellen die translativen Charak-
terentafeln nichts anderes als eine zweckmiissige Anordnung von Rechen-
grossen dar, die mit dem Ubergang von der Punktgruppe zur Raum-
gruppe zusammenhéngen; sie beschreiben so eigentlich die (mehrstufige)
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Isoniorphieb eziehung zwischen der groberen Struktur im Schein-
kontinuum und der feineren diskontinuierlichen Struktur. Dementspre-
chend wird sich das Anwendungsgebiet der Charakterentafeln bei der
Strukturbestimmung auf alle jene Methoden erstrecken, die eine Auf-
stellung und Beniitzung von Raumgruppenkriterien zum Ziele haben.
Darunter fillt auch die Ermittlung der Elementverteilung, die sich ja
der Raumgruppensymmetrie unterordnet. Die mehrmals betonte Voll-
stindigkeit der Beschreibung einer Raumgruppe durch die Charakteren-
tafeln hat dabei zur Folge, dass sich grundsitzlich alle einschligigen
Methoden auf diese Weise erfassen lassen. An anderer Stelle (15) sind die
bekannten Verfahren der Kristallstrukturbestimmung schon daraufhin
" untersucht worden; der Hinweis auf die zahlreichen Beispiele, welche
jener Arbeit entnommen werden konnen, rechtfertigt den zusammen-
fassenden Charakter der folgenden Ubersicht.
Der geometrische Teil einer Deutung der Interferenzerscheinun-
gen geeigneter Wellen an einer t-fach periodischen Verteilung von streu-
ender Materie lauft stets irgendwie auf Summationen von Funktionen

t :
der Winkel 27 >} h; x; hinaus. Fiir den Fall der Gittergruppen etwa lautet
i=1

der entsprechende Ausdruck 2w (hx +ky +1z); seine Symmetrie erlaubt
es, von den beiden Tripeln (hkl) und xyz das eine festzuhalten und iiber
die Werte des andern zu summieren. So ergeben sich zwei verschiedene
Verfahren: erstreckt sich die Summe iiber alle Punkte xyz der Elementar-
zelle, so gelangt man zum Strukturfaktor, der die Intensitdt der an
der Netzebenenschar (hkl) reflektierten Strahlung bestimmt; summiert
man dagegen iber alle moglichen Flachenindices (hkl), so liefert die
Fouriersynthese die Dichte der streuenden Materie — bei Verwendung
von Rontgenstrahlen also die Elektronendichte — im Punkte xyz. In
beiden Fillen empfiehlt sich eine Gliederung der unendlichen Mannig-
faltigkeit von Wertetripeln (hkl) bzw. xyz in Formen, die der Charak-
terendarstellung zuginglich sind. Wie in (15) ausgefiihrt wurde, verein-
facht sich das Resultat fiir jede einzelne Form durch die Symmetrie-
beziehungen wesentlich, und man hat schliesslich nur noch iiber die ver-
schiedenen Formen zu summieren.

Der Strukturfaktor eines allgemeinen Gitterkomplexes lisst sich
— nach der iiblichen Aufteilung in einen durch cos 27 (hx+ky +1z) be-
stimmten A-Anteil und einen durch sin2# (hx+ky+1z) bestimmten
B-Anteil — als Summe aus folgenden (positiv oder negativ genommenen)
Rechengrossen darstellen, deren Definitionsgleichungen sich zu einem
der G-Tafel verwandten Schema ordnen:
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a, = cos 27 hx -cos 27 ky ccos 2w 1z

a; = cos 2w h (x+T;; +V,) -sin 27 k (x+T,,) -sin 27 1 (z+Ty)
b, =sin2= h(x+Ty,) cos 2k (y+T1o+V,y) -cos 271 (z+ T3+ Vy)
a, =sin 27 h (x+T,,) co8 2K (Y+ T+ V,) -sin27 1 (z+4Thy)
b, =cos27h (x+ Ty +V;)-sin 27k (y +Ty,) +c08 27 1 (2 4+ Tog+ V)
by =sin 27 h (x+V,) vsin 27k (y+V,) +sin 27 1(z+V,)
Bezeichnet man diese Grossen im folgenden als ao(G), a,(6¢),..., so

lassen sich aus a, (K) = cos 27hy-cos 27w kx-cos 21z usf. leicht die ana-
logen Rechengrossen fiir die K- und H-Tafeln definieren. Dabei wird
deutlich, was fiir eine entscheidende Bedeutung in jeder Zeile  einer
Charakterentafel der Summe aller mit den zugehorigen Flachenindices
multiplizierten Zusatzgrossen Ty bzw. (Tj;+V;) zukommt. Die entspre-
chenden, durch (h-arecos x;, +k-arccos xz,+ 1-arccos x;,) erklirten Aus-
driicke sollen daher kurz P, genannt werden. Dann ergibt sich der Struk-
turfaktor eines Gitterkomplexes durch einfache Addition der Rechen-
grossen aus allen ausgewihlten Zeilen der Tabelle 10, wobei je nach den
Teilbarkeitseigenschaften der P, die folgenden Regeln einzuhalten sind:

Tafel A liefert den A-Anteil fiir Py = 0 (mod. 2)/2
B-Anteil fiir Py =1 (mod. 4)/4
sowie mit durchwegs umgekehrten Vorzeichen
den A-Anteil fir P; = 1(mod. 2)/2
B-Anteil fiir Py = 3 (mod. 4)/4
Tafel B liefert den B-Anteil fiir P; = 0(mod. 2)/2
A-Anteil fir P; = 3 (mod. 4)/4
sowie mit durchwegs umgekehrten Vorzeichen
den B-Anteil fiir P; = 1 (mod. 2)/2
A-Anteil fiir Py =1 (mod. 4)/4

Mit zunehmender Symmetrie der isomorphen Punktgruppe heben sich
immer mehr Rechengrossen gegenseitig auf. Das fithrt zu einer auf-
fallenden Einfachheit etwa der in (15) gegebenen Darstellung der Struk-
turfaktoren aller einfachen symmorphen Raumgruppen. Tabelle 11 gibt
sie in etwas verdnderter Anordnung wieder, die besonders leicht den
Zusammenhang mit der Zeilenauswahl iibersehen ldsst, indem man sie
der Tabelle 3 des Abschnitts 4 gegeniiberstellt. Die 11 Laue-Klassen, in
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Tabelle 10. Ableitung des Strukturfaktors

Tafel A | Zeile | Tafel B

8y 8, By 8 251 I’o b; by by
a, 8, &y 8 o by Bl b, b,
a, a; 8y 8 2 by by by by
a, &, 8y 8 B Po P1 Bz Ps
ay a; &, a B2 by by by Ps
a, 8, 8, 8 Y1 Po Pl _l‘_)z b,
Bp 8y B, 8 Ve b P1 Pz _l_)a
8y 8; 8y 8y O3 by by by by

Tabelle 11. Strukturfaktoren der Kristallklassen

Strukturfaktor: in den Tafeln:
_ G G+ G+ GG +G"+
A B aq +K H,+H, G'+G@" K+K'+K”
a, b, D, D, D, T i O
ag b, Coy Cyy Coe
8y b, ' Dy
fy * (by) D, 4 Ty
g B 0 D,y Dy Dy Ty O,
ay+a, by + by D,
ay+a, by + by Cy,
a,+a, 0 D;q
ay+a, by + b, G,
a,+ a, bi+b; C,
8o+ ay 0 Ca
ay+ 8y " by+ by C, Cs |
ay+ 8, b, +b, Cyp l
8o+ 8y £ (by + by) S, i
a, -+ a, 0 Cin: Cen |
agta,+a,+a; by+b,+b,+b, Cy C,
ag+a, +a,+a; . 0 S £y ‘

~ welche sich — wie im Abschnitt 17 niiher ausgefiihrt werden soll — die
32 Kristallklassen infolge der Zentrosymmetrie des Beugungsvorganges
am Gitter gliedern, kommen durch die eingerahmten Felder zum Aus-
druck.
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Man kann nun die P-Werte der Zeilen auch getrennt fiir die s- und
d-Charaktere zusammenstellen. Die so entstehenden Grossen P, bzw. P,
gestatten, aus dem Verschwinden des Strukturfaktors fiir gewisse Indices-
kombinationen (hkl) unmittelbar die zonalen bzw. serialen Aus-
loschungsgesetze abzulesen. Sie sind, ebenso wie die — den allfilligen,
durch die Operatoren der Translationsgruppe bedingten Zusatzfaktoren
entsprechenden — integralen Ausléschungsgesetze, von der Null-
punktswahl unabhiingig und koénnen deshalb mach P. Nicerr (16) als
Raumgruppenkriterien Verwendung finden. E. BRANDENBERGER und
P. N1GgeLI haben die Ausloschungsgesetze in den , Internationalen Tabel-
len* (11) systematisch zusammengestellt; eine Erklirung der tiblichen
Ableitung findet sich etwa bei . BRANDENBERGER (3).

Die Auswertung der Gesamtheit von Ausldschungserscheinungen
fir die Raumgruppenbestimmung, wie sie schon von P.Nicerr und
E. BRANDENBERGER in den ,,Internationalen Tabellen‘ (11) systematisch
und vollstindig dargestellt wurde, ldsst sich in dem von M. J. BUERGER
{4) geprigten Begriff der Ausléschungseinheiten zusammenfassen.
Eine solche Einheit enthilt alle jene Raumgruppen, die sich in den Aus-
16schungsgesetzen nicht unterscheiden und ausserdem derselben Laue-
Klasse angehdren. BUERGER hat fiir die 120 Einheiten der Gittergruppen
zweckmissige ,,Ausloschungssymbole® eingefithrt und gezeigt, dass sich
von den 230 Gruppen nur 50 (+9 enantiomorphe Paare) aus den Aus-
I6schungen eindeutig ermitteln lassen. Am Beispiel der von W. NowaAcKI
(28) abgeleiteten ,,ebenen Ausléschungseinheiten® kann man sich davon
iiberzeugen, dass die Charakterentafel als ganzes ebenfalls die Aus-
I6schungseinheit beschreibt: aus der Tabelle 12 geht hervor, wie die
17 Flichengruppen in 10 Einheiten und 6 Laue-Klassen zerfallen, wobei
die 4 eindeutig bestimmbaren Gruppen unterstrichen sind.

Das skizzierte Berechnungsverfahren fiir den Strukturfaktor lasst
sich auch auf die Fouriersynthese der Elektronendichte iibertragen.
Durch den oben erwiahnten Ausdruck (hx+ky+1z) ist der Zusammen-
hang insofern gegeben, als man nun einfach iiber die Flachen (hkl) bzw.
Aiber ihre Formen zu summieren hat. Dabei wird der Raumgruppen-
symmetrie durch die gleichen Grossen P; Rechnung getragen, so dass
etwa die Tabelle 10 in unverinderter Form anwendbar bleibt. Es ist
einzig zu beriicksichtigen, dass bei Geltung des Friedelschen Gesetzes
die nicht-zentrosymmetrischen Flachenformen zu zentrosymmetrischen
erginzt gedacht werden miissen, da ja fiir die Interferenzerscheinungen
Richtung und Gegenrichtung gleichwertig sind.

Abschliessend sei erwidhnt, dass auch die Methode von A. L. PATTER-

7 Bchweiz. Min. Petr. Mitt.,, Bd. 33, Heft 1, 1953



86

Alfred Niggli

Tabelle 12. Ebene Ausloschungseinheiten

Laue-
Ausléschungseinheit Fliachengruppen Klasse
1.11
- — 2y ct| C,
2.11 I 1
1 1 Xy Clv C2v
3.11 II | OII
1 T Xy Clv C2v
021
4. 11 II
1T xy Cav
5.1 1 {11}, {I1} .
11 xy lv| 2w
6.11 o |
- - xy, yx G | Cy
7.1 1 "
11 xy,yx Civ
C4v
8.11 o
1Y xy;y+4% x+3% %
9.11 {ll}, ;{m o C; Cﬁ C,
- — XY, X y,X'Y¥y
10. 1 1 {11}, {11
11 iy,}X’{ y’?x” y” Cv Cav Cov

soN, die aus dem Interferenzversuch nicht bestimmbaren Phasenbe-
ziehungen der Streuwellen zu vernachlissigen, einer einfachen Darstel-
lung durch die Charakterentafeln zuginglich ist. Fasst man nimlich
gleichwertige Vektoren zwischen beliebigen Punkten der Elementarzelle
wieder zu Formen zusammen, so liefern die s- und d-Charaktere unmittel-
bar die Lage der HarkERschen Linear- und Planarkonzentrationen von
Pattersonpunkten. Das Vorgehen ist in der zitierten Arbeit niher
erlautert (15).
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ITI. Rotative Charaktere: Schwingungssysteme

12. Symmetrieeigenschaften der Normalschwingungen; rotative
Charakterentafeln

Die folgenden Ausfilhrungen iiber Schwingungssysteme beschrinken sich
darauf, eine Grundlage fiir den Teil IV zu schaffen; ihre Kiirze rechtfertigt sich
durch den Hinweis auf die Arbeiten von P. Nicorr (23) und dem Verfasser (14),
in denen sich die Anwendung der Symmetrielehre auf Molekiilschwingungen
erldutert findet.

. Untersucht man die Symmetrieeigenschaften der Normalschwin-
gungen, aus denen sich ja jede beliebige Schwingung eines Systems
zusammensetzen lisst, so gelangt man zu einem bemerkenswerten Ergeb-
nis. Es zeigt sich ndmlich, dass die Anordnung der Schwingungsvektoren,
und damit das Verriickungsbild, in jedem Moment einer Normalschwin-
gung vollstindig durch die Grundsymmetrie des Gleichgewichts-
zustandes gesteuert wird. Man kann das auch so ausdriicken, dass der
Abbau zur Restsymmetrie, d. h. zur Punktsymmetrie der Schwingungs-
form, keineswegs eine erschipfende Beschreibung der Symmetrieverhilt-
nisse liefert, sondern dass ausserdem die Abweichungen von der Grund-
symmetrie durch gesetzmissige Drehungen der Schwingungsvektoren
festgelegt sind. Die Symmetrie des Grundzustandes wird also nicht zer-
stort; sie geht nur in eine neue, komplexere Art von Symmetrie mit
rotativen Zusatzkomponenten iiber, so dass man fir die Normal-
schwingungen recht eigentlich einen , ,Erhaltungssatz der Symmetrie*
fordern kénnte.

Dass die Symmetrien der Schwingungsformen einer gruppentheo-
retischen Behandlung zuginglich sind, versteht sich von selbst. So ist
denn auch seit der grundlegenden Arbeit von E. WiGNER (37) ihre
Beschreibung durch Charaktere iiblich; aus der reichhaltigen Literatur,
die G. HErzBERG (10) zitiert, soll in diesem Zusammenhang die Arbeit
von J. E. RoSENTHAL und G.M. MurpHY (31) hervorgehoben werden.
Erst kiirzlich aber hat P. Niccrr (23) gezeigt, wie einfach sich solche
rotative Charaktere als Cosinuswerte der Winkel deuten lassen, um
welche die Schwingungsvektoren nach Ausfithrung der Punktsymmetrie-
operationen zuséitzlich gedreht werden. Die entsprechende Definitions-
gleichung y = cos p mit dem rotativen Anteil p legt schon durch ihre Ahn-
lichkeit mit der Gleichung fiir die translativen Charaktere (S. 69) eine
gegeniiberstellende Betrachtung nahe, die dem Teil IV vorbehalten bleibt.

Die 3n—6 Freiheitsgrade der Schwingung, die einem dreidimen-
sionalen System von n Massenpunkten zur Verfiigung stehen, verteilen
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sich auf verschiedene Typen oder Klassen von Normalschwingungen
mit in sich gleicher Symmetrie und Frequenz, und zwar gibt es jeweilen
genau so viele solcher Schwingungsklassen, wie die Punktgruppe der
Grundsymmetrie Klassen konjugierter Elemente, d.h. gleichwertiger
Operationen enthilt. Da iiberdies die Charaktere eine Klasseneigenschaft
darstellen, nehmen rotative Charakterentafeln in ihrer iiblichen Gestalt
die Form einer k-reihigen quadratischen Matrix an, wenn man die
Charaktere nach den Klassen von Symmetrieoperationen in Spalten und
nach den Schwingungsklassen in Zeilen ordnet. Die Reihenzahl k stimmt
mit der Anzahl gleichwertiger Zyklen nach Tabelle 1 (S. 32) iiberein.
Eine Zusammenstellung der Charakterentafeln aller dreidimensionalen
Punktgruppen lisst sich den Tabellen I1I der zitierten Arbeit (14) ent-
nehmen; man findet sie auch bei P. N1cGLI (23) in den Haupttabellen I—V.

Jeder einzelne Charakter stellt den rotativen Anteil und damit die
Symmetrieart eines Schwingungstyps beziiglich einer Klasse von Opera-
tionen dar. Somit liest man aus ihm unmittelbar ab, wie die Schwingung
zum Punktsymmetrieelement verlduft, oder was fiir ein rotationshaltiges
Symmetrieelement selbst die Schwingung beschreiben wiirde. Die Aqui-
valenz dieser beiden Ausdrucksweisen geht aus dem Abschnitt 7 hervor;
im tubrigen soll vom Begriff der rotationshaltigen Anti- und Ent-
artungs-Symmetrieelemente erst im Teil IV Gebrauch gemacht
werden. '

Die Forderung, dass die n-malige Ausfithrung auch einer rotations-
haltigen Symmetrieoperation von der Ordnung n zur Identitédt fiihren
miisse, hat eine Beschrinkung der Drehungskomponenten auf diskrete
Werte zur Folge: die Drehwinkel diirfen nur ganzzahlige Vielfache von

27; betragen. Natiirlich ist damit auch der Wertevorrat der Charaktere

empfindlich beschnitten. Diese Uberlegung entspricht genau derjenigen,
die bei den Raumgruppen zu diskreten Gleit- und Schraubungskompo-
nenten fithrte, denn beiden Fillen ist der Grundsatz geschlossener Zyklen
gemeinsam. Um so eher scheint es gerechtfertigt, den Erhaltungssatz der
Symmetrie fiir zeitlich-periodische Schwingungsvorginge neben das Kor-
respondenzprinzip von raumlich-periodischer Anordnungssymmetrie und
scheinkontinuierlicher Punktsymmetrie zu stellen.

Auf die Schwingungssymmetrie selbst soll nur kurz eingegangen werden.
Bei einer totalsymmetrischen Schwingung sind Restsymmetrie und Grundsym-
metrie identisch, da sie zu allen Symmetrieelementen symmetrisch verliduft
(verschwindende Drehungskomponenten, y=cos 0=1); insbesondere ist jede
Schwingung zur Identitidtsoperation symmetrisch. Unter den abweichenden Mog-
lichkeiten wird das antisymmetrische Verhalten durch einfache Richtungs-
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umkehr der Schwingungsvektoren (y = cos s = —1) ausgezeichnet; es lisst sich
offenbar nur auf Operationen von gerader Ordnung beziehen. So geben die Unter-
gruppen von D,; zu symmetrischen und antisymmetrischen Schwingungstypen
Anlass. Wenn aber Operationen von einer Ordnung > 2 vorhanden sind, treten
zueinander entartete Doppelschwingungen auf. Ihre Drehungskomponenten
unterscheiden sich nur durch das Vorzeichen, so dass die entsprechenden Ver-
riuckungsbilder enantiomorphe Paare darstellen. Dabei sind die Doppelschwingun-
gen parasymmetrischer Systeme zufillig oder trennbar, diejenigen holosymmetri-
scher dagegen untrennbar entartet. Die Einteilung erfolgt nach dem direkten Pro-
dukt der Punktgruppe mit C,, also nach dem Hinzufiigen eines Symmetriezentrums,
das im Falle der parasymmetrischen Gruppen eine Paramorphie C ; mit n> 2, d. h.
C,p fur n=0.(mod. 2) und C,; fir n=1 (mod. 2) oder T, , im Falle der holosym-
metrischen Gruppen eine Holoedrie D, mit n> 2, d. h. D, fir n=0 (mod. 2) und
D, fir n=1 (mod. 2) oder O, liefert. Bei den mono- und digonalen sowie bei den
ikosaedrischen Gruppen, wo dieses Einteilungsprinzip versagen wirde, treten iiber-
haupt keine Doppelschwingungen auf. Dagegen gibt die Kombination von meh-
reren > 2-ziahligen Symmeirieachsen in den isometrischen Gruppen zu weiter-
gehender Entartung Anlass: kubische Systeme weisen dreifach entartete, ikosa-
edrische drei-, vier- und fiinffach entartete Schwingungstypen auf. Der Charakter
einer n-fach entarteten Schwingungsklasse ist stets gleich der Summe der Charak-
tere aller n zusammengehérigen Teilschwingungen, so dass etwa der Charakter
gegeniiber der Identitétaoperation n wird.

Bei wirteliger Symmetrie lisst sich die Zahl der verschiedenen Schwingungs-
klassen wieder unmittelbar aus der Tabelle 1 ablesen. Es gibt néamlich ebenso viele
totalsymmetrische Schwingungstypen wie Klassen von Einerzyklen F,, ebenso viele
antisyminetrische Typen wie Klassen von Zweierzyklen F,, und ebenso viele zwei-
fach entartete Typen wie Klassen von héheren Zyklen F_, x> 2.

Zwischen den Einzelelementen der rotativen Charakterentafein herrschen
mannigfache Beziechungen, die im wesentlichen auf der Orthogonalitét der Normal-
schwingungen beruhen. Sie finden sich bei P, NicoLi (23) oder A. NigeLr (14)
zusammengestellt. In diesem Zusammenhang soll nur ein Fehler berichtigt werden,
der auf S.917 der Arbeit von P.Nreerr (23) unterlaufen ist. Die Summe der
Cosinusquadrate aller zu einer m-zihligen Symmetrieachse gehorigen Drehwinkel
(einschliesslich 0) ist £m mit der Bedingung m > 2. Dieser Satz ist als Spezialfall in
einem allgemeineren Satze enthalten, der im Abschnitt 17 bewiesen wird.

13. Freiheitsgrade der Schwingungsklassen und Auswahlregeln

Zunéchst sei an einem Beispiel erldutert, wie allfillige Symmetrieeigenschaf-
ten das Geschehen in einem schwingenden System beeinflussen. Eine dreidimen-
sionale Anordnung von 120 Massenpunkten besitzt 3.120 —6 Freiheitsgrade der
Schwingung, die beim Fehlen jeglicher Symmetrie zu 354 verschiedenen (total-
symmetrischen) A-Schwingungstypen, Anlass geben. Sind aber die 120 Massen-
punkte gleichwertig und durch die Symmetrie der Punktgruppe I, verkniipft, so
verteilen sich die Freiheitsgrade auf 3A,-, 3A,-, 8 F,-, 8 Fy -, 9Fp,-, 9F,,-,
12 G-, 12 G-, 15 H,- und 15 H -Typen, also auf insgesamt 94 Schwingungsklassen.
Die Anzahl verschiedener Normalfrequenzen wird damit ganz betrichtlich herabge-
setzt ; fiir die Bedeutung der Symbole sei auf die zitierte Literatur (10usw.) verwiesen.
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Wie schon an anderer Stelle (14) betont wurde, ist die Verteilung der
Freiheitsgrade auf die Schwingungstypen eine reine Angelegenheit der
Symmetrie. In der Anwendung auf Molekiile bedeutet das aber, dass
Zahl und Art der Normalschwingungen von allen Annahmen iiber
die Krifte, von den schwingenden Massen und sogar von der Metrik des
Systems vollig unabhiingig sind. Dasselbe gilt von den Auswahlregeln
der Schwingungsspektren. Im Infrarotspektrum sind ja nur die Normal-
schwingungen, welche das elektrische Moment des Molekiils, und im
Ramaneffekt nur jene, die seine Polarisierbarkeit veriandern, beobacht-
bar. Beide Kriterien lassen sich durch die Transformationseigenschaften
des Vektors des elektrischen Moments einerseits und des Polarisierbar-
keitstensors andererseits so ausdriicken, dass sie einer unmittelbaren
Beschreibung durch die Symmetrielehre zuginglich sind.

Schon E. WieneRr (37} hat das erkannt, als er die Darstellungstheorie zur
Deutung der Schwingungsspektren heranzog. Seine Methode wurde auch in (14)
beniitzt, wo sich alle zur Berechnung erforderlichen Unterlagen zusammengestellt
finden. Es sei nur noch darauf hingewiesen, dass die dort ¢ und ¢’ genannten
Grossen nichts anderes darstellen als Spezialfille der imn Abschnitt 17 zu behan-
delnden Charaktere fiir die Verkniipfung eines Skalars mit einem Vektor oder
Tensor. Damit fiigt sich die ganze Berechnungsweise zwanglos in das von S. BEAGA-
vaNTAM und D, SURYANARAYANA (2) — allerdings nur fiir Kristalle — angegebene
Verfahren der Behandlung physikalischer Eigenschaften ein.

14. Die symmetriebedingte Vieldeutigkeit in der
Schwingungsspektroskopie

In der Losung einer unter diesem Titel gestellten Preisaufgabe durch den
Verfasser (14) erfihrt das Problem eine Dreiteilung: den Vieldeutigkeiten von Aus-
sagen der Syminetrielehre iiber den Molekiilbau einerseits und iiber die Normal-
schwingungen andererseits ist die weitere Vieldeutigkeit der Verbindung beider
Gebiete, d. h. des Schlusses vom Schwingungsspektrum auf die Molekiilstruktur,
uiberlagert. Auf eine Wiederholung eingehender Erérterungen kann hier um so mehr
verzichtet werden, als im Abschnitt 18 die gleichen Fragen nochmals in einem
allgemeineren Zusammenhang erscheinen.

Da nur die Zyklensymbole der Symmetrieformeln in die Rechnung
eingehen, hat man bei der Beurteilung von Aussagen der Symmetrie-
lehre iiber die Molekiilstruktur vor allem die Vieldeutigkeit der For-
men gemiiss Tabelle 1 und Abschnitt 6 zu beriicksichtigen; weiter ist die
ebenfalls behandelte Beziehung zwischen Eigensymmetrie und Lage-
symmetrie in Rechnung zu stellen. Wenn nicht einmal iiber die Gleich-
wertigkeitsverhiltnisse der konstituierenden Teilchen Klarheit besteht,
macht sich eine zusitzliche Vieldeutigkeit bemerkbar. Sie kommt in der
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Tabelle IT der zitierten Arbeit (14) zum Ausdruck, die alle denkbaren
Formenkombinationen fir zwei- bis zwolfatomige Molekiile enthilt. Eine
Zusammenstellung der Z#hligkeiten dreidimensionaler Punktgruppen und
der daraus ableitbaren Kombinationen geben die Tabellen 13a und 13b;
darin bedeuten wieder p eine ungerade, n eine gerade und q allgemein
eine ganze positive Zahl, wihrend a=0 oder 1 und b,e,...=0,1,2,...
sein konnen.

_ Uber all diesen Uberlegungen diirfen die grundsitzlichen Grenzen
jeder Symmetriebetrachtung bei der Beschreibung einer Anordnung nicht
vergessen werden. In metrischer Hinsicht muss sich die Symmetrielehre
darauf beschrinken, fiir Spezialformen geometrische Orter der Punkt-
lagen anzugeben; dariiber hinaus lisst sie alle Parameter der geometri-
schen Freiheitsgrade unbestimmt. Was schliesslich die Vieldeutigkeit von
Aussagen der Symmetrielehre iiber die Normalschwingungen fiir sich
und in Beziehung auf den Molekiilbau betrifft, muss fiir weitergehende
Angaben, als sie im Teil ITT gemacht wurden, auf die zitierte Arbeit (14)
verwiesen werden.

Tabelle 13a. Maogliche Formenzihligkeiten im RIII

Punkt- Symmetriebedingung Voll-
gruppe Cl CZ 03 04 05 Cq Cn 02 v C3 v C4 v 05 v qu SYIl'lm.
Cy q 1
Cov 2p P I
C,, 2n n, n 1
D, 2p p 2 1
D, 2n n,n 2 1
S, n 2 1
Cai 2p 2 1
Cu 2n 2 n 1
Dy 4p 2p 2p 2 1
D, 4n 2n 2n 2 1
D,y 4p 2p, 2p P 2 1
D.. 4n 2n,2n,2n n,n 2 1
i 12 6 4 i
T, 24 8 12 6 1
T, 24 12 6 4 1
O 24 12 8 6 1
0, 48 24, 24 12 8 6 1
I 60 30 20 12 1
I, 120 60 30 20 12 1
Cov 1
D.u 2 1
K, 1
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Tabelle 13b. Zdhligkeiten der Kombinationen

C, b+ecq

Cuw b+ (e+2d)g

D, a+2b+(c+2d)q

5, a+2b+4cn

Cu a+2b+2cp

Con a+2b4(e+2d)n

D4 a+2b+2(c+2d)q

Dyy a+2b+(c+2d+4e)q

T a+4b+6c+12d

T,, 0 a+6b+8c+12d+ 24e

T, a+4b+6c+12d + 24e

O, a+68b+8c+12d 4 24e 4481
I a+12b+4 20c 4 30d 4 60e

I, a+12b+20c+ 30d + 60e + 120f
Cov b

P a+2b

K, a

IV. Allgemeine Symmetriesiitze

15. Die Isomorphie der translations- und rotationshaltigen
Symmetrieoperationen

Ein Vergleich zwischen den Teilen 11 und III zeigt eine weitgehende
Analogie der translativen und rotativen Charaktere, sowie iiberhaupt
der translations- und rotationshaltigen Symmetrieoperationen. Der Zu-
sammenhang erscheint um so deutlicher, als die Verschiebungs- wie die
Drehungskomponenten in Winkeln ausgedriickt wurden, um der ihnen
gemeinsamen HRigenschaft der Periodizitit Rechnung zu tragen. Die
Analogiebeziehung beider Operationsarten unter sich und mit den Punkt-
symmetrieoperationen soll nun niher gepriift werden.

Am einfachsten liegen die Verhiltnisse — immer unter Beschrin-
kung auf den dreidimensionalen Raum — bei den Operationen I. Art.
Einer n-zidhligen Drehung als Punktsymmetrieoperation entsprechen
néamlich einerseits n verschiedene Schraubungen als Deckoperationen von
Raumgruppen, und andererseits n verschiedene Rotationsdrehungen als
Deckoperationen von Schwingungsbildern; die Beziehung der Zyklen ist
in beiden Féllen die einer (mehrstufigen) Isomorphie. Gleichgiiltig, ob es
sich um Translationen oder Rotationen handelt, stehen den Zusatzkom-

ponenten dieselben diskreten Werte §2n, x=1,2,...n zur Verfiigung.
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Das erlaubt aber die ein-eindeutige Zuordnung von Schraubungen und
Rotationsdrehungen, so dass ihre Gesamtheiten durch die Beziehung
einer (einstufigen) Isomorphie verbunden sind.

Da die Charaktere kristallographischer Operationen rationale Werte aufwei-
sen, sind in der Tabelle 14 beispielhaft alle translativen Charaktere y, und rota-
tiven Charaktere y; zusammengestellt, die sich auf 1-, 2-, 3-, 4- und 6-zdhlige
Achsen beziehen kénnen. In den Charakterentafeln treten sie allerdings nur zum
Teil auf. Das hat beil den translativen Tafeln seinen Grund darin, dass die Schrau-
bungskomponenten > 2-zihliger Achsen in die Uberschriften eingehen; bei den
rotativen Tafeln dagegen finden sich die Charaktere der zueinander entarteten
Schwingungen je zu einem Summencharakter vereinigt, so dass fir dreizidhlige
Achsen — 34 —3} = —1, fiir vierzdhlige Achsen 0+ 0=0, fir sechszihlige Achsen
3+4+=1und — 14+ —1 = —1 erscheint.

Es liegt nun nahe, die in der Kristallographie gebriuchlichen Schrau-
benindices zum Ausbau der Zyklensymbole heranzuziehen. In diesem
Sinne soll fortan f, sowohl eine n-ziéhlige Schraubung mit der Kom-

ponente EQW wie eine n-zihlige Rotationsdrehung mit derselben Kom-

ponente darstellen; die Erweiterung auf s- und s’-Zyklen ergibt sich von
selbst. Weniger leicht gestaltet sich die Einfiihrung von zeichnerischen

Tabelle 14. Charaktere kristallographischer Achsen

Win- X1 Xz
kel 1 2 2, 3 3, 3, 4 4, 4, 4, 6 6, 6, 6, 6, 6

1 1111_L1 1
577 . . 7 /. T s T T T z —z —+ T2 2 2
s7| — — — — — — 1 .0-1 0 — — — — — — | o
7| ——— 14— — — — 1% 143 |-}
] == L sl e ser oias @ el 1 =T F ool T ol 1 | -1
g7 | —— — 1l b — — — — 144 1% -1 |-
gw S O R (U ™ G 0
i)

| — — = — — == — 1 F%-1-% & | &
2w r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Symbolen, wie sie P. N1GGLI in einem noch nicht versffentlichten Vor-
trage entworfen hat, fiir die rotationshaltigen Symmetrieelemente. Wegen
des Gewinns an Anschaulichkeit ist es trotzdem oft von Vorteil, mit
solchen Anti- und Entartungssymmetrieelementen, die in nicht-
totalsymmetrischen Schwingungen den Platz der Grundsymmetrieele-
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mente einnehmen, zu arbeiten; fir die zugrunde liegende Betrachtungs-
weise sei auf den Abschnitt 7 verwiesen.

Bei den Operationen II. Art findet einzig die Antispiegelung ihr
Gegenstiick in der Gleitspiegelung, wobei allerdings der Antispiegelebene
eine ganze Mannigfaltigkeit von Gleitspiegelebenen mit verschieden
gerichteter Gleitkomponente gegeniibersteht. Die iibrigen Punktsym-
metrieoperationen II. Art — Symmetriezentrum, Drehspiegel- und Dreh-
inversionszentren hoherer Zihligkeit — konnen zwar vollumfinglich mit
Zusatzrotationen kombiniert werden, bilden aber keine eigentlich trans-
lationshaltigen Symmetrieelemente, da eine Verschiebungskomponente
sich nach Abschnitt 7 nur auf die Lage und nicht auf die Art der Elemente
auswirkt.

Zusammenfassend erhilt maan so fiir die kristallographischen Zahlig-
keiten die Operationen der Tabelle 15. Bei den Raumgruppen sind
zueinander enantiomorphe, bei den Schwingungssystemen zueinander
entartete Operationen durch 4 -Zeichen verbunden, und der Deutlich-
keit halber sind die translations- und rotationsfreien Zyklen mit dem
Index 0 bezeichnet.

Tabelle 15. Kristallographische Punkt-, T'ranslations- und Rotations-

Symmetrieoperationen
Punktgruppen Raumgruppen Schwingungssysteme
fl flo flo
f, fa T2, fa,r Ta,
£, ' f3, 5, + 13, f3, f5, +f3
£, fapr fagr fa +14, f‘10 f42, f41+f
f‘i foor Lo f“z +f“4’ £s, + 16, fo0r foye s, 2 34’ f61 + f“
89 Lzo B2, 8g
Sy 8240 Sz, als a,b,c,n, d 89,0 Sz,
S4= Sﬂ’t S40 340; 3429 841 + S43
’ 4 ! ’ ' ! r
SG SGO Sﬁos 8639 Sﬁ‘z + 584’ Sﬁl + SG5
Ss Sey 8649 Sg0 S, 1 Sg, Sp, T8

Mit derartigen Symbolen ldsst sich nun auf einfache Weise rechnen. So liest
man aus ihnen etwa ab, dass f, in f,, {5, f,,, f,, {5, enthalten ist, f, , dagegen in
f41, 15 fsa, fs , f‘G ; in dhnlicher Weise sind f,i . f6 mlt f verbunden, f f aber
mit f; , und f'6 s f mit f; . Ferner zeigen sie belsplelswelse, dass in Schwmgungs-
systemen 861, 863, s6 mit emem Symmetriezentrum 82 , oder Bg, Sgy0 Bgy mit einer
Spiegelebene s, senkrecht zur Achse unvertriglich sind, usf.

Die Verfolgung der Isomorphiebeziehungen lisst sich nun noch einen
Schritt weiter treiben, indem Kombinationen von translations- und

+
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rotationshaltigen Symmetrieoperationen, also ganze Raumgruppen und
Schwingungstypen einander zugeordnet werden. Dies gelingt zumindest,
solange man von einer Untergruppe von D,, als Grundsymmetrie aus-
geht. Setzt man némlich, um keine Richtung willkiirlich auszuzeichnen,
als Gegenstiick der Antispiegelebene stets die Symmetrieebene mit dia-
gonaler Gleitkomponente ein, so ldsst sich die rotative Charakterentafel
von D, , deren iibliche Form die Tabelle 16a darstellt, gemiss Tabelle
16b in Einzeltafeln fiir die Schwingungstypen auflésen.

Tabelle 16a. Rotative Charakterentafel von D,,

fl. f(;) f(2x) f(gy) 8 2! S(;) S(Zx) S(gy)
Ay 1 1 1 1 1 1 1 1
A, 1 1 1 1 -1 -1 -1 -1
Ay, 1 1 -1 -1 1 1 -1 -1
A, 1 1 -1 -1 -1 -1 1 1
B,, 1 -1 1 -1 1 -1 1 -1
B, 1 -1 1 -1 -1 1 -1 1
B,, 1 -1 -1 1 1 -1 -1 1
B,, 1 -1 -1 1 -1 1 1 -1

Tabelle 16b. Charakterentafeln der Schwingungstypen von Dy,

Alg Alu A2g A2u .

1 11 1-1-1 wall ], ws, -1 11

1 11 -1 1-1 -1 -1 -1 1-1 1

1 1 1 -1 -1 1 1 11 -1 -1 1
Blg Blu B2g B2u

1 1 1 1-1-1 ~1 -1 -1 -1 1 1

-1 -1 -1 1 -1 1 1 1 1 -1 1-1

-1 -1 -1 1 1-1 -1 -1 -1 1 1-1

Die Einzeltafeln der Tabelle 16b konnen jetzt translativ gedeutet
werden: A,  entspricht der symmorphen Raumgruppe D}, —Pmmm,
A;, der hemisymmorphen D}, — Pnnn, wihrend A,,, B,,, B,, der

Raumgruppe D3} in den Aufstellungen Pnnm, Pmnn, Pnmn und A, ,
B,y By, der Gruppe Di} in den Aufstellungen Pmmn, Pnmm, Pmnm
entsprechen. Weitere Uberlegungen dieser Art werden im Abschnitt 16
folgen.

Riickblickend kann man das angewandte Verfahren etwa folgender-
massen beschreiben: Zunichst werden die méglichen Charakteren-
systeme der Punktsymmetriegruppen aufgestellt. Dann lassen sich die
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Charaktere entweder translativ oder rotativ deuten, wobei im ersten Fall
Punkte, im zweiten Vektoren als Elemente des Systems anzusehen sind.
Von untergeordneter Bedeutung ist die allfillige Beschrinkung auf kri-
stallographische Punktgruppen im translativen und die Festlegung einer
ausgezeichneten Zusatzgrosse fiir die Antispiegelebenen im rotativen
Fall. Je nach der Deutung gelangt man zu den Raumgruppen oder zu
den Schwingungssystemen; eine Kombination beider Moglichkeiten
miisste sich wohl auf die Normalschwingungen von Kristallgittern an-
wenden lassen. '

16. Beispiele von Symmetriesiitzen

Die klassischen Symmetriesdtze der phinomenologischen Kristallo-
graphie, die ja einen Bestandteil der Punktsymmetrielehre bilden, finden
sich etwa bei P. NiceL1 (19) zusammengestellt. Thre Erweiterung auf die
translationshaltigen Operationen des homogenen Diskontinuums hat
erstmals P. N1ecoLr (16) vollstindig durchgefiihrt; als erweiterte Sym-
metriesitze fiir rotationshaltige Operationen konnen schon die Berech-
nungen des vorigen Abschnitts (S. 94) angesprochen werden. Im folgen-
den sei die Analogie der Symmetriesiatze auf allen drei Gebieten
am Beispiel der Untergruppen von D, erldutert.

Jeder Symmetriesatz verknipft Operationen, die nebeneinander als Elemente
einer Symimetriegruppe auftreten koénnen, oder, was dasselbe bedeutet, die ent-
sprechenden Symmetrieelemente; er sagt so etwas iiber die Struktur der zugrunde-
liegenden Gruppe aus. Beispiele aus der Punktsymmetrielehre sind etwa die
Satze:

a) Von den (zu F, gehorigen) drei Symmetrieelementen f,, s, (Spiegelebene
senkrecht zur Digyre) und s; bedingen zwei das dritte, so dass C,, = 1f; + 1f, +
1s, + 18 entsteht.

b) Eine Digyre parallel zu einer Spiegelebene erzeugt eine weitere Spiegel-
ebene parallel zu sich und senkrecht zur ersten, mit dem Ergebnis C,, = 1f, +
1f, 4+ 1s,+ 18,.

¢) Die Punktgruppe D, ergibt bei Hinzufiigen eines Symmetriezentrums
wegen f'z -8;3 =8, das direkte Produkt (fi+f,+f,+ ) (f+s3)=F+L+6+f,+
85 +8y+8,+8, =Dy,

Die Erweiterung der Punktsymmetriesitze auf Raumgruppen und
Schwingungssysteme schliesst eine zusitzliche Aussage iiber die Trans-
lations- bzw. Rotationskomponenten ein. Der Einfluss dieser Zusatz-
komponenten erstreckt sich im Falle der Raumgruppen nach Abschnitt
7 sowohl auf die Art wie auf die Lage der Symmetrieelemente; die
Tabelle 17 soll deshalb die doppelte Bedeutung der translativen Charak-
tere einer nicht-reduzierten Grundtafel nochmals zum Ausdruck bringen.
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Tabelle 17. Translatrwe Deutung der Grundtafel G

o; Identitit — e —

o; Ebene (100) Lage Gleitung Gleitung

o, Achse [100] Schraubung Lage Lage

B; Ebene (010) Gleitung Lage Gleitung

B, Achse [010] Lage Schraubung Lage

v: Ebene (001) Gleitung Gleitung Lage

vy Achse [001] Lage Lage Schraubung
g, Zentrum Lage Lage Lage

Im Abschnitt 9 wurde fir die Gittergruppen die Forderung erhoben, dass in
jeder Spalte der reduzierten Tafel entweder keine oder dann zwei Charaktere
von 1 verschieden sein miissen. Diese einfache Bedingung lidsst sich anhand der
Tabelle 17 in die folgende Mannigfaltigkeit von Symmetriesitzen tibertragen:

Die Llage einer Symmetrieachse ist bestimmt durch Lage und Schrau-
bungskomponenten der beiden andern Symmetrieachsen (in D,), oder durch Gleit-
komponente der zu ihr senkrechten Symmetrieebene und Lage des Symmetrie-
zentrums (in C,,), oder durch Lage und Gleitkomponenten der beiden zu ihr
parallelen Symmetrieebenen (in C,,).

Die Schraubungskomponente einer Symmetrieachse ist bestimmt durch
die Lage der beiden andern Symmetricachsen (in D,), oder durch die Lage der zu
ihr senkrechten Symmetrieebene und des Symmetriezentrums {in C,,), oder durch
die Gleitkomponenten in Achsenrichtung der beiden zu ihr parallelen Symmetrie-
ebenen (in C,,).

Die Lage einer Symmetrieebene ist bestimmt durch die Gleitkom-
ponenten der andern zwei Syminetrieebenen (in D,,), oder durch Schraubungs-
komponente der zu ihr senkrechten Symmetrieachse und Lage des Symmetrie-
zentrums (in C,,), oder durch Lage der zu ihr parallelen Symmetrieachse und
Gleitkomponente der andern Symmetrieebene (in C,,).

Die Gleitkomponente einer Symmetrieebene ist bestimmt durch Lage und
parallele Gleitkomponenten der andern zwei Symmetrieebenen (in D,,), oder durch
die Lage der zu ihr senkrechten Symmetrieachse und des Symmetriezentrums
(in Cyy), oder durch Lage und Gleitkomponente der zu ihr senkrechten Symmetrie-
ebene sowie Lage und Schraubungskomponente der zu ihr parallelen Symmetrie-
achse (in C,,).

Die Lage des Symmetriezentrums ist bestimmt durch Lage und Schrau-
bungskomponente der Symmetrieachse sowie Lage und Gleitkomponente der zu
ihr senkrechten Symmetriesbene (in C,,), oder durch Lage und Schraubungs-
komponenten aller Symmetrieachsen, oder durch die Lage aller Symmetrieebenen
und die Schraubungskomponenten aller Symmetrieachsen (in D,,).

Durch Auswertung dieser Gesetziméssigkeiten gelangt man im besondern zu
den folgenden Symmetriesitzen iiber Raumgruppen, die den drei als Beispiel
gewdhlten Punktsymmetriesitzen entsprechen :

a’) Das Symmetriezentrum liegt vom Schnittpunkt der Symmetrieebene mit
der zu ihr senkrechten Symmetrieachse um den Betrag der halben Schraubungs-
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komponente und der halben Gleitkomponente entfernt. Wihlt man die Achsen-
richtung als c-Richtung und die a-Richtung zur Gleitrichtung, so entstehen die
vier Raumgruppen

1f,+ 1f; + 1s, + Ls; (SZ in 0) = CL,
1+ 16, +1s, (3)+1s3(SZ2in %) =04,
1f,+1f, + s, + 18f (8Z in 5) = C2,

1+ 16, +1s, (5)+1s (sz in 22%) = ¢},

Zu diesen vier C,,{P) treten noch mehrfach- primitive wihlt man I zur
Transla,tionsgruppe, so wird f, neben f,, 8, (a+b) in - neben 8, und s, (2)

neben s, (2) um davon entfernt, erzeugt, woraus smh C3, und C}, ergeben.

b’} Die zwelza,hhge Symmetrieachse ist von der Schnittlinie der Symmetrie-
ebenen um den Betrag der halben Gleitkomponenten entfernt; ihre Schraubungs-
komponente ist gleich der Differenz der Gleitkomponenten in der Achsenrichtung.
Legt man die Achse in die c-Richtung, so entstehen daraus 10 verschiedene C, (P):

f;, ergibt mit den Gleitkomponenten 0/0 C3,, mit 0 /% oder ngv, mit
é/gcgv, mit %/g C;,, mi a;c b;cCi"v, mit 2 S a;c oder b+cC§v, , ergibt mit
O/g C3,, mit 0/8";c oder b;cC;’v, mlt > oder —/202,,, und mit 3 oder —/b+°
oder a'+009

Da.zu treten 12 weitere Gruppen mit mehrfach-primitiver Elementarzelle, so
dass sich die Zahl der zu C,, isomorphen Raumgruppen auf 22 erhoht.

¢’) Die d-Charaktere der Symmetrieachsen sind voneinander unabhingig und
im Raum vertauschbar. Das fithrt zuniichst zu vier Gruppen D, (P):

(kein f,) 1f, +1f, +1f, +1f, = D}

(ein fy) 1f;+1f, +1f, +1f, = D}
(zwei f,) 1f +1f, +1f, +1f, = Dj
(alle f,) 1f+1f, +1f, +1f, = D;

Hinzufiigen eines Symmetriezentrums in 000, in }00 (mit zyklischer Ver-
tauschung), in 0 { } (mit zyklischer Vertauschung), oder in } } 1 fithrt insgesamt
zu 16 Gruppen D, (P):

In D; sind die drei Achsen beziiglich der zyklischen Vertauschung gleich-
wertig, so dass aus ihm nur die vier Gruppen D};* entstehen. D2 enthilt zwei
gleichartige Schnittpunkte von Digyre und Schraubenachse; so gibt es ebenfalls
nur zu vier Gruppen D} .® Anlass. In D} gibt es nur einen Schnittpunkt von Digyre
und Schraubenachse, und die Schraubenachsenrichtungen sind gleichartig; daher
werden zwei der zyklischen Vertauschungen gleich, und es entstehen die sechs
Gruppen Dj"*. In Dj schliesslich schneiden sich die Schraubenachsen iiberhaupt
nicht; je nachdem, ob das Symmetriezentrum auf einer der drei gleichartigen
Achsen liegt oder nicht, ergibt sich die Gruppe D} oder D}%. Da noch weitere
12 mehrfach-primitive Gruppen hinzukommen, betridgt die Zahl der zu D,, iso-
morphen Raumgruppen 28.

Die Erweiterung der Symmetrieséitze auf Schwingungssysteme gestaltet
sich wieder einfacher, weil die zusétzliche Aussage sich lediglich auf die Rotations-
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komponenten bezieht. Die Anti- und Entartungs-Symmetrieelemente schneiden
sich ja nach wie vor im Hauptpunkt der Grundsymmetrie. So kénnen ohne weiteres
die rotativen Gegenstiicke der drei erwihnten Punktsymmetriesitze angegeben
werden :

a”) Von den drei F,-Zyklen sind keiner oder zwei vom Typus ¥, . Das fiihrt
zu den vier Schwingungsklassen von C,, , nidmlich:

Lf, + 1f, +1s, + 185 =A;
Lf, + 1f, + 18, + 183 =
1f,+1f; +1s, + 185 =
Lfy + 16y + 18y +18; =

n

g

jeolionlii s

b”) Dieselbe Forderung wie unter a”) fithrt hier zu den vier Schwingungs-

klassen von C,._:
v 1+ 16, + 1s, + 18y, = A,

f, + 1f, + 18, +18, = A,
1f;+1f, +18, +1s, =B,
f; +1f; +1s; +1s, =B,

¢”} Wiederum dieselbe Forderung wie unter a”) und b”) fithrt zunichst zu den
vier Schwingungsklassen von D,:

1y + 1f, + 1, +1f, =
1f, + 11, +1f21 + 15
f, + 1f, +1f, +1f, =
1f; +1f, +1f, +1f, =

2

A
B,
B
B,

Daraus lassen sich die 8 Schwingungsklassen von D,, auf einfache Weise
ableiten: die vier g-Klassen entstehen durch Multiplikation mit (f;+s; ), die vier

u-Klassen durch Multiplikation mit (f, +s; ) nach den Verkniipfungen fys; =s; ,

fisg, =85, f5,80 =8y, £y, 85 =8, £, 85 =8, , £, 85 =8,
Diese Beispiele mogen gentigend gezeigt haben, wie die Punktsym-
metrie, die translative und die rotative Symmetrie durch den Charak-

terenbegriff auf eine gemeinsame Wurzel zuriickgefiihrt werden.

V. Charaktere fiir physikalische Eigenschaften

17. Die Anzahl unabhingiger Konstanten einer Eigenschaft

Zur Ausniitzung der Symmetriebeziehungen hat man nach W. Voigr
die physikalischen Eigenschaften daraufhin zu untersuchen, was fiir zwei
mathematische Grossen sie miteinander verkniipfen. Je nachdem, ob es
sich dabei um Skalare, Vektoren oder Tensoren verschiedener Ordnung
handelt, unterscheiden sich ja ihre Transformationseigenschaften.



100 Alfred Niggli

Im Falle linearer Beziehungen ist allgemein die Anzahl der zur Beschrei-
bung einer Kigenschaft notwendigen Koeffizienten gleich dem Produkt
aus den Koeffizientenzahlen der beiden verkniipften Grossen. Durch
Symmetrieeigenschaften des Systems wird diese Anzahl aber erniedrigt,
indem — bei Forderung der Invarianz (oder des Vorzeichenwechsels)
gegeniiber den Deckoperationen — ein Teil der Koeffizienten gleich wer-
den, ein anderer Teil verschwinden muss; gelegentlich verbietet die Sym-
metrie sogar {iberhaupt das Auftreten einer Eigenschaft.

S. BHAGAVANTAM, D. SURYANARAYANA und T. VENKATARAYUDU
(1, 2) haben nun eine elegante gruppentheoretische Methode zur Ermitt-
lung der Anzahlen unabhingiger Koeffizienten fiir die Eigenschaften der
Kristallphysik entwickelt, die im folgenden auf sdmtliche dreidimen-
sionalen Punktgruppen und auf einige weitere Eigenschaften ausgedehnt
werden soll. Die Einteilung und Bezifferung der verschiedenen Fille von
physikalischen Eigenschaften geschieht nach der zitierten Arbeit (2).
Sind die Koeffizienten gegeniiber allen Symmetrieoperationen invariant,
so erfolgt die Bezeichnung durch ungestrichene Zahlen; treten bei Ope-
rationen IT. Art Vorzeichenwechsel auf, so werden gestrichene Zahlen
verwendet. In nachstehender Ubersicht, die auch Beispiele aus der Kri-
stallphysik enthilt, entsprechen so die physikalischen Eigenschaften
einer Beziehung zwischen: 4

1 oder 1’) Skalar und Skalar (z. B. 1 Dichte, 1’ Enantiomorphie)

2 oder 2’) Skalar und Vektor (z. B. 2 Pyroelektrizitit)

3 oder 3’) Skalar und symm. Tensor (z. B. 3 thermische Ausdehnung,
3’ optische Aktivitat)

3a oder 3a’) Vektor und Vektor mit der Zusatzbedingung c¢; =c¢,;, wo
1,k von 1 bis 3 (z. B. 3a optische, dielektrische, magnetische
Polarisation; thermische, elektrische Leitfihigkeit; Thermo-
elektrizitit)

4 oder 4') Skalar und unsymm. Tensor

5 oder 5’) Vektor und Vektor

6 oder 6’) Vektor und symm. Tensor (z. B. 6 Piezoelektrizitit, elektro-
optischer Kerr-Effekt) '

7 oder 7'} Vektor und unsymm. Tensor

8a oder 8a’) symm. Tensor und symm. Tensor mit ¢, =c¢,, wo i,k von
1 bis 6 (z. B. 8a Elastizitit) '

8 oder 8’) symm. Tensor und symm. Tensor (z. B. 8 Photoelastizitit)

9 oder 9') symm. Tensor und unsymm. Tensor '

10 oder 10°) unsymm. Tensor und unsymm. Tensor
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11 oder 11°) Vektor und Quadrat von symm. Tensor mit ¢; =c,;, wo
i,k von 1 bis 6 (z. B. 11 piezoelektrische Koeffizienten)

12 oder 12) symm. Tensor und Quadrat von symm. Tensor mit ¢, =
Chil = Cjik =Cp; = - - -» wo 1,k,1 von 1 bis 6 (z. B. 12 elastische
Koeffizienten)

13 oder 13’) symm. Tensor und Quadrat von symm. Tensor mit ¢, =c,;,
wo i,k von 1 bis 6 (z. B. 13 photoelastische Koeffizienten).

Die Zahl der unabhéngigen Konstanten einer Eigenschaft lisst
sich nun berechnen als die Anzahl n;, wie oft die i-te irreduzible Dar-
stellung in der vollstéindig reduziblen Darstellung der Punktsymmetrie-
gruppe enthalten ist. Sie ergibt sich zu

n= 5 2 [y’ (R (R,

worin N die Ordnung der Gruppe, h; die Zahl der zur j-ten Klasse geho-
rigen Gruppenelemente, x;'(R) den Charakter der Transformations-
matrix fiir die Symmetrieoperation R, und y; (R) den Charakter der
Operation R in der i-ten irreduziblen Darstellung bedeutet; summiert
wird iliber alle Klassen j.

Alle nétigen Angaben sind in Tabelle 18 zusammengestellt. Die Cha-
raktere y’ (R), die man im iibrigen nicht mit den translativen oder rota-
tiven Charakteren verwechseln darf, sind als Produkte der Spuren von
Transformationsmatrizen Klasseneigenschaft, d. h. fiir alle gleichwertigen
Symmetrieoperationen dieselben. Wo drei Vorzeichen angegeben sind,
bezieht sich jeweils das obere auf die reine Drehung, das mittlere auf die
Drehinversion, und das untere auf die Drehspiegelung um den Winkel o.
Als irreduzible Darstellung wird fiir die Fille 1, 2,. .. die totalsymmetri-
sche, fiir die Falle 1/, 2’,. .. die antisymmetrische Darstellung verwendet,
so dass die Charaktere x;(R) den Wert 1 bzw. =1 annehmen. Es sei
noch erwihnt, dass fiir die in kristallographischen Gruppen ausschliesslich
auftretenden Operationen der Ordnungen 1, 2, 3, 4 und 6 sdmtliche
Charaktere y' ganzzahlig werden.

Sofern. nicht wie in den Fallen 3a, 8a, 11, 12 und 13 besondere Zusatzbedin-
gungen an die Tensoren gestellt werden, lassen sich iibrigens die Charaktere der
Tabelle 18 auf eine einfache Formel bringen. Auf die Verkniipfung zweier Tensoren
der Grade g und g’, wovon s symmetrisch sind, bezieht sich namlich der Charakter

&+g") "
X'=2 [( + 1)k (g+i S) (2 cos (p)<g+g’—k)] ,

wobei fiir reine Drehungen das obere und fir Drehspiegelungen das untere Vor-
zeichen zu nehmen ist. Die in der Formel auftretenden Grossen g4+ g’ und g+g"—s

8 Schweiz. Min, Petr. Mitt., Bd, 33, Heft 1, 1933
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Tabelle 18. Charaktere fir physikalisbhe Eigenschaften

isotrop

- ‘ n, -
Fall X X Xi max. min. g =
1 1 1 1 ]
v ] 1 RERSTR RIS B
o izcostpil il +1 .o | ®
o = ~ - 21 3 ()
X 16 1
o " _ ‘ ;1 6 (1)
20 cos®+2c08¢p 2 1 6 1
30’ | | ) i1 6 (1)
i w —1 9 1 ’
4’ Leog? + ; i
. CcoSs (pi4cos<p+ 1 3 1 9 1
5 | T g (1)
2’ } 2800334%80032@:—:2008(;9 §4 ti 12 23

- 4

:’ } EScos"'(p;wcosﬂgozﬁcoqu;l _{7 fi z: (i)
Sa l 1608t Boos* — 4cos?e + 1 b R
s | | p+8eos’y 2 D121 Q)
) e 2 1 36 2
o } cos gptl(icos @+ 4cos?p 8 21 36 (1)
= 16 cos? f 3 toh Lol 5
o } cos (pt24cos @+ 12cos (piQGOS(p 12 tl 54 (1)
10 . . 1 081 3
o } 16cos4tpi32005390+240082?7i8°0$q’+1 19 tl 81 (1)
:i, } E32cos5(P§32cos‘qn£4cosz¢j—:2005‘i’;1 ;H fi g: Ei; } ¥
1 s _ 1 56 3
1o } 64008“(pi320055(;0—‘480034(}3;8‘3053?’+160082‘P 10 il 56 (1)
3 X ~ N 1126 3 | 7
ig” } 64cos°<pi64oos5q;;800s3<p+4coszqu_r2coscp 22 1 1268 (1)
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werden dann fiir den Fall ! Qund 0, fiir 21und 1, fir 3 2 und 1, fiir 4, 5 2 und 2,
fiar 6 3 und 2, filr 7 3 und 3, fiir 8 4 und 2, fir 9 4 und 3, und fur 10 4 und 4. Das
abweichende Verhalten der iibrigen Fille kommt schon in den negativen Koeffi-
zienten eines Teils der Cosinuspotenzen zum Ausdruck.

Aus den bestimmten Integralen
s (2 -1) s 2.4-6...2
1-3-5...(2n- T ‘4-6...2n
2n =T : 2n+1 s
fcos xdx 3 54 , fcos xdx 3.5
0

6...2n 2 1-
0

erhilt man die Mittelwerte {iber den ganzen Bereich von 0 bis 27 zu
a2

X . 2 — .
cosnx = — | cos?2xdx, cos?ntlx =0, insbesondere
w
0

1 —0 . 3 15

— 2yv — = 3 v — 4 5 5w — L i

cosx=0, cos X=3, COS x=0, cos X=g¢, COS x=0, cos X =
Daraus ergeben sich die in Tabelle 18 unter ;’ aufgefithrten Mittelwerte
der Charaktere. Fiir geniigend grosse m darf nun die Charakterensumme
fiir alle zu einer m-zihligen Achse gehorigen Operationen (einschliesslich
der identischen Drehung um 2 z) gleich dem Produkt aus Mittelwert des

Charakters und Zahligkeit gesetzt werden:

— {27q —
qz=)1X ( m ) -

Das ist definitionsgemdéss bei zylindrischer Symmetrie mit m =o0, tat-
sichlich aber schon bei endlichen m >r zuléssig, wo r den héchsten im
Polynom des Charakters auftretenden cos-Exponenten bedeutet. Da eine
Symmetrieachse von entsprechender Zihligkeit sich beziiglich der Cha-
raktere und damit auch der Konstantenzahlen gleich verhilt wie eine
Zylinderachse, werden bei zunehmender Achsenzihligkeit fiir die Eigen-
schaften 1 und 1’ Monogyren, 2 und 2’ Digyren, 3 bis 5" Trigyren, 6 bis 7’
Tetragyren, 8a bis 10" Pentagyren, 11 und 11’ Hexagyren, 12 bis 13’
Heptagyren erstmals zu Achsen der Isotropie. (Tabelle 18, Spalte
rechts aussen.)

Nun soll noch nachgewiesen werden, dass das zur Ermittlung der isotropen
Achsenzihligkeit eingeschlagene Verfahren wirklich zulissig ist. Dazu geniigt es
offenbar, den folgenden Satz zu beweisen:

Die durch die Zihligkeit dividierte Summe der p-ten Potenzen aller zu den
Drehungen einer Symmetrieachse gehérigen Cosinuswerte hiéngt nicht mehr von
der Ziahligkeit ab, sobald diese grésser als p wird; sie wird dann gleich dem Mittel-
wert der Funktion, wie das ja bei einer unendlichzihligen Achse der Fall ist.
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Es gilt namlich

1 2 k 1 ' . :
— Z cosP — 2 =_ Z [%(ek2w1/n+e—k2ﬂ1/n)]p
Ll | n Ng=1
n D
e 3 [i ¥ (P) .e(p-j)kzni/ne—jkzni/n]
=y | 2P =0\ .
p n
_ > (p) 3 e(p—2i) k27i/n
Pn o \1/ ¥=1

--—2' 2m7i_
L 3 (P) [ew-2n2mim . it
ed—2NH27i/n_ 1 |°

Fir n>p verschwinden alle Surmmanden einzeln, mit Ausnahme des nur bei
geradem p auftretenden Gliedes mit 2j=1p; dieses wird gleich ( \}pp)n. Daher ver-
schwindet der ganze Ausdruck fiir p=1 (mod. 2), und fiir p=0 (mod. 2) wird er
1 /(p p! 1-3:5....(p—12P(ip)! 1-3-5....(p—1)
"o (%p) T2(p)iGp)! 2@ (prdp! 246D
in jedem Falle zum Mittelwert cos®x. Damit ist gleichzeitig der auf S. 89 erwihnte
Satz als Spezialfall fiir p=2 bewiesen.

, also

Wie wirksam Symmetrieeigenschaften die Konstantenzahlen n,
heruntersetzen und dadurch die Beschreibung physikalischer Eigenschaf-
ten im Sinne des Abschnitts 1 vereinfachen kénnen, geht schon aus einem
Vergleich der Extremzahlen in Tabelle 18 hervor. Der Maximalwert gilt
fir den symmetrielosen Fall, und ein eingeklammerter Minimalwert
bedeutet, dass die Eigenschaft nicht bei allen Symmetrien moglich ist.
Das FErgebnis der Berechnung fiir alle denkbaren dreidimensionalen
Punktgruppen ist schliesslich in Tabelle 19 gegeben. Dort steht n fir
gerade, p fiir ungerade Zahlen; die Konstantenzahl 0 erscheint dann,
wenn die betreffende Eigenschaft gar nicht auftritt, weil sie mit der
Symmetrie unvereinbar wire.

Die Tabelle 19 offenbart mannigfache Zusammenhénge, von denen
einige herausgegriffen seien. So kann man etwa die Eigenschaften der
Falle 1,2,. .. als Eigenschaften I. Art, jene der Fille 1',2',. .. als Eigen-
schaften I1. Art bezeichnen. Dann zeigt sich, dass bei ungerader Minimal-
zidhligkeit einer Achse der Isotropie die Kigenschaften I. Art zentro-
symmetrisch, diejenigen II. Art dagegen azentrisch, d.h. mit einem
Symmetriezentrum unvereinbar sind; bei gerader Minimalzahligkeit sind
umgekehrt die Eigenschaften IT, Art zentrosymmetrisch und diejenigen
I. Art azentrisch. Eine Sonderstellung nehmen dariiberhinaus der sym-
metrieunabhéngige Fall 1 und der mit gar keinen Operationen II. Art
vertrigliche Fall 1’ ein. Oft werden die physikalischen Eigenschaften
geradezu nach den entsprechenden mathematischen Grossen als unge-
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Tabelle 19. Konstantenzahlen fiir dreidimensionale Punktgruppen
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Tabelle 19. (Fortsetzung)

p C CunC, D, C, D, D, isometrisch
Falll n € 8, 0,D, CDyDy|T T, T, 0 0, I T,
i 1 27 13 27 13 13 6 13 | 2 2 1 1 1 1 1
2 13 713 6 6 3 6
3 9 7 9 4 4 3 4
>4 7 7 7 3 3 3 3
8a 1 21 13 21 13 13 9 13 | 3 3 3 3 3 2 2
2 13 713 9 9 6 9
3 7 5 7 6 6 5 6
4 7 5 7 6 6 5 6
=5 5 5 5 5 5 5 5
8’| 1 21 8 013 8 4 0|3 0 0 3 0 2 0
2 13 6 0 9 4 3 0
3 7 2 0 6 1 1 0
4 7 2 0 6 1 1 0
=5 5 0 0 5 0 0 0
8 1 36 20 36 20 20 12 20 | 4 4 3 38 3 2 2
2 20 10 20 12 12 7 12
3 12 812 8 8 6 8
4 10 810 7 7 6 1
=5 8 8 8 6 6 6 6
8’ 1 36 16 0 20 16 8 0 | 4 0 1 3 0 2 0
2 2010 012 8 5 0
3 12 4 0 8 4 2 ©
4 10 2 0 7 3 1 0
=5 8 0 0 6 2 0 O
9 1 54 28 54 28 28 15 28 | 5 5 3 3 3 2 2
2 28 14 28 15 15 8 15
3 18 12 18 10 10 7 10
4 14 12 14 8 8 7 8
>5 12 12 12 7 7 T 7
9’ 1 54 26 0 28 26 13 0 | 5 0 2 3 0 2 0O
2 °28 14 0 15 13 7 0
3 18 6 010 8 3 0
4 14 2 0 8 6 1 0
>5 12 0 0 7T 5 0 O
10 1 81 41 81 41 41 21 41 | 7 7 4 4 4 3 3
2 41 21 41 21 21 11 21
3 27 19 27 14 14 10 14
4 21 19 21 11 11 10 11
>5 19 19 19 10 10 10 10
10 1 81 40 0 41 40 20 0! 7 0 3 4 0 3 0
2 41 20 0 21 20 10 . 0O
3 271 8 0 14 13 4 o0
4 21 2 011 10 1 0
=5 19 0 0 10 9 0 0
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Tabelle 19. (Fortsetzung)

p C, C, C,; D, C, Dy, Dy isometrisch :
Tl n C 8,CuD, Cw DD, | T T, Ty O 0, T I, K Ky
11 1 63 34 0 29 34 17 0 {4 0 3 1 0 0 0 0 0

2 29 14 0 12 17 7 O

3 21 10 0 8 13 5 O

4 15 4 0 5 10 2 0

5 13 2 0 4 9 1 0

=6 11 0 0 3 8 0 O
11 1 63 20 63 29 29 12 29 | 4 4 1 1 1 0 O O O

2 29 15 29 12 12 5 12

3 21 11 21 8 8 3 8

4 15 11 15 5 5 38 5

5 13 11 13 4 4 3 4

=6 11 11 11 3 3 3 3
12| 1 56 32 56 32 32 20 32 | 8 8 6 6 6 4 4 3 3

2 32 16 32 20 20 12 20

3 20 12 20 14 14 10 14

4 16 10 16 12 12 9 12

5 12 10 12 10 10 9 10

6 12 10 12 10 10 9 10

=7 10 10 10 9 9 9 9
12| 1 56 24 0 32 24 12 0| 8 O 2 6 O 4 0 3 O

2 82 16 0 20 12 8 0

3 20 8 0 14 6 4 0O

4 16 6 0 12 4 3 0

5 12 2 010 2 1 O

6 12 2 010 2 1 0

>7 10 0 0 9 1 o© O
13 1126 68126 68 68 39 68 |I3 13 9 9 9 5 5 3 3

2 68 34 68 39 39 22 39

3 42 24 42 26 26 17 26

4 34 22 34 22 22 16 22

5 26 22 26 18 18 16 18

6 24 22 24 17 17 16 17

=7 22 22 22 16 16 16 16
13 1126 58 O 68 58 29 0 (13 O 4 9 0 5 0 3 O

2 68 34 0 39 290 17 O

3 42 18 0 26 16 9. 0

4 34 12 0 22 12 6 O

5 26 4 0 18 8 2 0

6 2¢4 2 017 7 1 0

=7 22 0 016 6 0 0
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richtete (skalare) und gerichtete (vektorielle, tensorielle Eigenschaften
erster und hoherer Ordnung) bezeichnet, wobei weiter zwischen skalaren
(Fall 1) und pseudoskalaren (Fall 1’), zwischen polar-vektoriellen (Fall 2)
und axial-vektoriellen (Fall 2’) Eigenschaften usf. unterschieden werden
kann.

Auch von der hiochsten Symmetrie K, konnen die Eigenschaften
der Fille 1, 3, 3a, 4, 5, 7/, 8a, 8, 9, 10, 12 und 13 nicht zum Verschwinden
gebracht werden. Das sind aber gerade alle zentrosymmetrischen Eigen-
schaften mit Ausnahme der Fille 2’, 6" und 11’, welche nicht mehr auf-
treten, sobald mehr als eine Achse der Isotropie vorhanden ist. Ebenfalls
ist aus der Tabelle ersichtlich, wie fiir die Betrachtung zentrosymmetri-
scher Eigenschaften die wirteligen Symmetriesysteme und das kubische
System in je zwei Untersysteme zerfallen. Wie bereits auf S. 89 ausge-
fithrt wurde, nennt man sie para- und holo-n-gonal bzw. -kubisch, je
nachdem ob ihre Gruppen bei allfélligem Hinzufiigen eines Symmetrie-
zentrums die Paramorphie oder die Holoedrie ergeben. So gliedern sich
ja die 32 Kristallklassen in die 11 zentrosymmetrischen Obergruppen,
die in der Rontgenkristallographie unter dem Namen der ,,Laue-Klassen*
bekannt sind. Damit nun ein System sich beziiglich einer Eigenschaft
isotrop verhilt, muss es fiir r=1 mindestens orthorhombische Sym-
metrie, fiir r=2 mindestens parakubische, fiir r=3 mindestens holo-
kubische, fiir r =4 oder 5 mindestens ikosaedrische, und fiir r =6 Kugel-
symmetrie besitzen; dabei bedeutet r wieder den héchsten Exponenten
im Charakterenpolynom.

18. Anwendung der Symmetrielehre auf Molekiile und Kristalle

Die Ausniitzung von Symmetriebeziehungen zur Beschreibung der
rdumlichen Anordnung von Teilchensystemen, wie sie Molekiile und Kri-
stalle ja darstellen, zieht sich als Leitgedanke durch alle bisherigen
Betrachtungen; als ,,geometrische Kristallographie bildet sie ein Haupt-
thema der kristallographischen Literatur. Neben sie tritt nach dem vor-
hergehenden Abschnitt die Anwendung der Symmetrielehre auch auf die
physikalischen Eigenschaften solcher Systeme. Sie fillt unter den Begriff
der ,,physikalischen Kristallographie* und befasst sich mit dem geo-
metrischen Anteil physikalischer Grossen, der durch die Symmetrie
der Anordnung allein beeinflusst wird.

Die Anisotropie einer gerichteten Eigenschaft kommt ja schon in
ihrer Eigensymmetrie, d.h. in den Symmetrieeigenschaften der
Bezugsflichen, zum Ausdruck. Soll einem System eine FKigenschaft zu-
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kommen, so darf jedenfalls die Punktsymmetrie des Systems nicht héher
sein als die Symmetrie der Eigenschaft; das kann zur Spezialisierung der
Bezugsflachen fiithren, wie etwa nach der Reihe: dreiachsiges Ellipsoid—
Rotationsellipsoid—Kugel. Ist aber die Symmetrie des Systems niedriger,
dann koénnen fiir das ,,Einpassen‘’ der Bezugsflichen in das symmetrie-
gerechte Koordinatensystem Freiheitsgrade auftreten, welche sich als
Lagendispersion bemerkbar machen kénnen und naturgemiss die Anzahl
der zur Beschreibung erforderlichen Konstanten erhéhen. Wenn sich
verschiedene Punktsymmetriegruppen in dieser Hinsicht gleich verhalten,
fallen sie zu den schon aus Tabelle 19 ersicbhtlichen Obergruppen mit
einheitlicher Konstantenzahl zusammen.

Die Tabelle 20 gibt diese Verhiltnisse noch iibersichtlicher wieder.
Unter a) sind die hochsten mit einer Eigenschaft vertriglichen Punkt-
symmetrien angegeben. Die Spalte b) enthilt die Anzahl simtlicher, die
Spalte ¢) dagegen die Anzahl der kristallographischen Punktsymmetrie-
Obergruppen mit gleicher Konstantenzahl. Unter d) schliesslich sind die
Hochstsymmetrien der Obergruppen mit nichtverschwindender Kon-
stantenzahl zusammengestellt, und zwar in der Reihenfolge abnehmender
Konstantenzahlen, d.h. wachsender Symmetrie. Dabei ist zu beachten,
dass sich die Obergruppen aus den angegebenen Hochstsymmetrien und
allen ihren Untergruppen zusammensetzen, die nicht schon in einer
andern angegebenen Gruppe von geringerer Symmetrie enthalten sind;
gehoren mehrere Hochstsymmetrien derselben Obergruppe an, so stehen
sie in einer gemeinsamen Klammer.

Um sowohl den Gebrauch der Tabellen wie die Tragweite der symmetrie-
bedingten Aussagen zu erldutern, sei als Beispiel die Eigenschaft der (optischen,

dielektrischen oder magnetischen) Polarisation herausgegriffen. Sie verknlpft zwei
Vektoren mit der Zusatzbedingung ¢, =¢,, und fillt daher unter den Typ 3a mit

._]_
den Charakteren y; =1, x’=4cos?p +2cos¢p gemiss Tabelle 18. Derselben Tabelle

entnimmt man weiter, dass die Zahl der zur Beschreibung notwendigen unabhén-
gigen Konstanten sich je nach der Symmetrie zwischen 1 und 6 bewegt, und dass
jede Symmetrieachse mit einer Zahligkeit = 3 Achse der Isotropie ist. Die Tabelle 19
gibt Aufschluss iiber die einzelnen, den verschiedenen Punktsymmetriegruppen
zugeordneten Konstantenzahlen ; sie bestéatigt die Aussagen von S. 108, dass nédmlich
die betrachtete Eigenschaft auch bei der héchstmoéglichen Punktsymmetrie K,
vorhanden ist, und dass sich, weil der hdchste Exponent im Polynom von y’ 2
betragt, die Punktgruppen von mindestens parakubischer Symmetrie isotrop ver-
halten. Nach Tabelle 20 schliesslich zerfallen sowohl sédmtliche wie die kristallo-
graphischen Punktgruppen beziiglich der Eigenschaft in finf Obergruppen mit
einheitlicher Konstantenzahl, die durch die Héchstsymmetrien C;, Cyp, Dyp, Doop
und K, gekennzeichnet sind. Bei verschiedenen Werten wire natiirlich die Anzahl
von Spalte b) auf Molekiile und die Anzahl von Spalte ¢) auf Kristalle anzuwenden.
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Tabelle 20. Obergruppen fiir physikalische Eigenschaften
Fall a) b) o) d)
1 K, 1 1 K,
Y K 2 2 K
2 Cov 4 4 C,C,C,,
2" Cun 3 3 C,C,,
3 K, 5 5 (,C,Dy,D,,,. K,
3 Dy, K 6 6 C,,C,D,,(C,8,D,), (D, K)
3a K, b 5 G,Cou Dyys Doy K,
38’ Dy, K 6 6 C,,Cy D, (C, 8y Dy), (Dggs K)
4+ K, 5 5 G, Cops (Dans Coon)s Doon Ky
4 D, Corn K 77 G, G, Gy, (Dy, Cp)s (Cars Sy, D)y (D, Coers K)
5 K, 5 b C,Cy, (Doyr Co)s Do Ky
5 Dy, Cpws K 7 7 Cp, Gy G, (Dy, C)s (Cays 84 D)y (Dyygs Cooys K)
6 D3h’ Caov’ Dao’Td 10 10 CI! Ca’ Cz CS! 027’ (Csv’ S4’ Ccc) (Dz’ Ccov)’ (D2d! Da:
0311)9 (D h’ d)
6" Den Ty 8 8 Gy, Cops Gy Ccoh’ Dy Dygs (Dcns Th)
7 D, C.. Ts, K 12 12 C[, C, C,, Cy, (G, Cyp)s (Dy, 8,), Cy s (Dy, Coy)s
) (ngr oo)’ (C‘:nv T)v (D3d’ Tds K)
7K, 9 9 G Cop Gy Coopy Dany Digs Doy, T Ky
8a K, 8 7 G, Cyp Dyps (Cs1s Cun)s (D3gs Dyp)s Doy O Ky
8a" Dyy, Dy, Dyg, K 12 12 Gy, Cy, Dy, C,, (Cy, Cy), (D3, Dy), Dy, Cyp (Dyg, 0),
(Csns Sgy K), (Dgps Dyy)
8 K, 10 9 Cons (Dany Cs1)s Cans (D35 Coen)s D Do Ty O, K
8’ D3h9 D4d’ Caov’ 14 14 015 02’ Cs’ (D2’ 03)’ (Cb S4) (C2V’ Da: c ) D4’ Doo’ Dﬂd’
Ty (Csvs Cans T)s (Cygs O), (Sgy Dyyy Coys K,y (Dyq, Ty)
9 K 12 11 G, Cyy, Caps Daps Cyns Coons Pags Dians Dgns Ty O K
9 Dgy, Dy, Cpye 17 16 C, _Cz, C,. Cg, Dy, (Cy, 8y), Csy, Cpy Dy, (Cos Dy)y (Dgygs
Td’ K Dco)’ k(‘Cahs 04‘,), (Coov’ T)’ (D3d9 0)9 (SS: Td’ K)’ Ddd
10 K, 11 10 C;, Cap,y Cyyy (Dags Cunds Coons Paas Pans Dons Tas Oy K,y
10°  Dyy, Dygs Covr 19 17 Cy, Gy, Gy, Cy, (D, Cy)s (Cay, 8,), C, Dy, gy, Dy, (Css
Td’ K D2d’ Doo)9 C(X)v’ 0311’ T’ (D3h’ O)’ (Td’ K)’ SB’ D4d
11 Dah’ D4d’ D.’xh! 20 18 Cl’ Ca’ 02’ 03’ Cav’ 045 Sd! (Csw 05), D2! Coo’ (Cah! CAv)s
Coov’ Dao’ Td! 0 Csw (Da, Caov)’ Dzd’ (Dahr D4)’ (SB’ Ds: T)! (Dcx)’ Td)’
(Csns> Dya)s (Dgns O) .
11" Dy, Oy 13 11 G, Cyy, Cyp, Cs Cots Dy Coons P3gs Dins (D> T}y Dy Oy
12 K, 12 9 C,, Cans (Dons Cay)s Cans Dags (Dyns Csi5 Con)s (Dsas Dens
¢ : Cooh)’ Dooh’ Th’ Oh’ Ih’ Kh
12 Djyp, Dyg, Dips 16 13 Gy, Gy, C,, (D, Cy), (Cy, 84), Dy, (Cyys Dy, G, Co), (D5
Ded! anv’ Td’ K DG’ Cuo)’ Dcn’ (DZd’Csh’ T)’ (Csv’ Ss: 0)! (Dah’ Chr’ I)’
{(Dgas K), (Csys Csns Covs Spay Ta)s (Digno Dgas Cov)
13 K, 16 11 C,, Gy, Cyy, Dyyy Cyns (Dags Csy)s Cons (Dygs Coon)s Dsas
Degus Dons Ty, Ops Ins Ky
13 Dgy, Dy, Dgy 25 21 C,, C,, C,, Cs, Dy, (Cy, 8y), Cy,y (Dy, Cy), Cy, (Dy, Cop)s
Dga» Covr Ty, K (Csns Ds)s (Dygs D), (C3ys D), T, (Cyys Sg)s (Dspy O)s

Csvs Covs (Daas Coor)s I (Csns Ta)s K, (D, Syp), D
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Man sieht, dass mit dem Zerfall der Mannigfaltigkeit in die Ober-
gruppen das Problem der Vieldeutigkeit von physikalischen Aussagen
beziiglich der Struktur angeschnitten wird. Es kann sich hier allerdings
nicht darum handeln, die einzelnen Konstantenzahlen anschaulich zu
deuten; zwar liesse sich damit in manchen Fillen die Vieldeutigkeit
wenigstens einschrinken. Ein paar abschliessende Betrachtungen mogen
hingegen der Anwendung auf molekulare Systeme gelten.

Die eben vorgenommene Erweiterung der darstellungstheoretischen
Methode von S. BHAGAVANTAM und D. SURYANARAYANA auf nichtkri-
stallographische Punktgruppen fiihrt ja tber die Kristallphysik, fiir die
sie zundchst gedacht war, hinaus. Die vollig analogen Aussagen der
Theorie iiber die physikalischen Eigenschaften von Molekiilen ergeben
sich indessen zwanglos. Symmetriebetrachtungen dringen sich in der
Molekularphysik um so eher auf, als sie sich sowohl beziiglich der Struk-
tur wie der Eigenschaften im Rahmen dreidimensionaler Punktgruppen
halten; der Schritt vom Diskontinuum zum phénomenologischen Schein-
kontinuum braucht gar nicht erst vollzogen zu werden. Dass sich die
ganze Forschungsrichtung doch vor allem an der Kristallphysik ent-
wickelt hat, diirfte seinen Grund einmal in der makroskopischen Augen-
filligkeit der Kristallsymmetrie und in ihrer Bearbeitung durch die
Kristallographie haben, zudem aber wohl in der relativen Einfachheit
der wichtigsten Molekiileigenschaften, deren Symmetrie sich meist ohne
mathematischen Aufwand qualitativ iibersehen lisst. Fragestellungen
wie etwa nach dem Auftreten enantiomorpher Formen oder nach der
Polaritat (Fille 1’ und 2) wirken allerdings trivial, doch besteht durchaus
die Moglichkeit, dass auch bei den Molekiilen komplexere Eigenschaften
Bedeutung gewinnen koénnten. In diesem Sinne diirfen gerade die Aus-
wahlregeln der Schwingungsspektren als molekularphysikalisches Bei-
spiel angefiihrt werden,

Nach Abschnitt 13 setzt die Beobachtbarkeit einer Grundschwingung im
Ultrarotspektrum eine Verdnderung des elektrischen Moments, und im Raman-
effekt eine Verinderung des Polarisierbarkeitstensors voraus., Um die in (14) ein-
gefithrten Bezeichnungen zu gebrauchen, handelt es sich daher bei den die Auswahl-
regeln bestimmenden Gréssen ¢ und ¢’ um nichts anderes als um die Charaktere y’
der Fille 2 und 3a geméss Tabelle 18. Der Gedanke liegt nun nahe, die Auswahl-
regeln unmittelbar durch Anwendung der Tabellen 19 und 20 auf die — in der
zitierten Arbeit (14) und auch schon bei P. Niger1 {23) vollstindig angegebenen —
Restsymmetrien der Schwingungsformen ableiten zu wollen. Da indessen die
Veriinderung von Vektor- oder Tensorkomponenten nicht an eine Anderung der
Konstantenzahl gebunden ist, fithrt dieser Weg kaum weiter als zu einigen trivialen
Aussagen wie etwa tiber die Ultrarot-Inaktivitit der totalsymmetrischen Schwin-

:
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gungen unpolarer Molekiile. Der im Abschnitt 12 geforderte ,,Erhaltungssatz der
Symmetrie’ ldsst sich nun in der Form aussprechen, dass gleichwertige Operationen
gleichwertig bleiben miissen, oder mit andern Worten, dass die Klassenzugehorig-
keit der Operationen in der Grundsymmetrie gegeniiber allen Deformationen
invariant ist. Das hat zur Folge, dass als Restsymmetrien nur Normalteiler der
Grundsymmetrie in Frage kommen ; wie sich durch Symmetriesitze erkléren lasst,
tritt aber nicht jeder Normalteiler tatsiichlich als Restsymmetrie in Erscheinung.
Wenn schliesslich die Gesamtheit der Restsymmetrien auch gegeben ist, so steht
sie doch in keiner eindeutigen Beziehung zu den Transformationseigenschaften der
Komponenten von elektrischern Moment und Polarisierbarkeit, die etwa von
J. E. RosENTHAL und G. M. MurpsY (31) untersucht wurden. EKine erschépfende
Beschreibung der Verhiltnisse liefert die Restsymmetrie eben erst in Verbindung
mit der Grundsymmetrie, aus der sie hervorgegangen ist. Daher gehen auch die
rotativen Charaktere y., in die Auswahlregeln ein; die Formeln lauten nach (14)

1 = 0 fir ultrarot-inaktive Schwingungen

e Z [h; (X thl)-]

NG YN0
i

fiir ultrarot-aktive Schwingungen

1 S h, ( )1 = 0 fir raman-inaktive Schwingungen

N4 J Kot Xals "\ # 0 fiir raman-aktive Schwingungen,

worin y,” fir ¢ und y;, fiir ¢’ geschrieben ist. Demgegeniiber enthilt die Formel
von. 3, 101 keine rotativen Charaktere.

Diese Beispiele mogen gezeigt haben, wie sich die Bedeutung ,,kri-
stallphysikalischer’* Gedankenginge auch auf die Molekularphysik
erstreckt. So erscheinen Molekiile und Kristalle als ein geschlossenes
Anwendungsgebiet der Symmetrielehre, und die Darstellungstheorie
offnet ihr ein weites Feld.
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