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Die symmelriebedingte Vieldeutigkeit in der
Molekülspektroskopie*)

von Alfred Niggli, Zürich

I. Einleitung

Die Schwingungen der Atomkerne im Molekül, die sich in den
Infrarot- und Ramanspektren äussern können, lassen sich — unter
Voraussetzung ihrer Harmonizität — linear aus voneinander unabhängigen

Normalschwingungen zusammensetzen. Zahl und Formen dieser
Normalschwingungen werden durch den räumlichen Bau des Moleküls,
im besondern durch seine Symmetrieeigenschaften festgelegt. Sie sind
unabhängig von allen Annahmen über die Kräfteverteilung, unabhängig

von den schwingenden Massen und unabhängig von den metrischen
Gegebenheiten. All diese Dinge spielen erst dann eine Rolle, wenn es
sich um die Bestimmung der Schwingungsfrequenzen handelt, wie etwa
bei der Feststellung gewisser Gruppen und Bindungen durch Zuordnung
ihrer mehr oder weniger konstanten charakteristischen Frequenzen —
eine Methode, die in der Konstitutionsermittlung grosse praktische
Bedeutung erlangt hat.

Die Beobachtbarkeit der Normalschwingungen, sei es für sich oder
in Kombinationen, in den Infrarot- und Ramanspektren wird durch
ihren Einfluss auf das elektrische Moment bzw. die Polarisierbarkeit des

Moleküls, also letztlich wiederum durch Symmetrieeigenschaften
bestimmt. Die Technik der Zuordnung der einzelnen Schwingungen, bei
der alle möglichen Abweichungen vom idealisierten harmonisch schwin-

q Von der Philosophischen Fakultät II der Universität Zürich mit dem
Hauptpreis bedachte Preisschrift. — Für die Übernahme des größten Teiles der
Druckkosten möchte die Schweiz. Min. Petr. Gesellschaft den zuständigen Stellen
der Universität und dem Autor den besten Dank abstatten.
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genclen Massenpunktsystem, wie Anharmonizität und Resonanzeffekte,
mitberücksichtigt werden müssen, soll hier nicht behandelt werden.

Liegen die auftretenden Normalschwingungen aber einmal vor, dann
können schon aus ihrer Anzahl Schlüsse auf den räumlichen Bau des

Moleküls gezogen werden. Diese Beziehung zwischen Bau und
Normalschwingungen der Moleküle bildet mit ihren Vieldeutigkeiten ein
Anwendungsgebiet der Symmetrielehre und der Gegenstand der
vorliegenden Arbeit.

II. Die Aussagen der Symmetrielehre über den Molekülbau

Zunächst soll ein Teilchensystem, wie es ein Molekül ja darstellt,
auf die Symmetrieeigenschaften seiner Gleichgewichtslage hin betrachtet
werden. Weil molekulare Konfigurationen in sich abgeschlossen sind,
gehen alle möglichen Symmetrieelemente durch einen Punkt und bilden
so eine Punktsymmetriegruppe. Die 82 Kristallklassen geben Beispiele
für solche Gruppen; für Moleküle sind indessen die nichtkristallogra-
phischen Punktgruppen ebenfalls einzubeziehen, da die durch die
Raumgitterstruktur der Kristalle bedingten Einschränkungen wegfallen. Eine
vollständige Aufzählung der Punktsymmetriegruppen findet man etwa
bei Nowacki (9). In ähnlicher Weise erfüllen die einzelnen Elemente des

Teilchensystems, seien es nun Atome oder Ionen, die Forderung der
Abgeschlossenheit, so dass auch ihnen Punktsymmetriegruppen zukommen

müssen. Dementsprechend soll für die Betrachtung zwischen
Lagesymmetrie der Konfiguration und Eigensymmetrie der Teilchen
unterschieden werden. Dabei bedeutet die Lagesymmetrie die höchste

Punktsymmetriegruppe, die der Konfiguration nach ihrer Anordnung,
bei beliebiger Annahme über die Eigensymmetrie der Teilchen, zukommen
kann; unter der Eigensymmetrie dagegen wird die Punktsymmetriegruppe

verstanden, die einem Teilchen für sich tatsächlich zukommt,
wenn es, ohne an seinem Zustand etwas zu ändern, aus clem Verband
herausgelöst gedacht wird. Die Eigensymmetrie stimmt demnach mit
der Symmetrie des Kraftfeldes an der betreffenden Stelle überein.

Die Annahme, dass sich alle Teilchen kugelsymmetrisch verhalten
(Eigensymmetrie Ivh), rechtfertigt ihren gedanklichen Ersatz in der
Konfiguration durch gestaltlose Massenpunkte. Nach dieser üblichen
Abstraktion kann sich nur noch die Lagesymmetrie auswirken; es spricht
dann gar nichts dagegen, einer gegebenen Anordnung die höchste
überhaupt mit ihr verträgliche Punktsymmetriegruppe eindeutig zuzuordnen.
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Nach diesem Gesichtspunkt haben etwa Jahn und Teller (6) die meisten
der zur Verwirklichung der Punktsymmetriegruppen notwendigen und
hinreichenden Punktlagen angegeben. Eine vollständige Zusammenstellung

liefert die Tabelle I.

Tabelle I. Die zur Verwirklichung der Punktsymmetriegruppen notwen¬

digen und hinreichenden Punktlagen

Cl 4 Cj Da. Cx. C„ C2v

C, 3 Ci T Cx

c. 3 (Clf C.) Tü Cx, C„ C3v

c., 2CX Th Cx, C.
Cp, Cp 0 Cx

Cqb 2 (C1; CJ oh Cx, c„ c,v, C3v, c
Cqv (Cj, Cd-HCx, C„C,r) I Cx

S,„ 2 Cj Ih Cx, C„ C2v, C3v, c
D, Cx C„t 2CœT

Da. Ci, C, T*coh Coov

(fco' Cooh> Dx haben für endlichzählige Punktlagen keine Bedeutung)

Es bedeuten q eine beliebige ganze Zahl > 1

p eine ungerade Zahl > 1

n eine gerade, nicht durch 4 teilbare Zahl
m eine durch 4 teilbare Zahl

Will man aber die Idealisierung nicht so weit treiben, so wird man
zulassen müssen, dass das Verhalten eines Teilchens nicht mehr allgemein

der holoedrischen Kugelgruppe gehorcht, sondern irgendeiner durch
Art und Zustand des Teilchens bedingten Punktsymmetriegruppe. Diese

Eigensymmetrie der Teilchen wirkt nun insofern mit der Lagesymmetrie
zusammen, als sie die Symmetriebedingungen der Punktlagen nach oben

begrenzt. Bei unbekannter Eigensymmetrie der Teilchen lassen sich
daher einer gegebenen Konfiguration — wiederum nach gedanklichem
Ersatz der Teilchen durch Punkte — an sich alle überhaupt mit ihr
verträglichen Punktsymmetriegruppen als möglich zuordnen. Die sich
ergebende Vieldeutigkeit kann offenbar nur durch das Auftreten von
Kombinationen verschiedener Punktlagen eingeschränkt werden. Immerhin

legt das grundsätzliche Streben nach höchstmöglicher Symmetrie
nahe, beim Fehlen von Gegengründen der höchstsymmetrischen
Punktgruppe allgemein die grösste Wahrscheinlichkeit beizumessen.

In der Gesamtheit der so für eine Konfiguration in Betracht fallenden

Punktsymmetriegruppen lassen sich im allgemeinen zwei Gruppen
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auseinanderhalten: in der ersten bedingt die Punktsymmetriegruppe die

Lagesymmetrie der Konfiguration notwendig, während diese in der zweiten

Gruppe nur bei geeigneter Wahl der Parameter für Punktlagen mit
Freiheitsgraden entsteht, also zur blossen Pseudosymmetrie wird. Ein
scheinbar aus geometrisch gleichwertigen Teilchen aufgebauter Punktner
kann sich dann auch als Kombination von mehreren Punktnern mit
entsprechend geringerer Zähligkeit erweisen. In der ersten Gruppe, in der
die Konfiguration noch symmetriebedingt ist, stellen nach dem kristallo-
graphischen Sprachgebrauch sämtliche Punktlagen allgemeine Formen
oder Spezialformen dar, wogegen in der zweiten Gruppe mindestens
eine Punktlage eine Grenzform bildet.

Tabelle II gibt nun beispielhaft eine vollständige Übersicht über
die symmetriebedingten Konfigurationen von 2 bis 12 Teilchen. Die
linke Spalte enthält die Anzahlen gleichwertiger Teilchen, in der mittleren

Spalte ist die höchstsymmetrische und in der rechten Spalte sind
die weiteren Punktgruppen aufgeführt, aus denen die Konfiguration
folgt. Die Konfigurationen selbst sind für jede gegebene Teilchenzahl
willkürlich mit Buchstaben bezeichnet. Man sieht, dass gewisse
Kombinationen von Zahlen gleichwertiger Teilchen durch die Symmetrielehre

ausgeschlossen werden: das ist dann der Fall, wenn es keine
Punktsymmetriegruppe gibt, die alle entsprechenden Zähligkeiten zur
Verfügung stellen würde.

Sollen auch die pseudosymmetrischen Anordnungen erfasst werden,
so müssen die möglichen Übergänge zwischen den einzelnen Konfigurationen,

die sich durch Ausnützung der Freiheitsgrade ergeben, berücksichtigt

werden. Ein Beispiel mag das veranschaulichen:
Unter den Konfigurationen von 8 gleichwertigen Teilchen kann die

oktagonal-prismatische Anordnung a) aus den Punktgruppen b) und c)

hervorgehen, die oktagonal-streptoedrische b) aus d), die ditetragonal-
prismatische c) aus d) und e), die tetragonal-trapezoedrische d) aus
keiner andern, die tetragonal-skalenoedrische e) ebenso aus keiner
andern, die tetragonal-bipyramidale f) aus d), e) und g), die orthorhom-
bisch-bipyramidale g) aus keiner andern und schliesslich die oktaedrische
h) aus f). Bei mehrfachen Übergängen lässt sich also etwa der
oktaedrische Achtpunktner durch die Punktsymmetriegruppen von d), e),
f) oder g) vortäuschen. Dabei sind aber immer noch alle 8 Punkte
gleichwertig; soll auch diese Voraussetzung fallengelassen werden, so hat man
die zusätzlichen Übergänge aus passenden Konfigurationen mit mehreren
Punktlagen, deren Zähligkeiten die Summe 8 haben, heranzuziehen.
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Tabelle II
Mögliche Punktsymmetriegruppen für Konfigurationen von 2—12 Teilchen

1 + 1

a) CKV in D0

a) 2 Cxv in C3

C x in Dx, C x in C xh, Cf(V in tqV
in Dqd, Cq in D„, Cq in Cqh, Cp in Cpl,
C'm/2 in Sm, C2v in D.,h, C, in D2, C„ in
C'2v, C„ in Cäh, C4 in C2, C4 in C8, C4

in C,

2 in Cœ, 2 C\1V in Cqv, 2 C„ in C'q,

2 C'8 in C„, 2 Cj in C4

3

2 + 1

j a) C'2v in D3h

a) Cœï + Dœh inDxh

1 + 1 + 1

b) C's + C2v in C2v

a) :iCIrinCIr
b) 3 C\ in C8

q il in Dq,l»

C2 in D3, C'„ in D3h, C'8 in C3v, Cx in C3

C'K + D
C'qv + i-'qii 'n i-'qii' Cqv + D.
C'q + D.i in Dq. Cq + Cqh in Cqh, Cp +
C,,, in Cpi, 0,,,/2 + S,,, in Sn„ C„v + D.,h

in D2h, C2 + D2 in D2, C„ + C2h in C2h,

Cj + Cj in C'j

C4 + C'a in C„ Ct + C2 in C2

3 Cœ in CK. 3 C'qv in C„v, 3 C'q in C„
3 C4in C'x

3 + 1

2 + 2

a) C'2v in D4

i b) C'a in D.,,,
i c) C8 in D2h

d) C'x in D„
e) C'3v in T,,

a) C2v + D31i in D3h

b) Cs + C'3v in C3v

a) 2C in D

2 + 1 + 1

1+1+1+1

Xh

S b) Co/ + Co/'iiiD2t
j c) 2 C/ in C2v
1

d) C/ + C'/'inC2v
e) 2C, in C2h

f 2 C, in Co

a) C8 + 2 C2v in C2v

b) C4 + 2 Ca in Cs~

a) 4 Cxr in CX1.

b) 4 C'a in C8

c) 4 C4 in C4

C'o in D4, C'o in D.,d, C'a in C4h. C'B in
C4v, C\ in C4

C4in S4

C\ in C'2v, C4 in C'2h

Co + D3 in D3, C'a + C3h in C'31l

C*4 + C3 in C'3

2 C' in D_, 2 C.' in C^h. 2 C,
2 Cqv in D,|(], 2 C,t in Dq, 2 Cq i

2 Co
Hqh>

Cqh. 2 Cp in Cpi, 2 C111/2 in S„
in D2h, 2 C.,' in D2
Co' + C'o" in Do, Cs + C'o in C'2h

2 C4 in C'a

2 C\ in C',

C'4 + 2 C'o in Co

4 Ca in C'œ, 4 Cqv in C'qv, 4 Cq in Cq
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5 a) C2t in D5h C2 in D5, C, in C6L, C8 in C5v, C4 in C6

4 + 1 a) C2v + D4h in D4h C2 + D4 in D4, C2 + D2d in D2d, C8 +
C4h in C4h

b) C, + C4t in C4V C^ + C, in C4

c) Ca + D2d in D,d C4 + S4 in S4

d) Cs + D2h in D,h Ci + C2h in C2h

e) C1 + C2vinC2v
f) Cj + DoinD.
g) C3v + Td in T(l C3 + T in T

3 + 2 a) C2v + C3v in D3h Ca + C3 in D3, Ca + C3 in C3h

3 + 1 + 1 a) C, + 2 C3v in C'3v C4 + 2C3 in C3

2 + 2 + 1 a) 2 Cxv + Dxh in Dxb 2 Cx + DX in Dx, 2 Cx + Cxh in Cxh,
2 C^ + D^ in Dqh, 2 CqT + Dqd in
D,d, 2 Cq + Dq in Dq, 2 Cq + Cqh in
C,,h. 2 Cp + Cpj in Cpj, 2 Cm/, + Sm in
S,„, 2 C2r' + D2h in D2h, 2 C2' + D2 in
d2

b) C2v' + C2v" + D2h in D2h a' + C2" + D„ in D„ Ca + C, + C2h in
c2h

c) 2 Ca'+ C2t in C'2v

d) Ca' + Ca" + C2v in C.,ç

e) 2 Ca + C2h in C2h 2 C1 + Ci in C,

f) 2C1 + C,inCa
g) 2 Cj + C, in C2

2+1+1+1 a) Ca + 3 C2v in C2v C4 + 3 C, in C2

b) Cj + 3 C, in C,

1+1+1+ a) 5 Cxv in Cxv 5 Cx in Cx) 5 Cqv in Cqv, 5 Cq in Cq
1 + 1 b) 5 Ca in Ca

c) 5 C\ in C\

6 a) C2v in D6h C2 in D6, C2 in D3d, C, in C6h, Ca in
C6v, C4 in C6

b) C, in D3„ Ci in C3,

c) C.J- in D3h C4 in C3v

d) C4 in D3
e) C,11 in D3h C4 in C3h

f) C4t in Oh C4 in 0, C2v in Th, C2v in Td, C2 in T

5 + 1 a) C2t + D5h in D5h C2 + D5 in D5, Ca + C5h in C5h

b) Ca + C5v in C5t Ct + C5 in C5

4 + 2 a) C2v + C4v in D4b C2 + C4 in D4) C2 + C2v in D2d, Ca +
C4 in Clh

9 Schweiz. Min. Petr. Mitt., Bd. 31, Heft '2, 1951
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b) C„ + C2v in I-^2d

e) CB + Cjçl in D2i
d) C8 + C2v" in D2h

e) C1 + CBinC2T

f) Ci + CginC^
g) Cx + C2 in D2

Cx + C2 in S4

Cx + C2 in C2h

4 + 1 + 1 a) CB + 2 C4V in C4V

b) Cx + 2 C2v in C2v

Cx + 2 C4 in C4

3 + 3 a) 2 C2v' in D3h

b) C2v' + C2v" in D3h

c) 2 CB in C3h

d) 2 C,' in C3T

e) CB' + CB in C3v

f 2 Cx in C3

2 C2' in D3
C2' + C2 in D3

3 + 2 + 1 a) C2v + C3v + D3i in D3h C2 + C3 + D3 in D3, CB + C3 + C3h in
c3h

3+1+1+1 a) CB + 3 C3v in C3v Cx + 3 C3 in C3

2 + 2 + 2
j

^ ocv ^ f^ooh

|

b) C2v' + C2v" + C2v'" in D2h

c) 2 C8 + C2 in C2h

d) 2 C2v' + C2v in D2h

e 2 C,' + CB in C2v

f) 3 C.' in C2v
1

g) 3 Ü4 in C8

b) 3 CB in C2h

i 3 Ct in C,

k) 3 Cx in C2

3 Cqq in Dgo» 3 in C^, 3 Cqv in
Dqh, 3 Cqv in Dqd, 3 Cq in Dq, 3 Cq in
Cqh, 3 Cp in Cpi, 3 Cmy2 in Sm, 3 C2„

in D2h, 3 C2' in D2
C,' + C2" + C2"' in D2

2 C2' + C2" in D2, C,+ 2C, in C2h

2+2+1+1 a) 2 C/ + 2 C2v in C2v

: b) CB' + C8 + 2 C2v in C2v

c) 2 Cx + 2 C2 in C2

d) 2 C\ + 2 C8 in CB

2+1+1+
1 + 1

a) C', + 4 C2v in C2v

b) C\ + 4 CB in C8

Ct + 4 C, in C2

1 + 1

a) 6 in C^y
; b) 6 C, in C8

c) 6 Cj in Cx

6 Cœ in Cx, 6 Cqï in Cqv, 6 Cq in Cq
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7 a) C2v in D7h C, in D7, Ca in C7b, C, in C7v, C4 in C7

6 + 1 a) C2v 1^6h in Dôh C2 + D6 in D6, C2 + D3d in D3d, C,+
Cgh in C6h

b) CB + C6v in C6v C4 + C6 in C6

c) C« + D3d in D3(1 Ci + C3i in C3i

d) C,4 + D.3h in D3h

e) Ci + C3V in C3v

f) C4 + D3 in D3
g) C8" + D3h in D3h C1 + C3h in C,b

h) C4v + Oh in Oh C4 + 0 in 0, C2y + Th in Th, C2v+Td
in Td, C2 + T in T

5 + 2 a) C2v + C5V in D5h C2 + C5 in D5, C's + C5 in C6b

5 + 1 + 1 a) C, + 2C5vin C5v C1 + 2C5 in C5

4 + 3 —

4 + 2 + 1 a) C2v + C4v + D4h in D4h C2 + C4 + D4 in D4> C2 + C2v + D2d in
b>2<i' C, + C4 + C'4h in clh

b) C, + C2v + D2d in D,d C1 + C2 + S4 in f*i4

c) Cs + C2ll + D2hinD2h
d) Cs + C2v" + D211 in D,h Ci + C2 + C2h in C'2h

e) C1 + Cb + C2t in C2y

f) C4 + Ce + 02h in C2h

g) C4 ~f~ C2 1^2 in Du

4+1+1+1 a) Cs + 3 C4v in C4v C4 + 3 C'4 in C4

b) C^SCav in C2v

3 + 3 + 1 a) 2 C2v' + D31i in D3h 2 C'o' + D3 in D3
b) C2r' + C2v + D3hinD3b Co + C 0 + D3 in D3
c) 2 Cs + C3h in C3h

d) 2 C,' + C3v in C3v

e) C»' + C8" + C'3v in C'3v

f) 2 Cj + C3 in C3

3 + 2 + 2 a) C'2v + 2 C3v in D3h C, + 2 C'3 in D3, C, + 2 C3 in C3h

3+2+1+1 —

3+1+1+ a) Cs + 4 C,v in C3v Cj + 4 C3 in C3

1 + 1

2+2+2+1 a) 3 CiOV + Dxh in DKh 3 C'x + Dk in Dx, 3 Cx + CKh in Cxh,
3 C,|V + Dqh in D,lh, 3 Cqv + Dqd in
D,d. 3 Cq + Dq in Dq, 3 Cq + Cqh in
C,,h> 3Cp + Cpi in Cpi, 3Cm.2 + Smin
bjn' 3 C2v + D»h in D„h, 3 C2' + D2
in Do
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b) C,/ + C2v + C2v"' + D2h C2' + C2" + C2"' + D2 in D2
in D2h

c) 2 C8 + C2 + C2h in C2h

d) 2C2v' + C27" + D2h in D2h 2 C2/-b C2 + Do ^ D2j C8 + 2 C2+
C2h in 02jj

e) 2C.' + C." + CïvinC,r
f) 3 C/ + C2v in C2v

g) 3C1 + C8inCs
h) 3 CB + C2h in C2h

i) 3 C1 + C1 in C,

k) SCi + OjinC,,

2+2+1+ a) 2 C8'+ 3 C2v in C„v
1 + 1 b) C8' + C," + 3 C2v in C2v

c) 2C1 + 3C2inC2
d) 2C1 + 3C,inC,

2+1+1+1+ a) Cs + 5 C2v in C„v Ci + öCo in C2

1 + 1 b) C4 + 5 C8 in C8

1+1+1+1+ n) ' i-'oov in Ccov 7 Cx in C^, 7 Cqv in Cqv, 7 Cq in Cq
1 + 1 + 1 b) 7 C8 in C8

c) 7 C4 in C4

8 a) C'2v in D8h C2 in D8, C2 in D4,„ C8 in C8h, C8 in
C8v, C4 in C8

b) C", in D4i1 C4in S8

c) C8linD4h Cx in C4v

d) C4 in D4
e) ^inDa,,
f) C8"inD4h C4 in Clh
g) C'4 in D2h

h) C3v in Oh C'3 in 0, C3 in Th

7 + 1 a) C2v + D7hinD7]l C2 + D7 in D;, C8 + C7h in C7h

b) C8 + C7v in C-T C4 + C7 in C7

6 + 2 a) C2v + C6v in D6h C2 + C6 in D6, C2 + C3v in D3(i, C8 +
C6 m C6h

b) C8 + C3v in Dm Ci + Ca in C3i

c) C8l + C3v in D3h

d) C4 + C3 in D3
e) C." + C3ï in D3h ^ i "f C3 in C3h

6 + 1 + 1 a) C8 + 2 C6v in C6v Ci + 2 C0 in C6

b) Cj + 2C3v in C3v

5 + 3
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5 + 2 + 1 a) C2v + C5v + D6h in D5h C2 + Cg + D5 in D5) CB + C5 + C611 in C5h

5+1+1+1 a) CB + 3 C5v in C5v Cj + 3 C5 in C3

4 + 4 a) 2 C2v' in D4h

b) 2 C.' in C4y

c) C2y' + C2y" in D4h

d) C8' + C8"inC4y
e) 2 C, in C4h

f) 2 C4 in C4

g) C2 + Cs in D2d

h) 2 C„ in D2d

i) 2 Cj in S4

k) 2 C/ in D2h
1) 2CjinC2y
m) CB' + C„"in D2h

n) 2 C4 in C2h

o) 2 C4 in D2
p) 2 C3v in Td
q) C3v + C3y' in Td

2 C2' in D4, 2 C2 in D2d

C2' + C2" in D4

2 C3 in T
C3 + C3' in T

4 + 3 + 1 —

4 + 2 + 2 a) C2y + 2 C4v in D4h

b) Cs + 2 C2v in D2d

c) 08 + 2 C2yl in D2h

d) C8 + C2t-L + C2y" in D2h

e) CB + 2 C2y" in D2h

f) CB + C2v" + C2y"' in D2h

g) Cj + 2C/inC2y
h) Cj + Cs' + Cs" in C2y

i) C4 + C2 + C8 in C2h

k) Cj + 2 C8 in C2h

1) Cj + 2 C2' in D2

m) Cj + C2' + C2" in D2

C2 + 2 C4 in D4, C2 + 2 C2y in D2d,

C, + 2 C4 in C4h

Cj + 2 C2 in S4

Cj + 2 C2 in C2h

4+2+1+1 a) Cj + Cs + 2 C2y in C2,

4+1+1+
1 + 1

a) CB + 4 C4t in C4v

b) Cj + 4 C2v in C2t
Cj + 4 C4 in C4

3 + 3 + 2 a) 2 C2/ + C3v in D3h

b) C2y' + C2v" + C3y in D3h
e) 2 C. + C3 in C3h

2 C2' + C3 in D3
C2' + C2" + C3 in D3

3+3+1+1 a) 2 C8'+ 2 C3y in C3y

b) CB' + C8" + 2 C3y in C3y

c) 2 Cj + 2 C3 in C3
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3+2+2+1

3 + 2 +1 +
1 + 1

3+1+1+1+
1 + 1

2+2+2+2

2+2+2+
1 + 1

2+2+1+1+
1 + 1

2+1+1+1+
1 + 1 + 1

1+1+1+1+
1+1+1+1

a) C,t + 2 C„ + D3L in D3

a) Cs + 5 C3v in C3

a) 4 C'^, in Dxh

b) 2G'2r/ + C,v" + C.,v,"inD2
c) 2 Cs + 2 C,, in C,~L

d) 3 C8 + C2 in C.,h

e) 2 C2v' + 2 C2r" in D.,h
f) 3 C2v' + C2v" in D2h
g) 2 C/ + 2 Ca" in C.,r
h) 3 C/ + C," in C.,,
i) 4 C/ in C2v

k) 4 C4 in C,
1) 4 C8 in C2h

m) 4 C2 in C,

n) 4 C4 in C2

a) 2Ca' + Ca" + 2C,7inC„7
b) 3C,'+2C,vinC.,7
c) 3 Cj + 2 Ca in Ca

d) 3C1 + 2C, inC2

a) 2 C/ + 4 C2v in C2v

b) C/ + C, + 4 C2t in C.,r
c) 2C1 + 4C2inC,
d) 2Cl + 4CainC~

a) Ca + 6 C2v. in C.,„
b) Cj + 6 Ca in C,

a) 8 CXT in CXT
b) 8 Ca in Ca

c) 8 C1! in C4

C» + 2 C, + D3 in D3) C, + 2 Cs + C3h
in C,,.

Cj + 5 Cj in C3

4 C^ in D„, 4 Cm in C„
D

4 C„

qh 4 Cqr in Dqd,
in CQh, 4 CD in Cn„ 4 C

4 C, in Dq, 4 Cq

/p Xli. V>pj,

'2h> "* ^2 111 -l/2
2 C2' + C2" + C2'" in D2

^01/2 in S„

2 C2' + 2 C2" in D.,
3 Co' + C2" in D2, 3 C2 + Ca in C2h

Ct + 6 C, in C,

8 C_ in Cm, 8 C, in Cqv, 8 Cq in Cq

9

8 + 1

a) C2r in D9h

a) C2v + D8h in D8

b) Ca + C8v in C8,
c) C, + D4„ in D,,,

C2 in D9, C, in C9h, Ca in C9v, C4 in C9

^2 "f 1^8 in Dg* C2 + D4d in D4d, Ca +
C8h in C8h

Cj + Cg in Cq

Cj + Sg in. Sg
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d) C,-1- + Dlh in D4h

e) Ct + C4t in C4r

f) C1 + D4inD4
g) C1 + D2dinD2d
h) Cj1 +D4b in D4h

i) C4 + D2h in D2h

k) C3v + Oh in Oh

Cj + C4h in C4h

C3 + 0 in O, C3 + Th in Th

7 + 2 a) C2t + C7v in D7h C2 + C7 in D7, C8 + C7 in C7h

7 + 1 + 1 a) C. + 2 C7v inC7r Cj + 2 C7 in C7

6 + 3 a) C,-1- + C2t in D3h

b) C." + C2v" in D3h

c) CB» + C2t-L in D3h

d) Cj + C8 in C3h

e) C1 + C, in D3

f) C1 + C,"inC3v

6 + 2 + 1 a) C2r + C6v + D611 in D6h

b) C, + C3v + D3d in D3d

c) C9-t + C3t + D3h in D3h

d) Cx + C3 + D3inD3
e) C,11 + C3v + D3h in D3h

C2 + C6 + D6 in De, C2 + C3v + D3d in
1^3d» C, + C6 + C6h in C6h

Cj + C3 + C3i in C3i

Cj + C3 + C3h in C3b

6+1+1+1 a) C8 + 3 C6v in C6v

b) Cj + 3 C3r in C3v

Cj + 3 C6 in C6

5 + 4 —

5 + 3 + 1 —

5 + 2 + 2 a) C2v + 2 C5v in D5h C2 + 2 C5 in D5, C, + 2 C5 in C5h

5+2+1+1 —

5+1+1+1+1 a) C, + 4 C5v in C5v Cj + 4 C5 in C5

4 + 4 + 1 a) 2 C2v' + D4h in D4h

b) 2 C,' + C4t in ClT
c) C2t' + C2v" + D4h in D43

d) C.' + C." + C4TinC4T
e) 2C, + C4h in C4h

f) 2 Cj + C4 in C4

g) C2 + C8 + D2d in D,d
h) 2 C8 + D2(1 in D2d

i) 2 Cj + S4 in S4

k) 2 C8' + D2h in D2h
1) 2 Cj + C2v in C2v

m)C/ + Cg" + D2i in D2h

2 C2' + D4 in D4> 2 Ca + D2d in D2d

C2' + C2" + D4inD4
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4 + 3 + 2

4+3+1+1
4+2+2+1

4+2+1+
1 + 1

4+1+1+1+
1 + 1

3 + 3 + 3

3+3+2+1

3+3+1+
1 + 1

3+2+2+2
3+2+2+1+1
3+2+1+1+1+1

n) 2 + C2h in C2h

o) 2 C4 + D2 in D2
p) 2 C3v + Td in Td
9) C3t + C3ç' + Td in Td

a) C2v + 2 C4v + D4h in D4h

b) Cg + 2 C2ï + D2d in D2d

°) C8 + 2C2v-L + D2h in D2h

d) C8 + C2ï± + C2v'l+D2hin

e) C„ + 2 C2v"' + D21i in D2h

f) C8 + C2v"' + C2vII" + D21i

in D2h

g) C1 + 2C/ + C2vinC24r
h) C1 + C/ + C8" + C2vinC2v
i) Cx + C2 + C8 + C2h in C2h

k) Cx + 2 C8 + C2h in C2h

1) Cj + 2 C2' + D2 in D2
m) C4 + C2' + C2" + D2 in D2

a) C4 + C8 + 3 C2t in C2v

a) C8 + 5 C4t in C4v

b) C4 + 5 C2v in C2v

a) 3 C2v' in D3h

b) 2 C2v' + C2v" in D3h

c) 3 C8 in C3h

d) 3 C8' in C3v

e) 2 Cg' + C8" in C3v

f) 3 C4 in C3

a) 2C2v' + C3v + D3h in D3h

b) C2/ + C2v" + C3v + D3h
in D3h

c) 2 Cs + C3 + C3h in C3h

a) 2 C/ + 3 C3v in C3t
b) C,' + C8" + 3 C3v in C3v

e) 2 Cj + 3 C3 in C3

a) C2v + 3 C3v in D3h

2 C3 + T in ï
C3 + C3' + T in T

C2 + 2 C4 + D4 in D4, C2 + 2 C2v + D2
in D2d) Cs + 2 C4 + C4h in C4h

C1 + 2 C2 + S4 in S4

Cj + 2 C2 + C2h in C21

Cj + 5 C4 in C4

2 C2' + C2" in D3

2 C2' + C3 + D3 in D3
C2' + C2 + C3 + D3 in D3

C2 + 3 C3 in D3, C, + 3C. in C31
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3+1+1+1+ a) C. + 6 C3v in C3v Cj+6C3 in C3

1 + 1 + 1

2 + 2 + 2 + a) 4 Coov + D^,, in Dœh 4 Cœ + Dœ in Dw 4 Cw + C^,, in C^,
2 + 1 4 CqT + Dqh in Dqh, 4 CqT + Dqd in

D,d> 4 Cq + Dq in Dq, 4 Cq + Cqh in
Cqh> 4 Cp + Cp| in Cpi, 4 Cm/2 + Sm in
Sm» 4 C2v' + D2h in D2h, 4 C2' + D2
in D2

b) 2 C2v' + C2v" + C2v'" + D2h 2 C2' + C2" + C2"' + D2 in D2
in D2h

c) 2 C, + 2 C2 + C2h in C2h

d) 3 C. + C2 + C2h in C2h

e) 2 C2v' + 2 C2v" + D2h in 2 C2' + 2 C2" + D2 in D2
I^2h

f) 3C2v' + C2v +D2hinD2h 3 C2' + C2" + D2 in D2, 3 C2 + C,+
C2h in C2h

g) 2 C/ + 2 C." + C2t in C2v

h) 3 CB' + C„ + C2v in C2v

i) 4 C/ + C2v in C2v

k) 4C1 + C„inCB
1) 4 C. + C2h in C2h

m) 4 Cj + Cj in C,

n) 4 Cj + C2 in C2

2+2+2+1+ a) 2 C/ + C." + 3 C2v in C2v

1 + 1 b) 3 Cs'+ 3 C2t in C2„

c) 3 Ct + 3 C„ in C„

d) 3 C3 + 3 C2 in C2

2+2+1+1+ a) 2 C/ + 5 C2r in C2v
1 + 1 + 1 b) CB' + CB" + 5 C2v in C2v

c) 2 C; + 5 C2 in C2

d) 2 Cj + 5 CB in CB

2+1+1+1+ a) CB + 7 C2v in C2v Cj + 7C2 in C2

1+1+1+1 b) C2 + 7 CB in CB

1+1+1+ a) 9 Cj,, in Cœ, 9 C^ in Cpo, 9 Cqv in CQi, 9 Cq in Cq

1+1+1+ b) 9 C, in C.
1 + 1 + 1 c) 9 Cj in Cx

10 a) C2v in D10h C2 in D10, C2 in D5d, C. in C10h, C. in
Ciov Cj in CI0

|
b) CB in D6d Ci in C6,

c) C„-L in D6h Ci in C6v

d) C2 in D5
e) C.II in D6h C3 in C6h
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9 + 1

8 + 2

8 + 1 + 1

7 + 3

7 + 2 + 1

7+1+1+1
6 + 4

6 + 3 + 1

6 + 2 + 2

6+2+1+1
6+1+1+

1 + 1

5 + 5

a) C2v + D9h in D91i

b) C, + C9v in C9v

a) C,v + C8v in D8|1

b) C, + C4vinD4„
c) Cl + C4vinD4h
d) C4 + C4 in D4
e) C4 + C2v in D,d
f) Cj' + C4v in D4h

g) C1 + C3v in D2h

a) C, + 2 C'8r in C8v

b) C4 + 2 C'4v in C4v

a) C2v + C7ï + D7h inD,b

a) C9 + 3 C7v in C7v

a) C2v + C3v in T„

a) Cl + C2v + D3hinD3h
b) Cjl + C2ï" + D3hinD3h
c) C9l! + C2ïl + D3hinD3h
d) Cj + C9 + C3h in C3h

e) C4 + C2 + D3 in D3
f) C4 + C9 + C3v in C3y

a) C2v + 2 C6l. in D6h

b) Cs + 2 C3v in D3d

c) C9l + 2C3yinD3h
d) C^CginD.,
e) Cs" + 2C3ïmD3h

a) C9 + 4 C6v in C6l.

b) Cj + 4 C3r in C3y

a) 2 C2v' in D5t
b) C2r' + C.,v" in D5h

c) 2C9inC53
d) 2C„'inC5y
e) C/ + C9"inC5r
f) 2 C4 in C5

C, + D9 in D9, Cs + C9h in C9h

C4 + C9 in C9

C2 + C8 in D8, C2 + C4v in D4d, C9 +
C8 in C8h

-f- 0^ in. Sg

C4 + C4 in C,,^

C4 + 2 C8 in C8

C2 + C7 + D, in D7,Cs + C7 + C7h inC7h

C4 + 3 C7 in C7

C., + C3 in T

C2 + 2 C6 in D6, C2 + 2 C3v in D3d,
Cs + 2 C6 in C6h

Ci + 2C3 in C3i

C4 + 2C3 in C'3

Ci + 4 C6 in C6

2 C2' in D5

C/ + C," in D5

5 + 4 + 1

5 + 3 + 2
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5+3+1+1

5+2+2+1

5+2+1+1+1

5+1+1+1f1+1

4 + 4 + 2

4+4+1+1

4 + 3 + 3

4+3+2+1

4+3+1+1+1

4+2+2+2

a) C2v + 2 C5v + D5h in D5

a) Cs + 5 C5t in C5

a)
b)
c)

d)
e)

f)
g)
h)
i)

C2v' + C2v" + C4v in D4h
2 C, + C4 in C4h

C2 + CB + C2v in D2d

2C. + C2v in D2d
2 C4 + C2 in S4

2 C,' + C,v-t in D.,h
2 C/ + C2l." in D2h

C/ + C," + C,v"in D,h
k) C/ + C/' + C2t±. 'inD2ll
1) 2 C4 + C2 in C2h

m) 2 C4 + C, in C2h

n) 2 C4 + C8 in C2v

o) 2 C4 + C2 in D2

a) 2 C8' + 2 C4v in C4v

b) C/ + C8" + 2 C4v in C'4v

c) 2 C4 + 2 C4 in C4

d) 2 C4 + 2 C2v in C2v

a) C2v 4 ^ C4v in D4

b)
c)
d)
e)

f)
g)

C, + 3C2vin D2J
C8 + 3 Cgv-t in D2]

C, + 2C2v1 + C2t"
Cs + C2vl + 2 C2v"

C. + 3 C2 " in D21

in D2|
in D„

C. + C2vX + C2T«' + C3tII"
in D2h

h) Ca + 2C2v"' + C2v"" in D,
i) C4 + 3 0,' in C2t

k) C4 + 2 C8' + C," in C2y

1) C4 + 3 Cs in C2h

m)C1 + C2 + 2C, in C2h

n) C4 + 2 C2 + C, in C2h

C2 + 2 C5 + D5 in D5, C. + 2 C5 + C5:

in Csh

C4 + 5 Cä in C5

C.,' + C.," + C4 in D4

C2 + 3 C4 in D4, C2 + 3 C2v in D2l
Ca + 3 C4 in C4h

C4 + 3 C2 in S4

C4 + 3 C2 in C2
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°) C4 + 3 C2' in D2
P) C1 + 2C2' + C2"in D2

q) C1 + C2' + C2" + C2'"in D2

4+2+2+ a) C1 + 2C,' + 2C2i in C2v

1 + 1 b) C1 + C8' + C„" + 2C2ï in
c2v

4+2+1+1+ a) C3 + CH + 4 C2v in C2v

1 + 1

4+1+1+1+ a) Cs + 6 C4v in C4v Cj + 6 C4 in C4

1 + 1 + 1 b) C4 + 6 C2v in C2v

3+3+3+1 a) 3 C2V + D3h in D3h 3 C2' + D3 in D3
b) 2C2v' + C2v" + D3h in D3h 2 C2' + C2 +D3 in D3
c) 3 CB + C3h in C3h

d) 3 C.' + C3v in C3v

e) 2 C.' + C," + C3v in C3V

f) 3 C4 + C3 in C3

3+3+2+2 a) 2 C2v' + 2 C3V in D3h 2 C2' + 2 C3 in D3
b) c2v' + C2t" + 2 C3V in D3h C2' + C2" + 2 C3 in D3
c) 2C, + 2C3 in C3h

3+3+2+1+1 —

3+3+1+1+ a) 2 C.' + 4 C3v in C3v

1 + 1 b) C,' + C," + 4 C3v in C3v

c) 2 C4 + 4 C3 in C3

3+2+2+ a) C2v + 3 C3v + D3h in D3h C2 + 3 C3 + D3 in D3, C, + 3 C3 + C3h

2 + 1 in C3h

3+2+2+1+ —
1 + 1

3+2+1+1+ —
1 + 1 + 1

3+1+1+1+ a) Cs + 7 c3v in C3v Cj + 7 C3 in C3

1+1+1+1

2+2+2+ a) 5 Cœv in 5 Cœ in Dj,, 5 C„ in Cœll, 5 Cqv in
2 + 2 Dqh. 5 Cqv in Dq,i, 5 Cq in Dq, 5 Cq in

Cqh. 5 Cp in Cpl, 5 Cm/2 in Sm, 5 C2v'

in D2h, 5 C2' in D2
b) 3C2v' + C2v" + C2v"'inD2h 3 C2' + C2" + C2"' in D2
c) 2 C2v' + 2 C2v" + C2v"' in 2 C2' + 2 C2" + C2"' in D2

H211

d) 2 C, + 3 C2 in C2h
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e) 3 C„ + 2 C2 in C2h

f) 4C„ + C2inC2h
g) 3 C2v' + 2 C2r" in D2h 3 C2'+2 Co" in Do

h) 4 Co/ + C2v" in D„b 4 C„' + Co" in D,, 4C2 + C, in C2h

i) 3 C,' + 2 C," in C2v

k) 4C/ + C,"inC,v
1) 5 C/ in C2v

m) 5 C1! in Cs

n) 5 CB in C2h

o) ö C\ in C,

p) 5 C\ in C2

2+2+2+2+ a) 2C/ + 2Ce" + 2C.,r in C2v

1 + 1 b) 3 Cs' + C8" + 2 Cäv in C'2v

c) 4 C,' + 2 C2r in C'2v

d) 4 Cj + 2 C9 in CB

e) 4 Cj + 2 C2 in C2

2+2+2+1+ a) 2Cs' + C8" + 4C2v in C2,

1 + 1 + 1 b) 3 C/ + 4 C2v in C'2v

c) 3C1 + 4CsinC,
d) 3 C[ + 4 C2 in C'2

2+2+1+1+ a) 2 C„' + 6 C'2v in C'2v

1+1+1+1 b) CB' + C," + 6 C2v in C'2v

c) 2 Ci+ 6 C2 in Co

d) 2 Cj + 6 CB in CB

2+1+1+1+1+ a) CB + 8 C2v in C2, C\ + 8 Co in Co

1+1+1+1 b) Cx + 8 C8 in C,

1+1+1+1+1+ a) 10 CK, in CKV 10 Cx in Cx, 10 Cqv in Cqv, 10 Cq in Cq

1+1+1+1+1 b) 10 C8 in C,
c) 10 Ct in Ct

11 a) C2v in Duh C2 in Djj, C. in Cllh, Cs in Cllv, Ct
in Cu

10+1 a) C2v + D10h in D10h C2 + Dio 'n Dio> C, + D,d in D5d, C5 +
C'lOh bi C10h

b) C„ + C10v in C10, Ci "b C10 c10

c) CB + Dä,| in D5d Ci + C5l in C5i

d) C,l + D5h in D5h Ci + C5v in C5v

c) C'i + DäinDä
f) CB" + D5h in D5h Ci + C'5h in C5h

9 + 2 a) C2v + C9v in D9h C2 + C9 in D9, C, + C9 in C9h

9 + 1 + 1 a) CB + 2 C9v in C9v Ct + 2 C, in C„
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8 + 3

8 + 2 + 1 a) C2v + C8v + D8h in Dgh C2 + C8 + D8 in D8, C2 + C4T + D4d in
D4d, C„ + C8 + C8h in C8h

5) Cs + ClT + D4dinD4d C4 + C4 + S8 in S8

c) C8-L + C4v + D4h in D4h

d) Cj + C4 + D4 in D4
e) Cj + Cay + Dj,, in D2d

f) Cjl + C4v + D4hinD4h C4 + C4 + C4h in C4h

g) Ci + C2v + D2h in D2h

8+1+1+1 a) CB + 3 C8v in C8v Cj + 3 C8 in C8

b) C4 + 3 C4v in C4y

7 + 4 —

7 + 3 + 1 —

7 + 2 + 2 a) C2t + 2C7v inD,h C2 + 2 C7 in D„ C, + 2 C7 in C7h

7+2+1+1 —

7+1+1+1+1 a) C, + 4C7vinC7v Cj + 4 C, in C7

6 + 5 —

6 + 4+1 a) C2v + C3v + Td in Td C2 + C3 + T in T

6 + 3 + 2 a) Cs-L + C2v + C3v in D3h

b) C„" + C2v" + C3v in D3h

c) Cjl + C2vl + C3vinD3h
d) C1 + Cs + C3inC3h
e) C4 + C2 + C3 in D3

6+3+1+1 a) C1 + Cs + 2C3v in C3r

6+2+2+1 a) C2v + 2 C6v + D6h in De[l C2 + 2 C6 + D6 in Dg, C2 + 2 C3v +
D3,i >n D3d, C, + 2 C6 + C6h in C6h

b) C, + 2 C3r + D3d in D3d C4 + 2 C3 + C3| in C31

c) C,-1- + 2 C3v + D3h in D3h

d) C4 + 2 C3 + D3 in D3
e) Cjl + 2C3v + D3h in D)h Ci + 2 C3 + C3h in C3h

6+2+1+1+1 —

6+1+1+1+ a) Cs + 5 C6v. in C6v C4 + 5 Cg in Cg

1 + 1 b) C4 + 5 C3v in C3y

5 + 5 + 1 a) 2 C2v' + D5h in D5h 2 C2' + D5 in D5

b) CSv' + C2ï" + D5h in D5h C2' + C2" + D5 in D5

c) 2 C„ + C5h in C5h

d) 2 C,' + C5v in C5v

e) C,' + Cs + C5v in C'5v

f) 2 C4 + C5 in C5
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5 + 4 + 2 —

5+4+1+1 —

5 + 3 + 3 —

5+3+2+1 —

5+3+1+1+1 —

5+2+2+2 a) ^2v 3 Csv in D5h C2 + 3C5 in Ds, Cs + 3 C5 in C5h

5+2+2+1+1 —

5 + 2 +1 +
1 + 1 + 1

—

5+1+1+1+
1 + 1 + 1

a) C8 + 6 C5v in C5v Ci + 6 C5 in C5

4 + 4 + 3 —

4+4+2+1 a) 2C2/ + C4v + D4h in D4h

b) C2v' + C2v" + C4v + D4h

inD4i
c) 2 Cs + C4 + C4h in C4h

d) C2 + C, + C2v + D2<1 in D2d

e) 2 C, + C2r + D2d in D.2d

f) 2 C4 + C,+ S4 in S4

g) 2C/ + C2rl + D2hinD2h
h) 2 C/ + C2t" + D2h in D21i

i) C,' +C," + C2v" + D21i in
D2h

k) C.' + C/' + C2vl.'l + D2h

in D,h
1) 2 C4 + C2 + C2h in C2h

m) 2 C4 + Ca + C2h in C2h

n) 2C1 + C2 + D2inD2

2 C2' + C'4 + D4 in D4, 2 C', + C2% +
D2(l in D.,d

C2' + C2" + C4 + D4 in D4

4+4+1+1+1 a) 2C/ + 3 C4v in C4ç

b) CB' + Cs +3 C4v in C4v

o) 2 Cj + 3 C4 in C'4

d) 2 C4 + 3 C2v in C2v

4+3+3+1 —

4+3+2+2 —

4+3+2+1+1 -
4+3+1+1+1+1 —
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4+2+2+
2 + 1

2h
II"

4+2+2+1+
1 + 1

4+2+1+1+
1 + 1 + 1

4+1+1+1+

3+3+3+2

3 + 3 + 3 +
1 + 1

3+3+2+
2 + 1

3+3+2+1+
1 + 1

b)
c) C. + 3Ca± + Dah in D2h

d) C, + 2 C2v-L + C2v" + D2h
in D2h

e) CB + C2vl+2 C2v"' + D2h

in D2h

f) C. + 3C2vl-' + D2hinD,
g) Cs + C2vi + C2ï"' + C2v

+ D2h in D2h

h) C, + 2C2v"' + C2v'l" + D2h

in Dah

i) C3 + 3 C/+ C2v in C2v

k) Cj + 2 C,' + C'," + C2v in
C'2v

1) C2 + 3 C, + C2h in C2h

m) Ci + C2 + 2C„ + C2h in C2h

n) C2 + 2 C2 + C. + C2h in C2h

o) Cj + 3 C2' + D2 in D2

p) Ci + 2C2' + C2" + D2"inD;

q) Ci + C,' + C2" + C2"' + D2
in D2

a) C'i + 2 C,' + 3 C'2v in C'2v

b) C'i + C/ + C," + 3 C2v in
C..v

a) Ci + C, + 5 C2v in C2v

a) C', + 7 C4v in C4v

b) C\+ 7 C2v in C2v

a) 3 C„v' + C'3y in Dsll
b) 2C2v' + C2v" + C3v in D3h

c) 3 C, + C3 in C3h

a) 3 C„'+ 2 C3v in C3v

b) 2C,' + C," + 2C3vinC'3v
c) 3 Cj + 2 C3 in C'3

a) 2C'2v' + 2C3v + D3hinD3h
b) C2v' + C2v" + 2 C3v + D3h

in D3h

c) 2 C, + 2 C3 + C3h in C3h

C2 + 3 C4 + D4 in D4, C2 + 3 C2v +
D3<i in D2d, CB + 3 C4 + Clh in C4h

C4 + 3 C2 + S4 in S,.

in C.,

Ci + 7 C4 in C4

3 C2' + C3 in D3
2 C,' + C," + C3 in D3

2C/ + 2 C3 + D3 in D3
C2' + C2" + 2 C3 + D3 in D3
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3+3+1+1+ a) 2C,' + SC„ inC3r
1 + 1 + 1 b) c8' + c8 + 5 C3v in C3v

c) 2 Ü! + 5 C3 in C3

3+2+2+2+2 a) C2v + 4 C3v in D3h C2 + 4 C3 in D3> C8 + 4 C3 in C3h

3+2+2+ —
2 + 1 + 1

3+2+2+1+ —
1 + 1 + 1

3+2+1+1+ —
1+1+1+1

3+1+1+1+1+ a) C8 + 8 C3v in C3r Cj + 8 C3 in C3

1+1+1+1

2+2+2+2+ a) 5 in 5 in Dœ, 5 Cœ + in C«,,,,
2 + 1 5 Cqv + Dqh in Dqh, 5 CqT + Dqd in Dqd>

5 Ca + Dq in DQ' 5 Cq + Cqh in Cqh.
5 Cp + Cpl in Cpl, 5 Cro/2 + Sm in Sm,

5 C2v' + D2h in D2h, 5 C2' + D2 in D2
b) 3 C2f' + C2v" + C2>"' + 3 C2' + C2" + C2"' + D2 in D,

D2h in D2h

c) 2 C2v' + 2 C2v" + C2v'" + 2 C2' + 2 C2" + <V" + D2 in D,
D2h in D2h

d) 2 C8 + 3 C2 + C2h in C,h
e) 3 C, + 2 C2 + C2h in C2h

f) 4 C8 + C2 + C2h in C2h

g) 3 C2v' + 2 C2v" + D2h in 3 C2' + 2 C2" + D2 in D2
^211

h) 4C2v' + C2v +D2hinD2h 4 C2' + C2 +D2 in D2> 4 C2 + Cs +
^2h ki C2h

i) 3 C8' + 2 C8" + C2v in C2v

k) 4 C8 + C, + C2v in C2v

1) 5 C/ + C2v in C2v

m)5 Cj + C, in C,

n) 5 C, + C2h in C2h

o) 5 + C, in C,

p) 5 Cx + C2 in C2

2+2+2+2+ a) 2 C/ + 2 C8" + 3 C2v in C2v
1 + 1 + 1 b) 3CB' + C," + 3 C2v in C2v

c) 4C,' + 3 C2v in C2r

d) 4 C\ + 3 C8 in C8

e) 4 Cj + 3 C2 in C2

2+2+2+1+ a) 2 C8' + C8" + 5 C2v in C2t

1+1+1+1 b) 3 C/ + 5 C2v in C2v

1» Schweiz. Min. Petr. Mitt., Bd. 31, Heft 2,1951
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c) 3 Cj + 5 C, in. C,
d) 3 Cx + 5 C2 in C2

2+2+1+1+1+ a) 2 C/ + 7 C2v in C2v

1+1+1+1 b) C8' + C," + 7 C2ï in C2v

e) 2 Cj + 7 C, in C8

d) 2 + 7 C2 in C2

2+1+1+1+1+ a) C8 + 9 C2v in C2v C4 + 9 C2 in C,

1+1+1+1+1 b) Cx + 9 C. in C8

1+1+1+1+1+ a) 11 CœvinCm 11C,, in Cw, 11 C,, in C4r, 11 C, in Cq

1+1+1+1+1+1 b) 11 C8 in C8

c) 11 C4 in

12 a) C2v b)12h C2 in D12, C2 in D6d, C8 in C12v, C8 in
C42b» ^1 ^ C42

b) C„ in D6d C4 in S12

c) C8J-inD6h Cj in C6v

d) C." in D6h Cj in C6h

e) C4 in D6

f) Cj in D3h

g) C1inD3d
h) C2v in Oh C2 in 0
i) C, in Th
k) C8 in Td
1) C,inT
m) C6v in Ih C5 in I

11 + 1 a) C2t + Dni, in C2 + Du in Dn, C8 + Cllh in Cllh
b) C, + CllY in Cllv C4 + Cu in C41

10 + 2 a) C2v + C10t in Djoi, Cî + Cjq in D10> C2 + C5v in D5d, Cs +
Ci0 in C10h

b) C, + C5v in D5d C^ + C, in C51

c) C,l + C5l inD5h
d) Cj + Cj in D5
e) C8" + C5y in D5h C4 + C5 in C5h

10+1 + 1 a) C„ + 2 C10v in C10v C1 + 2C10 in C10

b) C, + 2 C5v in C5v

9 + 3 —

9 + 2 + 1 a) C2v + C9v + D9hinD9h C2 + C9 + D9 in D9, C8 + C9 + C9h in C9b

9+1+1+1 a) C8 + 3C9vinC9Y Cj + 3 C, in C9

8 + 4 a) C,-1- + C2v in D4h Ci + Ce 'n C4v

b) Cx + C2 in D4
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c) C4 + C2 in D2d

d) Ci + CB in D2j
e) CB" + C2„ in D4h

f) Cj + Cg in D2h
Ci +1', in C4h

8 + 3 + 1 —

8 + 2 + 2 a) C2v + 2 C8v in Dsh

b) C8 + 2 C4v in D4d

e) C8l + 2C4vinD4h
d) C4 + 2 C4 in D4
e) C4 + 2 C2v in D2d

f) C8" + 2 C4t in D4h

g) C4 + 2 C2v' in D2h

h) C4 + CY + C2v in D2h

C2 + 2 C8 in D8, C2 + 2 C4r in D4d,
C8 + 2 C8 in C8h

Cj + 2 C4 in S8

C1 + 2C4 in C4h

8+2+1+1 —

8+1+1+1+1 a) Cs + 4 C8v in C8t
b) C4 + 4 C4v in C4v

C4 + 4 C8 in C8

7 + 5 —

7 + 4+1 —

7 + 3 + 2 —

7+3+1+1 —

7+2+2+1

7+2+1+1+1

a) C2v + 2C7v + D7h in D7h C2 + 2 C, + D, in D„ C8 + 2 C7 + C7h

in C7h

7+1+1+1+1+1 a) C, + 5C„ in C,T Cj + 5 C7 in C7

6 + 6 a) 2 C2v in D6h

b) C2/ + C2T"inD6h
c) 2 C8 in Cei
d) 2 C.' in C6t
e) C8' + C8" in C6,

f) 2 C4 in C6

g) C2 + Ca in D3d

h) 2 C8 in D3d

i) 2 C4 in C3i

k) 2 C 1 in D3h
1) 2 C4 in C3v

m) 2 C4 in D3
n) 2 Cs" in D3h

o) Cl + Cs" inD3i
p) 2 Cj in C3h

q) 2 C4v in Ob

2 C2' in D6, 2 C2 in D3d

C2' + C2"inD6

2 C4 in O, 2 C2v in Th, 2 C2t in Td,
2 C2 in T
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6 + 5 + 1 —

6 + 4 + 2 —

6+4+1+1
6 + 3 + 3 a C,-L+2C,v'inD3h

b) Cjl + C2/ + C2ï in D3t
c) C„" + 2 C2v" in D3h

d) C8ll + 2C2v-LinD3h
e) C8" 4- C2v-l- + C2v" in D3h

f) + 2 CB in C3h

g) CL + 2 C2' in D3
h) Cl + C2' + C2'/in D3

i) C1 + 2C/inC3v
k) C1 + C9' + C8 in C3v

6+3+2+1 a) C„J- + C2v + C3v + D3h iR

I-*3h

b) CB" + C2v" + C3v + D3h in
^3h

c) Cjl + C2vJ- 4- C3V + D3h in
•^3h

d) Ci + Cg + Cg + Cah in C3h

e) Cj 4- C2 + C3 + D3 in D3

6+3+1+1+1 a) Cj 4- C8 + 3 C3v in C3v

6+2+2+2 a) ^2r ~l" 3 C6V in D6h

b) C8 4- 3 C3v in D3d

C) C8"*" 3 ^3v in ^3h
d) Cx4-3 C3 in D3
e) Ca" + 3 C3v in D3h

C2 + 3 C6 in D6, C2 + 3 C3ç. in D3(ij
C9 4- 3 C6 in C6h

Cj_ 4- 3 C3 in C3i

Cx 4- 3 C3 in C3h

6+2+2+1+1 —

6+2+1+1+1+1

6+1+1+1+
1 + 1 + 1

a) Ca + 6 C6v in C6v

b) Cx 4- 6 C3v in C3v

Cj + b C6 in C6

5 + 5 + 2 a) 2 C2v' +C5v in D5h

b) C2v' + C2v" + C5v in D5h

c) 2 Cfl + C5 in C5h

2 C2'4-C5 in D5
C2' + C2 +C5inD5

5+5+1+1 a) 2 C/ 4- 2 C5v in C5v

b) C/ 4- Ce" 4- 2 C5v in C5v

c) 2 Ct 4- 2 C5 in C5

5 + 4+3 —
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5+4+2+1 —

5+4+1+1+1 —

5 + 3 + 3+1 | —

5+3+2+2 —

5 + 3 + 2 + T + l| —

5+3+1+1+1+lJ —

5 + 2 + 2+ ja) C2l + 3C5v + D5h in D5h C2 + 3 C5 + D5 in D5, C8 + 3 C5 + C5h

2 + 1 in C5h

5+2+2+1+ —
i + l

5+2+1+1+ —
1 + 1 + 1

5+1+1+1+ a) CB + 7 C5v in C5t C4 + 7 C5 in C5

1+1+1+1

4 + 4 + 4 a) 3 C2v' in D4h 3 C2' in D4, 3 Co in D,d
b) 3 C/ in C4t
c) 2 C2v' + C2v" in D4i 2 C2' + C," in D4
d) 2 C/ + C," in C4v

e) 3 C„ in C4h

f) 3 C4 in C4

g) 2 C2 + C8 in D2d

b) C2 + 2 C8 in D2d

i) 3 CB in D2i1

k) 3 C4 in S4

1) 3 Cs' in D2h

m) 3 C2 in C2v

n) 2 C„' + CB" in D2h

o) C/ + C8" + C;"inD2h
p) 3 Cj in C2h

q) 3 C4 in D2

r) 3 C3v in Td 3 C3 in T
s) 2 C'3v + C3v' in T(I 2 C3 + C3' in T

4 + 4 + 3 + 1
'

—

4 + 4 + 2 + 2 a) 2 C',v' + 2 C4v in D4h 2 C2'+ 2 C4 in D4, 2 C, + 2 C2v in D,d
b) C2v' + C2v" + 2 C4v in D4h Co' + C2" + 2C4 in D4

c) 2 C', + 2 C4 in C4h

d) C'2 + C, + 2 C2v in D2<1

e) 2 C'8 + 2 C2v in D2d

f) 2 + 2 C2 in S4
"

1 g) 2 cy + 2 C2,j- in D2h
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h) 2 C„' + C2t-L + C2t" in D2h
i

i) 2 C/ + 2 C2v"' iu D2Il

k) 2CB' + C2T"' + C3r»"inD21Il
1) C; + C<" + 2Cä[«inD!S i

m)C8' + C," + 2C2rJ-'llinD2h ;

n) C5' + Cs" + C2tII + C2v1.!I

in D2h

o) 2C1 + 2C2inC2h
P) 2 C+ + C2 + CB in C211

q) 2C1 + 2C,inC2h
r) 2C1 + 2C.'inC2r
s) 2 Cj + C,' + CB" in C.,v

t) 2 C\ + 2 C2' in Do

u) 2 C4 + C./ + C2" iii Do

4+4+2+1+1 a) 2 C'i + CB + 2 C2v in C2v
1

4+4+1+1+ a) 2 C'b' + 4 C4v in C4t
1 + 1 b) C5' + CB + 4 C4v in C4v

c) 2 Cj + lC, in C4

d) 2 C'j + 4 C2v in C2r

4+3+3+2 —

4+3+3+1+1 —

4+3+2+2+1 —

4+3+2+ —
1 + 1 + 1

4+3+1+1+ —
1 + 1 + 1

4 + 2 + 2-f a) C2v + 4 C'4v in D4h C, + 4 C4 in D4, Co+ 4 C2v in D2J,
2 + 2 CB + 3 C4 in C4h

b) C's + 4 C2v in D2l, C4 + 4 Co in S4

e) C', + 4 C,Tl in D2h

d) C', + 3 Covi + C'2v in Dih
e) CB + 2CovJ- + 2C'ovl:'in

D;h
f) Cs + 2C2vl + CV' +

C2v[l" in D.,h

g) C'B + C'2vJ- + 3 C2v' ' in D2h

b) Cb + C'2v-L+ 2 C2v +
CW1" in D21l

i) C, + 4 C2v';' in D.,h C+ +4 Co in C2h

k) CB + 3 C2vli' + C2rli"inD.,h '

1) C„ + 2 Covl!' + 2 Cov':" in
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4 + 2 + 2 +
2 + 1 + 1

m) Cj + 4 C8' in C2v

n) C4 + 3 Cs' + Cs" in C2v

o) C1 + 2C,' + 2C,"inC2v
p) Ci + 4 C8 in C2h

q) Cj + C2 + 3 C, in C2h

r) C1 + 2Co + 2C8inC2h
s) C4 + 3 C2 + Cs in C2h

t) Ci+ 4 Co'in Do

u) C4 + 3 C„' + Co" in D„
v) Cj+ 2 Co'+ 2 C2" in D.,

w) C4 + 2 Co' + Co" + C.,"' in
D,

a) C4 + 3 C,' + 2 C2v in C'2v

b) Cj + 2 C.' + Cs + 2 C
2v

in C2v

4 + 2 + 2+1+ a) C1 + 2C,' + 4Cov in C'o,.

1 + 1 + 1 b) C1 + Cs' + C'„" + 4C2v in
C2r

4+2 + 1+1+ a) Cx + Cs + 6 Co,, in C'.,,.

1+1+1+1

4+1+1+1+1+ a) C's + 6 C4v in C4v

1 + 1 + 1 + 1 b) Cj +6 C.,,. in Co,.

3 + 3 + 3 + 3 a) 4 Co,.'in D3|1

b) 3 Co,.' + C2,." in D.)h

c) 2 C2,.' + 2 C2v" in D3h

d) 4 CB in D3h

e) 4 C/ in C3v

f) 3 C/ + C„" in C'3v

g) 2C/ + 2C."inC3v
h) 4 Cj in C3

3 + 3 + 3+ j a) 3 C2v + C3v + D3h in D3h
2 + 1

|
b) 2 Co,.'+ C2v +C3v+ D31,

in D,h

3 + 3 + 3 + 1+ a) 3 C, +3 C
3v in C3v

1 + 1 b) 2 CV + CV + 3 C3v inC3v
c) 3 C\ + 3 C3 in C'3

3 + 3 + 2 + a) 2 C2v +3 C3v in D3h
2 + 2 b) Co,.' + Co," + 3 C3v in D3h

c) 2 C. + 3 C'3 in C'31l

C\ + 6 C4 in C,

4 G'.,' in D3
3 Co' + C'o" in D.|
2 Co'+ 2 Co" in b3

3 C'o' + C'3 + D3 in D3
2 C'o' + Co" + C'3 + D:, in D3

2 C'o' + 3 C'3 in D3
Co +Co + 3 C3 in D3

3+3 f 242+1+1'
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3+3+2+1+
1 + 1 + 1

3+3+1+1+ a) 2 C,' + 6 C3v in C3v

1+1+1+1 b) C,' + Ca" + 6 C3t in C3V

c) 2 Ct + 6 C3 in C3

3+2+2+ a) C2v + 4C3v + D3h in D3h C2+ 4 C3 + D3 in D3, Cs + 4 C3 + C3h

2 + 2 + 1 in C3h

3+2+2+2+ —
1 + 1 + 1

3+2+2+1+ —
1+1+1+1

3+2+1+1+1+ —
1+1+1+1

3+1+1+1+1+ a) C, + 9 C3v in C3v C, + 9 C3 in C3

1+1+1+1+1

2+2+2+2+ a) ^ ^OOV ^ blgQb 6 C^ in Dj,, 6 Cœ in Cœh, 6 Cqv in
2 + 2 Dqh. 6 Cqv in Dqd. 6 Cq in Dq, 6 Cp Ûl

Cp|, 6 Cm/2 in S,„, 6 C2v.' in D2h, 6 C2'
in D2

b) 4C2v' + C2ï" + C2/"inD2h 4 C2' + C2" + C/" in Da
c) 3 C2v' + 2 C2v" + C2v"' in 3 Co' + 2 C2" + C2"' in D2

®2h

d) 2 C2l' + 2 C2v" + 2 C2v"' 2 C2' + 2 C2" + 2 C2"' in D„
in D2h

e) 2C. + 4 C2 in C2h

f) 3C. + 3C, in C2h

g) 4 C'B + 2 C2 in C2h

h) 5 C. + C2 in C2h

i) 3 C2v' + 3 C2v in D2n 3 C,' + 3 C2" in D,
k) 4 C2v' + 2 C2v" in D2h 4 Co'+ 2 C," in Do
1) 5 C2v' + C2l" in D2h 5 C2' + Co" in Do, 5 C2 + C, in C2h

m) 3 C,' + 3 Cs" in C2v

n) 4C„' + 2C/'inC,v
n) 5 Cs' + C„" in C2v

P) 6 C/ in C2v

q) 6 C1! in Cs

r) 6 C's in C2h

s) 6 C'j in C2

t) 6 C1 in C;

2+2+2+2+ a) 3 C/ + 2 C," + 2 C2v in C2v

2 + 1 + 1 b) 4C/ + C" + 2 C2v in C2ç

c) 5 C'/ + 2 C2v in C2v
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d) 5G + 2C, in C,

e) 5 C, + 2 C2 in C2

2+2+2+2+ a) 2C/ + 2C," + 4C2v in C2v.

1+1+1+1 b) 3 C/ + C," + 4 C,v in C2v

c) 4 C/ + 4 C2v in C2v

d) 4Cj + 4C, in C,
"

e) 4C\ + 4 C2 in C'2

2+2+2+ a) 2C/ + Cs" + 6C2v in C,v

1+1+1+ b) 3 C/ + 6 C2v in C2v

1 + 1 + 1 c) 3 Cj + 6 C8 in C,

d) 3 Cj + 6 C2 in C2

2+2+1+1+ a) 2C/ + 8 C2v in C2v

1+1+1+1+ b) C5' + Cs" + 8 C2v in C2v

1 + 1 c) 2 Cj + 8 Cs in C.

d) 2 Cj + 8 C2 in C2

2+1+1+1+ a) C„ + 10 C2v in C2t C'j+ 10 Co in Co

1+1+1+1+ b) C\ + 10 C, in C„

1 + 1 + 1

1+1+1+1+ a) 12 Cxv in Cxv 12 C'x in Cx, 12 Cqv in C,lv, 12 Ct] in Cq

1+1+1+1+ b) 12 C, in C„

1+1+1+1 c) 12 C2 in C2

Falls es nun gelingen sollte, die Punktsymnietriegruppe eindeutig
zu ermitteln, könnten offerbar umgekehrt Schlüsse auf die Eigensymmetrie

der Teilchen gezogen werden. Dabei setzt die Symmetriebedingung

der Punktlage aber nur eine minimale Eigensymmetrie voraus, so
dass sich auch hier im allgemeinen Vieldeutigkeit ergeben wird. Höchstens

da, wo eine bestimmte Punktlage völlig für das Auftreten einer
niedrigeren Punktsymmetriegruppe verantwortlich gemacht werden kann,
ist die Eigensymmetrie ihrer Teilchen auch nach oben abgegrenzt.

Schliesslich seien noch die Grenzen der Leistungsfähigkeit von
Symmetriebetrachtungen zur Kennzeichnung des Molekülbaues abgesteckt.
Schon in topologischer Hinsicht ergeben sich Vieldeutigkeiten: sind
mehrere Punktlagen besetzt, so lässt die Symmetrielehre die Frage nach
der gegenseitigen Lage ihrer Punkte offen. Enthält die Punktgruppe
mehrere gleichwertige Untergruppen, so kann für die entsprechenden
Spezialformen eine Vieldeutigkeit bezüglich der Stellung entstehen. Vor
allem aber ist die Symmetrielehre nicht in der Lage, beim Auftreten von
geometrischen Freiheitsgraden metrische Fragestellungen zu beantwor-
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ten; die, bezogen auf ein symmetriegerecht gewähltes Koordinatensystem,

sich ergebenden Parameter bleiben also im allgemeinen
unbestimmt. Metrische Bedeutung können höchstens che Aussagen gewinnen,
die sich auf das Fehlen von Freiheitsgraden beziehen, denn die
Symmetrielehre muss sich darauf beschränken, für Punkte, die auf Symmetrieelementen

liegen, diese als geometrische Orter zu bezeichnen.

III. Die Aussagen der Symmetrielehre über die Molekülschwingungen

Ein aus N Masseteilchen aufgebautes System hat bekanntlich 3 N
Freiheitsgrade der Schwingung. Nach Abzug der Translationen und
Rotationen des Gesamtsystems als den „uneigentlichen" Schwingungen
verbleiben für

lineare Moleküle 3N — 5, davon N — 1 in der Achse

planare Moleküle 3N — 6, davon 2N —3 in der Ebene
die übrigen Moleküle 3 N — 6 Freiheitsgrade.

Die Grundsymmetrie des Moleküls bestimmt nun, wie sich diese

Freiheitsgrade auf die verschiedenen Normalschwingungstypen verteilen, und
welcher Art die Normalschwingungen überhaupt sind.

Die Ermittlung der Nor mais c h wingungs typen bereitet keine
Schwierigkeiten. Schon Brester (4) hat sie durchgeführt, und später
zeigte Wjgxer (13) die Möglichkeit der Anwendung gruppentheoretischer

Methoden. In der durch Tisza (12), Placzek (10), Rosenthal
und Murphy (11) weiter ausgebauten gruppentheoretischen
Betrachtungsweise finden die Normalschwingungen ihren Ausdruck in der
Matrizendarstellung der Charaktere für die irreduziblen Darstellungen der

zur Grundsymmetrie des Schwingungssystems isomorphen Klassen.
Schliesslich hat P. Niggli (8) gezeigt, wie man im wesentlichen ohne

gruppentheoretische Hilfsmittel zu diesen Charakterentafeln gelangen
kann.

•Jeder Schwingimgstyp wird durch sein Verhalten gegenüber den

Symmetrieelementen der Grundkonfiguration gekennzeichnet, wie das ja
die übliche Bezeichnungsweise der Schwingungen andeuten soll. Wenn
auch jedem Verrückungsbild eine bestimmte Restsymmetrie zugeschrieben

werden kann, so ist doch mit dem Abbau der Grundsymmetrie die

Beschreibung keineswegs erschöpft. Die Tatsache, dass eine Schwingung
zu einem Symmetrieelement antisymmetrisch oder entartet verläuft,
besagt nicht etwa nur, dass sich die zugehörige Koordinatentransfor-
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mation nicht mehr auf die Verrückungsvektoren ausüben lasse, sondern
dass nach Ausführung der Transformation die Vektoren ihre Richtung
umkehren bzw. um ganz bestimmte Winkelbeträge gedreht werden. Die
Verhältnisse liegen hier ähnlich wie bei den Raumgruppen: auch dort
genügt im allgemeinen die Symmetriebedingung eines Nullpunktes nicht
mehr zur Beschreibung. Wie für die nicht-symmorphen Raumgruppen
Gleitspiegelebenen und Schraubenachsen als neue Symmetrieelemente
eingeführt werden müssen, so treten in den nicht-totalsymmetrischen
Schwingungen Antisymmetrieelemente und Entartungsachsen
auf. Die Einführung dieser Antisymmetrieelemente ist um so mehr
gerechtfertigt, als sich mit ihrer Einbeziehung eine ganze „erweiterte
Symmetrielehre" mit all ihren Symmetriesätzen aufbauen lässt, die
dann die Symmetrieeigenschaften der Normalschwingungen liefert. Ihre
Entwicklung würde an dieser Stelle zu weit führen, doch zeigt es sich
dabei, dass die Analogie zwischen Schwingungsformen und Raumgruppen
sogar soweit geht, dass jeder erweiterten Punktgruppe einer kristallogra-
phischen Schwingungsklasse eine Raumgruppe isomorph ist. Im übrigen
ist es ja nur eine Frage der Darstellungsweise, ob man den Abbau der
Grundsymmetrie auf antisymmetrisches Verhalten der Teilchen oder auf
die ohnehin nur in der Vorstellung vorhandenen Symmetrieelemente
zurückführen will.

Die Symmetriebedingungen der einzelnen Punktlagen wählen nun
aus der Gesamtheit der Normalschwingungstypen diejenigen aus. zu
deren Schwingungen ihre Freiheitsgrade einen Beitrag leisten. Dazu muss
das Verhalten bezüglich der zur Symmetriebedingung gehörigen Elemente
mit dem durch die Symmetrieeigenschaften der Normalschwingung
geforderten übereinstimmen. So ergibt sich eine Auslese, wie sie für die
einzelnen Punktgruppen etwa von Jahn und Teller (6), von Kohlrausch
(7) und von Herzberg (5), für einige ausgewählte Punktkombinationen
von Wilson (14) und schliesslich allgemeiner für die Symmetriebedingungen

von P. Niggli (8) zusammengestellt wurde. Dass sich in Kombinationen

die Beiträge der einzelnen Punktlagen additiv verhalten, ist leicht
einzusehen. Gegeben sei etwa die Kombination zweier Punktner P und
Q. Für eine herausgegriffene Schwingungsklasse habe, die uneigentlichen
Schwingungen eingerechnet, ein P-Teilchen p und ein Q-Teilchen q
Freiheitsgrade: von diesen Freiheitsgraden seien s den P- und Q-Teilchen
gemeinsam. In der Kombination treten dann als Normalschwingungen
für die betreffende Klasse auf: p —s P-Schwingungen, an denen Q nicht
teilnimmt, q —s Q-Schwingungen, an denen P nicht teilnimmt, und 2s

gekoppelte Schwingungen beider Punktner, nämlich s miteinander und
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s gegeneinander, also insgesamt p + q Schwingungen. Die uneigentlichen
Schwingungen, deren. Klassenzugehörigkeit an dem Verhalten zu
ausgezeichneten Symmetrieelementen leicht erkennbar ist, müssen natürlich
für das Gesamtsystem nur einmal in Abzug gebracht werden.

Die Auswahlregeln, die über die Beobachtbarkeit der einzelnen
Normalschwingungen, ihrer Kombinations- und Oberschwingungen
entscheiden, sind für Infrarotspektrum und Ramaneffekt nicht dieselben,
so dass sich die beiden Methoden ergänzen können. Auch diese Auswahlregeln

können, wie schon Wigner (13), dann Rosenthal und Murphy
(11) und vor allem Bhagavantam (1, 2) gezeigt haben, mit Hilfe von
gruppentheoretischen Methoden einen der Symmetrielehre angemessenen
Ausdruck finden. Im Infrarotspektrum tritt eine Schwingung bekanntlich

dann auf, wenn sie den Vektor des elektrischen Moments, und im
Ramaneffekt, wenn sie den Tensor der Polarisierbarkeit des Moleküls
ändert. Dementsprechend bestimmen die Transformationseigenschaften
dieser Grössen gegenüber den möglichen Symmetrieoperationen die
Auswahlregeln. Da sich ihrer Form nach die Infrarotbanden von Schwingungen

mit wechselnder Komponente des elektrischen Moments parallel
oder senkrecht zu einer ausgezeichneten Achse unterscheiden lassen,
besteht die Aufgabe der Symmetrielehre darin, für jede Normalschwingung

die Richtung des entstehenden Moments anzugeben, wie das schon

Brester (4) getan hat. Eine entsprechende zusätzliche Aussage über die
Ramanlinien bezieht sich auf den Depolarisationsgrad des gestreuten
Lichts.

Nach dem Schwerpunktssatz können Systeme, die nur aus Teilchen
von einheitlicher Masse und Ladung aufgebaut sind, keine infrarot-
aktiven Schwingungen ausführen, während für ein völlig unsymmetrisches

Gebilde (Punktsymmetriegruppe sämtliche Schwingungen aktiv
werden. Dieser Sachverhalt führt aber auf das Problem der Besetzung
der Punktlagen. Und da ist festzuhalten, dass die geometrische
Gleichwertigkeit nicht nur eine Angelegenheit der Anordnung ist, sondern dass

zwei Punkte für ihr Schwingungsverhalten nur dann gleichwertig sein

können, wenn sie von Teilchen besetzt sind, die bezüglich Masse, Ladung
und Zustand übereinstimmen. Es können demnach nur dieselben
Isotopen derselben Atomart in einer Punktlage auftreten; dagegen ist es

sehr wohl möglich, dass eine Atomsorte mehrere ungleichwertige Punktlagen

besetzt, was dann allerdings auf verschiedene Zustände des Atoms
hindeutet. Übrigens wird durch unsymmetrische Substitution von
Isotopen an einem Molekül auch die Regel durchbrochen, dass im
allgemeinen die Achsen des Polarisierbarkeitsellipsoids mit denen des Träg-
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2
6 5 h- 3 2

heitsellipsoids zusammenfallen: das Trägheitsellipsoid wird durch eine
solche Substitution verändert, die Ladungsverteilung, welche die Polari-
sierbarkeit bestimmt, dagegen nicht.

In den Tabellen III sind nun für alle Punktsymmetriegruppen
endlicher Ordnung die sämtlichen Angaben zur Bestimmung der
Normalschwingungen und ihrer Beobachtbarkeit zusammengestellt. Darin sind
als R die Zyklensymbole der möglichen Symmetrieoperationen angegeben,
wobei fx reine Drehung, sx Drehinversion und sx Drehspiegelung um
einen Winkel ^ darstellt. Die k-Werte geben an, wie oft die Operationen

in einer Punktsymmetriegruppe enthalten sind, und N ist die Ordnung
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2. Wirtelige Gruppen (mit trennbar entarteten DoppeLsehwingungen)

R: f'i f," f» f," (f2") s2' s» s.,
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3. Wirtelige Gruppen (mit untrennbar entarteten Doppelschwingungen)
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p e 0 0 je 0 0 e 0 — 1 0 0 e 0 0 e 0 0 e 0 P 1 1 P Cs • — C2

n e 0 0 je 0 0 e 0 - 2 0 0 e 0 0 e 0 n e 0 0 0 2 1 °1 1 C/
n e 0 0 je 0 0 e 0 — 0 0 0 e 0 0 e 0 0 e 0 0 0 2 n J

1
J

1

n e 0 0 je 0 0 e 0 — 0 2 0 e 0 0 e 0 n e 0 n 2 0 — cs ]

m e 0 0 je 0 0 e 0 — 2 0 0 e 0 m e 0 0 e 0 0 2 0 — — C

m e 0 0 je 0 0 e 0 — 0 2 0 e 0 m e 0 0 e 0 0 0 2 — — C/
m e 0 0 je 0 0 e 0 — 0 0 0 e 0 0 e 0 0 e 0 0 0 4 — —

m e 0 0 je 0 0 e 0 — 0 0 0 e 0 0 e 0 m e 0 0 0 0 m — Cl

m e 0 0 je 0 0 e 0 — 0 0 0 e 0 0 e 0 0 e 0 0 4 0 — —

m e 0 0 je 0 0 e 0 — 0 0 0 e 0 0 e 0 0 e 0 0 2 2 — —

m e 0 0 je 0 0 e 0 — 2 2 0 e 0 0 e 0 0 e 0 0 0 0 1 — Ci
_

2m e 0 0 je 0 0 e 0 — 0 0 0 e 0 2m e 0 0 e 0 0 Ü 0 — — Ci

2 m e 0 0 je 0 0 e 0 — 0 0 0 e 0 0 e 0 0 e 0 0 4 0 x 2m — —
2 m e 0 0 je 0 0 e 0 — 0 0 0 e 0 0 e 0 0 e 0 0 0 4 1 — —
4 m e 0 0 je 0 0 e 0 - 0 0 0 e 0 0 e 0 0 e 0 0 0 0 4m —

Dpd

Beziehungen :

D„; SPT SJ
ff :id — Smv — Smv

Dp, — Dpv : SB

Für lineare Konfigurationen eine A3-Sehwingung mehr!

Schwingungstypen (Restsymmetrie) :

D. D„ D„ D_ D, D, D. D„

A' (CpV) A' (CnT) A' (CffiT) Ai (Dp) Ai (Dn) Ai (Dm) Aig (Dpd) Ai' (DnJ A/ (DpJ Aig (DpJ Aig (DmJ

A" (Cp) A" (Cn) A" (CJ Aiu (Dp) Ax" (DJ AJ (Dp) -^-ln (Dp) Ai« (Dm)

- A, (Cp) A, (CJ A2 (Cm) A, g (Cpi) A2"(SJ AJ (CPJ A2g (CpJ A2g (CmJ

A2H (Cpy) A2- (CnT) AJ (Cpv) A2u (Cuv) A2a (Cmv)

B' (Cpv) B' (C„) Bi (Bp) Bi (DJ - Big (Dpa) Big (D«,,)

B" (CPv') B" (CBT') — Ex« (DPJ Ex« (Dna)

B2 (Dp') B2 (DJ) - Bgg (DpJ) B2g (D«J)

_ - - - B2u (DpJ) B2o (DnJ)

Ex (Ci) Ei (Cx) Ex (Cx) Ex (Ci) Ex (Cx) Ex (Cx) Exg (Cx) EJ (Cx) EJ (CJ Eig (Cx) Eig (Cx)

Ex« (Ci) Ex" (Cj') EJ (Cx) Eiu (CJ Ex« (CJ

E2 (C/) E, (C2) E2 <C2) e2 (Ci') E2 (C2) E2 (C2) E2g (Cx') EJ (C2) EJ (CJ Egg (C2J Egg (C2J

e2u (Cx') EJ (CJ) EJ (Cx) E2U (CJ e2« (C2)

Er (Cx") Ej. (C2') Ey (C/) Ey (Ci") Ey (CJ) Ey (Cx') : Ey' (CJ Eyg (C2J Eyg (C,)

E." (C,) Eyn (C2) Eyu (CJ

Punktlagen :

Dn Dm Dpa D«d Dp, Dnh

C« Cm Cpv Cuv Cpv Cuv

— — — — C2v —
C, — Cg — — Cgv

— —. CJ1

Cg' — C, — CJ Cgv'

D„

CJ
Cx

Cx Cl

Cs

c,
Cx

cjf
C8X

CJI

Cx

Cx

cJ
C."
CJI'
Cx
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4. Kubische Gruppen (mit dreifach entarteten Schwingungen)

R: fl f« f<H> f. f<N> s2' s4 4H> 8«' o<N)
2 N

k(T) 1 0 3 8 0 0 0 0 0 0 12

k(Th) 1 0 3 8 0 1 0 3 8 0 24

k(Td) 1 0 3 8 0 0 6 0 0 6 24
k (0) 1 6 3 8 6 0 0 0 0 0 24

k(Oh) 1 6 3 8 6 1 6 3 8 6 48

c 3 1 -1 0 -1 -3 -1 1 0 1
behwingungstypen (Restsymmetrie) :

c' 6 0 2 0 2 6 0 2 0 2 T T„ T„ o <>h

X(AD 1 1 1 1 1 1 1 1 1 1 1 A(T) A„ (Th) A' (T„) At (O) Ai, (Oh)
X(A2) 1 1 1 1 1 -1 -1 -1 -1 -1 1 A„ (T) A" (T) Aiu (0)
X(A3) 1 -1 1 1 -1 1 -1 1 1 -1 1 V (T) A2g (Th)
X(A4) 1 -1 1 1 -1 -1 1 -1 -1 1 1 A2ll 1 d)

X(E1) 2 0 2 -1 0 2 0 2 -1 0 1 E (D2) Eb (D2h)

X(E2) 2 0 2 -1 0 _2 0 _2 1 0 1 E„ (D2)

*(E1) 2 0 2 -1 0 2 0 2 -1 0 2 E (D2) E (D2) Eg (D2h)

*(E2) 2 0 2 -1 0 _2 0 -2 1 0 2 E„ (D2)
X (FD 3 1 -1 0 -1 3 1 -1 0 -1 3 F ((',) F„ (E.) Fi (0,) Fi (Cd Fi» (C.)
X(F2) 3 1 -1 0 -1 -3 -1 1 0 1 3 F„ (Cd F2 (CY) k iu (Ei)
X(F3) 3 -1 -1 0 1 3 -1 -1 0 1 3 E2 (CV) F2g (C/)
*(F4) 3 -1 -1 0 1 -3 1 1 0 -1 3 F21, (Ei

Ii' u — 2 u Z
Punktlagen

u 1 1 1 1 1 1 1 1 1 1 1 T Th T„ o oh
4 0 0 1 0 0 0 0 0 2 4 c3 — c3v — —
6 2 2 n 0 0 0 4 0 2 ß Flv C2v t'l C4v
8 0 0 2 f) 0 0 0 0 4 8 — ^

3 — C3 Csv
12 0 0 0 2 0 0 4 0 2 12 Ci C. c. C2 c2v
24 0 0 0 0 0 0 8 0 0 1

-U C, 1 r Cb<H,

24 0 0 0 0 0 0 0 0 4 1 — C4
1 1 C8,N)

48 0 0 0 0 0 0 0 0 0 48 — — Cl

t)
œ

VJ
3

<x>

er
0>

5*
OQ

3*

OQ
?r
CD

CD

?r

Or

eo



5. Ikosaedrische Gruppen (mit fünffach entarteten Schwingungen)

R: fx fs1 f52 f. f. s2' S10 S10 s.' s2 N

k (I) 1 12 12 20 15 0 0 0 0 0 60

k(Ih) 1 12 12 20 15 1 12 12 20 15 120 Schwingungstypen

c 3 i(i+ /ß) 4(1-/5) 0 -1 -3 ~4 (1+ /5) -4(1-/5) 0 1
(Restsymmetrie) :

c' 6 l 1 0 2 6 1 1 0 2 e I Ih

X(A1) 1 l 1 1 1 1 1 1 1 1 1 A (I) A, (Ih)

X(A2) 1 l 1 1 1 -1 -1 -1 -1 -1 1 A» (I)

X(FD 3 4d+ /sj 4(1-/5) 0 -1 3 4(l+/5) 1 (1-/5) 0 -1 3 Fi(C,) Fig (Ci)

X(F2) 3 4(l+/ö) 4(1-/5) 0 -1 -3 -4U+/5) -4(1-/5) 0 1 3 Flu (C,)

x (F3) 3 4(1-/5) 4(1+ /5) 0 -1 3 4(1-/5) 4(1+/ 5) 0 -1 3 F,«Y) Fîf(C,')

x (F4) 3 4(1-/5) 4(1 + /5) 0 -1 -3 -4(1-/5) —i (1 + /5) 0 1 3 F2u(CY)

X(G1) 4 -1 -1 1 0 4 -1 1 1 0 4 G (<?!> Gg (C,)

X(G2) 4 -1 -1 1 0 -4 1 1 -1 0 4 G„ (C,)

X<H1> 5 0 0 -1 l 5 0 0 -1 1 5 H (C,) Hg (C,)

X(H2) 5 0 0 -1 l 5 0 0 1 -1 5 H„ (Cj)

u' u-2 u Z
Punktlagen :

11 1 1 1 1 l 1 1 1 1 1 1 I Ih
12 2 2 0 0 0 0 0 0 4 12 c. C.v
20 0 0 2 0 0 0 0 0 4 20 c3 C.V

30 0 0 0 2 0 0 0 0 4 30 c, c2v

60 0 0 0 0 0 0 0 0 4 60 C, c.
120 0 0 0 0 0 0 0 0 0 120 — G,
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der Gruppe. Es folgen als c und c' die Grössen, die für das Verhalten
von Vektoren bzw. Tensoren gegenüber den Symmetrieoperationen
charakteristisch sind. Eine allgemeine Zusammenstellung derartiger Grössen

findet man bei Bhagavantam und Suhyanarayana (3). Im vorliegenden
Falle ist c 2 cos y ± 1, c' 4cos2<p + 2 cos 9, wo 9 den Drehwinkel bedeutet
und das obere Vorzeichen für Synunetrieoperationen I. Art, das untere
für Operationen II. Art zu nehmen ist. Der Verlauf dieser Funktionen
geht aus der Figur hervor.

Den Kern der Tabellen macht die eigentliche Charakterentafel aus,
die für die laufend numerierten Schwingungsklassen die Charaktere^ und
die zugehörigen Entartungsfaktoren e angibt; in ihr kommt das Verhalten

der Schwingungen zu den Symmetrieelementen zum Ausdruck.
Daneben sind für die einzelnen Punktsymmetriegruppen die möglichen
Schwingungstypen in ihrer üblichen Bezeichnung und mit Angabe der

Restsymmetrien aufgeführt. Zwei Gleichheitszeichen bedeuten, dass der
betreffende Typ mit einem bereits angegebenen zusammenfällt und
nicht mehr in Rechnung zu stellen ist. Das ist dann der Fall, wenn sich
die Charaktere bezüglich der Symmetrieelemente mit k=(=0 nicht
unterscheiden. Schliesslich sind darunter alle möglichen Punktlagen mit ihren
Symmetriebedingungen und Zähligkeiten Z zusammengestellt: ihnen
entsprechen die Anzahlen u der Punkte, die auf den einzelnen
Symmetrieelementen liegen und deshalb gegenüber der zugehörigen Transformation

invariant sind. Die Werte u', die beim Abzug der imeigentlichen
Schwingungen eine Rolle spielen, sind für Operationen I. Art um 2

niedriger als u; für Operationen II. Art fallen sie mit den u zusammen.
In den Tabellen für die wirteligen Punktsymmetriegruppen sind

übrigens von den zur Hauptachse gehörigen Zyklen nur die zweizäh-

ligen gesondert aufgeführt. Alle übrigen werden erhalten, indem man x
bis zur angegebenen Grenze laufen lässt. Die Charaktere der entarteten
Schwingungen kommen dann heraus, wenn y dieselben Werte durchläuft.

m, n und p haben die gleiche Bedeutung wie in Tabelle I.
Zwischen den Grössen der Tabellen III gelten mannigfache Beziehungen,

etwa innerhalb der eigentlichen Charakterentafel die. welche aus den

Orthogonalitätseigenschaften folgen. Das Verhalten der gesamten
Punktsymmetriegruppe wird aber durch diejenigen Ausdrücke beschrieben, in
denen über alle Symmetriezyklen der Gruppe summiert wird, und che sich

deshalb in die Form (k$)R bringen lassen, wo für <P beliebige Funk¬
it

tionen eingesetzt werden können.

11 Schweiz. Min. Petr. Mitt., Bd. 31, Heft 2, 1951
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a) Für jede Punktsymmetriegruppe gilt:
(1) sÇkR 1

(2) 2 Oic)i-> Zahl der Freiheitsgrade für den Symmetriehaupt-
R punkt (Z l)

(3) ^2(^c')r 1 für isometrische (kubische, ikosaedrische)
R 2 für wirtelige

3 für orthorhombische
4 für monokline
6 für trikline Punktgruppen

b) Für jede Punktlage in einer Gruppe gilt:

N S (ku)n *

R

(5) \ 2 (kcujj, Zahl der Freiheitsgrade für die Punktlage selbst
N R

c) Für jede Schwingungsklasse in einer Gruppe gilt:

(ü)
1 S(kx)n 1 für die (totalsymmetrische) Hauptdarstellung A1

R 0 für alle übrigen Klassen

4S(kX2*)R 1 für symmetrische und antisymmetrische Klassen
N R A und B

2 für Doppelschwingungen E und E
3 für dreifach entartete Klassen F
4 für vierfach entartete Klassen G
5 für fünffach entartete Klassen H

(g) 1 y] (kcx)R + 0 für infrarot-aktive Schwingungsklassen
^ R =0 für infrarot inaktive Schwingungsklassen

(°) i2 (kc' y)R 4= 0 für im Ramaneffekt erlaubte Schwingungsklassen
R =0 für im Ramaneffekt verbotene Schwingungsklassen

d) Für jede Punktlage und Schwingungsklasse gilt:

(10)— 2 (kcXu)R Zahl der Normalschwingungen (einschliesslich un-
N '

R eigentliche)

11) 12 (kc x u')R Zahl der eigentlichen Normalschwingungen^ R

e) Für jede Kombination von q Punktlagen und jede Klasse gilt:

((kcx2ui) Zahl aller Normalschwingungen
R \ 1 1 ' R
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<13l?sfk"x(v + S»i)
R L \ i=2 /J

ZahI der eigentlichen Normalschwingungen

f) Für jede reduzible Klasse mit den Charakteren y' gilt-'

(14)
1 Zahl, wie oft sie in einer Schwingungsklasse vorkommt
N R

Die Benützung der Tabellen gestaltet sich sehr einfach, wenn man
sich die Bedeutung dieser Formeln klargemacht hat. (1) ist nur ein
Ausdruck dafür, dass die Anzahl verschiedener Symmetrieoperationen gleich
der Ordnung der Gruppe ist. (2) teilt die Punktgruppen ein nach den

Freiheitsgraden ihrer Symmetriebedingung, während (3) ein Mass für die

Symmetrie des Koordinatensystems gibt. (4) ist ein anderer Ausdruck für
den Satz, dass das Produkt aus Zähligkeit und geometrischer Wertigkeit
einer Punktlage gleich der Ordnung der Gruppe ist; (5) verknüpft damit
die Zahl der Freiheitsgrade für die Punktlage. (6) folgt aus den Orthogo-
nahtätsbeziehungen. (7) gibt das Mass für che Entartung: seine umständliche

Form beruht auf den Schwierigkeiten, die die Trennbarkeit der

Doppelschwingungen E bei der Einführung des Entartungsfaktors e

bereitet. (8) enthält die Auswahlregel für die Beobachtbarkeit einer Schwingung

im Infrarotspektrum. Die Richtung des entstehenden elektrischen
Moments lässt sich dazu leicht aus dem in der Charakterentafel gegebenen
Symmetrieverhalten feststellen. Die Auswahlregel für den Ramaneffekt ist
in (9) enthalten. Hier sind von den beobachtbaren Schwingungen stets die

totalsymmetrischen „polarisiert" (Depolarisationsgracl p < 6/7, für
isometrische Gruppen 0), und ahe übrigen „depolarisiert" (p 6/7). (10) bis
(13) ermöglichen die Berechnung der Anzahlen von Normalschwingungen
jeder Klasse für einzelne Punktlagen und Kombinationen. (13) zeigt, dass

für den Abzug der uneigentlichen Schwingungen nur für eine beliebige
Punktlage die u'-Werte einzusetzen sind, für alle übrigen die u-Werte.
Eine Kontrolle der Ergebnisse besteht darin, dass die Gesamtzahl der
eigentlichen Normalschwingungen aller Klassen den zu Beginn des
Abschnitts (S. 514) angegebenen Betrag annehmen muss. Dazu sind n-fach
entartete Schwingungen n-mal in Rechnung zu stellen. Soll die
Untersuchung auf Kombinations- und Oberschwingungen ausgedehnt werden,
so zeigt (14), in welchen Klassen die reduziblen Darstellungen dieser

Schwingungen enthalten sind. Dabei ist im Falle einer Kombination der
Klassen i und j y/, (XiXj)u und im Falle einer 1. Oberschwingung

Xr £ (Xr + XrO zu setzen mit R2 fq/2, wenn R den Index q hat.
Schliesslich sind die Angaben noch für die bei linearen Konfigurationen

auftretenden Zylindergruppen zu ergänzen. Endliche Zählig-
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keiten liefern dort nur die Punktlagen auf der Hauptachse. Das hat zur
Folge, dass trotz der unendlichen Mannigfaltigkeit von Unterachsen keine
antisymmetrischen und höchstens zwei Klassen entarteter Schwingungen
auftreten können. Ausserdem verliert bei Beschränkung auf die Punktlagen

endlicher Zähligkeit die Unterscheidung der polaren Gruppen Cœ

und C0=T sowie der unpolaren Cxh, Dx und Dxh ihre Bedeutung, so dass

es genügt, im Anschluss an Kohlratjsch (7) direkt die Eigenschaften der

Normalschwingungen für Cxv und Dxll in Tabelle IV zusammenzustellen.

Tabelle IV.
1. Punktsymmetriegruppe Cœi.

Punktlagen: a) Ccov (Z=l)
Schwingungs-

'

Symmetriezyklen
klasse

| ft fœ s.,'1

Auswahl
I.R. Ram.

Zahl eigentlicher
Normalschwingungen

A s s s

E se-
9k,i p
Ï0Î± dp

a — 1

a — 2

2. Punktsymmetriegruppe Dxh

Punktlagen: a) C^. (Z 2), b)D^h (Z 1)

SchwingungsSymmetriezyklen Auswahl Zahl eigentlicher
klasse fi f» f2-l- s2' s2J- s2" I.R. Ram. Normalschwingungen

Ag s s s s s s ia P a
Au s s s as as as S»,, V a + b— 1

E. s e - s as - ia dp a— 1

Eu s e - as s - V a + b— 1

s symmetrisch, as antisymmetrisch, e entartet, ia inaktiv,
p polarisiert, dp depolarisiert, v verboten

IV. Der Schluß vom Schwingungsspektrum auf die Molekiilstruktur

Die Berechnung der Schwingungen und ihrer Eigenschaften für eine

gegebene Konfiguration lässt sich nach den Angaben des vorhergehenden
Abschnittes durchaus eindeutig durchführen. Leider ist das bei der
Umkehrung des Verfahrens, wie sie durch die Frage nach der Anordnung des

Systems gefordert wird, nicht der Fall. Natürlich kann durch Vergleich
von beobachteten und errechneten Schwingungen eine vermutete Struk-
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tur widerlegt oder wahrscheinlicher gemacht werden; an dieser Stelle
interessieren aber die direkten Schlüsse, die auf die Konfiguration
gezogen werden können. Die Vieldeutigkeiten, die dabei im allgemeinen
auf mehreren Stufen der Betrachtung entstehen, seien nun am Beispiel
des Benzolmoleküls erläutert.

Die Formel C6H6 legt die Vermutung nahe, dass das Molekül aus
(6 + 6) gleichwertigen Teilchen aufgebaut sei. Ausserdem könnte die
Konfiguration allerdings noch von Symmetriefällen vorgetäuscht werden, in
denen nicht alle 6 C- und alle 6 O-Atome unter sich gleichwertig sind. Es
sind dies von allen Fällen, die in Tabelle II unter der Gesamtzahl 12 auf
den Fall (6 + 6) folgen, diejenigen, deren Anzahlen sich zu zwei Gruppen
von je 6 Teilchen zusammensetzen lassen, also die Fälle unter (6 + 3 + 3),

(6 + 3 + 2+1), (6 + 3+1 + 1 + 1), (6 + 2 + 2 + 2), (6+1 + 1 + 1 + 1 + 1 + 1),

(5 + 5+1 + 1), (5 + 2 + 2 + 2+1), (5+1 + 1 + 1 + 1 + 1 + 1 + 1), (4 + 4 + 2 + 2)

(4 + 4 + 2+1 + 1), (4 + 4+1 + 1 + 1 + 1), (4 + 2 + 2 + 2 + 2), (4 + 2 + 2 + 2 +
+ 1 + 1), (4 + 2 + 2+1 + 1 + 1 + 1), (4 + 2+1 + 1 + 1 + 1 + 1 + 1), (4+1 +
+ 1 + 1 + 1 + 1 + 1 + 1 + 1), (3 + 3 + 3 + 3), (3 + 3 + 3 + 2 + 1), (3 + 3 + 3 +
+ 1 + 1 + 1), (3 + 3 + 2 + 2 + 2), (3 + 3+1 + 1 + 1 + 1 + 1 + 1), (3 + 2 + 2 + 2 +
+ 2+1), (3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1), (2 + 2 + 2 + 2 + 2 + 2), (2 + 2 +
+ 2 + 2 + 2 + 1 + 1), (2 + 2 + 2 + 2+1 + 1 + 1 + 1), (2 + 2 + 2 + 1 + 1 + 1 + 1 +
+ 1 + 1), (2 + 2+1 + 1 + 1 + 1 + 1 + 1 + 1 + 1), (2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
+ 1 + 1 + 1), (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1).

Bleibt man aber bei der Annahme einer Kombination von zwei

Sechspunktnern, so sind nach Tabelle II grundsätzlich 16 verschiedene

Konfigurationen möglich, von denen wiederum 3 durch verschiedene

Punktsymmetriegruppen erzeugt werden können. Geeignete Wahl der

Punktlagen führt überdies zu den folgenden Übergängen: a) kann aus c),

d), h), k); b) aus c), e), g); c) aus f); d) aus f), 1); e) aus f); g) aus i); h) aus

i), m); k) aus 1), m); n) aus m), p); o) aus m), p), und q) aus h) hervorgehen.

Die tatsächlich im Benzolmolekül vorhegende Konfiguration kann
also unter Voraussetzung der Gleichwertigkeit für beide Atomarten
insgesamt von 11 Symmetriefällen erzeugt werden. Symmetriebedingt ist
sie als 2C2v in D6h, 2C2 in D6, 2C2 in D3d; nicht notwendig folgt sie
als 2CS in C6h, 2CS in C6v, 2Ci in C6, 2Q in D3\ 2Cd in C3v, 2CS in D3d,

2CX in C3i, 2 Cj in D3. Der kursiv gedruckte Fall ist der höchstsymmetrische:

wenn keine Gegengründe vorliegen, hat er die grösste Wahrscheinlichkeit

für sich.
Die Entscheidung zwischen möglichen Konfigurationen wird oft

durch die Heranziehung anderer Untersuchungsmethoden erleichtert.
Zur Einschränkung der Vieldeutigkeit bezüglich der Punktgruppen, die
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eine Konfiguration erzeugen können, liefert aber die Beobachtbarkeit
der Schwingungen in den Spektren selbst ein vorzügliches Mittel. So gibt
es inr Falle des 12atomigen Benzolmoleküls insgesamt 3-12 — 6 30

Freiheitsgrade der Schwingung, die sich für die tatsächliche Konfiguration

auf 10 A- oder B- und 10 E-Typen verteilen. Damit wird wiederum
10-1 + 10-2 30. Die feinere Aufspaltung der Klassen in den 11

möglichen Punktgruppen ist die folgende:

1. 2 C2v in D6h: 2 Alg + Alu + A2u + 2 Blu + 2 B2g + 2 B2u + Elg + 3 Elu +
4E2g + 2E2u

2. 2C2 in D6 : 2 Ad + 2 A2 + 2B^ + 4B2 + 4E^ + 6E2
3. 2C, in D3d: 2 Alg + 2 A1u + 3 A2g + 3 A2u + 5Elg + 5E1u
4. 2CS in C61l: 3Ag + Au + 2Bg + 4Bu + Elg + 3Elu + 4E2g + 2E2u
5. 2CS in C6v: 3A1 + A2 + 4B1 + 2B2 + 4E1 + 6E2
6. 2Ci in C6 : 4A + 6B + 4E1 + 6E2
7. 2C£ in D3h: 4A1' + 2A1" + 3A2' + A2" + 7E1' + 3E1"
8. 20^ in C3t: 5AJ + 5A2+10E1
9. 2CS in D3d: 4Alg + 2Alu + A2g + 3A2u + 5Elg + 5Elu

10. 2Ci in D3 : 6A1 + 4A2+10E1
11. 2Cd in C3j : 5Ag + 5Au + 5 E Ig + 5 E lu

Die Beobachtbarkeit der insgesamt 20 Normalfrequenzen unterscheidet
sich in den 11 Fällen folgenderweise:

Fall
Raman Infrarot Nach beiden

Methoden beobacht¬
Im ganzen
beobachtbare SchwinP

dp «»il 9»jl bare Schwingungen gungen (von 20)

1 2 5 1 3 11

3 2 5 3 5 15

2 2 10 2 4 4 14

4 3 5 1 3 — 12

5 3 10 3 4 3 + 4 13

9 4 5 3 5 — 17

7 4 10 1 7 7 15

6 4 10 4 4 4 + 4 14

11 5 5 5 5 — 20

8 5 10 5 10 5+10 15

10 6 10 4 10 10 20

Man sieht, dass sich in diesem Beispiel alle 11 Fälle auseinanderhalten
lassen. Das ist nun freilich nicht immer so, wie etwa die Rechnung für
die kubischen 4-, 6-, 8- und 12-Punktner zeigt. Für die tetraedrische
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Anordnung sind nämlich die beiden Fälle Td und T ununterscheidbar,
für die hexaedrische Anordnung können die Fälle Oh, 0, Th, Td und T
alle voneinander unterschieden werden, für die oktaedrische
Anordnung unterscheidet sich nur der Fall 0 von den beiden Fällen Oh
und Th, und für die rhombendodekaedrische Anordnung schliesslich
werden wieder alle Fälle Oh, 0, Th, Td und T unterscheidbar.

Auf diese Weise kann man nicht nur für jede beliebige Konfiguration

die Unterscheidbarkeit der möglichen Punktgruppen untersuchen,
sondern es lassen sich auch für verschiedene in Betracht fallende
Konfigurationen die Eigenschaften der beobachtbaren Normalschwingungen
vergleichen. Damit ist aber grundsätzlich die Möglichkeit gegeben, die

symmetriebedingte Vieldeutigkeit wenigstens im Einzelfall zu
umschreiben.
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