Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	32 (1952)
Heft:	2
Artikel:	Beziehungen zwischen der Symmetrie des Kristall-, Fourier- und Patterson-Raumes. IV, Allgemeine Auslöschungseinheiten
Autor:	Nowacki, Werner
DOI:	https://doi.org/10.5169/seals-25825

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 13.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beziehungen zwischen der Symmetrie des Kristall-, Fourier- und Patterson-Raumes

IV. Allgemeine Auslöschungseinheiten ¹)

Von Werner Nowacki, Bern

Die 230 = 219 + 11 Raumgruppen können mittels Röntgenstrahlen nicht eindeutig bestimmt werden. Bei gegebener Lauesymmetrie existieren 120 Auslöschungseinheiten (diffraction groups). Alle Raumgruppen derselben Laueklasse, welche dieselben Auslöschungen aufweisen, bilden eine Auslöschungseinheit (BUERGER, 1942). Ein Nichtberücksichtigen der Lauesymmetrie würde die Zahl der unterscheidbaren Einheiten beträchtlich reduzieren. Mit dieser Frage, welche in dem Buche "Fouriersynthese von Kristallen und ihre Anwendung in der Chemie" (Birkhäuser, Basel, 1952, p. 163/64) als ein ungelöstes Problem erwähnt wurde, beschäftigt sich diese Arbeit. In folgender Weise wird der Begriff "allgemeine Auslöschungseinheit" (abgekürzt: AAE.) verwendet: alle Raumgruppen, welche – unabhängig von der Lauesymmetrie — dieselben Auslöschungen aufweisen, bilden eine allgemeine Auslöschungseinheit. Die Aufgabe besteht im Aufsuchen und Charakterisieren aller dieser allgemeinen Auslöschungseinheiten. Das Resultat der Untersuchung besteht in der beigegebenen Tabelle. Dazu müssen folgende Bemerkungen gemacht werden.

1. Die Existenz der allgemeinen Auslöschungseinheiten ist z. T. eine Folge der Tatsache, dass die Strukturamplitude

$$F(h, k, l) = \sum exp\left[2\pi i \left(x_{i}h + y_{i}k + z_{i}l\right)\right]$$

[alle Punkte $x_j y_j z_j$ werden als gleichwertig vorausgesetzt; sie bilden

¹) Mitteilung Nr. 68, Abt. für Kristallographie und Strukturlehre, Mineralogisches Institut, Universität Bern.

1 Schweiz. Min. Petr. Mitt., Bd. 32, Heft 2, 1952

zusammen einen homogenen Gitterkomplex (NIGGLI, 1919)] die Symmetrie eines Kristalles in einer eher eingeschränkten Weise enthält. Beispiele: a) die symmorphen Raumgruppen (vgl. unten) mit flächenzentrierter Translationsgruppe; zu jedem Punkt gehört ein gleichwertiger mit den Koordinaten $+\frac{1}{2}$,), unabhängig von der speziellen Symmetrie des Kristalles, so dass das Auslöschungsgesetz $\lceil (hkl)$ nur mit ungemischten Indizes vorhanden] für mehrere Raumgruppen dasselbe ist (AAE. Nr. 57); b) die AAE. Nr. 60 enthält die (gewöhnlichen) Auslöschungseinheiten Nr. 40 $(D_{2h}^{24} - Fddd)$, 76* $(D_{4h}^{19} - F4_1/ddm, 105 (T_h^4 - Fd3) und$ 118 $(O_h^7 - Fd \ 3 \ m)$. Die Strukturamplituden dieser Raumgruppen enthalten alle den Faktor $exp[2\pi i(h+k+l)/8]$, der für die Reflexe (hk0), (h0l) und (0kl) für h+k, l+h und $k+l\neq 4n$ verschwindet. Dieser Faktor kommt ausserdem noch in der Strukturamplitude von $O_h^8 - Fd \, 3c$ vor; aber zusammen mit dem Faktor $(1 + \cos \pi l)$ für die Reflexe (*hhl*) (nur für h+l=2n und l=2n, d. h. h und l=2n vorhanden). Dies bedingt, dass $O_h^8 - Fd \, 3c$ eine andere AAE. Nr. 62 (\equiv AE. Nr. 120) bildet. Der Faktor $exp\left[2\pi i\left(h+k+l\right)/8\right]$ kommt in keiner anderen Raumgruppe vor.

2. Die allgemeinen Auslöschungseinheiten können im Falle von Pseudosymmetrien wichtig werden. Ist die Lauesymmetrie unsicher, so gibt die Tabelle alle Raumgruppen mit demselben Auslöschungsgesetz an. Im allgemeinen ist es unmöglich, Symmetrien durch Auslöschungen allein zu bestimmen; für die 31 + 2 Raumgruppen $C_{2h}^5, D_2^3, C_{2v}^{19}, D_{2h}^{4,6,8,10,14,15,22}, C_{4h}^6, D_4^{(4,8),6}, C_{4v}^{12}, D_{2d}^4, D_{4h}^{3,4,8,11,12,15,16,19,20},$ $O^{4,(7,6),8}, T_d^6$ und $O_h^{2,8,10}$ hingegen ist dies möglich. Die Tabelle basiert im Gegensatz zu allen publizierten Tabellen (z. B. NOWACKI, 1952b, Tab. 19) primär auf den Auslöschungen, nicht auf Symmetrien.

Die Länge der Tabelle ist dadurch bedingt, dass alle möglichen Orientierungen des Achsenkreuzes berücksichtigt worden sind.

Die triklinen Raumgruppen werden für P, A, B, C, I und F angegeben.

Die monoklinen Raumgruppen wurden so aufgestellt, dass die zweizählige Achse oder die Normale zu den Symmetrieebenen parallel der b-, c- oder a-Achse verläuft. Nur auf diese Weise ergeben sich alle möglichen Beziehungen und Ähnlichkeiten zu höher symmetrischen Raumgruppen. Ein kleiner unterer Index a, b oder c am Translationsgruppensymbol (P_a, P_b, P_c, \ldots) gibt die Orientierung an. Die monoklinen Raumgruppen werden für P, A, B, C, I und F angegeben.

Die orthorhombischen Raumgruppen liefern die grösste Zahl verschiedener Orientierungsmöglichkeiten (P, A, B, C, I, F).

Tetragonale Symmetrien werden mit P, C, I und F beschrieben. Raumgruppen mit einer rhomboedrischen Translationsgruppe können entweder durch die einfach-primitive Gruppe R (rhomboedrische Achsen und Indizes) oder durch die dreifach-primitive hexagonale [(schief-) hexagonale Achsen und Indizes] beschrieben werden. Die erstere ist besonders dann adäquat, wenn Beziehungen zu kubischen Symmetrien in Frage stehen. Die trigonal-rhomboedrischen Raumgruppen bilden ein schönes Beispiel für die Nützlichkeit der Verwendung der arithmetischen Kristallklassen (BURCKHARDT, 1947; NIGGLI und NOWACKI, 1935; NOWACKI, 1950, 1952b). Es gibt 73 arithmetische Klassen, verglichen mit den 32 geometrischen Klassen, weil die Orientierung der Symmetrieelemente einer Klasse in bezug auf die Achsen einer primitiven Zelle berücksichtigt wird. Diese 73 arithmetischen Klassen liefern unmittelbar die 73 symmorphen Raumgruppen von Fedorow (= point space groups bei ZACHARIASEN, 1945); sie stellen das Produkt einer arithmetischen Klasse mit einer geeigneten Translationsgruppe dar. Für die trigonal-rhomboedrische Symmetrie sind die Symbole in folgender Tabelle zusammengestellt.

Tabelle der trigonal-rhomboedrischen Raumgruppen

C_3^1	-P	3	=	$C_{3\delta}^1 - P_{\delta}$	3	$C_{3v}^1 - P$	3 m 1	=	$C^{1}_{\mathbf{Sv}\ \delta} - P_{\delta} 3 m$	
C_3^2	-P	$\mathbf{3_1}$	=	$C_{3\delta}^2 - P_{\delta}$	31	$C_{3v}^2 - P$	31 m	=	$C^{1}_{3v\epsilon} - P_{\epsilon} 3 m$	
C_3^3	-P	3_2	=	$C_{3\delta}^3 - P_{\delta}$	32	$C_{3v}^3 - P$	3 c 1	=	$C_{3v}^2 \delta - P_\delta 3 c$	
C_3^4	-R	3	=	$C_{3\alpha}^1 - P_{\alpha}$	3	$C_{3v}^4 - P$	31 c	=	$C_{3v\epsilon}^2 - P_{\epsilon} 3 c$	
C_{3i}^{1}	-P	3	=	$C^1_{3i\delta} - P^{-}_{\delta}$	3	$C_{3v}^{5} - R$	3 m	=	$C^1_{3v\alpha} - P_{\alpha} 3 m$	
C_{3i}^{2}	-R	$\overline{3}$	=	$C^1_{3i\alpha} - P_{\alpha}$	$\overline{3}$	$C_{3v}^{6} - R$	3 c	=	$C_{3v\alpha}^2 - P_{\alpha}^2 3 c$	
D_3^1	-P	312	=	$D_{3\delta}^1 - P_{\delta}$	32	$D_{3d}^1 - P$	$\overline{3}1 m$	=	$D^1_{3d\ \delta} - P_\delta \overline{3} m$	
D_3^2	-P	321	=	$D^1_{3\epsilon} - P_{\epsilon}$	32	$D_{3d}^2 - P$	$\overline{31} c$	=	$D_{3d}^2 \delta - P_\delta \overline{3} c$	
D_3^3	-P	3_112	=	$D_{3\delta}^2 - P_{\delta}$	$3_1 2$	$D_{3d}^3 - P$	$\overline{3} m 1$	=	$D^{1}_{3d} \epsilon - P_{\epsilon} \overline{3} m$	
D_3^5	-P	$3_2 12$	=	$D_{3\delta}^3 - P_{\delta}$	$3_2 2$	$D_{3d}^4 - P$	3 c 1	=	$D_{3d}^2 \epsilon - P_{\epsilon} \overline{3} c$	
D_3^4	-P	3121	=	$D_{3\epsilon}^2 - P_{\epsilon}$	312	$D_{3d}^5 - R$	$\overline{3} m$	=	$D^1_{3d\ \alpha} - P_{\alpha} \overline{3} m$	
D_3^6	-P	$3_{2}21$	=	$D_{3\epsilon}^3 - P_{\epsilon}$	$3_2 2$	$D_{3d}^6 - R$	$\overline{3} c$	=	$D_{3d\ \alpha}^2 - P_{\alpha} \overline{3} c$	
D_3^7	-R	32	=	$D_{3\alpha}^1 - P_{\alpha}$	32					
				$D^{1}_{\mathbf{n}} - P$	$\overline{6} m 2 =$	$D^1_{o_1 o_2} - P_{o_1 o_2}$	$\overline{6} m$			
				$D_{a_1}^2 - P$	6 c 2 =	$D_{a_1}^2 - P$	s 6 c			
				$D_{22}^{3} - P$	$\overline{62} m =$	$D^{1}_{a_{1}} - P$	$\overline{6}m$			
				$D^4 - P$	62c =	$D^2 - P$	6 c			
				- 3h -	· - ·	- 3A E -	evv			

Links stehen die Schoenflies- und die (neuen) internationalen Symbole (P statt C); rechts die arithmetischen Schoenflies- bzw. die modifiziert internationalen. R als primitive Gruppe wird als P_{α} bezeichnet;

der Index δ oder ϵ gibt die Orientierung an (für $D_3 - 32$, $D_{3d} - \overline{3}m$ und $D_{3h} - \overline{6}2m$, aber nicht für $C_3 - 3$, $C_{3i} - \overline{3}$, $C_{3v} - 3m$ sind die Indizes δ und ϵ gegenüber den oben zitierten Publikationen vertauscht worden). In dieser Bezeichnung erhält das Schoenflies-Symbol aller symmorphen Raumgruppen den oberen Index 1, wie dies für den Fall P aus der AAE. Nr. 1a, welche alle 42 symmorphen P-Raumgruppen und keine anderen enthält, ersichtlich ist. Ausserdem existieren 7 symmorphe A-, 16 I- und 8 F-Raumgruppen (42+7+16+8=73).

Raumgruppen mit einem hexagonalen Gitter P (früher C) wurden z. T. mittels *H*-Achsen (Internationale Tabellen, 1935) beschrieben.

Kubische Raumgruppen werden auf ein P-, I- oder F-Gitter bezogen.

3. Die Tabelle weist 14 Kolonnen auf. Kol. 1 gibt die Nummer der AAE.; in den Kol. 2—11 sind die Auslöschungen enthalten; Kol. 12 führt die Nummer der (gewöhnlichen) AE. (wie im Buche, 1952b) an; Kol. 13 gibt das Auslöschungssymbol und Kol. 14 alle Raumgruppen mit den gleichen Auslöschungen (der Kol. 2—11).

Allgemeine Auslöschungseinheiten, die Auslöschungssymbole enthalten, welche in einer anderen AAE. auftreten, wurden als a, b, c, ... (z. B. 1a, 1b, 1c, 1d) tabuliert. Die im Buch gegebene Orientierung ist fett gedruckt (ausser im monoklinen Fall). Die Nummer der betreffenden Auslöschungseinheit wurde durch einen Stern (*) charakterisiert. Die Auslöschungen wurden auf folgende Weise beschrieben: — bedeutet, dass alle Reflexe der am Kopf der Kolonnen 2—11 angegebenen Art vorhanden sind; h, \ldots , dass nur die Reflexe mit h = 2n vorhanden sind; $h+k, \ldots$ bedeutet vorhanden für h+k=2n; h, k bedeutet h=2n und k=2n; usw. Zahlen wie 3n, 4n, 6n sind in explicite angegeben worden. Nicht alle Auslöschungen sind voneinander unabhängig. Diejenigen, welche aus den vorhergehenden folgen (von links nach rechts in den Kol. $2\rightarrow$ 11) oder in Folge spezieller Symmetrien [z. B. (0kl) und (hol) in der Laueklasse $D_{4h}-4/mmm$] wurden kursiv gedruckt.

Die allgemeinen Auslöschungseinheiten sind gemäss den Auslöschungen vom Typus (hkl) (integrale Auslöschungen), d.h. nach den Translationsgruppen P, A, B, C, I, R, H und F angeordnet. Es wäre möglich gewesen, für jede allgemeine Auslöschungseinheit ein "allgemeines Auslöschungssymbol" einzuführen. Es hätten aber dazu die Raumgruppensymbole der höheren Symmetrien abgeändert werden müssen, um die Ähnlichkeiten mit othorhombischer und niedrigerer Symmetrie zu erhalten. Wir verzichteten auf die Einführung eines sol-

chen Symbolismus und gaben nur die Nummer der allgemeinen Auslöschungseinheit an. An die Stelle der 120 (gewöhnlichen) Auslöschungseinheiten treten 62 allgemeine Auslöschungseinheiten, welche für die Beschreibung der Raumgruppen durch Auslöschungen ohne Berücksichtigung der Lauesymmetrie notwendig und hinreichend sind, d.h. eine kleinere Anzahl als 62 würde nicht alle Raumgruppen umfassen und eine grössere Anzahl ist nicht nötig. Die Nrn. 1-36 sind P-, 37-38 A-, 39-43 C-, 44-56 I- und 57-62 F-Gruppen (in unserer Orientierung).

Das Studium der Raumgruppen bzw. Auslöschungseinheiten, die zur selben AAE. gehören, deckt oft interessante Beziehungen auf. Die AAE. Nr. 1a wurde schon erwähnt; sie umfasst alle symmorphen P-Raumgruppen (mit dem oberen Index 1 des arithmetischen Schoenflies-Symbols). In ähnlicher Weise enthält die AAE. Nr. 37a bzw. 57 alle symmorphen A- bzw. F-Gruppen; aber die AAE. Nr. 44 enthält ausser allen symmorphen I-Gruppen die beiden asymmorphen Raumgruppen D_2^9 - $I2_12_12_1$ und $T^5 - I2_13$. Diese beiden Raumgruppen erzeugen in der statistischen Theorie der Raumgruppenbestimmung (WILSON und ROGERS, 1950) Komplikationen, indem nur 217 und nicht 219 = 230 - 11Fälle unterschieden werden können $(D_2^8 - I 222 = D_2^9 - I 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_1 2_1 2_1 2_1, T^3 - I 2_2 2_2 = D_2^9 - I 2_2 - I 2_2 = D_2^9 - I 2_2 + D_2^9 - D_2^9 I_{23} = T^5 - I_{2_1} 3$). Es scheint uns, dass eine erweiterte statistische Theorie alle 219 Fälle liefern sollte. - Die AAE. Nr. 60 enthält die vier Raumgruppen $D_{2h}^{24} - Fddd$, $D_{4h}^{19} - F4_1/ddm$, $T_h^4 - Fd3$ und $O_h^7 - Fd3m$ (vgl. oben). Ausser der gleichen Auslöschungsgesetze haben sie das Auftreten des "Diamantgitterkomplexes" (000, 011, 101, 110, 111, 133, 313, 331) gemeinsam. Diese Fragen der Beziehung der verschiedenen Gitterkomplexe, speziell der Hauptgitterkomplexe von WEISSENBERG, im Sinne einer affinen Geometrie sind ausführlich in unserer Dissertation (NOWACKI, 1935, pp. 49-54) besprochen worden. Der Diamantgitterkomplex wurde dort mit 9 H° bezeichnet. Er tritt — als spezieller Gitterkomplex --- aber auch noch in anderen Raumgruppen auf, nämlich in $C_4^6 - F \, 4_1, \ D_4^{10} - F \, 4_1 \, 22, \ \text{welche die AAE. Nr. 45b bilden,} \ C_{4h}^6 - F \, 4_1/d$ $(=AAE. Nr. 46b), O^4 - F 4_1 3 (=AAE. Nr. 58) und in C_{2v}^{19} - Fdd 2,$ $C_{4v}^{11} - F 4 dm$, $D_{2d}^{12} - F \overline{4} d2$ (=AAE. Nr. 59a). Auf jeden Fall sind enge Beziehungen vorhanden, deren Ausarbeitung zu einer "vergleichenden Morphologie der Raumgruppen" führen würde.

Frau Professor KATHLEEN LONSDALE (London) danke ich für eine Liste derjenigen Raumgruppen, deren Symbole in den neuen "International Tables for X-ray Crystallography" gegenüber der ersten Auflage geändert worden sind, bestens.

Tabelle der 62 allgemeinen

Nr.	hkl 2	hhl 3	hkh 4	hkk 5	hk0	h01	0kl 8	h00 9
la								
			а Т					v
	(Dho India)	2 4						
w.	(Kno. maiz.)			9				
i	(Rho. Indiz.)	0		e.	2			
					2			
						8		
2a								h
	-	-						4
2b								
2 c		_	·					
е 4								
• •								
	10	1						
3a						_		h h
3b					—		<u> </u>	
3 c		<u> </u>	·			_		h

.

Auslöschungseinheiten

0k0	001	Nr.	Auslöschungssymbol	Raumgruppen
10	11	12	13	14
		1	C ₆ -1 P-	$C_1^1 - P 1, C_4^1 - P \overline{1}$
ν.		2	$C_{2b} - 2/m P_{c,a,b} - / -$	$C_2^1 - P_{c,a,b}^2 2, C_s^1 - P_{c,a,b}^2 m, C_{2b}^1 - P_{c,a,b}^2 2/m$
		8	D_{2h} -mmm P	$D_2^1 - P 2 2 2, C_{2v}^1 - Pmm 2 (-Pm 2m, -P 2mm),$
				D_{2h}^{1} -Pmmm
		41	$C_{4b}-4/mP-/-$	$C_4^1 - P4, S_4^1 - P\overline{4}, C_{4b}^1 - P4/m$
		49	$D_{4h}-4/mmmP-/$	$D_4^1 - P42, C_{4v}^1 - P4mm, D_{2d}^1 - P42m [D_{2d\alpha}^1 - P_{2d\alpha}^1 - P_{2d$
				$P_{\alpha}4m$], $D_{2d}^{2}-P4m2[D_{2d\delta}^{1}-P_{\delta}4m]$,
		-0		$D_{4b}^{2} - P 4/mmm$
		78	$C_{3i} - 3P - [3P_{\delta} -]$	$U_{3}^{-} - P_{3}[U_{3}^{-} - P_{5}^{-} 3], U_{3i}^{-} - P_{3}^{-} [U_{3i}^{-} - P_{5}^{-} 3]$
		80	$U_{3i} = 3R = [3P_{\alpha}]$	$U_{3}^{-}-RJ[U_{3\alpha}^{-}-P_{\alpha}J], U_{3i}^{-}-RJ[U_{3i\alpha}^{-}-P_{\alpha}J]$
1		81	$D_{3d} - 3mr$	$D_3 - F 3 12 [D_3 - F 3 2], D_3 - F 3 21 [D_3 - F 3 2]$
		ļ	$\lfloor 3^{mI} \delta, \epsilon^{} \rfloor$	$\begin{array}{c} I \in 3^{2}], \ \bigcirc_{3v} = I 5^{m} I \left[\bigcirc_{3v} S = I S^{m} S \right], \ \bigcirc_{3v} = \\ P \leq I m \left[\bigcirc_{1} P 2^{m} \right] D^{1} = P \leq I m \end{array}$
	2.9		a.	$\begin{bmatrix} D_{1}^{1} & -P_{3}\overline{3}m \end{bmatrix} D_{3}^{3} - P\overline{3}m \end{bmatrix} \begin{bmatrix} D_{1}^{1} & -P_{3}\overline{3}m \end{bmatrix}$
		85	$D_{\alpha} - \overline{3} m R$	$D_{3d0}^{7} - R32 [D_{1d}^{1} - P_{d} \cdot 32], C_{2d}^{5} - R3m$
		00	$[\overline{3}mP_{\alpha}]$	$\begin{bmatrix} C_{2}^{1} & -P_{\alpha} & 3m \end{bmatrix}, D_{2}^{2} & -R & \overline{3}m \begin{bmatrix} D_{2}^{1} & -P_{\alpha} & \overline{3}m \end{bmatrix}$
	e.	87	$C_{6,b} - 6/mP - / -$	$C_{6}^{1}-P6, C_{3b}^{1}-P\overline{6}, C_{6b}^{1}-P6/m$
		91	$D_{6h} - 6/mmm P - /$	$D_6^1 - P62, C_{6v}^1 - P6mm, D_{3h}^1 - P\overline{6}m2$
				$[D^{1}_{3h}\partial -P_{\delta}\overline{6}m], D^{3}_{3h} -P\overline{6}2m [D^{1}_{3h\epsilon} -P_{\epsilon}\overline{6}m],$
				$D^{1}_{6h} - P 6/mmm$
		98	$T_{h} - m 3 P$	$T^{1}-P23, T^{1}_{h}-Pm3$
		106	$O_h - m 3mP$	$O^{1}-P43, T^{1}_{d}-P43m, O^{1}_{b}-Pm3m$
_		4*	$C_{0,1}-2/mP_{-}2_{1}/-$	$C_{2}^{2}-P_{2}^{2}$, $C_{2}^{2}-P_{2}^{2}/m$
		9*	$D_{24} - mmm P 2_1$	$D_2^2 - P 2_1 2 2$
			21 0 -	
k		4*	$C_{2b}-2/mP_{b}2_{1}/-$	$C_2^2\!\!-\!\!P_b2_1^{}$, $C_{2{ m b}}^2\!-\!\!P_b2_1^{}/m$
		. 9*	D_{2h} -mmm P -2 ₁ -	$D_2^2 - P 2 2_1 2$
	-			
	1	4	$U_{2h} - \frac{2}{m} F_c Z_1 / -$	$U_2 - \Gamma_e Z_1, U_2 - \Gamma_e Z_1 / m$ $D^2 D 2 D 2 D$
		49	$D_{2h} = \frac{1}{100000} P_{A} = \frac{1}{10000000}$	$D_2 = 1 \ 2 \ 2 \ 2_1$ $C^3 = P \ 4 \ C^2 = P \ 4 \ /m$
		50	$D_{4h} = 4/mmm P 4_{-}/$	$D_4^{5} = P_4^{2} 22$
•		90	$C_{a_1} - 6/mP6_{a_1} - 6/mP6_{a_2}$	$C_{a}^{6} - P 6_{2}, C_{a}^{2} - P 6_{2}/m$
		94	$D_{6b} - 6/mmm P 6_{2}/$	$D_6^6 - P 6_3 2 2$
			QM I UI	
k		10	$D_{2h} - mmm P 2_1 2_1 - $	$D_2^3 - P 2_1 2_1 2$
k		52	D_{4h} -4/mmmP-/-2 ₁ -	$D_4^2 - P 4 2_1 2, D_{2d}^3 - P \overline{4} 2_1 m$
k	1	10*	D_{2h} -mmm P - $2_{1}2_{1}$	$D_2^3 - P 2 2_1 2_1$
	1	10*	D_{25} -mmm $P2_1$ - 2_1	$D_2^3 - P 2_1 2 2_1$

Werner Nowacki

Nr.	hkl 2	hhl 3	hkh 4	hkk 5	hk0 6	h01 7	Okl 8	h00 9
4 a				_				h h
					_	· · ·		h
5a		·		·	h			h
5b						h		h
5c		_			k			
5d		a					k	
5e				u 		1		
5f			—			e	1	1)
6a		ъ.	_		h+k		-	h
						41		
6b			—			l+h	·	h
6c	·						k+l	
7a			-		h+k			h
7b						l+h		h
7c			×				k+l	h
7d					h			ħ
7e		-			k			
7f			—			1		
7g		<u>.</u>				h		h
7h			a <u></u> - a	· · · · ·		a)	k	\mathbf{h}^{*}
7i	n n		1 ····· ,	10	·		1	h

0k0	001	Nr.	Auslöschungssymbol	Raumgruppen
10				14
k	1	11	D_{2h} -mmm $P 2_1 2_1 2_1$	$D_2^4 - P 2_1 2_1 2_1$
k		53	$D_{4h}-4/mmmP4_2/-2_1-$	$D_4^0 - P 4_2 2_1 2$
k	l	99	$T_h - m 3P 2_1 - \dots - p A$	$1^{-}-P_{2_{1}}^{2}$
		108	$O_{h} - m 3 m P 4_{2}$	<i>U -F</i> 4 ₂ 3
		3	$C_{2\hbar}$ –2/m P_{c} –/a	$C_{s}^{2}-P_{c}a, C_{2h}^{4}-P_{c}2/a$
1		12	D_{2h} -mmm P a	$C_{2v}^2 - P2ma, C_{2v}^4 - Pm2a, D_{2h}^5 - Pmma$
		3*	$C_{n,-2}/mP_{n-1}/a$	$C_{*}^{2}-P_{*}a_{*}C_{2*}^{4}-P_{*}2/a$
	1	12*	D_{2h} -mmm P -a-	$C_{2n}^2 - P2am, C_{2n}^4 - Pma2, D_{2h}^5 - Pmam$
T.		0*		$C^2 D L C^4 D 0/L$
ĸ		3* 19*	$D \qquad mmm P \qquad h$	$C_s^2 - F_c 0, C_{2h} - F_c 2/0$ $C_s^2 - P_m 2h C^4 - P 2mh D^5 - P_mmh$
		14	D_{2h} -minimumc	$C_{2v} - 1 m 20, C_{2v} - 1 2m 0, D_{2h} - 1 m m 0$
k		3*	$C_{2h} - 2/m P_a - b$	$C_s^2 - P_a b, C_{2h}^4 - P_a 2/b$
		12*	D_{2h} -mmm Pb	C_{2v}^{2} -Pb2m, C_{2v}^{4} -Pbm2, D_{2h}^{0} -Pbmm
	l	3*	$C_{2\lambda}-2/mP_{\lambda}-/c$	$C_{s}^{2}-P_{h}c, C_{2h}^{4}-P_{h}^{2}/c$
		12*	D_{2h} -mmm P -c-	$C_{2v}^2 - Pmc 2, C_{2v}^4 - P 2 cm, D_{2h}^5 - Pmcm$
	,	2*	C = 2 lm P = la	$O^2 P \circ O^4 P 9/a$
	, e	12*	D - mmm Pc	$C_{s}^{2} - Pcm 2, C_{s}^{4} - Pc 2m, D_{s}^{5} - Pcmm$
	н		D _{2h} -nonno1 C	$z_{2v} + c_{1v} z_{2v} + c_{2v} z_{2k} + c_{1v}$
k		3*	$C_{2h} - 2/mP_{c} - /n$	$C_{s}^{2}-P_{c}n, C_{2h}^{4}-P_{c}2/n$
		13	D_{2h} -mmm P n	$C_{2v}^{*} - P 2mn (-Pm 2n), D_{2h}^{*} - Pmmn$
		44 63	$D_{4h} - 4/mP - /n$	$D_{4h}^7 - P 4/n$
		05	$D_{4\hbar}$ -4/mmm I -/n	
	l	3*	$C_{2h} - 2/m P_b - /n$	$C_s^2 - P_b n, C_{2b}^4 - P_b 2/n$
	Ì	13*	D_{2h} -mmm Pn-	$C_{2v}^{7} - P 2 nm (-Pmn 2), D_{2h}^{13} - Pmnm$
k	l	3*	$C_{ou}-2/mP_{-}/n$	$C_{*}^{2}-P_{a}n, C_{2}^{4}-P_{a}2/n$
		13*	D_{2h} -mmm Pn	$C_{2v}^{7} - Pn 2m$ (-Pnm 2), $D_{2h}^{13} - Pnmm$
k	1	5	(9/m D 9 /m	$C^{5} = P_{2} / n$
		45	$C_{2h} = \frac{2}{m} \frac{1}{c} \frac{2}{2} \frac{1}{m}$ $C_{12} = \frac{4}{m} \frac{P}{4} \frac{1}{n}$	$C_{2h}^{4} - C_{2h}^{4} - P_{4_0}/n$
	,	~*		$^{-4_{4_{4_{4_{4_{4_{4_{4_{4_{4_{4_{4_{4_{4$
K	l.	Эт	$C_{2h} - 2/mP_b 2_1/n$	$U_{2h} - F_b Z_1/n$
k	l ·	5*	$C_{2h} - 2/m P_a 2_1/n$	$C_{2\hbar}^5 - P_a 2_1/n$
	1	5*	$C_{2h} - 2/m P_{c} 2_{1}/a$	$C_{2\hbar}^{5} - P_{c} 2_{1}/a$
k	1	5*	$C_{2h} - 2/m P_{c} 2_{1}/b$	$C_{2h}^{5} - P_{e} 2_{1}/b$
k	l	5*	$C_{2h} - 2/m P_b 2_1/c$	$C_{2h}^{5} - P_{b}^{2}_{1}/c$
k		5*	$C_{2b} - 2/m P_b 2_1/a$	$C_{2h}^{5}-P_{b}^{2}2_{1}/a$
k		5*	$C_{2b} - 2/m P_a 2_1/b$	$C_{2h}^{5} - P_{a} 2_{1}/b$
	1	K *	$(1 - 2/m \mathbf{P} \cdot 2)/n$	$C^{5} = P_{2} / c$
	ı	9.	U2h ⁻² /11 ¹ a ² 1/C	\cup_{2h} $a^{2}/6$

194

. Werner Nowacki

Nr.	hkl	hhl	hkh	hkk	hk0	h01	Okl	h00
1	2	3	4	5	6	7	8	9
8a		"			h	h		h
8b					k		k	
8 c			·	_		I	1	
	_					1	l	·
					ter		2	
			2				18	
9a	· · · ·				h	1		h
9b					h		k	h .
9c	=				k	h		h
9d			· · · · ·		k		1	
9e	—	-				h	1	h
9f						. ¹	k	
10a					h		1	h
10b				a	k	1		
10 c					—	h	k	h
						n L	ĸ	<i>10</i>
11a					n+k	'n		n
11b					h+k		k	h
11c		—	·		h	1+h		h
11d	·	»			—	l+h	1	h
11e					k	·	k+l	
11 f	n					1	k +1	—
12a			-		h+k	1		h
12b		,		-	$\mathbf{h} + \mathbf{k}$	_	1	h
12e				·	k	l+h		h
12d						l+h	k	h
12e		· · ·			h	_	k+1	h
12f			—			h	k +1	h

.

0k0	001	Nr.	Auslöschungssymbol	Raumgruppen
10		14	13 D D	
		14*	D_{2h} -mmm P -aa .	C_{2v}° -P 2aa, D_{2v}° -P maa
k		14*	D_{2h} -mmm Pb-b	C_{2v}^{3} -Pb2b, D_{2b}^{3} -Pbmb
		14 59	D_{2h} -mmm Pcc - D_{2h} -4/mmm P -/- c -	C_{2v}^{3} -Pcc 2, D_{2h}^{3} -Pccm C_{2v}^{3} -P4cm D^{6} -P4c 2 D^{10} -P4 (mcm
		83	$D_{3d} - \overline{3}mP - c -$	$C_{4v}^3 - P_{3c1} = C_{3v\delta}^2 - P_{\delta} 3c], D_{4h}^4 - P_{3c1} = C_{4h}^2 - P_{\delta} 3c]$
ia		95	$[3mP_{\delta,\epsilon}-c]$ D ₂ -6/mmmP-/-c-	$\begin{bmatrix} D_{3d\epsilon}^2 - P_{\epsilon} \overline{3}c \end{bmatrix}$ $C_{\delta}^3 - P_{\delta} c_{\delta} m D_{\epsilon}^2 - P_{\delta} \overline{6}c_{\delta} \sum \begin{bmatrix} D_{\delta}^2 & -P_{\delta} \overline{6}c \end{bmatrix}$
			- 6% 0/	$D_{6h}^3 - P 6_3 / mcm$
·	l	15*	D_{2h} mmm Pca	C_{2v}^{5} -P2ca, D_{2h}^{11} -Pmca
k		15*	D_{2h} -mmm Pb-a.	C_{2v}^{5} -Pb2a, D_{2h}^{11} -Pbma
k		15*	D_{2h} -mmm P -ab	C^{5}_{2v} -P 2 ab, D^{11}_{2h} -P mab
\boldsymbol{k}	l	15*	D_{2h} -mmm Pc-b	C_{2p}^{5} -Pc 2 b, D_{2h}^{11} -Pcmb
· • • • • •	l	15	D _{2h} -mmmPca-	C_{2v}^{5} -Pca 2_{1} , D_{2k}^{11} -Pcam
${m k}$	l	15*	D_{2h} -mmm Pbc-	C_{2v}^{5} -Pbc 2, D_{2k}^{11} -Pbcm
	l	16*	D_{2h} -mmm Pc-a	C_{2v}^{9} -Pc2a, D_{2h}^{9} -Pcma
\boldsymbol{k}	l	16*	D_{2h} -mmm P-cb	$C_{2v}^{8}-P2cb,D_{2h}^{9}-Pmcb$
k k		16 57	D_{2h} -mmm Pba- D_{12} -4/mmm P-/-b-	C^8_{2v} -Pba 2, D^9_{2h} -Pbam C^2_4 -P 4 bm, D^7_0 -P $\overline{4}$ b 2, D^5_4 -P 4/mbm
k		17*	D _{2h} mmmP-an	$C_{2v}^{6} - P2an, D_{2b}^{7} - Pman$
k		17*	D_{2h} -mmmPb-n	C_{2v}^6 -Pb2n, D_{2h}^7 -Pbmn
	ĩ	17*	D _{2h} -mmmP-na	C_{2v}^{6} -P2na, D_{2k}^{7} -Pmna
	ι	17*	D_{2h} -mmm Pcn-	C_{2v}^{6} -Pcn 2, D_{2k}^{7} -Pcnm ·
k	ı	17*	D_{2h} -mmm Pn-b	C_{2v}^{6} -Pn 2b, D_{2h}^{7} -Pnmb
k	ı	17	D_{2h} -mmm Pnc-	C_{2v}^{6} -Pnc 2, D_{2h}^{7} -Pncm
k	ı	18*	D_{2h} -mmm P-cn	$C_{2v}^9 - P 2 cn, D_{2h}^{16} - Pmcn$
k	l	18*	D_{2h} -mmm Pc-n	$C_{2v}^9 - Pc 2n, D_{2h}^{16} - Pcmn$
k	ı	18*	D_{2h} -mmm P -nb	$C_{2v}^9 - P 2nb, D_{2h}^{16} - Pmnb$
k	ł	18*	D_{2h} -mmm Pbn-	C_{2v}^{9} -Pbn 2, D_{2h}^{16} -Pbnm
k	ł	18*	D _{2h} -mmmPn-a	C_{2v}^9 -Pn 2a, D_{2k}^{16} -Pnma
k	ı	18	D _{2h} -mmm Pna-	C_{2v}^9 – $Pna 2_1$, $D_{2\lambda}^{16}$ – $Pnam$

Werner Nowacki

Nr.	hkl	hhl	hkh	hkk	hk0	h0l	0kl	h00
L		3	<u> 4</u>	0	0		8	8
13a	2 2 2		n 1-11-1 1	•••••	h+k	l+h		h
13 b					· ;	1+h 1+h	k+1 k+1	h h
19.0		а	5 B		h. b		Jr + 1	h
100					н т к			n L
148					n		ĸ	70
14b					h	h		n
14 c			·		h	1	1	h
14d					k	1	1	
14e			<u> </u>		k	1	k	
14f					k	h	k	h
15 a		· · · · · · · · · · · · · · · · · · ·			h	1	k	h
					h		k	h
15 b				_	k	h	1	h
16 a		—	_		h+k	1	1	h
					h+k		l	h
16b					k	l+h	k	h
16c		<u> </u>			h	h	k+l	h
17a					h + k	h	k	h
			—		h+k	h	k	h
17b					h	l+h	1	h
17c		<u> </u>			k	1	k+l	
18 a					h+k	I	k	h
18b				_	h+k	h	1	h
18c	— .		_		h	1+h	k	h
18d					k	l+h	1	ĥ
18e		 		· · ·	h	1	k+1	h
18f					k	h	k+1	h
19a					h + k	1+h	,- k .	ħ.
104	8.		21			1 · L	1	L
190		— <u> </u>]		1+n		n

0k0 10	00l 11	Nr. 12	Auslöschungssymbol 13	Raumgruppen 14
k	l	19*	D_{2h} -mmm P-nn	$C^{10}_{2v} - P2nn, D^{12}_{2h} - Pmnn$
k k		19 61	D_{2h} -mmmPnn- D_{4h} -4/mmmP-/-n-	C^{10}_{2*} -Pnn 2, D^{12}_{2h} -Pnnm C^{4}_{4*} -P4nm, D^{8}_{2d} -P $\overline{4}n$ 2, D^{14}_{4h} -P4 ₂ /mnm
k	l	19*	D_{2h} -mmm Pn-n	C_{2v}^{10} -Pn 2n, D_{2h}^{12} -Pnmn
k	-	20*	D_{2h} -mmm Pbaa	D^8_{2k} – $Pbaa$
	l	20*	D_{2h} -mmm Pcaa	D^8_{2k} -Pcaa
	l	20	D_{2h} -mmm Pcca	D^8_{2k} – $Pcca$
k	l	20*	D_{2h} -mmm Pccb	$D^8_{2h} ext{-}Pccb$
k	l	20*	D_{2h} -mmm Pbcb	D^8_{2h} – $Pbcb$
k		20*	D_{2h} -mmm Pbab	D^8_{2h} – $Pbab$
$k \ k$	l l	$\begin{array}{c} 21 \\ 101 \end{array}$	D_{2h} -mmmPbca T_h-m3Pa-	$\begin{bmatrix} D_{2\lambda}^{15} - Pbca \\ T_{\lambda}^{6} - Pa3 \end{bmatrix}$
k	l	21*	D_{2h} -mmm Pcab	D_{2h}^{15} -Pcab
k k	l l	22 67	D_{2h} -mmm $Pccn$ D_{4h} -4/mmm P -/nc-	$D^{10}_{2h} - Pccn \ D^{16}_{4h} - P 4_2/ncm$
k	l	22*	D_{2h} -mmm Pbnb	D^{10}_{2h} –Pbnb
${m k}$	l	22*	D _{2h} -mmmPnaa	D ¹⁰ _{2h} -Pnaa
$k \ k$		23 65	D _{2h} mmm Pban D _{4h} -4/mmm P-/nb	$D^4_{2h} extrm{-}Pban \ D^3_{4h} extrm{-}P4/nbm$
	l	23*	D _{2h} -mmmPcna	D_{2h}^4 -Pcna
k	ı	23*	D_{2h} -mmm Pncb	D_{2h}^4 -Pncb
k	l	24	D_{2h} -mmm Pbcn	D_{2h}^{14} –Pbcn
k	l	24*	D2h-mmm Pcan	D_{2k}^{14} – $Pcan$
k	l	24*	D_{2h} -mmm Pbna	D_{2k}^{14} –Pbna
k	l	24*	$D_{2\hbar}$ -mmm $Pcnb$	D^{14}_{2k} – $Pcnb$
${m k}$	l	24*	D_{2h} -mmmPnca	D_{2h}^{14} -Pnca
k	l	24*	D_{2h} -mmm $Pnab$	D_{2k}^{14} -Pnab
k	l	25*	$D_{2\hbar}$ -mmm Pbnn	D^6_{2h} – $Pbnn$
k	l	25*	D _{2h} -mmm Pcnn	D_{2h}^6 -Pcnn

Nr. 1	hkl 2	hhl 3	hkh '4	hkk 5	hk0 6	h01 7	Okl 8	h00 9
19 c					h	l+h	k+l	h
19d	<u> </u>				k	l+h	k+l	h
19e					h+k	1	k+l	h
19f					h+k	h	k+l	h
20 a	—	·			h+k	l+h	k+l	h
					h+k h+k	l+h l+h	k+l k+l	h h
21 a			—				\rightarrow	-
22 a		-						h
23 a			_					
	÷							
		5						
						ļ		
24 a						•		
				3				
25		<u> </u>						h=4n
26 a		I					-	
				- 			р. 	
		-			×.			
27 a	_	1						h
28 a	_	· 1	—		_	h -	k	h
29a		1	"			1	l l	
30		1			h + k			h
31a		1				 1+h	k+l	h
32 a		1			h+k	1	l	h
33 a	}	1			$\mathbf{h} + \mathbf{k}$	h	k	h
34 a		1	_		$\mathbf{h} + \mathbf{k}$	l+h	k+l	h
		10						10 N

0k0 10	001	Nr. 12	Auslöschungssymbol 13	Raumgruppen 14
k	l	25	D _{2h} -mmmPnna	D ⁶ _{2h} -Pnna
k	l	25*	D_{2h} -mmm $Pnnb$	D_{2h}^6 -Pnnb
k	l	25*	D _{2h} -mmmPncn	D_{2h}^6 -Pncn
k	l	25*	D_{2h} -mmm Pnan	D ⁶ _{2h} -Pnan
k k k	l 2 - 1	26 69 100 109	$\begin{array}{l} D_{2h}-mmmPnnn\\ D_{4h}-4/mmmP-/nn-\\ T_{h}-m3Pn-\\ O_{h}-m3mPn-\end{array}$	$D_{2h}^{2} - Pnnn$ $D_{4h}^{12} - P 4_{2}/nnm$ $T_{h}^{2} - Pn 3$ $O_{h}^{4} - Pn 3m$
	l=4n	43 51	$C_{4\hbar}$ -4/m P 4 ₁ /- D _{4\hbar} -4/mmm P 4 ₁ /	$C_4^2 - P 4_1, C_4^4 - P 4_3$ $D_4^3 - P 4_1 2 2, D_4^7 - P 4_3 2 2$
k	l=4 n	54	D_{4h} -4/mmm P 41/-21-	$D_4^4 - P 4_1 2_1 2, D_4^8 - P 4_3 2_1 2$
	1=3n	79 82	$\begin{array}{c} C_{34} - \overline{3} P 3_{1,2} [\overline{3} P_{\delta} 3_{1,2}] \\ D_{34} - 3 m P 3_{1,2} \\ [\overline{3} m P_{\delta,\epsilon} 3_{1,2} -] \end{array}$	$\begin{array}{l} C_{3}^{2}-P3_{1}[C_{3}^{2}\delta-P\delta3_{1}],C_{3}^{3}-P3_{2}[C_{3}^{3}\delta-P\delta3_{2}]\\ D_{3}^{3}-P3_{1}12[D_{3}^{2}\delta-P\delta3_{1}2],D_{3}^{5}-P3_{2}12\\ [D_{3}^{3}\delta-P\delta3_{2}2],D_{3}^{4}-P3_{1}21[D_{3}^{2}\epsilon-P\epsilon3_{1}2],\\ D_{6}^{6}-P3_{9}21[D_{3}^{3}\epsilon-P\epsilon3_{2}2]\end{array}$
		89 93	$C_{6\hbar}$ -6/mP 6_2 /- $D_{6\hbar}$ -6/mmmP 6_2 /	$C_6^4 - P 6_2, C_6^5 - P 6_4$ $D_6^4 - P 6_2 22, D_6^5 - P 6_4 22$
	l=6n	88 92	$C_{6h}-6/mP6_{1,5}/-$ $D_{6h}-6/mmmP6_{1,5}/-$	$C_6^2 - P 6_1, C_6^3 - P 6_5$ $D_6^2 - P 6_1 2 2, D_6^3 - P 6_5 2 2$
k = 4n	l=4n	107	$O_{h} - m 3 m P 4_{1}$	$O^7 - P 4_1 3, O^6 - P 4_3 3$
	l	55 84 96	$D_{4h}-4/mmm P-/c$ $D_{3d}-\overline{3}mPc[\overline{3}mP_{\delta,\epsilon}-c]$ $D_{6h}-6/mmm P-/c$	$\begin{array}{l} C_{4v}^{7} - P4mc, D_{2d}^{2} - P\overline{4}2c, D_{4h}^{9} - P4_{2}/mmc\\ C_{3v}^{4} - P31c [C_{3v\epsilon}^{2} - P_{\epsilon}3c], D_{3d}^{2} - P\overline{3}1c [D_{3d\delta}^{2} - P_{\delta}\overline{3}c]\\ C_{6v}^{4} - P6mc_{\star}D_{3h}^{4} - P\overline{6}2c [D_{3h\epsilon}^{2} - P_{\epsilon}\overline{6}c],\\ D_{6h}^{4} - P6_{3}/mmc \end{array}$
k	l	56	$D_{4\hbar}-4/mmmP-/-2_1c$	$D_{2d}^4 - P\overline{4}2_1c$
k	l	58	D_{4h} -4/mmm P -/-bc	$C_{4v}^8 - P 4_2 bc, D_{4b}^{13} - P 4_2 / mbc$
	Z	60 97	$D_{4h}-4/mmm P-/-cc$ $D_{6h}-6/mmm P-/-cc$	$C_{4v}^5 - P4cc, D_{4h}^2 - P4/mcc$ $C_{6v}^2 - P6cc, D_{6h}^2 - P6/mcc$
k	l	64	D_{4h} -4/mmmP-/n-c	$D^{15}_{4h} - P 4_2 / nmc$
k	l	62	D_{4h} -4/mmm P-/-nc	C_{4v}^6 -P4nc, D_{4h}^6 -P4/mnc
k	I	68	D_{4h} -4/mmm P -/ncc	$D^8_{4\hbar}$ -P4/ncc
k	l	66	$\dot{D_{4h}}$ -4/mmm P -/nbc	$D_{4h}^{11} - P 4_2 / nbc$
k	l	70	$D_{4\hbar}$ -4/mmm P -/nnc	D ⁴ _{4h} -P 4/nnc

200

Werner Nowacki

Nr. 1	hkl 2	hhl 3	hkh 4	hkk 5	hk0 6	h01 7	0k1 8	h00 9
35 a	(Rho. Indiz.)	1	k	h				h
36		1	k	h	h + k	l+h	k+l	h
37 a	k+l	h+l	h+k		k	l	k+l	÷ *
39a	k+l	h+l	h+k		k	l	k+l	h
38a	k+l	h+l	h+k	_	k	<i>l</i> , h	k+l	h
38 b	k + l	h+l	h+k		h , <i>k</i>	l	k+l	h
40a	k+1	h+l	h+k		h, <i>k</i>	<i>l</i> , h	k+l	h
41a	$\mathbf{k} + \mathbf{l}$	h+l	h+k	. —	k	ı	k, 1	
42a	$\mathbf{k} + \mathbf{l}$	h+l	h+k		k	<i>l</i> , h	k, l	h
42b	k+1	h+l	h+k	—	h, <i>k</i>	l	k, 1	h
43a	k+l	h+l	h+k		h, k	<i>l</i> , h	k, 1	h
$7 \mathrm{k}$	k+1	h+l	h+k		k	l	k, l	h
71	k+l	h+l	k+k		k	l	k+l=4n	\mathbf{h}
5g	k+l	h+l	h+k		k	l	k+l=4n	
37 b	l+h	l+h		h+k	h	l+h	l	h
	10 - 10				a 		10	27
39b	l+h	l+h		h+k	h	l+h	I	h
38 c	1+h	l+h	a	h+k	h, k	l+h	l	h
38d	l+h	l+h	5 	h+k	h	l+h	k, l	h

0k0 10	001	Nr. 12	Auslöschungssymbol 13	Raumgruppen 14
k	l	86 110	$\begin{vmatrix} D_{3a} - \overline{3}mR - c \left[\overline{3}mP_{\alpha} - c\right] \\ O_{b} - m3mPn \end{vmatrix}$	$ \begin{array}{c} C_{3v}^6 - R 3c [C_{3v\alpha}^2 - P_{\alpha} 3c], D_{3d}^6 - R \overline{3} c [D_{3d\alpha}^2 - P_{\alpha} \overline{3} c] \\ T_d^4 - P \overline{4} 3n, O_b^3 - Pm 3n \end{array} $
k	l	111	$O_h - m \Im m Pn - n$	O_{k}^{2} -Pn3n
k	Z	1* 6 27	$C_{i} - \overline{1} A - C_{2h} - 2/m A_{c,a,b} - / - D_{2h} - mmm A$	$\begin{array}{l} C_{1}^{1}-A1,C_{i}^{1}-A\overline{1}\\ C_{2}^{3}-A_{c,a,b}2,C_{s}^{3}-A_{c,a,b}m,C_{2h}^{3}-A_{c,a,b}2/m\\ D_{2}^{6}-A222,C_{2v}^{11}-A2mm,C_{2v}^{14}-Amm2\;(-Am2m),\\ D_{2h}^{19}-Ammm\end{array}$
k	l	4* 28*	$C_{2\hbar}-2/mA_{a}2_{1}/- D_{2\hbar}-mmmA2_{1}$	$\begin{array}{c} C_2^2 - A_a 2_1 , C_{2h}^4 - A_a 2_1 / m \\ D_2^5 - A 2_1 2 2 \end{array}$
k	I	7* 29*	$C_{2\hbar}$ -2/m A_{b} -/a $D_{2\hbar}$ -mmm A -a-	$C_s^4 - A_b a, C_{2h}^6 - A_b 2/a$ $C_{2v}^{12} - A 2am, C_{2v}^{16} - Ama 2, D_{2h}^{17} - Amam$
k	l	7 29	$C_{2h}-2/mA_{c}-a \ D_{2h}-mmmAa$	$C_s^4 - A_c a, C_{2\hbar}^6 - A_c 2/a$ $C_{2v}^{12} - A 2ma, C_{2v}^{16} - Am 2a, D_{2\hbar}^{17} - Amma$
k	l	32*	D ₂₁ -mmmA-aa	C^{13}_{2v} -A 2 aa, D^{20}_{2h} -A maa
k	l	3* 30*	$C_{2h}-2/mA_{a}-/c \ D_{2h}-mmmAb$	$C_s^2 - A_a c, C_{2\hbar}^4 - A_a 2/c$ $C_{2v}^{15} - Ab 2m (-Abm 2), D_{2\hbar}^{21} - Abmm$
k	l	31*	D_{2h} -mmm Aba-	C^{17}_{2v} -Aba 2, D^{18}_{2k} -Abam
k	I	31*	D_{2h} -mmm Ab-a	$C^{17}_{2v} - Ab 2a, D^{18}_{2h} - Abma$
k	l	33*	D_{2h} -mmm Abaa	D^{22}_{2h} -Abaa
k	l	5*	$C_{2h} - 2/m A_a 2_1/c$	$C_{2h}^{5} - A_{a} 2_{1}/c$
k=4n	l=4n	5*	C_{2h} -2/m $A_a 2_1/d$	$C_{2h}^{5} - A_{a} 2_{1}/d$
k=4n	l=4n	3*	C_{2h} -2/m A_a -/d	$C_s^2 - A_a d, C_{2\hbar}^4 - A_a 2/d$
	ł	1* 6* 27*	$C_i - \overline{1} B - C_{2h} - 2/m B_{c, a, b} - / - D_{2h} - mmm B$	$\begin{array}{l} C_{1}^{1}-B1,C_{i}^{1}-B\overline{1}\\ C_{2}^{3}-B_{c,a,b}2,C_{s}^{3}-B_{c,a,b}m,C_{2h}^{3}-B_{c,a,b}2/m\\ D_{2}^{6}-B222,C_{2v}^{11}-Bm2m,C_{2v}^{14}-B2mm\;(-Bmm2),\\ D_{2h}^{19}-Bmmm \end{array}$
k	l	4* 28*	$C_{2h}-2/m B_b 2_1/- D_{2h}-mmm B-2_1-$	$C_2^2 - B_b 2_1, C_{2b}^4 - B_b 2_1/m$ $D_2^5 - B 2 2_1 2$
k	ı	7* 29*	$C_{2h}-2/m B_{c}-/b$ $D_{2h}-mmm Bb$	$C_{s}^{4}-B_{e}b, C_{2h}^{6}-B_{e}2/b$ $C_{2v}^{12}-Bm2b, C_{2v}^{16}-B2mb, D_{2h}^{17}-Bmmb$
k	l	7* 29*	C_{2h} -2/m B_a -/b D_{2h} -mmm Bb	$C_{s}^{4}-B_{a}b, C_{2h}^{6}-B_{a}2/b$ $C_{2v}^{12}-Bb2m, C_{2v}^{16}-Bbm2, D_{2h}^{17}-Bbmm$

2' Schweiz. Min. Petr. Mitt., Bd. 32, Heft 2, 1952

Nr. 1	hkl 2	hhl 3	hkh 4	hkk 5	hk0 6	h01 7	0kl 8	h00 9
40b	l+h	l+h		h+k	<i>h</i> , k	l+h	k, <i>l</i>	h
41b	l+h	l+h		h+k	h	l, h	l	h
							_	-
7m	l+h	l+h	—	h+k	h	l, h	l	h
42 c	l+h	l+h		h+k	<i>h</i> , k	l, h	l	h
42 d	l+h	l+h		h+k	h	l, h	k, <i>l</i>	h
43b	l+h	l+h		h+k	<i>h</i> , k	l, h	k, <i>l</i>	h
5h	l+h	l+h	— [•]	h+k	h	l+h=4n	l	h=4n
7n	l+h	l+h		h+k	h	l+h=4n	l	h = 4n
lb	h+k		h+k	h+k	h+k	h	k	h
					at a second s			Υ.
39 c	h + k		h+k	h+k	h+k	h	k	h
38e	h+k		h+k	h+k	h+k	l, h	k	h
38f	h+k		h+k	h+k	h+k	h	<i>k</i> , 1	h
40 c	h+k h+k		$ \begin{array}{c} h+k \\ h+k \end{array} $	h+k h+k	h+k h+k	1 , h 1, h	k, l k, l	h h
21b	h+k		h+k	h+k	h+k	h	k	h
41 c	h+k		h+k	h+k	h, k	h	k	h
70	h+k		h+k	h+k	h, k	ħ	k	h

0k0 10	001	Nr. 12	Auslöschungssymbol 13	Raumgruppen 14
k	l	32*	D _{2h} -mmm Bb-b	C^{13}_{2v} -Bb2b, D^{20}_{2h} -Bbmb
—	Z	3* 30*	$C_{2h}-2/mB_{b}-/a D_{2h}-mmmB-a-$	$C_s^2 - B_b a, C_{2h}^4 - B_b 2/a$ $C_{2v}^{15} - B 2 am (-Bma 2), D_{2h}^{21} - Bmam$
k	l	5*	$C_{2\hbar} - 2/m B_b 2_1/a$	$C_{2h}^{5}-B_{b}^{2}2_{1}^{\prime }/a$
k	l	31*	D_{2h} -mmm B-ab	C^{17}_{2v} -B 2 ab, D^{18}_{2h} -Bmab
k	l	31*	D _{2h} -mmm Bba-	C_{2v}^{17} -Bba 2, D_{2h}^{18} -Bbam
k	l	33*	$D_{2\hbar}$ -mmm Bbab	D^{22}_{2h} -Bbab
	l=4n	3*	$C_{2h} - 2/m B_b - /d$	$C_s^2\!\!-\!\!B_bd,C_{2h}^4\!\!-\!\!B_b2/d$
k	l=4n	5*	$C_{2h} - 2/m B_b 2_1/d$	$C_{2\hbar}^{5}-B_{b}^{2}2_{1}/d$
k		1* 2* 27* 41* 49*	$C_{i} - \overline{1} C - C_{2h} - 2/m C_{c, a, b} - / - D_{2h} - mmm C C_{4h} - 4/m C - / - D_{4h} - 4/mmm C - /$	$\begin{array}{l} C_1^1-C1,C_i^1-C\overline{1}\\ C_2^3-C_{c,a,b}2,C_s^3-C_{c,a,b}m,C_{2h}^3-C_{c,a,b}2/m\\ D_2^6-C222,C_{2v}^{11}-Cmm2,C_{2v}^{14}-Cm2m\\ (-C2mm),D_{2h}^{19}-Cmmm\\ C_4^1-C4,S_4^1-C\overline{4},C_{4h}^1-C4/m\\ D_4^1-C422,C_{4v}^1-C4mm,D_{2a}^1-C\overline{4}m2,\\ D_{2a}^5-C\overline{4}2m,D_{4h}^1-C4/mmm \end{array}$
k	1.	4* 28 42* 50*	$\begin{array}{c} C_{2h}-2/mC_{o}2_{1}/-\\ D_{2h}-mmmC2_{1}\\ C_{4h}-4/mC4_{2}/-\\ D_{4h}-4/mmmC4_{2}/\end{array}$	$\begin{array}{c} C_2^2-C_c2_1,C_{2h}^4-C_c2_1/m\\ D_2^5-C222_1\\ C_4^3-C4_2,C_{4h}^2-C4_2/m\\ D_4^5-C4_222 \end{array}$
k	Z	7* 29*	$C_{2h}-2/mC_{b}-/c$ $D_{2h}-mmmC-c-$	$C_s^4 - C_b c, C_{2h}^6 - C_b 2/c$ $C_{2v}^{12} - Cmc 2, C_{2v}^{16} - C 2 cm, D_{2h}^{17} - Cmcm$
k	l	7* 29*	$C_{2\hbar}-2/m C_{a}-/c D_{2\hbar}-mmm Cc$	$C_s^4 - C_a c, C_{2h}^6 - C_a 2/c$ $C_{2v}^{12} - Ccm 2, C_{2v}^{16} - Cc 2m, D_{2h}^{17} - Ccmm$
k k	[[32 55*	D_{2h} -mmm Ccc- D_{4h} -4/mmm C-/-c-	$C^{13}_{2m{v}}-Ccc2,D^{18}_{2m{h}}-Cccm\ C^7_{4m{v}}-C4cm,D^2_{2m{d}}-C\overline{4}c2,D^9_{4m{h}}-C4_2/mcm$
k	l=4n	43* 51*	$C_{4\hbar}$ -4/mC 4 _{1,3} /- $D_{4\hbar}$ -4/mmmC 4 _{1,3} /	$C_4^2 - C 4_1, C_4^4 - C 4_3$ $D_4^3 - C 4_1 2 2, D_4^7 - C 4_3 2 2$
k		3* 30 44* 63*	$C_{2\hbar}-2/mC_{c}-/b$ $D_{2\hbar}-mmmCa$ $C_{4\hbar}-4/mC-/a$ $D_{4\hbar}-4/mmmC-/a$	$\begin{array}{l} C_{s}^{2}-C_{c}b,\ C_{2h}^{4}-C_{c}2/b\\ C_{2v}^{15}-C2ma\ (-Cm2a),\ D_{2h}^{21}-Cmma\\ C_{4h}^{3}-C4/a\\ D_{4h}^{7}-C4/amm \end{array}$
k	1	5* 45*	$C_{21} - 2/m C_{e} 2_{1}/b$ $C_{4h} - 4/m C 4_{2}/a$	$C_{2h}^{5}-C_{\sigma}^{2}2_{1}/b$ $C_{4h}^{4}-C_{4}^{2}/a$

Nr. 1	hkl 2	hhl 3	hkh 4	hkk 5	hk0 6	h01	Okl 8	h00 9
42e	h+k		h+k	h+k	h, k	l, <i>h</i>	k	h
42f	h+k		h+k	h+k	h, k	h	k, 1	h
43 c	h+k h+k		h+k h+k	h+k h+k	h, k h, k	l, h 1, h	k, l k, l	h h
5i	h+k		h+k	h+k	h+k=4n	h	k	h=4n
7 p	h+k		h+k	h+k	$\frac{\mathbf{h} + \mathbf{k} = 4\mathbf{n}}{\mathbf{h}\mathbf{k}0 \mathbf{h}\mathbf{h}0 }$	h	k	h=4n
3d	h+k		h+k	h+k	h+k h	h	k	h
4b	$\mathbf{h} + \mathbf{k}$		h+k	h+k	h+k h	h	k	h
22 b	h+k		h+k	h+k	h+k h	h	k	h
27 b	h + k		h+k	h+k	h+k h	1, <i>h</i>	k, l	h
10d	h+k	h	h+k	h+k	h+k h	h	k	h
28b	h+k	h	h+k	h+k	h+k h	1, <i>h</i>	k, l	h
17 d	h+k	h	h+k	h+k	h, k h	h	k	h
33 b	h+k	h	h+k	h+k	h, k h	1, h	k, l	h
8d	$\mathbf{h} + \mathbf{k}$	1	h+k	h+k	h+k –	h	k	h
$29\mathrm{b}$	h+k	1	h+k	h+k	h+k -	l, h	k, l	h
32 b	h+k	1	h+k	h+k	h, k h	1, h	k, l	h
16d	h+k	1	h+k	h+k	h, k h	h	k	h
13d	h+k	l + h	h+k	h+k	h+k h	h	k	h
31b	h+k	l+h	h+k	h+k	h+k h	1, h	k, l	h
20b	$\mathbf{h} + \mathbf{k}$	l+h	h+k	h+k	h, k h	h	k	_ h
34 b	h+k	l+h	h+k	h+k	h, k h	l, h	k, l	h
44	h+k+l	l	k	h	h+k	l+h	k+l	h
a Ala			-					
							e.	
×						a a		
	12			-				
							-	

0k0 10	001 11	Nr. 12	Auslöschungssymbol 13	Raumgruppen 14
k	l	31	D _{2h} -mmmC-ca	C_{2v}^{17} -C2ca, D_{2h}^{18} -Cmca
k	ı	31*	D_{2h} -mmmCc-a	C_{2v}^{17} -Cc2a, D_{2k}^{18} -Ccma
k k	l l	33 64*	D_{2h} -mmm $Ccca$ D_{4h} -4/mmm C 4/acm	$D^{22}_{2h} - Ccca \ D^{15}_{4h} - C4/acm$
k=4n		3*	$C_{2h} - 2/m C_{c} - /d$	$C_s^2 - C_s d, \ C_{2h}^4 - C_s 2/d$
k=4n	1	5*	$C_{2h} - 2/m C_{c} 2_{1}/d$	$C_{2h}^5 - C_e 2_1/d$
k		52*	$D_{4\hbar}$ -4/mmmC-/21	$D_4^2 - C422_1$, $D_{2d}^3 - C\overline{4}m2_1$
k	1	53*	D_{4h} -4/mmm $C4_2$ /2 ₁	$D_4^6-C 4_2 2 2_1$
k	l=4n	54*	$D_{4h}\!\!-\!\!4/\!mmmC4_{1,3}/\!-\!-\!2_1$	$D_4^4 - C 4_1 2 2_1$, $D_4^8 - C 4_3 2 2_1$
k	l	56*	$D_{4h}-4/mmmC-/-c2_1$	$D_{2d}^4 - C\overline{4}c2_1$
${k}$		57*	D_{4h} -4/mmm C-/b	C_{4v}^2 -C4mb, D_{2d}^7 -C42b, D_{4h}^5 -C4/mmb
k	l	58*	D_{4h} –4/mmm C–/–cb	C_{4v}^8 -C4cb, D_{4h}^{13} -C4 $_2/mcb$
k		65*	D_{4h} -4/mmm C-/a-b	$D^3_{4\hbar}$ – $C4/amb$
k	l	66*	D_{4h} –4/mmm C–/acb	$D^{11}_{4ar{h}} \!\!-\!\!C4_2/acb$
k	l	59*	D_{4h} -4/mmm C-/c	$C_{4v}^3 - C4mc, D_{2d}^6 - C\overline{4}2c, D_{4h}^{10} - C4_2/mmc$
${k}$	l	60*	D_{4h} -4/mmm C-/-cc	C_{4v}^5 -C4cc, D_{4h}^2 -C4/mcc
${m k}$	l	68*	$D_{4\hbar}$ – $4/mmmC$ – $/acc$	$D^8_{4\hbar}$ – $C4/acc$
${k}$	l	67*	D_{4h} -4/mmmC-/a-c	$D_{4h}^{16}\!-\!C4_2/amc$
k	l	61*	$D_{4h}-4/mmmC-/n$	$C_{4v}^4 - C4mn, D_{2d}^8 - C\overline{4}2n, D_{4h}^{14} - C4_2/mmn$
\boldsymbol{k}	l	62*	$D_{4\hbar}$ -4/mmmC-/-cn	$C_{4v}^6 - C 4 cn, D_{4h}^6 - C 4/m cn$
${k}$	l	69*	$D_{4h}-4/mmmC-/a-n$	$D^{12}_{4h} - C 4_2 / amn$
k	l	70*	$D_{4h}-4/mmmC-/acn$	D_{4h}^4 C4/acn
k	ı	1*	CĪ <i>I</i>	$C_1^1 - I_1, C_1^1 - I_1^{\overline{1}}$
		6*	C2h-2/mIc, a, b-/-	$C_2^{\frac{1}{2}} - I_{c, a, b}^{\frac{1}{2}} 2, C_s^{\frac{3}{2}} - I_{c, a, b}^{\frac{1}{2}} m, C_{2h}^{\frac{3}{2}} - I_{c, a, b}^{\frac{1}{2}} 2/m$
	<i>n</i>	34	D_{2h} -mmm I	$D_2^{5} - I 2 2 2, D_2^{5} - I 2_1 2_1 2_1, C_{2 v}^{2 0} - Imm 2$ $(-Im 2 m, -I 2 mm), D_{2 v}^{2 5} - Immm$
	2	46	C_{4h} -4/m I-/-	$C_4^{5-1}I4, S_4^{2-1}I\overline{4}, C_{4h}^{5-1}I4/m$
		71	$D_{4h}-4/mmmI-/$	$D_{4v}^9 - I42, C_{4v}^9 - I4mm, D_{2d}^9 - I\overline{4}m2,$ $D_{11}^{11} - I\overline{4}2m, D_{17}^{17} - I4/mmm$
		102 112	$T_{h}-m3I$ $O_{h}-m3mI$	$D_{2d} = I + 2 m, D_{4h} = I + /minin$ $T^3 = I + 2 3, T^5 = I + 2_1 3, T_h^5 = Im 3$ $O^5 = I + 3, T_d^3 = I + 3 m, O_h^9 = Im + 3 m$

Nr. 1	hkl 2	hhl 3	hkh 4	hkk 5	hk0 6	h01 7	0kl 8	h00 9
45 a	h+k+1	l	k	h	h+k	l+h	k+l	h
46 a	h+k+l	ł	k	h	h+k	l+h	k+l	h=4n
47 a	h+k+l	I	k	h	h+k	l, h	k+l	h
47 b	h+k+l	l	k	h	h+k	l+h	k, l	h
4 7 c	h+k+l	l	k	h	h, k	l+h	k+l	h
48	h+k+l	l	k	h	h, k	l+h	k+l	h
49 a	$\mathbf{h} + \mathbf{k} + \mathbf{l}$ $\mathbf{h} + \mathbf{k} + \mathbf{l}$	l I	k k	h h	h+k h+k	l, h l. h	k, l k, l	h h
49b	h+k+l	l	k	h	h, k	l+h	k, l	h
49c	h+k+l	l	k	h	h, k	l, h	k+l	h
50	$\mathbf{h} + \mathbf{k} + \mathbf{l}$	l	k k	h b	h, k b, k	l, h 7 h	k , l	h h
51.0	h+k+l	$\frac{1}{2b+1}=4n$	k	h.	h + k	l+h	k+l	h
52 a	h+k+l	2h+l=4n	k	h	h, k	l+h	k+l	h
53	h+k+l	2h+l=4n	${m k}$	h	h + k	l, h	k, l	h
54	h+k+l	2 h + l = 4 n	k	h	h, k	l, h	k, l	h
55	h+k+l	2 h + l = 4 n	2h+k=4n	2k+h=4n	h+k	l+h	k+l	h=4n
56	h+k+l	2h+l=4n	2h+k=4n	2k+h=4n	h, k	l, h	k, l	h=4n
lc	h-k+l=3n (hex. Indiz.)	l=3n	2h-k=3n	h=3n	h-k=3n	h+l=3n	-k+l=3n	h=3n
35b	h-k+l=3n (hex. Indiz.)	l=3n	2h-k=3n	h=3n	h-k=3n	h+l=6n	-k+l=6n	h=3n
ld	h-k=3n		h-k=3n	h-k=3n	h-k=3n	h=3n	k=3n	h=3n
						5 5		
						8		

0k0	001	Nr.	Auslöschungssymbol	Raumgruppen 14
k	l=4n	47 72	$C_{4h}-4/mI4_{1}/-$ $D_{4h}-4/mmmI4_{1}/$	$C_4^6 - I 4_1 \\ D_4^{10} - I 4_1 22$
k=4n	l=4n	113	$O_{h} - m 3m I 4_{1}$	0 ⁸ –I4 ₁ 3
k	l	7* 35	$C_{2h}-2/mI_{b}-/a$ $D_{2h}-mmmI-a-$	$C_{s}^{4}-I_{b}a, C_{2h}^{6}-I_{b}2/a$ $C_{2v}^{22}-Ima2 \ (-I2am), D_{2h}^{28}-Imam$
k	ł	7* 35*	$C_{2\hbar}$ -2/m I_a -/c $D_{2\hbar}$ -mmm Ib	$C_s^4 - I_a c, C_{2h}^6 - I_a 2/c$ $C_{2v}^{22} - Ib 2m (-Ibm 2), D_{2h}^{28} - Ibmm$
k	l	7* 35*	$C_{2\hbar}$ -2/m I_e -/b $D_{2\hbar}$ -mmm I a	$C_{s}^{4}-I_{c}b, C_{2h}^{6}-I_{c}2/b$ $C_{2v}^{22}-I2ma\;(-Im2a), D_{2h}^{28}-Imma$
k	l=4n	48	C_{4h} –4/m I 4 ₁ /a	C_{4h}^6 –I 4 $_1/a$
k k	l l	36 73	D_{2h} -mmmIba- D_{4h} -4/mmmI-/-c-	C^{21}_{2v} -Iba 2, D^{26}_{2h} -Ibam C^{10}_{4v} -I 4 cm, D^{10}_{2d} -I $\overline{4}c$ 2, D^{18}_{4h} -I 4/mcm
k	l	36*	D _{2h} -mmmIb-a	C^{21}_{2v} -Ib 2a, D^{26}_{2k} -Ibma
k	l	36*	D _{2h} -mmmI-aa	C^{21}_{2v} –I 2 aa, D^{26}_{2h} –Imaa
k k	l l	37 103	D _{2h} -mmmIbca T _h m3Ia-	D^{27}_{2h} -Ibca T^7_h -Ia 3
k	l=4n	74	D_{4h} -4/mmm I-/d	C^{11}_{4v} –I4md, D^{12}_{2d} –I $\overline{4}2d$
k	l=4n	76	$D_{4h}-4/mmmI4_{1}/a-d$	D_{4h}^{19} -I4 ₁ /amd
k	l=4n	75	$D_{4\hbar}$ -4/mmmI-/-cd	C^{12}_{4v} -I4cd
k .	l=4n	77	D_{4k} -4/mmm I 41/acd	$D^{20}_{4\hbar}$ –I 4 $_{ m 1}/acd$
k = 4n	l=4n	114	$O_h - m 3 m Id$	$T_{d}^{6}-I\overline{4}3d$
k=4n	l=4n	115	$O_{h} - m3mIa3d$	O_{h}^{10} -Ia 3 d
k = 3n	l=3n	80* 85*	$C_{3i} - \overline{3}R - D_{3i} - \overline{3}mR$	$C_{3}^{4}-R3, C_{3i}^{2}-R\overline{3}$ $D_{3}^{7}-R32, C_{3v}^{5}-R3m, D_{3d}^{5}-R\overline{3}m$
k=3n	l=6n	86*	D_{3d} - $\overline{3}mR$ -c	$C_{3v}^6 - R 3 c, D_{3d}^6 - R \overline{3} c$
k=3n		1* 81* 91*	$C_{6h}-6/mH-/-$ $D_{3d}-\overline{3}mH$ $D_{6h}-6/mmmH-/$	$\begin{array}{l} C_{6}^{1}-H6,C_{3h}^{1}-H\overline{6},C_{6h}^{1}-H6/m\\ D_{3}^{1}-H321,D_{3}^{2}-H312,C_{3v}^{1}-H31m,C_{3v}^{2}-H3m1,\\ D_{3d}^{1}-H\overline{3}m1,D_{3d}^{3}-H\overline{3}1m\\ D_{6}^{1}-H622,C_{6v}^{1}-H6mm,D_{3h}^{1}-H\overline{6}2m,\\ D_{3h}^{3}-H\overline{6}m2,D_{6h}^{1}-H6/mmm \end{array}$

Nr. 1	hkl 2	hhl 3	hkh 4	hkk 5	hk0 6	h01 7	0kl 8	h00 9
2d	h-k=3n	-	h-k=3n	h-k=3n	h-k=3n	h=3n	k=3n	h=3n
26b	h-k=3n	- <u> </u>	h-k=3n	h-k=3n	h-k=3n	h = 3n, 1	k = 3n, 1	h=3n
23 b	h-k=3n		h-k=3n	h-k=3n	h-k=3n	h=3n	k=3n	h=3n
1				-17				
24 b	h-k=3n		h-k=3n	h-k=3n	h-k=3n	h=3n	k=3n	h=3n
8e	h-k=3n	1	h-k=3n	h-k=3n	h-k=3n	h=3n	k=3n	h=3n
29c	h-k=3n	1	h-k=3n	h-k=3n	h-k=3n	h = 3n, 1	k = 3n, 1	h=3n
57	h + k, k + l, l + h	l+h	h+k	h+k	h, k	· l, h	k, l	h
		5				đ		
			14				5	
45b	$\begin{array}{c} h+k, \\ k+l, l+h \end{array}$	l+h	h+k	h+k	h, k	l, h	k, l	h
58	h + k, k + l, l + h	l+h	h+k	h+k	h, k	l, h	k, l	h=4n
46b	$\begin{array}{c} \mathbf{h+k,} \\ \mathbf{k+l, l+h} \end{array}$	l+h	h+k	h+k	h, k $h+k=4n$	l, h	k, l	h=4n
38g	$\begin{array}{c} h+k, \\ k+l, l+h \end{array}$	l+h	h+k	h+k	h, k	l, h	$k, l \\ k+l=4n$	h
38h	$\begin{array}{c} \mathbf{h} + \mathbf{k}, \\ \mathbf{k} + \mathbf{l}, \mathbf{l} + \mathbf{h} \end{array}$	l+h	h+k	h+k	h, k $h+k=4n$	l, h	k, l	h = 4n
38i	$\begin{array}{c} h+k, \\ k+l, l+h \end{array}$	l+h	h+k	h+k	h,k	$l, h \\ l+h=4n$	k, l	h = 4n

0k0 10	001 11	Nr. 12	Auslöschungssymbol 13	Raumgruppen 14
k=3n	1	2* 94*	$C_{6\hbar}-6/mH6_3/-$ $D_{6\hbar}-6/mmmH6_3/$	$C_6^6-H 6_3, C_{6\hbar}^2-H 6_3/m \ D_6^6-H 6_3 2 2$
k=3n	l	84* 96*	$D_{3d} - \overline{3} m H - c - D_{6h} - 6/mmm H - / -c -$	$C_{3v}^4-H3c1,D_{3d}^2-H\overline{3}c1 \ C_{6v}^4-H6cm,D_{3h}^4-H\overline{6}c2,D_{6h}^4-H6_3/mcm$
k=3n	l=3n	82*	$D_{3d} - \overline{3} m H 3_{1,2}$	$D_3^3 - H 3_1 2 1, D_3^5 - H 3_2 2 1, D_3^4 - H 3_1 1 2, D_6^6 - H 3_1 2$
		89* 93*	$C_{6\hbar}-6/mH6_{2,4}/-$ $D_{6\hbar}-6/mmH6_{2,4}/$	$D_3 = H \ 6_2 \ 12$ $C_6^4 - H \ 6_2 \ 2 \ 2, \ D_6^5 - H \ 6_4$ $D_6^4 - H \ 6_2 \ 2 \ 2, \ D_6^5 - H \ 6_4 \ 2 \ 2$
k=3n	l=6n	88* 92*	$C_{6\hbar}-6/mH6_{1,5}/-$ $D_{6\hbar}-6/mmH6_{1,5}/$	$C_6^2-H 6_1^{}, C_6^3-H 6_5^{} \ D_6^2-H 6_1^{} 2 2, D_6^3-H 6_5^{} 2 2$
k=3n	l	83* 95*	$D_{3d} - \overline{3} m Hc \\ D_{6h} - 6/mmm H - /c$	$C^{3}_{3v}-H31c, D^{4}_{3d}-H\overline{3}1c \ C^{3}_{6v}-H6mc, D^{2}_{3h}-H\overline{6}2c, D^{3}_{6h}-H6_{3}/mmc$
k=3n	l	97*	D_{6h} -6/mmmH-/-cc	C_{6v}^2 -H 6 cc, D_{6h}^2 -H 6/mcc
k	ł	1* 6* 38	$C_i - \overline{1} F - C_{2h} - 2/m F_{c, a, b} - / - D_{2h} - mmm F_{}$	$C_1^1 - F 1, C_i^1 - F \overline{1}$ $C_2^3 - F_{c,a,b} 2, C_s^3 - F_{c,a,b} m, C_{2h}^3 - F_{c,a,b} 2/m$ $D_2^7 - F 2 2 2, C_{2v}^{18} - Fmm 2 (-Fm 2m, -F 2mm), D_{2h}^{23} - Fmmm$
a		46* 71*	C_{4h} -4/mF-/- D_{4h} -4/mmmF-/	$C_{4}^{5}-F4, S_{4}^{2}-F\overline{4}, C_{4h}^{5}-F4/m$ $D_{4}^{9}-F42, C_{4v}^{9}-F4mm, D_{2d}^{9}-F\overline{4}2m,$ $D_{2d}^{1}-F\overline{4}m2, D_{4h}^{1}-F4/mmm$
- 1		104 116	$T_h - m 3 F O_h - m 3 m F$	$T^2-F23, T^3_{\hbar}-Fm3 \\ O^3-F43, T^2_d-F\overline{4}3m, O^5_{\hbar}-Fm3m$
k	l=4n	47* 72*	$C_{4h} - 4/mF4_1/- D_{4h} - 4/mmmF4_12$	$C_4^6 - F {f 4_1} \ D_4^{10} - F {f 4_1} 2 2$
k=4n	l=4n	117	$O_{h} - m 3 m F 4_{1}$	$O^4 - F 4_1 3$
k=4n	l=4n	48*	$C_{4h} - 4/mF4_1/d$	C_{4h}^6 F 4_1/d
k=4n	l=4n	. 7*	$C_{2h}\!\!-\!\!2/mF_{a}\!\!-\!\!/d$	$C_s^4 - F_a d, C_{2h}^6 - F_a 2/d$
k=4n	ł	7*	$C_{2\hbar}\!\!-\!\!2/mF_c^-\!/d$	$C_s^4 - F_c d, C_{2h}^6 - F_c 2/d$
k	l=4n	7*	$C_{2h} - 2/mF_b - /d$	$C_{s}^{4}\!\!-\!\!F_{b}d$, $C_{2h}^{6}\!\!-\!\!F_{b}2/d$

				· · · · · · · · · · · · · · · · · · ·			1	· · · · · · · · · · · · · · · · · · ·
Nr.	hkl	hhl	hkh	hkk	hk0	h0l	0kl	h00
1	2	3	4	5	6	7	8	9
59a	h+k, k+1 l+b	l+h	h+k	h+k	h, k	l, h l+h=4n	k, l k+l=4n	h=4n
15	$\begin{array}{c} h+k, \\ k+l, l+h \end{array}$	l+h	h+k	h+k	h, k	$l, h \\ l+h=4n$	k, l $k+l=4n$	h=4n
59b	$h+k, \\ k+l, l+h$	l+h	h+k	h+k	$\begin{array}{c} h, k \\ h+k=4n \end{array}$	l, h	$k, l \\ k+l=4n$	h = 4n
59c	$\begin{array}{c} h+k, \\ k+l, l+h \end{array}$	l+h	h+k	h+k	h, k $h+k=4n$	l, h l+h=4n	k, l	h = 4n
60	h+k, k+l, l+h	l+h	h+k	h+k	h, k $h + k = 4n$	<i>l</i> , <i>h</i> l + h = 4n	k, l $k+l=4n$	h = 4n
	h+k,	l+h	h+k	h+k	h, k h + k - 4n	l, h	k, l k+l-4n	h=4n
	h+k,	l+h	h+k	h+k	h, k	l, h	k, l	h=4n
	k+l, l+h		4		h+k=4n	l+h=4n	k+l=4n	
49d	$h+k, \\ k+l, l+h$	l, h	h+k	h+k	h, k	l, h	k, l	h
51 b	$\begin{array}{c} h+k, \\ k+l, l+h \end{array}$	l, h	h+k	h+k	h, k	l, h $l+h=4n$	$k, l \\ k+l=4n$	h=4n
52 b	$h+k, \\ k+l, l+h$	l, h	h+k	h+k	h, k $h+k=4n$	l, h $l+h=4n$	$k, l \\ k+l=4n$	h = 4n
61	h + k, k + l, l + h	l, h	h, k	h, k	h, k	l, h	k, l	h
62	h + k, k + l, l + h	l, h	h,k	h, k	h, k $\mathbf{h} + \mathbf{k} = \mathbf{4n}$	l, h $l+h=4n$	$k, l \\ k+l=4n$	h = 4n

Summary

All space groups which have the same missing spectra regardless of the Laue symmetry are said to form one general diffraction unit. The structure amplitude does contain the symmetry of a crystal in a rather restricted manner [e.g. all symmorphous space groups with a face — centered lattice have: (hkl) present only with all indices even or all odd]; this partly causes the existence of general

0k0	001	Nr.	Auslöschungssymbol	Raumgruppen
k=4n	l=4n	39	D_{2h} -mmm Fdd-	$C_{2y}^{19}-Fdd2$
k=4n	l=4n	74*	D_{4h} -4/mmm $F\overline{4}d2$	C_{4v}^{11} -F4dm, D_{2d}^{12} -F $\overline{4}d2$
k=4n	l=4n	39*	D_{2h} -mmm Fd-d	C^{19}_{2v} -Fd2d
k=4n	l=4n	39*	D_{2h} -mmm F dd	C^{19}_{2v} -F2dd
k=4n	l=4n	40	D_{2h} -mmm $Fddd$	$D^{24}_{2ar{\lambda}} ext{-} Fddd$
k=4n	l=4n	76*	D_{4h} -4/mmm F 41/dd-	D_{4h}^{19} -F 41/ddm
k=4n	l=4n	105	$T_{h} - m 3 F d -$	T_{h}^{4} -Fd3
		118	$O_h - m 3 m F d$	$O_{\mathbf{k}}^7 - Fd3m$
k	l	73*	$D_{4h}-4/mmmF-/c$	C^{10}_{4v} -F4mc, D^{10}_{2d} -F $\overline{4}2c$, D^{18}_{4h} -F4/mmc
k=4n	l=4n	75*	D_{4h} -4/mmm F -/- dc	$C_{4v}^{12} - F 4 dc$
k=4n	l=4n	77*	D_{4h} -4/mmm $F4_1/ddc$	$D_{4h}^{20} - F 4_1/ddc$
k	l	119	$O_h - m 3 m Fc$	$T_d^5 - F\overline{4} 3c, O_h^6 - Fm 3c$
k=4n	l=4n	120	$O_h - m 3 m F d - c$	O_{\hbar}^{8} -Fd3c

diffraction units. These units may be important in case of pseudosymmetries. In general it is impossible to determine symmetries merely by missing spectra (except in 31 + 2 cases). Contrary to the 120 normal diffraction units (diffraction groups) there are 62 general diffraction units which are necessary and sufficient for the characterisation of the 219 + 11 space groups relative to missing spectra only. These 62 units can be determined by means of a table which is constructed for all possible orientations of the symmetry elements in respect to the axes of coordinates.

Literatur

M. J. BUERGER (1942), X-ray Crystallography. Wiley, New York.

- J. J. BURCKHARDT (1947), Die Bewegungsgruppen der Kristallographie. Birkhäuser, Basel.
- Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Borntraeger, Berlin.
- K. LONSDALE (1936), Simplified structure factor and electron density formulæ for the 230 space groups of mathematical crystallography. Bell, London.
- P. NIGGLI (1919), Geometrische Kristallographie des Diskontinuums. Borntraeger, Berlin.

P. NIGGLI und W. NOWACKI (1935), Der arithmetische Begriff der Kristallklasse und die darauf fussende Ableitung der Raumgruppen. Z. Krist. 91, 321---335.

W. NOWACKI (1935), Homogene Raumteilung und Kristallstruktur. Dissertation Eidgenössische Technische Hochschule Zürich. Leemann, Zürich.

W. NOWACKI (1950), Beziehungen zwischen der Symmetrie des Kristall-, Fourierund Patterson-Raumes. I. Schweiz. Mineral. Petrogr. Mitteil. 30, 147-160.

W. NOWACKI (1950a), II. Die Harker-Maxima in den triklinen, monoklinen und orthorhombischen Raumgruppen. Ibid. **30**, 304-310.

W. NOWACKI (1952a), III. Die Harker-Maxima in den tetragonalen Raumgruppen. Ibid. 33.

- W. NOWACKI (1952b), Fouriersynthese von Kristallen und ihre Anwendung in der Chemie. Birkhäuser, Basel.
- D. ROGERS (1950), The probability distribution of X-ray intensities. IV. New methods of determining crystal classes and space groups. Acta Cryst. 3, 455-464.
- W. H. ZACHARIASEN (1945), Theory of X-ray diffraction. Wiley, New York.

Eingegangen, den 23. April 1952.