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Die symmeltriebedingte Vieldeutigkeit in der
Molekiilspektroskopie )

von Alfred Niggle, Zitrich

I. Einleitung

Die Schwingungen der Atomkerne im Molekil, die sich in den In-
frarot- und Ramanspektren fdussern konnen, lassen sich — unter Vor-
aussetzung ihrer Harmonizitit — linear aus voneinander unabhin-
gigen Normalschwingungen zusammensetzen. Zahl und Formen dieser
Normalschwingungen werden durch den rdumlichen Bau des Molekiils,
im besondern durch seine Symmetrieeigenschaften festgelegt. Sie sind
unabhédngig von allen Annahmen iiber die Krifteverteilung, unabhin-
gig von den schwingenden Massen und unabhingig von den metrischen
Gegebenheiten. All diese Dinge spielen erst dann eine Rolle, wenn es
sich um die Bestimmung der Schwingungsfrequenzen handelt, wie etwa
bei der Feststellung gewisser Gruppen und Bindungen durch Zuordnung
ihrer mehr oder weniger konstanten charakteristischen Frequenzen —
eine Methode, die in der Jonstitutionsermittlung grosse praktische Be-
deutung erlangt hat.

Die Beobachtbarkeit der Normalschwingungen, sei es fir sich oder
in Kombinationen, in den Infrarot- und Ramanspektren wird durch
ihren Einfluss auf das elektrische Moment bzw. die Polarisierbarkeit des
Molekiils, also letztlich wiederumi durch Symmetrieeigenschaften be-
stimmt. Die Technik der Zuordnung der einzelnen Schwingungen, hei
der alle moglichen Abweichungen vom idealisierten harmonisch schwin-

1) Von der Philosophischen Fakultat IT der Universitit Ziirich mit dem
Hauptpreis bedachte Preisschrift. — Fur die Ubernahme des groten Teiles der
Druckkosten méchte die Schweiz. Min. Petr. Gesellschaft den zustéindigen Stellen
der Universitit und dem Autor den besten Dank abstatten.
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genden Massenpunktsystem, wie Anharmonizitit und Resonanzeffekte,
mitberiicksichtigt werden miissen, soll hier nicht behandelt werden.
Liegen die auftretenden Normalschwingungen aber einmal vor, dann
kénnen schon aus ihrer Anzahl Schliisse auf den rdaumlichen Bau des
Molekiils gezogen werden. Diese Beziehung zwischen Bau und Normal-
schwingungen der Molekiile bildet mit ihren Vieldeutigkeiten ein An-
wendungsgebiet der Symmetrielehre und der Gegenstand der vorlie-
genden Arbeit.

II. Die Aussagen der Symmetrielehre iiber den Molekiilbau

Zunichst soll ein Teilchensystem. wie es ein Molekiil ja darstellt,
auf die Symmetrieeigenschaften seiner GGleichgewichtslage hin betrachtet
werden. Weil molekulare Konfigurationen in sich abgeschlossen sind,
gehen alle méglichen Symmetrieelemente durch einen Punkt und bilden
so eine Punktsymmetriegruppe. Die 32 Kristallklassen geben Beispiele
fiir solche Gruppen: fiir Molekiile sind indessen die nichtkristallogra-
phischen Punktgruppen ebenfalls einzubeziehen, da die durch die Raum-
gitterstruktur der Kristalle bedingten Einschrinkungen wegfallen. Eine
vollstindige Aufzihlung der Punktsymmetriegruppen findet man etwa
bei Nowackir (9). In dhnlicher Weise erfiillen die einzelnen Elemente des
Teilchensystems, seien es nun Atome oder Ionen, die Forderung der
Abgeschlossenheit, so dass auch ihnen Punktsyvmmetriegruppen zukom-
men miissen. Dementsprechend soll fiir die Betrachtung zwischen Lage-
symmetrie der Konfiguration und Eigensvmmetrie der Teilchen
unterschieden werden. Dabei bedeutet die Lagesymmetrie die hichste
Punktsymmetriegruppe. die der Konfiguration nach ihrer Anordnung,
bei beliebiger Annahme iiber die Eigensymmetrie der Teilchen, zukommen
kann: unter der Eigensymmetrie dagegen wird die Punktsyvmmetrie-
gruppe verstanden, die einem Teilchen fiir sich tatsiichlich zukommt,
wenn es, ohne an seinem Zustand etwas zu dndern, aus dem Verband
herausgelost gedacht wird. Die Eigensvmmetrie stimmt demnach mit
der Symmetrie des Kraftfeldes an der betreffenden Stelle iiberein.

Die Annahme, dass sich alle Teilchen kugelsymmetrisch verhalten
(Eigensymmetrie K, ), rechtfertigt ihren gedanklichen Ersatz in der
Konfiguration durch gestaltlose Massenpunkte. Nach dieser iiblichen
Abstraktion kann sich nur noch die Lagesymmetrie auswirken; es spricht
dann gar nichts dagegen, einer gegebenen Anordnung die hochste iiber-
haupt mit ihr vertriagliche Punktsymmetriegruppe eindeutig zuzuordnen.
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Nach diesem Gesichtspunkt haben etwa JAHN und TELLER (6) die meisten
der zur Verwirklichung der Punktsymmetriegruppen notwendigen und
hinreichenden Punktlagen angegeben. Eine vollstindige Zusammenstel-
lung liefert die Tabelle I.

Tabelle 1. Die zur Verwirklichung der Punktsymmetriegrupj)en nolwen-
digen und hinreichenden Punktlagen

C, 4 C, D, ‘ Cp C,, Gy,
G, 3C; T “ G,
C, 3(Cy, C) T, Cp Cps Gy
C, 2C, Ty Cy C,
Coi G 0 C,
th 2 (Cls Cn) Oh CI' Cs’ C'zw Cav’ C4v
Cov (Cp, C+(Cy, C,, CL) I C,
S 26, L, Cy, Gy Gy Cays Gy
Drl Cl 2 Cmv 2 Coov
Dyq Ci C, D Coov
(Cs Cons D, haben fiir endlichzahlige Punktlagen keine Bedeutung)

Es bedeuten ¢ eine beliebige ganze Zahl > 1
p eine ungerade Zahl > 1
n eine gerade, nicht durch 4 teilbare Zahl
m eine durch 4 teilbare Zahl

Will man aber die Idealisierung nicht so weit treiben, so wird man
zulassen miissen, dass das Verhalten eines Teilchens nicht mehr allge-
mein der holoedrischen Kugelgruppe gehorcht, sondern irgendeiner durch
Art und Zustand des Teilchens bedingten Punktsymmetriegruppe. Diese
Eigensymmetrie der Teilchen wirkt nun insofern mit der Lagesymmetrie
zusammen, als sie die Symmetriebedingungen der Punktlagen nach oben
begrenzt. Bei unbekannter Eigensymmetrie der Teilchen lassen sich
daher einer gegebenen Konfiguration — wiederum nach gedanklichem
Ersatz der Teilchen durch Punkte — an sich alle liberhaupt mit ihr ver-
traglichen Punktsymmetriegruppen als moglich zuordnen. Die sich er-
gebende Vieldeutigkeit kann offenbar nur durch das Auftreten von
Kombinationen verschiedener Punktlagen eingeschrinkt werden. Immer-
hin legt das grundsétzliche Streben nach hochstmoglicher Symmetrie
nahe, beim Fehlen von Gegengriinden der hdchstsymmetrischen Punkt-
gruppe allgemein die grosste Wahrscheinlichkeit beizumessen.

In der Gesamtheit der so fiir eine Konfiguration in Betracht fallen-
den Punktsymmetriegruppen lassen sich im allgemeinen zwei Gruppen
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auseinanderhalten: in der ersten bedingt die Punktsymmetriegruppe die
Lagesymmetrie der Konfiguration notwendig, wihrend diese in der zwei-
ten Gruppe nur bei geeigneter Wahl der Parameter fiir Punktlagen mit
Freiheitsgraden entsteht, also zur blossen Pseudosymmetrie wird. Ein
scheinbar aus geometrisch gleichwertigen Teilchen aufgebauter Punktner
kann sich dann auch als Kombination von mehreren Punktnern mit
entsprechend geringerer Zihligkeit erweisen. In der ersten Gruppe, in der
die Konfiguration noch symmetriebedingt ist, stellen nach dem kristallo-
graphischen Sprachgebrauch simtliche Punktlagen allgenieine Formen
oder Spezialformen dar, wogegen in der zweiten Gruppe mindestens
eine Punktlage eine Grenzform bildet.

Tabelle II gibt nun beispielhaft eine vollstindige Ubersicht iiber
die symmetriebedingten Konfigurationen von 2 bis 12 Teilchen. Die
linke Spalte enthilt die Anzahlen gleichwertiger Teilchen, in der mitt-
leren Spalte ist die héchstsymmetrische und in der rechten Spalte sind
die weiteren Punktgruppen aufgefiithrt, aus denen die Konfiguration
folgt. Die Konfigurationen selbst sind fiir jede gegebene Teilchenzahl
willkiirlich mit Buchstaben bezeichnet. Man sieht, dass gewisse Kom-
binationen von Zahlen gleichwertiger Teilchen durch die Symmetrie-
lehre ausgeschlossen werden; das ist dann der Fall, wenn es keine Punkt-
symmetriegruppe gibt, die alle entsprechenden Zihligkeiten zur Ver-
fiigung stellen wiirde.

Sollen auch die pseudosymmetrischen Anordnungen erfasst werden,
so miissen die méglichen Uberginge zwischen den einzelnen Konfigura-
tionen, die sich durch Ausniitzung der Freiheitsgrade ergeben, beriick-
sichtigt werden. Ein Beispiel mag das veranschaulichen:

Unter den Konfigurationen von 8 gleichwertigen Teilchen kann die
oktagonal-prismatische Anordnung a) aus den Punktgruppen b) und c¢)
hervorgehen, die oktagonal-streptoedrische b) aus d), die ditetragonal-
prismatische ¢) aus d) und e), die tetragonal-trapezoedrische d) aus
keiner andern, die tetragonal-skalenoedrische e) ebenso aus keiner an-
dern, die tetragonal-bipyramidale f) aus d), e) und g), die orthorhom-
bisch-bipyramidale g) aus keiner andern und schliesslich die oktaedrische
h) aus f). Bei mehrfachen Ubergingen lisst sich also etwa der okta-
edrische Achtpunktner durch die Punktsymmetriegruppen von d), e),
f) oder g) vortduschen. Dabei sind aber immer noch alle 8 Punkte gleich-
wertig; soll auch diese Voraussetzung fallengelassen werden, so hat man
die zusitzlichen Uberginge aus passenden Konfigurationen mit mehreren
Punktlagen, deren Ziahligkeiten die Summe 8 haben, heranzuziehen.
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Tabelle IT
Mégliche Punktsymmetriegruppen fiir Konfigurationen von 2—12 Teilchen
2 H.) C"cr:v in DG:h ! (:‘7_ in D’:C’ C‘:r_ in C'f,h’ C!qv in th’ C‘qv
| inD,,, C, inD,, ¢, inCyy, C, in €,
i Cue In S, Gy in Dy, Ty in Dy, €y in
b Cy,, Coin Cyy,, € in Gy, ¢y in C,, €
! in C;
1+1 a) 2C, . inC,, | 2C,inC,,2C, inC,,2C, inC,
- 2C,inC, 2 C,inC,
i
3 a) Cy, in Dy, 1 C,inD,, C,in Dy, ¢, in Cy,, €, in Cy
241 |a)C, +D,,inD,, €, 4D, in D, C +C,, in O,
Cpw+D,y in Dy, C o +D, in D,
C,+D,inD,, C +C, in C,, C,+
Cpi n C‘pi’ Cm/'.!+sm in Sm’ C’_".’+D‘2h
| in Dy, Co+ D, in Dy, C 4 Cyy in Cyy,
C,+¢C inC,
b) C,+C,. in Cy, | C+CinC, C 4G,y in G,
1
1+1+1 |a) 3C, . inC,, 3C,inC,.3C,inC,.3C, inC,
~b) 3¢ in C 3¢ inC)
4 a) C,.in Dy, ‘ C,in D,, ¢, in D,,, C, in O, C, in
! L Cy,, Cpin €y
| b) C,in Dy, S Cpin 8,
i e) Cin Dy, DO in Cyyy Cp in Oy,
d) Cyin Dy ‘
e) (i, inT, ; Cyin T
| .
341 a) Cy. + Dy, in Dy, Cy+ D, in Dy, C,+ Cyy in Cyy
i b) C,+C,, in Cy, C;+Cyin
242 la) 2C, . inD_, 2C,inD,,2C,inC,, 2C, in
| D,.2C,inD,,2C inD,2C, in
i Ci» 2C,inCy, 2C,nin K, 2C,.°
| in D, 2, in D,
| b) G+, in Dy, C,'+C," in Dy, C,+C, in Cy,
| ) 2C.inC,, 2C,in C,
L) ¢4 C in Gy, |
i e) 2CinCyy ] 2, in C
) 2Cin G, ‘
24141 |a) C+2C,, inC,, | € +2C,in G,
b) C;+2C,in C, |
1+1+1+1 | a) 4C,, inC,, 40, inCpaCpinC,, 4C,inC,
b) 4 C,in C, 1
EE ¢, in C, ‘
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5 a) C,, in Dy, C,in Dy, C, in Cyy, C, in C;,, C; in Gy
4+1 a) Cy, + Dy, in Dy, C,+D, in Dy, C;+D,, in D,,, C,+
Cyp in Cyy
b) C,+Cy, in Cy, C,+C,inCy
¢) C,+ Dy, in Dy, C,+8,in 8,
d) C,+ Dy, in D,, C,+Cyy in Gy,
e) C1+C2v iIl C‘lv
f) C;+D,in D,
g) C;,+T,inT, Cy+TinT
3+2 a) C,,+C,. in Dy, C,+Cyin Dy, C,+C;in Gy,
3+1+1 a) C,+2C,, in Cy, C,+2C,in C,
2+2+1 a) 2C_.+D_,inD_, 2C,+D_inD_,2C_ +C_,inC_,,
2C,+Dy, in Dy, 2 C,+Dy, in
D, 2C,+D,inD,, 2C +C, in
Cpnr 2 C+Cp inCyy, 2C,5+ 8, In
Sus 2 G+ Dy in Dy, 2C,"+ D, in
D,
b) Co. +Co.”" + Doy in Dy, | C/+C,"+ D, in Dy, C,+C,+Cy, in
Can
C) 2 Cs’ + C2v ln C:!v
d) Ca’ + Ca” +C2v ill C!!v .
e) 2C,+C,y, in C,yy 20,40, in G
f) 2C,+C,inC,
g) 2C;+C,inC,
24+14+1+1 1 a) C,+3C,. inC,, Ci+36GC,in C,
b) C;+3C,in C,
1+1+1+ | &) 5C,.,nC_, 5C,inCy, 5C,,inC,,5C, inC,
1+1 b} 5 C, in C,
c¢) 5C,in C,
6 © ) C, in Dy, C, in Dy, C, in Dy, C, in Cgp, C, in
: | Cgys Cpin Cy
b) C,in D,, C,in Cy;
¢) Clin Dy, C,in C,,
d) C;in D,
e) Cllin Dy, C,in Cy,
f) C4, in Oy C,in0,Cy,inT,, Cpy inTy, Cin T
S+1 a) C,.+ D, in Dy, C,+D; in D;, C,+Cg, in Cy,
by C,+C;, in C;, Ci+C5inCy
442 a) Cy, +Cyy in Dy, C,+C, in D,, C;+C,, in D,,, C,+
C,in C,,

Hchweiz, Min, Petr.

Mitt,, Bd. 31, Heft 2, 1951
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b) C,+ C,, in Dy C,+C,in 8,
¢) C,+Cy,tin Dy,
d) C,+C,,lin Dy, C,+0,in Gy,
e) C,+C,in Cy,
f) C,+0C,in Cyy
g) C,+C,inD,
44+1+1 a) C,+2C,, in Cyy C,+2C,inC,
b) C,;+2 Cy, in Cy,
3+3 a) 2 C,,’ in Dy, 2C, in D,
b) C,.’ +Cy,” in Dy, E +0" in D,
c) 2C,in Cy,
d) 2C,’in C,,
e) C,/+C, inC,,
£) 2C,in G,
3+2+1 a) Cpy+Cy, + Dygy in Dyy Cy+Cy+ Dy in Dy, C,+C3+Cy, in
Cah
34+41+1+1 | a) C,+3C;,inGCy, O, + 3G, i Cy
2+242 i a) 3Cq,in Dy 3 C, in Dy, 3 Cy, in Cyy, 3 Cgy in
; Dy 3 Cyv in Dgg» 3 €, in Dy, 3 G in
i Cy 3 Cy in Cppy 3 Cpype in 8y, 3Gy,
] in Dy, 3C, in D,
| b) Oy’ + Gy + 0" in Dy, | C/+C"+C," in Dy
| ¢) 2C,+C,in Cy,
L d) 20, +C,," in Dy, 2 Cy+C," in Dy, C,+2 Cy in Cyy
fe) 2C,/+C,"inC,,
L f) 3C, in Cy,
\ g) 3C,in C,
" h) 3C,in Gy,
P i) 3 C,in C;
i k) 3C,inGC,
2+2+1+1  a) 2C/+2 0y, in Cs,
' b) C/+C +2Cy,in Cy,
e) 20,42C,inGC,
. d) 2¢,+2C,inC,
2+1+4+1+ a) C,+4CyinCy, C,+4C,inC,
141  b) (,+4C,inC,
1+1+1+1+} a) 6C ., in Cyy 6C, inC,,6C,, inC,, 6CinC,
1+1 b)) 6C,inC,
e) 6C,inCy
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641

3+2
5+14+1

4+3
4+2+1

4+1+1+1

3+3+1

3+242
3+2+1+1

3+1+1+
1+1

2424241

SRt o

a) Gy, in Dy

a) Gy +Dgy in Dy,

b) C,+C,, in Gy,

) Cy+Dgqin Dyy
) Ct+ Dy, in Dy,
) C1+Cy, in Cy,

) Ci+D;in D,

) C/l+ Dgy in Dy,
) C4p +0,1in Oy

oo

a) G, +C;, in Dy,
ay C.+20C;, in C;,

a) Gy +Cyy + Dy, in Dy,

b) C,+C,, + D, in D,y
¢) C,+C, 1+ D,y in D,
d) C,4+C, 1+ Dy, in D,y
e) Ci+C,+CyinCyy

f) C+C,+Coyin Cyy

g) C;+C,+D,in D,

a) C,4+3C,1nC,,
b) C,+3 C,, in C,,

) 2C,."+ Dy in Dy,

) Cop' +Cy," + Dy, in Dy,
)

)

)

2 C,+C,y in Cyy
2C,’+C,. in Cy,

[= =)

e) C"s’ + Cs” + C"3v ill C':l\'
f) 2C,+C,in C,

a‘) CEV & 2 C3v in D3h

a) C,+4C,, in C,,

a) 3C,,+D,,inD,,

C,in D,, C,in Cyy, C, in C,,, C, in C,

Cy+Dg in Dy, Co+ D,y in Dy, C, +
Cgy in Cy,,

C,+GC; in Cq

C,+C;, in Cy,

C,+ Gy, in Cyy
C,+0in 0O, C,,+T, in T, C,, + Ty
inTy, C,+TinT

C,+C; in D;, C,+C; in Cyy,
C,+2C;in (4

C;+Cy+Dy in D, C;+C,,+ Dy, in
i Doy, C,+Cy+Cyy, in Cyy
Ci+C+8,in §;

Ci+Co+ Gy, in Cyy

C,+3C,inC,

2(,’+ D, in D,
C' 4+ C "+ Dy in Dy

C,+2C;in Dy, C,+2 C;in C,y,

C,+4C,in G,

3C,+D,inD_,3C, +C, ,inC,,,
3 Ch+Dg in Dy, 3C+D,, in
Dy, 3C,+D,in D, 3 C,+Cy in
Cns 3C,+Cpin €y, 3C,,+S,in
i 8, 3 G +D,, in Dy, 3C,/+D,
in D,
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242+1+
1+1

2+14+1+1+
1+1

1+1+1+1+
1+1+1

b) C2v, + C2v” & sz’” * D2h

in Dy,

¢c) 2C,4+C,+Cyy, in Gy,
d) 2Cy,"+Cy," + Dy in Dy,

o) 20/ +C,"+C,,

f) 30,/ +C,, inC,,

g) 3C,+C,in C,
h) 3C,+C,, in Cyy
i) 3C,+C, inC,
k) 3C,+C,in C,

a) 2C, 43 C,, in Gy,

b) Ca’+Cs”+302v
¢) 2C,+3C,inC,
d) 2C,+3C,inC,

a’) Cs+ 5 CZV in CEV
b) C,+5C,inC,

a) 7C_,inC_,
b) 7C, in C,
e) 7C in C,

Cyy in Gy,

in C,,

in C,,

Cy+5C, in C,

TC,inC,,7C,,inC

C,'+C " +C"+D,inD
2 2

2C,+C,"+D, in D,, C,+2Cy+

7C,inC,

qv?

74+1

6+ 2

6+1+1

5+3

a) Cy, in Dy,

b) C,in Dy,
C) Csl in D4h
d) C;in D,
e) C,in D,,
f) ¢)lin Dy,
g) Cyin Dy,
h) €4, in Oy

a) Cpy+ Dy, in Dy,
b) C,+C,.inC,,

a) Co, 4+ Cyy in Dy,
b) C,+C;, in Dy,
¢) CL+Cy in Dy,

d) C,+Cy in D,
e) C,l+C,, in Dy,

a) C,+2C,, in C,,
b) C;+2C,, in C,,

Cgyr G, Iin Cy
C,in S,
C, in C,,

T 1
C,in Cy,

¢,in 0, Cyin T,

C,+C,in C,

Cqin Cgp
C,+C,in Cy;

C,+C,in Gy,
Cy+2C,in C

C, in Dy, C, in D,,, C, in Cg,, C, in

C,+ D, in D;, C,+Cyy in Cyy

C,+C4 in Dy, Cy+C,, in Dy, C,+
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54241 a) C,, +C;, + Dy, in Dy, Cy+Cs+ Dy in Dy, C, 4 C5+ Gy in Cyy,

5+1+1+1a) C,+3C;, inC;, C,+3C;in Cy
4+ 4 a) 2C,, " in Dy, 2C,in Dy, 2 Cyin Dy,
b) 2 Cs’ n Cdv
c) Cp,'+C,," in Dy, C’+C,” in D,

d) C,/+C,"inC,,
e) 2C,in Cy

f) 2C,inC,

g) C;+C,in Dy,
h) 2 C, in Dy,

i) 2C,in §,

k) 2 C,in Dy,

I) 2C,inC,,

m) C,”+C,” in Dy,
n) 2 C,in C,,

0) 20, inD,

p) 2C,;,in T, 2C,inT

q) C3v o+ CSvI in Td Cs+03' 1n T
44341 -
4+2+2 | a) G, +2C, inD,, C,+2 C, in D,, C,+2 C,, in Dy,
- C,+2C, in C,,

b) C,+2 C,, in D,, C,+2C,in 8,

¢) C,+2C,,Lin Dy,

d) C,+C,, 1+ sz” in Dy,
e) C,+2C,,lin Dy, C;+20C,in C,,
f) C,+C,/1+C,,l" in Dy,
g) C,+2C/ in C,,

h) C,+C,”+C," in C,,

i) C;+C,+C,in C,,

k) C,+2C,inC,,

1) C,+2C,in D,
m)C,+C,’+C," in D,

4+24+1+41 ) a) C;+C,+2C,,in C,,

4+1+1+4+ | a) C,+4C,,inC,, C;+4C,in C,
1+1 b) C,+4C,, inC,,
3+3+2 a) 2C,," +C,, in Dy, 2C,+C;in D,

b) Cp,"+C,," +Cy, in Dy, Cy’+C,"+Cyin Dy
¢) 2C,+C,in Cy,

3+3+1+1 a) 2C/ +2C,;,inC,,
b) C,/+C,"+2C,, in C,,
c) 2C,+2C,inC,




494 Alfred Niggli
; ! .
3+2+241 1 a) C,,+2C,, +D,, in Dy, l C:+2C;+D; in Dy, C,+2 Cy+Cyy
i in Cy,
3+2+1+ - {
1+1
3+1+1+1+ a) C,+5C,, inCy, Ci+5C;in C,
1+1
2+2+2+2 | a) 4C, . inD_, 40, in Dy, 4 C, in C,y, 4 C,, in
Dy, 4 Cppin Dy, 4 C in D, 4 C,
in C, 4 C, in C,, 4 C,p, in S,
4 Cy," in Dy, 4 ¢y’ in D,
b) 2C, "+ C,y," + 0, in Dy, | 2Cy +C," +C,” in D,
¢) 2C,4+2C,inC,,
d) 3C,+C,inC,,
e) 2C, 4+2C,," in Dy, 2C,'+2C in D,
f) 3C,"+C,," in Dy, 3 C,/+C," in Dy, 3 C,+C, in Gy,
g) 2C,/+2C,”inC,,
h) 3C,/+C,"inC,,
i) 4C,/inC,, ’
k) 4C,inC, |
1) 4C,inC,, ?
m)4 C, in C,
n) 4C;in C, ‘
\
2+2+2+ |a) 2C,/+C, +2C,,inC,, |
1+1 b) 3C,/+20C,,inC,, ,
c) 3C,+2C,inC,
d) 3C,+2C,inC,
2+2+14+14 a) 2C/+4C,, inC,,
1+1 b) C,//+C,"+4C,, in C,,
¢) 2C,+4C,inC,
d) 2C,+4C,inC,
2+1+1+1+]| a) C,+6C,, inC,, C,+6¢C,in C,
1+1+1 | b) C;+6C,inC,
1+1+1+1+| a) 8C,,inC,,, ![ 8C,inC,, 8C,, inCy, 8C, in C,
1+1+1+1  b) 8C,inC, ;
e) 8C inC, ]{
9 a) C,, in Dy, Cyin Dy, C, in Cyy, C, in Cy,, C, in C,
8+1 a) Cy, + Dy, in Dy, Cy+ Dy in Dy, Cy+ Dy, in D, C,+
Can in Cgy
b) C,+C,, in C4, C,+Cgin C4
¢) C,+D,, inD,, C,+8S,in S,
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7+2
7+1+1
6+3

6+2+1

6+1+1+1

5+4
5+3+1
5+2+2
5+2+141
541414141
4+4+1

d) CL+D,, in Dy
e) C;+C,, in Gy
fy C,+D,in D,

g) C1+ Dy in Dy
h) C,'+D,, in Dy,
i) C;+D,, in D,,
k) Cg, + 0, 1n Oy

a) Gy, +C;pin Dy
a) C,+2C,,inC,,

&)

b) C”+C lin Dy,
c) C+C, lmDah
d) C,+C, in Cy,
e} C,+C,in Dy

f) C,+C,in Cy,

a) Cg; +Cgy + Dg, in Dgy

b) C,+C;5y + Djyy in Dyy
¢} Cit +Cy, +Djy, in Dy,
d) C,+C;4+D;in D,

)

e) Cl4+Cy + Dy, in Dy,

a) C,+3C,;, in Cy,
b) C;+3C,, in C,,

a) C,,+2Cy, in Dy,

a) C,+4Cs, in C;,

a) 2C,, "+ Dy, in Dy,
) 2C/+C,, inCy,
¢) Cy'+Cy," +Dy, in Dy,
) Cs’ + Cs” + C4v in O4v
e) 2C,+Cyy in Gy,
f) 2C;4+C;inC,
g) Cy+C,+ Dy, in Dy
h) 2 Cs + Dzd in D‘:d
i) 2C,+8,in 8,
k) 2C,/+D,, in Dy,
1) 2C+C,,inC,,
m)C,’+C," + Dy, in Dy,

C,+Cyy in Cyy,

C;+0in 0, C;+ T, in T,
C,+C,inD,, C,+C,in Cyy
C,+2C,inC,

Co+Cy+ Dy in D¢, C;4+C,, +Dyy In
Dy, C,+Cg+Cgy, in Cyy,
Cl+03+03i in C"ii

C,+Cy +Cyy in Cyy
C,;+3C, in C,

C,+2C;in Dy, C,+2 C; in Cyy

C,+4C; in C;
2 C,/+D, in D,, 2 C,+D,, in Dy,

C,’+C,"+D, in D,
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44+3+2
4+3+1+1
44+2+4+2+41

44241+
1+1

4+1+1+1+
1+1

3+3+3

3+3+2+1

3+34+1+
1+1

3+2+2+2
3+2+42+141
3+241+141+1

n) 2C;+Cyy in Cyy

0) 2C,+D,in D,

p) 2GC,,+TyinT,

q) C3;+C3,'+ Ty in T,

a) Cyy+2 Cyy + Dy, in Dy,

b) C,+2 Cgy +Dyq in Dy,

¢) C,+2 Gyl + Dy in Dy,

d) C,+ CZV'!' + sz” + Dy, in
Dy

e) C,+2C,,"+ Dy, in Dy,

f) Cs + CZV”’ + CZVH” + D2h
in Dy,

g) C1+2GC, +C,, inCy,

h) C,+C,/+C,"+C,, in C,,

i) Ci+Cy+C,+Cyin Cyy

k) C;+2C,+C,, in C,,

) C,+2Cy+D,inD,

m)C,;+C,’ +C,”+ D, in D,

a) C,+C,+30C,,in C,,

a‘) Cs + 5 C4v in C4v
b) Cl + 5 C2v in CZv

a) 3C,," in Dy,

b) 2 C2v’ + C2v” in Dﬂh

e) 3C,inCy,

d) 3C, in Cy,

e) 2C,/+C," in Cy,

f) 3C,inC,

a) 2C,,"+Cyy + Dy in Dy,

b) Cy,"+Cp," +Cyy + Dy,
in Dy,

e) 2C,+C;4C,, in Cyy

a) 2C,+30GC,, inC,,

b) Cs,+cs”+ 3 C3v in Cav

c) 2C,+3C,inC,

a) C,, +3C,, in Dy,

2C;+TinT
C+Cy'+TinT

Cy+2 Cy+D,in D,, C,+2 C,, + Dy,
in Dy, C,+2 C,+C,, in C,,
C;+2Cy+8, in 8,

C,+2Cy+Cy, in Oy,

C,+5C,in C,

3 C, in D,
2C,+C," in D,

2C,'+Cy+D, in Dy
Cy+C,"+Cy+ D, in D,

C,+3 Cyin Dy, C,+3 Cy in Cyy
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3414+1+14| a) C,+6C,;,inC,, C;+6C;in G,
1+1+1
242424+ | a)4C,+D,inD, 4C,+D_ inD_,4C_ ,+C_,inC,y,
241 4 C,+D,, in D, 4 C,+D, in
D,s 4 C,+D, in D, 4 C,4+C,, in
Caws» 4 C,+C,;inC,;, 4 C,p+8, in
S 4 Co.'+ Dy, in Dy, 4 C,'4-D,
in D,
b) 2C,, ' +C,," +C,," " + Dy, | 2C,'+C,"+C," +D, in D,
in Dy,
c) 2C,+2C,+C,, in Cyy
d) 3C,+Cy+Cy, in Cyy %
e) 2C,, +2C,.,"+D,, in 2C,’+2C, "+D,in D,
. Day
‘ f) 3C, +Cy."+DginD,, | 3 C'+C,"+D, in Dy, 3 Co+C,+
| . Con in Cyy
i g) 2 Ca’+ 2 Ca”+CZV in C2v
' h) 3C,/+C,"+C,, in Gy,
i) 4C/+C,,in C,y,
| k) 4C,+GCinC,
1) 4C,+C,,in Cyy
m)4 C; +C, in C,
‘ n) 4C,+C,in C,
2+24+2+1+| a) 2C,/+C,"+3C,,inC,,
141 ' b)3C/+3C,, inC,,
¢) 3C;+3C,inC,
d}3C,+3C,inC,
2424141+ a) 2C,'+5C,, in C,,
1+14+1 b) C,’+C,”"+5C,, in C,,
¢) 2C,+5C,inC,
d) 2C,+5C,inC,
24+41+1+1+1 a) C,+7C,,in C,, C,+7C,in C,
1+1+141  b)C,4+7C,inC,
1+1+1+ . a) 9C,,inCg,, 9C,inC,,9C,,inC_, 9C,in C,
14141+ :b)9C,inC,
1+14+1  l¢) 9CinC,
10 a) C,, in Dy, C, in Dy, C, in Dy, C, in Cyy,, C, in

b) C, in Dy,
c) Clin Dy,
d) C, in Dy
e) Clin Dy,

Ciovs Crin Gy
C, in Cy;
C,in C;,

C, in Gy,
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9+1

8+2

8+1+1

7+3
7+2+1
7+1+1+1
6+4
6+3+1

6+242

6+2+1+1

6+1+1+
1+1

5+5

3+4+1
5+3+2

a) Cy, + Dy, in Dy,
by C,+C,, in C,,

a) G, +C4, In Dy,

b) C,+C,, in Dy,

¢) Cl+Cy,in Dy,
d) C,+C,in D,

e) C,+C,, in D,,

f) C'+C,, in Dy,
g) C;+C,, in Dy,

a) C,+2Cq, in Cy,
b) C,+2C,, inCy,

a) Gy, +C4, +Dgy in Dy,
a‘) Cs+ 3 C'n‘v in C7v
&) C2v + C:l\' in ’I‘d

a) CL+C,, + Dy, in Dy,

b) Cl+Cpl + Dy, in Dy,
¢) Cli+Cy L+ Dy, in Dy,
d) C;+C,+Cy, in Cyy

e) C;+C,+D;in D,

f) Ci+C,+C,, inCy,

a) G, +2Cq, in Dy,

b} C,4+2C,, in Dy,
¢) CL+2C,, inDy,
d) C,+2C,in D,

e) C'4+2C,, in Dy,

a) C,+4C,, inC,,
b) C;+4C;. in C,y,

a) 2C,. in Dy,

b) Cp,"+C,." in Dy,
e) 2C,in C;y

d) 2C,in Cy,

e) C,'+C," in Cs,
f) 2C,inC;

|

Cy+ Dy in Dy, C, 4 Cyy in Cyp
C,+C,in C,

C,+Cy in Dg, C,+C,, in Dy, C,+
Cg in Cy,
C+Cyin Sy

C;+C,in Cy,

C,+2C,in C,

C;+C;+D;inD,, C,+C,+C,,inC,,
C;+3C;in C,
C;+CyinT

C,+2 Cg in Dy, Co+2 C,, in Dy,
C,+2Csin Cgy
C,+2C,in Cy,

C,+2C,in Gy

Ci+4C;in Cy

2 ¢, in D,
¢y’ +C,”" in D,




Die symmetriebedingte Vieldeutigkeit in der Molekiilspektroskopie 499

5+3+1+1
5+2+2+1

S+2+1+1+1
S+1+1+1+141
4+4+2

4+4+1+1

44+3+3
4+3+2+1
443+1+414+1
44+242+2

a) Gy, +2C;, + Dy, in Dy,

a) C,+50C;,in C;,

a) 2C,."+C,, in Dy

b) Cp,"+Cy," +Cy, in Dy,
ce) 2C,+C,inCy,

d) C;+C,+C,, in Dy,

e) 2C,+C,, in D,,

f) 2C,+C,in 5,

g} 2C +C,.Lin D,,

h) 2C,/+C,in D,,

i)y C,/+4+C"+C,"in Dy,
k) C/+C,"+C, L' in D,,
I) 2C+C,inC,,

m)2 C +C,in C,y,

n) 2C,+C,in C,,

0) 2C,+C,in D,

a) 2C,+2C,, inC,,

C/+C +2C,, inC,,
2C;+2C,in C,
2

C,+2C,, inC,,

a) C,, +3 C,, in D,

b) C,+3 C,, in Dy,

¢) C,+3C,,4in D,,

d) C,+2C,1+C,.lin D,,

e) C,+Cy1+20C,lin Dy,

f) C,+3C,Mlin Dy,

g) Ci+Cpl +C, V4 Cp 1"
in D,,

h) C,+2GC,. "' +C,,l” in D,,

i) C;+3C,/inC,,

k) C;+2C,/+C,"in C,,

1) C;+3C,inC,,

m)C,+C,+2C,in C,,

n) C;+2C,+C,in C,,

C;+2 C;+D; in D;, C,+2 C;+C;,
in Gy,

C,+5C;in Cy

2 €, +C, in Dy, 2 C,+C,, in D,,
C,’+C,"+C, in D,

C,+3 C; in Dy, C,4+3 C,, in Dy,
C,+3C,in Cy
C;+3C,in §;

C;+3 C, in Cy
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44+2+2+
1+1

44+2+141+4
141

4+14+14+1+
1+1+1

3+34+3+1

3+3+2+2

3+3+2+141

3434141+
1+1

3+2+2+
2+1

3+2+2+1+
1+1

3+2+1+1+
1+1+1

3+1+141+
1+1+1+1

24242+
2+2

o) C,+3C,in D,
p) C;+2C,/+C," in D,
q) C;+Cy+Cy" +C," in D,

a) C;+2C,/+20C,,inC,,
b) C;+C,/+C,"+2C,, in
C2v

a’) CI+CS+4C2vi‘nC2v

a) C,+6C,, in C,,
b) C;+6C,, inC,,

a) 3 Cy,"+ Dy, in Dy,

b) 2Cy,"+Cy," 4+ Dyy in Dy,
¢) 3C,+Cy, in Cyy

d) 3C,/+C;,in Gy,

e) 2C,/+C,"+C,, inCy,

£) 3C,+C,inC,

a) 2C,,+2C;, in Dy,
b) C;," + C,," +2C,, in Dy,
e) 2C,+2C;in Gy,

a) 2C, +4C,, in Cy,
b) C,/+C,”" +4 C,, in C,,
c) 2C,+4C,inC,

a) Cy, +3C;5, + Dy in Dy,

&) Cs + 7 C3v in C3v

a) 5C,,,inD_,

b) 3C,,"+Cy," +Cp," inDy,

¢) 20,/ +2C,." +C,." in
Dgy

d) 2C,+3C,inCy

C,+6C, in C,

3C,’+ D, in D,
20, +C,"+ D, in D,

2C,’+2C,in D,
Cy+C,"+2Cyin Dy

C,+3 Cy+ Dy in Dy, C,+3 Cy+C,,
in Cyy

C,+7C, in C4

5C,in Dy, 5 C, in Cp, 5 Cy, in
Dy 5C,inDy,, 5C, inD,, 5C,in
Cin» 3C,inC,, 5C,pnin S, 5C,,’
in Dy, 5C," in D,

3C,+C,"+C,” in D,
2C,+2C,"+C,” in D,
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e) 3C,+2C,in Cyy
f) 4C,+C,in Cyy

g) 3Cy, +2C,," in Dy,
h) 4 C,."+C,," in Dy,
i) 3C,/+2¢"inC,,
k) 4C/+C"inC,,

1) 5¢/inC,,

m)5 C,in C,

n) 5C, in C,,

o) 5C,in(C,

p) 5C,inC,

3C,+2C," inD,
4 C,+C," in D,, 4 C,+C, in Cyy

24242424 a) 2C+2C,"+2C,,in C,,
1+1 ' b) 3C,+C,"+2C,, inCy, |
) 4C/+2C,, in Cy, ‘
d) 4C,+2C,inC, |
e) 4C,+2C,inC,
2424241+ 8) 20/ +C, +4C,, in Cy, |
1+1+1 b) 3C/+4C,, in(C,.
¢) 3C;+4C,in(C, |
1 d) 3C;+4C,inC, J
2424141+ a) 2C/+6C,, in C,, ;
1+14+1+1 ! b) C/+C+60C, inC,,
t
¢) 2C,46C,inC, ;
‘ d) 2C,+6C,inC, |
241414141+ | a) C,+8 C,, in Cy, | O +8C,in C,
1+1+1+1 1‘ by ¢, +8C, in C, '
1+1+1+141+ a) 10C, . inC,, 10C¢, inC,,10C, inC,, 10C,inC,
141414141 ¢ b) 10C, in C,
i e) 10C,in C, i
)
_ 1
11 L a) C,, in Dy, C, in Dy, C, in Cpyy, C, in €y, ¢
in C,
10+1 | &) Cyp+ Dygp in Dy Co+ Dy in Dyg, Co+ Dy, in Dyy, G5+
: Cion I Cyp
| b) C,+Cyp, In Cpg, Cy+Cp in Cyy
| ¢) C,+ D5, in Dy, Cy+Gs in Gy,
" d) CL4 Dy, in Dy, C, +C,, in Cj,
¢) C;+D;in Dy
| ) C' + Dy, in Dy, C+ G5 in Gy
94+2  a) Cp +0Cy, in Dy, C,+C,in Dy, C,+C, in C,,
9+14+1 fa) C,+20C,, inCy, C,+2C,in Cy
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8+3
8+2+1

8+1+1+1

7+4
7+3+1
74242

7+2+1+1
7+1+1+41+1

645
6+4+1
6+3+2

6+3+1+1
6+24+2+1

64+2+1+4+1+41

6+1+1+1+
1+1

5+5+1

a) Cp, 4+ Cy, + Dy in Dy,

b) C,+C,, + Dy in Dy,
¢) CLl+Cy,+ Dy, in Dy,
d) C;+C,+D,in D,

e) C;+C,, +Dy, in Dy,
f) Ca” +Cyy + Dy in Dy,
g) C1+Cyy +Dyy, in Dy,

a) C,+3C,, in Cy,
b) C,+3C,,inC,,

a) G +2C;, in Dy

a) C,+4 C,, in Cy,

a}) Gy, +C3, +Tyin T,

a’) Csl+ C2v + C3v in D3h
b) Ce” +02v” + Gy, in Dy,
c) Cs” +Cayl +Cy, in Dy,
d) C,4+C,+C,;in Cyy

e) C;+C,+C;in Dy

a) C;+C,+2C,, in C,,
a) Gy, +2 Cy, + Dy, in Dy,

b) C,+2C,;, +D;, in Dy,
c) CL+2C,, + Dy, in Dy,
d) C;+2C;+D;in D,

e) C14+2C,, + Dy, in Dy,

a) C,+5Cg, in Cq,
by C,+5C;, in C,,

a) 2C,. + Dy, in Dy,

b) Cy," +C,," +D;, in Dy,
c) 2C,+C,, in Gy,

d) 2C/+C;, inC;,

e) C,/+C/"+C,, inC5,

f) 2C,+C,in C;

C;+Cs+Dyin Dy, C,+C,,+Dyy in
Dygs Ci+Cy+Cyy, in Gy,
Ci+C,+84in S,

C,+Cy+Cy, in Cyy

C,+3 Cgin C4

C,+2C,inD,, C,+2C,in C,,

C,+4C,inC,

Co+C;+Tin T

Cy+2 Ce+Dg in D, C,+2 Cy, +
Dyy in Dy, Co+2 Co+ Gy, in Cy,
C,+2C,+Cy, in Gy

C,+2C,+Cy, in Gy,

C,+5 Cq in C;

2C,"+ Dy in D,
C,' +C," +D; in Dy
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5+442
5+4+1+1
5+3+3
54+3+2+1
5+3+1+1+1
5+2+242
5+2+2+1+1

54+2+1+
1+1+1

5+1+1+1+
14141

44+443

4444241

44+44+1+1+41

4+34+3+1

4434242
4+3+2+1+1
44+34+1+14+1+1

a) Cy,+3Cs, in Dy,

a) C,+6C;, in C;,

a) 2C,, +C;, +D,, in Dy,

b) CZvI + CEV” + C-lv T D~Ih
mn D,,
c) 2C,+C,+C, IinCy,

d) Cy+C,+Cyy+ Dyyin Dyy |

e) 2C,+Cy+Dyyin Dy,
f) 2C,+C,+8,in S,
8) 2G,/+Cy L + Dy, in Dy,

h) 2C,/+C,,l' + Dy, in Dy,

i) C/4+C +Cyll+Dy, in
D,y

k) C/+C,"+C, Ll + Dy,
in Dy,

1) 2C,+C,+Cay in Cp

m)2 C,+C,+C,, in C,,

n) 20, +C,+D,in D,

2C/+30C,,inC,,
C.’ -+-C”+3(L4V1nC4v
C;+3C,inCy

a
b
C
d) 2C,+30C,,inC,,

)
)
)
)

2
2C

C,+3C;in Dy, C,+3 Cy in Cy,

C;+6C;in (4

2 C/+C,+D, in D,, 2 C,+Cyu+

Dy, in Dy,

| € +Cy"+C+ D, in D,
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Cy+3 Cy+Dy in D, Co+3 C,. +
D,y in Dy, C,+3 C,+C,, in Cy,

44+2+2+
241

a) C,,+3C,, +D,, in Dy,

4+24+24+1+
1+1

4+24+14+1+
1+1+1

4+1+1+1+
1+1+1+1

3+3+3+2

3+34+3+
1+1

3+34+2+
241

1+1

3+3+24+14

b) C,+3 C., + D,y in Dy,

¢) C,+3C,L+D,, in D,,
) Ci+2Cy L +Cy 1+ Dy,

in D,,

Cy+Cyl 4+ 2 Cy, 1"+ Dy,

in Dy,

C,+30C,"+D,, in D,,

C,+Cp L+ Cp "+ Cp IV

+ Dy, in Dy,

C,+20C,"+C "+ Dy,

in Dy,

i) C+3C+C,, inG,,

k) C,+2C/+C.+C,, in

Ca,

1) C,+3C,+Cy,in Cyy

m)C;+C,+2C,+ Gy, inCyy,

n) C;+2C,+C, +CyinCy,

0) C;43C,+D,in D,

p) C;+2C,"+C," +D,in D,

q) C,+C,+C,"+C,"+D,

in D,

=7

e)

f)

h)

C,+2C/ +3C, inCy,
C,+C +C"+30C,, in
C“.!\'

a)
b)

C,+C,+50C,, in C,,

C,+7C,, in C,,
C,+7 Cy, in Cs,

3C,, +0C,, in Dy,
2C,,"+Cy," +C;, in Dy,
3C,+C;in Cyy

3C,/ +20C,, in G,
2C/+C"+2(C,. in(Cy,
3C,+2C,inC,

2C,, +2Cy, + Dy, in Dy,
C:!\'/ Eh C2v” + 2 C’Sv + D3h
in Dy,

) 2C,+2Cy+Cyy in Cyy

b)

C,+3C,+8,in 8,

C,+3GC,+C,y, in Cy,

C,+7C,inC,

| 30,/ +C, in D,

20, +C,"+C,in Dy

20,/ +2C,+D,in D,
C+C"+2C;+ D, in D,
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3+43+14+1+
1+1+1

3+2+2+2+2

3+24+2+
2+1+1

3+24+2+14
1+1+1

3+2+1+1+
1+1+1+4+1

3+1+1+1+1+
1+1+1+1

2+2+2+2+
2+1

24+24+24+2+
1+1+1

2+242+1+4
1+14+141

a) 2C,/+5C,, in C,,
b) C,’+C,” +5 C,, in Cy,
¢) 2C;+5C;in C,

a) C,,+4 Gy, in Dy,

a) C,+80C,, in C;,

a) 5C, ., +D ,yinD_,

b) 3 C,,"+C,," +C,.," +
D,, in D,,

c) 2GC,."+2 sz” +Cy." +
D,, in D,,

d) 2C,+3Cy+C,, in C,,,

e) 3C,+2C,+0C,, in C,,,

f) 4C,+Cy+C,, in C,y,

g) 3C,, +2 sz” + Dy, in
Dy,

h) 4C,,”+C,.” +D,, in D,,

i) 3C,/+2C,"+C,, inC,,
k) 4C/+C,"+C,,inGC,,
1) 5C/+C,, inC,,
m)5C,+C, in C,

n) 5C,+C,, in Cyy,

o) 5C,+C,inC,

p) 5C,+C,in C,

a) 2C,+2C," +3C,,inC,,
b) 3C,”+C,"+38C,, in C,,
c) 4C'+3C,,inC,,
d)4C,+3C,inC,

e) 4C;+3C,inC,

a) 2C/+C,"+5C,,inC,,
b) 3C,/+5C,, nGC,,

20, +2C,"+C,"+D, in D,

C,+4C,in Dy, C,+4C, in Cyy

C,+8C, in C,

5C,+D,inD,,5Cy+C,,in Cop,
5Cqy+ Dy in Dy, 5C,, + Dyqin Dy,
5 C,+D, in D, 5 C+C,, in Cg,
5C,+C, in Cyy, 5 Cppp+8, in 8,
5 C,, 4+ Dy, in Dy, 5 C,/ +D, in D,
3C,+C,"+C,"+ D, in D,

3C,/+2C,"+D,in D,

4C,+4+C,"+D,in D,, 4 C,+C, +
C2h m 02h

10 Bchweiz, Min, Petr, Mitt., Bd. 31, Heft 2, 1951
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242414141+
1+141+1

2+ 14+1+1+1+
141+1+1+1

14+1414+14+1+
I+ 31414141

) 3C,+5C,inC,
d) 3C,+5C,inC,

a) 2C, +7C,,inC,,

b) C,/+C,"+7C,,inC,,
¢} 2C,+7C,in C,

d) 2C,+7C,inC,

a) C,+9C,, in Cy,
b) C,+9C.inC,

a) 11C_,inC,,
b) 11 C,in C,
¢) 11C,in C,

C,+9C,in C,

11C,, in C,, 11 C,, in C,,, 11 C,in C,

q¥?

12

11+1

10+ 2

10+1+1

9+3
9+2+1
9+1+1+41
8+4

a) Cg, in Dy,

b} C,in D,
c) Clin Dy,
d} Clin Dy,
e) C,in Dy
f) C,;in Dy,
g) C;in Dy,
h) C,, in O,
i) C,inTy
k) C,in T,

) CinT
m)C;, in I,

a) Cyo+ Dyyy in Dyyy,
b) Cs + Cllv il’l Cllv

&) CZV + ClOv in Dth
b) C,+C;, in Dy,
e) Cl+GCy, in Dy,

d) C,+C; in D,
e) Cl+Cs, in Dy,

a) C,4+2Cy, in Cyy,
b) C,+2C;, in C;,

a) C,,+Cyy+ Dy in Dy,
a) C,+3C,, inCy,

a) CL+C,, in Dy,
b) C;+C,in D,

C,in Dy,, C,in Dy, C, in Cy,,, C, in
Ciens C1 in Cyy

C,in Sy,

C, in Cg,

C; in Cg,

C,in O

CyinI

Cy+Dyyin Dy, G, +Cyyy in Cyyy,
C,+C,,inCy

C,+Cpin Dy, C,+C;, in Dy, C.+
Cyo in Cygp
C,+C;in C;,

¢, +C; in Cy,
C,+2 Cyyin Cyy

C,+Cy+Dyin D, C +Cy+Cy,in Gy,
C,+3Cyin Cy
C,+C, in Cg,
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8+3+1
84+2+2

8+2+1+1
8+1+1+1+1

7+5
T4+4+1
T+3+2
7T+3+1+1
7+2+2+1

742414141
T4+1+14+141+1

646

¢) C,+4+C,in Dy,
d) C;+C,in Dy,
e) Cl+Cy, in Dy
f) C;+C,in Dy,

a’) C2v+ 2 CBV in DBh

b) C,+2C,, in Dy,

¢) CL+2C,, in Dy

d) C;+2C,in D,

e) C;+2C,, in Dy,

f) C'l+2C,, in Dy,

g) C;+2C,, in Dy

h) C;+Cy'+C,," in Dy,

a) C,+4 C4, in Cy,
b) C;+4C,,inC,,

a) Cpy +2C;+ Dy in Dy

a) C,+5C,, in C,,

a) 2C,. in Dy,

b) Co.'+C,," in Dgy
c) 2C,inCy

d) 2C,in Cg,

e} C/+C,in C,,
f) 2C,in Cq

g) C,+C, in Dy,
h) 2C, in Dy,

i) 2C,in Cy;

k) 2CL in Dy,

1) 2C,inC,,

m) 2 C, in D,

n) 2 C/lin Dy,

o) CL+Clin Dy,
p) 2C,in Cyy

q) 2C,, in O,

C,+C,inCy,

C,+2 Cgin Dy, C,+2 €, in Dy,

C,+2C,in Cy,

C,+2C,in S,

L0, +2C,in

| ¢, +4Cq4in Cq

in C,y

C,+5C,in C,

20, in Dy, 2C, in Dy,

C,’+C,” in D,

2C,in0,2C,,inT, 2C,, inT,,

2C,inT

| C,+2C,+D,in D, C,+2 C,+C.,




508

Alfred Niggli

6+5+1

6+4+2
6+4+1+1

6+3+3

6+3+2+1

6+3+1+1+1

64+2+2+2

6+2+24+1+1
6+2+1+14+141

6+1+1+1+
1+1+1

5+5+2
5+5+1+1

5}4+3

a) CL+2C,, in Dy,

b) CL+C,,"+Cy" in Dy,
c) C1+2C,,in Dy,

d) Cl+2 Cy,Lin Dy,

e) CJl4Cyt+C,.lin Dy,
f) C,+2C,inCy

g) C;+2C,inDy

h) C,+C,’+C,” in D,

i) C,+2C,inC,,

k) C,+C,/+C,inC,,

a) CL+C,, + Cyy + Dy, in
Dy,

b) Cll 4+ Cy, 1+ Cy, + Dy, in
Dy,

c) Cs“ +Cy L +Cy, + Dy, In
Dy

d) C;+C,+Cy+Cyy in Cyy

e) C;+C,+C3+Dyin Dy

a) C;+C,+3C,, inCy,

a) Gy, +3 Cq, in Dy,

b) C,+3 Gy, in Dy,
¢} CL+3C,, in Dy,
d) C;+3C,in D,

e) C)l+38C;, in Dy,

a) C,+6 C,, in Cg,

b) C;+6C,, in C;,

a) 2 Cy,"+Cs, in Dy,

b) C;," +Cy," +Cyy in Dy
¢) 2C,+C;1in Gy,

a) 2C,/+2C;,in Gy,

b) C,’+C,” +2Cs, in C;,
c) 2C,+2C;in Gy

C,+3 C, in Dy, Co+3 Cy,
C,+3Cqin Cgy
C,+3C;in Cy,

C,+3C,in Cy,

C,+6C;in Cq4

2 C,’ +Cs in Dy
C,’ +C," +Cs in Dy

in Dy,
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5444241

5+44+1+1+41

5+3+3+1
5+3+2+2

543424141

5-I—3+1+1+1+1

54+2+2+
2+1

5+2+2+14

1+1

5+2+1+1+
1+1+1

5+1+1+ 1+

1+1+1+1

4-+-4+4

a) Cy, +3C;, + Dy, in Dy,

a) C,+7C;, in C;,

a) 3C,," in Dy,

b) 3C.inC,,

¢) 2C,, +C,," m Dy,
) 2C,/+C inC,y,

=B

te) 3C,inCyy,
f)

3C,inC,
g) 2C,+C,in Dy,
h)y C,+2C, in Dy,
1) 3C,inD,,
k) 3C,in 5,
I} 3C," in Dy,
m)3 C,in C,,

'n) 2C/+C,"in Dy,

O) Cs, + Cs” + C:i”, ill D2h
p) 3¢, inC,yy,

- q) 3C,in D,
: T B0, In By

4+44+34+1

44+44+242

VU“E“",

8) 20, +GC, in T,

20, +2C,, in Dy,
Cy, +Cy"+2 Cy, in Dy,
¢) 2C,+2C,inCy,
d) C,+C,+2C,, inDy,
e) 2C, +2C,, in D,,
fi 2C¢,+2¢C, mS
g) 2C+2C, llIquh

| 3C,inT

C;+3 C;+D; in D;, C,+3 C;+Cy,
in Cy,

Cy+7C;1n Gy

3C,in Dy, 3C,1in D,,

2 Czl+02” m D4

2C,+C, inT

2C,+2C,inD,2C,+2C,, in D,,
C,’ +C'”+‘7C'41nD
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4+4+14+1+
1+1

4+3+4+34+1+41
443424241

44+3+4+2+
1+1+1

44+34+1+1+
1+1+1

44242+
242

444424141

4+3+3+2

Ca) Coo+4C,, inD,,

)

by C/+C,"+4C,, inCy,
)
)

h) 20, +Cy L +C,,l in Dy, |
i) 20,/42C, " inD,,
k) 20,4+ C, "+ C, M inD,, !
) C/+C)+2C,. M in Dy, |
m)C, +C," +2C, L inD,,
n) C,/+C” +C, !l +C, Ll

mn Dy,
0) 2C,+2C;in C,,
p) 2C,+C,+C,in Cyy !
q) 2C,+2C,in Cyy |
r) 2C;,+2C, inC,, :
s) 2C,+C,/+C,"inC,,
t) 2C,+2C, in D,

) 2C¢,+0,+C," in D,

a) 20C,+C,+20C,,inC,,

a) 20 +4C,. inC,,

c
d

20,+4C,inC,
20, +40C,,in C,,

b) C,+4C,. in D,,
c) C.+4C,.Lin D, ‘
dy C,+3C, L4+C,. inD,, .
e) C.+2C,1+2C,in |
Dy,
f) C,+2C L 4+Co" +
T ey Ty
g) C,+C, L+3C,.""in Dy
h) C,+CyL4+20C,, "+
C,.'" in Dy,

v

k) C,+3Co 40, /" in Dy,
) CA2CM+2C,/"in
D2h

Cy,+4Cyin D, C;+4 C,, in D,,,
C,+3C,in Cy,

| Cl+4 02 ill S-l

i) O, 44C, inD,, 440, in Oy,
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44+24+24
2+1+1

4+24+2+1+
1+1+1

4+24+1+1+
1+1+1+41

441411414

1+1+141
3+3+343

3+3+3+4

|
|
2+1 ;
i

3+3+3+1+
1+1

3+3+2+
2+2

34312424141

mjC,+4C,in C,,

n) C;+3C,/+C"inC,,

o) C;+2C,/+2C,"inC,,

p) C1+4C,in Cyy

Q) Cy+Cy+3C, in Cyy

r) C;+2C,+2C,inC,,

s) C,+3C,+C,inCy,

t) C,+4CyinD,

u) C,+3¢, +C,"inD,

v) C,+2C,42C,"in D,

w)C +2C,/+C "+, in
D,

a) C,+3C,/ +2C, . inC,,
b) C,+2C/+C/+20C,,
in C,,

a) C;+2074+4C,, inC,,

“b) C;4+C+C7+4C,, in

C

v

a) O3+ C,+6C,, inC,,

a} (,+6C,, inCy,
b) C;+6C, inC,,

a) 4 C,. in Dy,

b) 3C,, +C,." in Dy,
c) 2C,. +2C,. " inl,,
d) 4 C, in Dy,

e) 4Cin Cy,

£f) 3C,/+C"inC,,

g) 2C/+2C,"inCy,
h) 4C,in C,

a) 3G, +Cy, +Dy, in Dy,

i b) 2 C2v’ + (!'l\'” + CS\‘ + D:lh

in Dy,
¢) 3C, +C,+C,, in Cy,

a) 3C/+3C,, nC,,
b) 2C +C"+3C,, in (4,
e) 3¢, +3C¢;inC,y

ta) 20, +3 0y in Dy,
b) C,. +C,." +3C,, in Dy,

ey 20, +3C,1in Oy,

C,+6C,inC,

40 in D,

3040, inD,
20, +20" in Dy

3¢ 4+C,+D;i1in Dy
20+, "+C,+ Dy in Dy

20 +3Cin Dy
¢+ +30, in Dy
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3+3+2+1+
1+1+1

3434141+
1+14+1+1

3+2+2+
2+241

3424242+
1+1+1

3+24241+
1+1+1+1

3424141414
1414141

341414141+
141414141

24+24+2+24
2+2

24+24+2+2+
2+1+1

a) 2C.,+6C,, in G,
b) C,/+C,”+6 C,, in Cy,
e) 2C;4+6C;in C,

a) Cy, +4C;, + Dy, in Dy,

a) C,+9C,, inC,,

a) 6C_.inD_,

b) 4C,, +Cy.”" +Cy.," iIn Dy,
e) 3C,, +20C,,"+GC," in

Dy

d) 20, +2C,," +2C,"

in Dy,

e) 2C,+4C,in Gy,
f) 3C,+3C,inC,,
g) 4C,+2C,in Cyy
hy 5 C,+C,in C,,
iy 3C,,’+3C,,"inD,,
k) 4, +2C,," in Dy,
1) 5C,,/+C,." in Dy,

m)3C/ +3C,inC,,
n) 4C, +2C."inC,,
o) 5 C ’+C "in C,,
p) 6C,inC,,
q) 6 C in C,
r) 6 Cs in Cyy,
8) 6C;inC,
t) 6Cin C,

a) 3¢ +2C,"+2C,,inC,,
b) 4C/+C"+2C,, in Cy,

¢) 5 C/ +20C,.inC,,

Cy+4 C;4+D, in Dy, C,+4 C;+C,yy
in Cyy

C,+9C;in G,

6 Cy,in D, 6 C,in Cy, 6 Cyy, in
D, 6C,, iand,ﬁC in Dy, 6 C, in
Cis 6Crpin S, 8C,, " in Dzh, 6 C
in D,

4C,/+C,"+C,” in D,
3C,y+2C,"+C," in D,

2C,/+2C,"+2C," in D,

30’+30,,”inD
4C,/4+2C,"inD
5C,+C,)" in D2,002+CE m C,,
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d) 5C,+2C,inC,
e) 53C;+2C,inC,
24242424 a) 2C,+2C," +4C,, in C,,
1414141  b) 3C +C +4C,, inC,,
c) 4C/+4C, inC,,
d) 4C,+4C,inC,
| e) 4C;+4C,in C,
24242+ | a) 2C/+C"+6C,, in C,,
1+1+1+  b) 3C/+6C,, inC,,
1+1+1 ¢) 3C;+6C,inC,

d) 3C¢;+6C,inC,

2+24+1+1+4 a)
1+1+1+1+| b)

1+1 ic)
d)

2C/+8C,, inC,,
C/+C/+8C,, inC,,
2C,+8C,inC,
2¢,+8C, m(,

C,+10C,, inC,,
C;+10C, in C,

2+1+1+1+;
1414141+
14141 |

a) C,+10C,in C,

LT+1+1+414
1+31+1+1+]
1414141

12C,.inC,,
12 C, in C,

12C, inC,,12C,,

mC

Qv

12C,inC,

\
12C,in €, i

Falls es nun gelingen sollte, die Punktsymmetriegruppe eindeutig
zu ermitteln, konnten offerbar umgekehrt Schliisse auf die Eigensym-
metrie der Teilchen gezogen werden. Dabei setzt die Symmetriebedin-
gung der Punktlage aber nur eine minimale Eigensymmetrie voraus, so
dass sich auch hier im allgemeinen Vieldeutigkeit ergeben wird. Hoch-
stens da, wo eine bestimmte Punktlage vollig fir das Auftreten einer
niedrigeren Punktsymmetriegruppe verantwortlich gemacht werden kann,
ist die Eigensymmetrie ihrer Teilchen auch nach oben abgegrenzt.

Schliesslich seien noch die Grenzen der Leistungsfihigkeit von Sym-
metriebetrachtungen zur Kennzeichnung des Molekiilbaues abgesteckt.
Schon in topologischer Hinsicht ergeben sich Vieldeutigkeiten: sind
mehrere Punktlagen besetzt, so lisst die Symmetrielehre die Frage nach
der gegenseitigen Lage ihrer Punkte offen. Enthilt die Punktgruppe
mehrere gleichwertige Untergruppen, so kann fiir die entsprechenden
Spezialformen eine Vieldeutigkeit beziiglich der Stellung entstehen. Vor
allem aber ist die Symmetrielehre nicht in der Lage, beim Auftreten von
geometrischen Freiheitsgraden metrische Fragestellungen zu beantwor-
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ten; die, bezogen auf ein symmetriegerecht gewihltes Koordinaten-
system, sich ergebenden Parameter bleiben also im allgemeinen unbe-
stimmt. Metrische Bedeutung kénnen héchstens die Aussagen gewinnen,
die sich auf das Fehlen von Freiheitsgraden beziehen, denn die Symme-
trielehre muss sich darauf beschrinken, fiir Punkte, die auf Symmetrie-
elementen liegen, diese als geometrische Orter zu bezeichnen.

IIl. Die Aussagen der Symmetrielehre iiber die Molekiilschwingungen

Ein aus N Masseteilchen aufgebautes System hat bekanntlich 3N
Freiheitsgrade der Schwingung. Nach Abzug der Translationen und Ro-
tationen des (Gesamtsystems als den ,,uneigentlichen* Schwingungen
verbleiben fir

lineare Molekiile 3N —5, davon N —1 in der Achse
planare Molekiile = 3N —6, davon 2N —3 in der Ebene
die iibrigen Molekiile3N — 6 Freiheitsgrade.

Die Grundsymmetrie des Molekills bestimmt nun, wie sich diese Frei-
heitsgrade auf die verschiedenen Normalschwingungstypen verteilen, und
welcher Art die Normalschwingungen iiberhaupt sind.

Die Ermittlung der Normalschwingungstypen bereitet keine
Schwierigkeiten. Schon BRESTER (4) hat sie durchgefiihrt, und spiter
zeigte WIGNER (13) die Moglichkeit der Anwendung gruppentheoreti-
scher Methoden. In der durch Tisza (12), Praczex (10), ROSENTHAL
und MurpHY (11) weiter ausgebauten gruppentheoretischen Betrach-
tungsweise finden die Normalschwingungen ihren Ausdruck in der Ma-
trizendarstellung der Charaktere fiir die irveduziblen Darstellungen der
zur Grundsymmetrie des Schwingungssystems isomorphen Klassen.
Schliesslich hat P. NiceLI (8) gezeigt, wie man im wesentlichen ohne
gruppentheoretische Hilfsmittel zu diesen Charakterentafeln gelangen
kann.

Jeder Schwingungstyp wird durch sein Verhalten gegeniiber den
Symmetrieelementen der Grundkonfiguration gekennzeichnet, wie das ja
die {ibliche Bezeichnungsweise der Schwingungen andeuten soll. Wenn
auch jedem Verriickungsbild eine bestimmte Restsymmetrie zugeschrie-
hen werden kann, so ist doch mit dem Abbau der Grundsymmetrie die
Beschreibung keineswegs erschopft. Die Tatsache, dass eine Schwingung
zu einem Symmetrieelement antisymmetrisch oder entartet verlduft,
besagt nicht etwa nur, dass sich die zugehérige Koordinatentransfor-
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mation nicht mehr auf die Verriickungsvektoren ausiiben lasse, sondern
dass nach Ausfithrung der Transformation die Vektoren ihre Richtung
umkehren bzw. um ganz bestimmte Winkelbetriige gedreht werden. Die
Verhiltnisse liegen hier dhnlich wie bei den Raumgruppen: auch dort
geniigt im allgemeinen die Symmetriebedingung eines Nullpunktes nicht
mehr zur Beschreibung. Wie fiir die nicht-symmorphen Raumgruppen
Gleitspiegelebenen und Schraubenachsen als neue Symmetrieelemente
eingefithrt werden miissen, so treten in den nicht-totalsymmetrischen
Schwingungen Antisymmetrieelemente und Entartungsachsen
auf. Die Einfilhrung dieser Antisymmetrieelemente ist um so mehr ge-
rechtfertigt, als sich mit ihrer Einbeziehung eine ganze ,erweiterte
Symmetrielehre’* mit all ihren Symmetriesitzen aufbauen lidsst, die
dann die Symmetrieeigenschaften der Normalschwingungen liefert. Thre
Entwicklung wiirde an dieser Stelle zu weit fithren, doch zeigt es sich
dabei, dass die Analogie zwischen Schwingungsformen und Raumgruppen
sogar soweit geht, dass jeder erweiterten Punktgruppe einer kristallogra-
phischen Schwingungsklasse eine Raumgruppe isomorph ist. Im iibrigen
ist es ja nur eine Frage der Darstellungsweise, ob man den Abbau der
Grundsymmetrie auf antisymmetrisches Verhalten der Teilchen oder auf
die ohnehin nur in der Vorstellung vorhandenen Svmmetrieelemente
zuriickfithren will.

Die Symmetriebedingungen der einzelnen Punktlagen wihlen nun
aus der Gesamtheit der Normalschwingungstypen diejenigen aus. zu
deren Schwingungen ihre Freiheitsgrade einen Beitrag leisten. Dazu muss
das Verhalten beziiglich der zur Symmetriebedingung gehorigen Elemente
mit dem durch die Symmetrieeigenschaften der Normalschwingung ge-
forderten libereinstimmen. So ergibt sich eine Auslese, wie sie fiir die ein-
zelnen Punktgruppen etwa von JaHN und TELLER (6}, von KOHLRAUSCH
(7) und von HERZBERG (3), fiir einige ausgewiihlte Punktkombinationen
von WiLsoN (14) und schliesslich allgemeiner fiir die Symmetriebedin-
gungen von P. N1aeL1 (8) zusammengestellt wurde. Dasssichin Kombinatio-
nen die Beitrige der einzelnen Punktlagen additiv verhalten, ist leicht
einzusehen. Gegeben sei etwa die Kombination zweier Punktner P und
Q. Fiir eine herausgegriffene Schwingungsklasse habe, die uneigentlichen
Schwingungen eingerechnet, ein P-Teilchen p und ein Q-Teilchen q Frei-
heitsgrade: von diesen Freiheitsgraden seien s den P- und Q-Teilchen
gemeinsam. In der Kombination treten dann als Normalschwingungen
fiir die betreffende Klasse auf: p—s P-Schwingungen, an denen Q nicht
teilnimmt, q —s Q-Schwingungen, an denen P nicht teilnimmt, und 2s
gekoppelte Schwingungen beider Punktner, néimlich s miteinander und
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s gegeneinander, also insgesamt p + q Schwingungen. Die uneigentlichen
Schwingungen, deren. Klassenzugehorigkeit an dem Verhalten zu aus-
gezeichneten Symmetrieelementen leicht erkennbar ist, miissen natiirlich
fir das Gesamtsystem nur einmal in Abzug gebracht werden.

Die Auswahlregeln, die iiber die Beobachtbarkeit der einzelnen
Normalschwingungen, ihrer Kombinations- und Oberschwingungen ent-
scheiden, sind fir Infrarotspektrum und Ramaneffekt nicht dieselben,
so dass sich die beiden Methoden ergénzen konnen. Auch diese Auswahl-
regeln konnen, wie schon WIGNER (13), dann ROSENTHAL und MurPHY
(11) und vor allem BHAGAVANTAM (1, 2) gezeigt haben, mit Hilfe von
gruppentheoretischen Methoden einen der Symmetrielehre angemessenen
Ausdruck finden. Im Infrarotspektrum tritt eine Schwingung bekannt-
lich dann auf, wenn sie den Vektor des elektrischen Moments, und im
Ramaneffekt, wenn sie den Tensor der Polarisierbarkeit des Molekiils
andert. Dementsprechend bestimmen die Transformationseigenschaften
dieser Grossen gegeniiber den moglichen Symmetrieoperationen die Aus-
wahlregeln. Da sich ihrer Form nach die Infrarotbanden von Schwin-
gungen mit wechselnder Komponente des elektrischen Moments parallel
oder senkrecht zu einer ausgezeichneten Achse unterscheiden lassen,
besteht die Aufgabe der Symmetrielehre darin, fiir jede Normalschwin-
gung die Richtung des entstehenden Moments anzugeben, wie das schon
BrESTER (4) getan hat. Eine entsprechende zusidtzliche Aussage iiber die
Ramanlinien bezieht sich auf den Depolarisationsgrad des gestreuten
Lichts.

Nach dem Schwerpunktssatz kénnen Systeme, die nur aus Teilchen
von einheitlicher Masse und Ladung aufgebaut sind, keine infrarot-
aktiven Schwingungen ausfiihren, wihrend fiir ein véllig unsymmetri-
sches Gebilde (Punktsymmetriegruppe C,) simtliche Schwingungen aktiv
werden. Dieser Sachverhalt fiihrt aber auf das Problem der Besetzung
der Punktlagen. Und da ist festzuhalten, dass die geometrische Gleich-
wertigkeit nicht nur eine Angelegenheit der Anordnung ist, sondern dass
zwei Punkte fiir ihr Schwingungsverhalten nur dann gleichwertig sein
konnen, wenn sie von Teilchen besetzt sind, die beziiglich Masse, Ladung
und Zustand iibereinstimmen. Es kdnnen demnach nur dieselben Iso-
topen derselben Atomart in einer Punktlage auftreten; dagegen ist es
sehr wohl moglich, dass eine Atomsorte mehrere ungleichwertige Punkt-
lagen besetzt, was dann allerdings auf verschiedene Zustinde des Atoms
hindeutet. Ubrigens wird durch unsymmetrische Substitution von Iso-
topen an einem Molekiil auch die Regel durchbrochen, dass im allge-
meinen die Achsen des Polarisierbarkeitsellipsoids mit denen des Trag-
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sT)=c’,

£s(7)=cfs

S/V)=Cs

f{V/=C/

SI/V)=CS’

heitsellipsoids zusammenfallen: das Trigheitsellipsoid wird durch eine
solche Substitution verindert, die Ladungsverteilung, welche die Polari-
sierbarkeit bestimmt, dagegen nicht.

In den Tabellen III sind nun fir alle Punktsymmetriegruppen end-
licher Ordnung die simtlichen Angaben zur Bestimmung der Normal-
schwingungen und ihrer Beobachtbarkeit zusammengestellt. Darin sind
als R die Zyklensymbole der moglichen Symmetrieoperationen angegeben,
wobei f, reine Drehung, s, Drehinversion und s, Drehspiegelung um

einen Winkel 2x—" darstellt. Die k-Werte geben an, wie oft die Operationen

in einer Punktsymmetriegruppe enthalten sind, und N ist die Ordnung
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2. Wirteli
ige Grruppe i
pen (mit trennbar entarteten Doppelschwi
chwingun,
gen)

R: e r—
f, "
i
2 £l
k (Cp) 1 , 3 fa
11;(0,,) 1 je 0 5 Z £ P
AR o
H N Sm
k (C,0) i 0,2,0,2,..0 . j: g 1 g 0o o = ="
k (C,) je o 1 : 0 o0 je 0 : st
o) | 1 je 0 s 0 0 J x 2
k (C,a) je 0 0 : 0 ] je 0 : s’
k. i | je 0 0 0 je 0 e 0 = ad |
K (Co) 1 je 0 0 je 0 0 o 0 o0 je o o ! 0 — 2] =
je 2 0 jo 2 0 je2 o 1 2,0,2,0,..2 9 pe 0 ie0 o |
c 1 e 1 je 2 0 jeo.-_ 0 je 0 0 je 0 | P i
o 2c0s27% 43 je 0 0 je 0 0 =0 0 je 0 b je 0 0 n Beziehungen:
6 doostlIXy 1 2 008 275 je 0 0 1 ! o je o o 0| oot
7 4 9 cos 27X os == +1 0o 1 je 0 2,0, 2,0 0 2 ol ™ > = S
x (A1) 1 m 2 £ 02 275 1 . 9 oos 27X je 2 0 b die 0 2.0,2,0,..0 ‘ C=8, =8
Y42 | 1 je 1 22X 1 200s2IE 2 sy 1 1 -3 . bl 1 ey : i} r Cp‘l':sp'=bn'
% (B1) L jo 1 1 P I 2 geost’TX 4 2c0s 22X 2 cos 27X o0 0 2.0,2,0...0 : =n Con=C, e
m . - | = Vi
x (B2) 1 -1,1,-1,..-1 i je 1 1 je 1 L 2 6 4cos?iTE _ 9cos 27X ! 208 27X _ 1 je 0 g | 2;1: Coan= Cn.
o N s - iy o mi
Xx@D | 2 L1-1, .-l 1 L1, .1 ! e 1 — 1 TE 5 goostITE 5 os? ! 2 cos 27X = Fir lineare Konfigurati
E2) 2cos ( x2Z RN =1 ke : — je 1 7X _2c0s2IX 2 -1 1! tionen eine Al-Schwi
xE2) | 2 o) -2 L1 a eine - i 1 » 4cos? 27X _ 2 cos 2T f wingung mehz|
< ®3) 2cos ( x2T) 2cos ( x2T) B-Typen = 1 L _11 1 je 1 D M Schwingungst, V
(E3) | 2 ™ 2 a -2 - Ll - j - |
o= 5 s (2x2_” 2 cos ( xg_,,) s 2 cos ( X%n) 1 11,1 11 1 L lle —11 o je 1 . | < C, C. c ypen (Restsymmetrie):
3 _ 9 s L. -1,1,- p [ 5
= 2 2 cos (21:5) 2 2 cos (2xé 2 cos ( <27 = 2 cos ( le) ~1 -1 1’ "11 _1 2 lf—ll 5 i AC) AC) A = Sa Cys C, c
> 5 -5 i 5 =L Lt o = n e
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— 0 je O ie 0 0 F ) C Punktlagen:
je o m I 7 je o 2 - 2 C,
0 e 0 je 0 pl P — = Su C..
o 0 ] 6 1 1+ 8 _ . C v Con c
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3. Wirtelige Gruppen (mit DL
— e 7
R: £ fa £l fa £ ) & £ £2 s m s° s st s st sl 8l i N
= = = = = =
K(Cp) | 1 je 0 0 je 0 0 je 2 0o 0 0 o je 0 0 je 0 0 je 0 o p 0 | 2p Beziehungen:
k(Cy) | 1 jeo 0 je2 1 jeo 0 0 0 o jeo 0 je 0 0 je 0 0 3n in 2n - D -5
kK(Cuy | 1 je2 1 je 0 0 je o 0 0 o0 o je 0 [ je 0 0 je o 0 3m im 2m “ s il
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m je 0 0 je o 0 jeo - 0 0 o0 jeo 0 je o 0 je 0 0 0 4 — — — — — C, — - c.l —
m je 0 0 je 0 [ jeo - 0 0 o0 je 0 0 jeo m je o 0 0 0 m — G 7 — —_ c — = } o ct —
m je 0 0 je 0 0 je 0 - 0 0 o0 je 0 0 je o 0 je 0 0 4 0 = — — A — — —— * c! —
m je o 0 je o 0 jeo - 0 0 o je o 0 je o 0 je o 0o 2 2 - — — — = B G, — — =
m je o 0 jeo 0 je 0 - 2 2 o jeo 0 je o 0 je o 0o 0 o0 | — C | — — — — — C, = — -
2m jeo 0 je o 0 je 0 - 0 0 0 je o 2m je o 0 jeo 0o 0 o0 — — C; — — l . Cy . Cy c*
2m je o 0 je 0 0 je o - 0 0 0 je o 0 je 0 0 je 0 0 4 0 || 2m — - — — — (oA — == = . [
2m je 0 0 je o 0 je 0 - 0 0 0 je 0 0 je o 0 je 0 0o 0 4 — = — — — ] — — — . clv
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4. Kubische Gruppen (mit dreifach entarteten Schwingungen)
R fi £ M f, £ 8" 5 &8 g’ &P N
k (T) 1 0 3 8 0 0 0 0 0 O 12
k (T,) 1 0 3 8 0 1 0 3 8 0O 24
k (T,) 1 0 3 8 0 0 6 0 O 6 24
k (O) 1 6 3 8 6 0 0 0 0 O 24
k (O,) 1 6 3 8 6 1 6 3 8 6 48
. 5 1 -1 o0 -1 3 1 ] 5 Schwingungstypen (Restsymmetrie):
o’ 6 0 2 0 6 0 2 0 2 ¢ T T i, 0 0,
x (A1) 1 1 1 1 1 1 1 1 1 1 1 ATy A (T) A (1Y) A (0) A, (0)
¥ (A2) 1 1 1 1 1 -1 -1 -1 -1 -1 1 == A, (T) A" (T) == A, (O)
X (A3) 1 -1 1 1 -1 I -1 1 1 -1 1 == == = = A, (T) Ay, (1)
X (A4) 1 -1 1 1 -1 -1 1 -1 -1 1 1 == == e = A,, (1)
x (E1) 2 0 2 -1 0 2 0 2 -1 o 1 E(D,) E, (D)
xE2)| 2 0 2 -1 0 -2 0 -2 1 0 1 == E, (D,
x (E1) 2 0 2 -1 0 2 0 2 -1 o0 2 E (D) 1 (D) E,(Dy)
xE2| 2 0 2 -1 0 -2 0 -2 1 0 2 == == E, (D)
x (F1) 3 01 -1 0 -1 3 1 -1 0 -1 3 F(C)  F () R (C) F ) By, ()
x (F2) 3 1 -1 0 -1 -3 -1 1 o 1 3 == F, (C) F,(C)) == F,, (C)
x (F3) 3 -1 -1 0o 1 3 -1 -1 0 1 3 = = = = = F, (C))  F,, (C))
x (F4) 3 -1 -1 0 1 -3 1 1 0 -l 3 == == == == F,, (C,)
o | =u»—2 B . =u R r Punktlagen:
u 1 1 1 1 1 1 1 1 1 1 1 T T, i 0 0,
4 0 0 1 0 0 0 0 2 4 C, — Uy, — —
6 2 2 0 0 0 0 4 0 2 6 N %, (e C, C,,
8 0 0 2 0 O 0 0 0 4 8 — C, — C, -
12 0 0 0 2 0 0 4 0 2 12 B C, C, C, Cs.
24 0 0 0 0 00 8 0 0 94 — — C, o cH
24 0 0 0 0 0 0 0 0 4 - A - 1 o™
48 0 0 0 O O 0 O 0 0 48 — — — — &
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5. Ikosaedrische Gruppen (mit fiinffach entarteten Schwingungen)

R: f, fi! ;2 f, £, 8, 810" S10 8¢ 8, N
k (I) 1 12 12 2015 0 0 0 0 0 60
k (I,) 1 12 12 20 15 1 12 12 20 15 120 Schwingungstypen
— — — — | (Restsymmetrie):
3 104Y® E0—13) 0-1-3 -3(1+V5) -+(1—V5 0 1 estey ’
’ 6 1 1 0 2 6 | 1 0o 2 € I I,
x (A1) 1 1 1 1 1 1 1 11 1 A (D) A, (1)
x (A2) 1 1 1 1 1-1 -1 -1 =] I 1 == A, (D)
xFL | 3 pa+¥8 yU-V5) 01 3 1a+y5 10-¥5 0] 30| Ful)  F(C)
x(F2) | 3 3(+7¥5 $(1-¥5 0-1-3 -p(A+V5) -4(1-¥5 0 1 3 == Fu(0)
x®3) | 3 10a-y5 10+¥5 0-1 3 $(1-Y5 $0+Ys  0-l 3 Fo(Cy)  Fo (C))
x(F4 | 3 1Q-Y5) rA+¥5  0-1-3 -p(a-Y5) -p(+Y5 0 1 3 == By G
x (G1) 4 -1 -1 1 0 4 -1 - 1 1 0 4 F(C) G, (C)
x (G2) 4 -1 -1 I 0 -4 | 1 -1 0 4 == G, (C)
x (H1) 5 0 0 -1 1 5 0 0 -1 1 5 H(C,) H,(C)
x (H2) 5 0 0 -1 1 -5 0 0 1 -1 5 == H, (C,)
u{ o o 7::177—72 7 I = __Z_?f Pllmktlagen:
u 1 1 1 111 1 1 11 1 I I,
12 2 2 ¢ 0 0 0 .0 0 4 12 (3 C,,
20 0 0 2 0 0 0 0 0 4 20 0y Cy,
30 0 0 0 2 0 0 0 0 4 30 C, C,,
60 0 0 0 0 0 0 ] 0 4 60 C, C,
120 0 0 0O 0 0 0 0 0 0 120 - ,
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der Gruppe. Es folgen als ¢ und ¢’ die Grossen, die fir das Verhalten
von Vektoren bzw. Tensoren gegeniiber den Symmetrieoperationen cha-
rakteristisch sind. Eine allgemeine Zusammenstellung derartiger Gréssen
findet man bei BHAGAVANTAM und SURYANARAYANA (3). Im vorliegenden
Falle ist c=2cosp + 1, ¢’ =4cos?p + 2cosp, wo ¢ den Drehwinkel bedeutet
und das obere Vorzeichen fir Synunetrieoperationen I. Art, das untere
fiir Operationen II. Art zu nehmen ist. Der Verlauf dieser Funktionen
geht aus der Figur hervor.

Den Kern der Tabellen macht die eigentliche Charakterentafel aus,
die fiir die laufend numerierten Schwingungsklassen die Charakterey und
die zugehdrigen Entartungsfaktoren e angibt; in ihr kommt das Verhal-
ten der Schwingungen zu den Symmetrieelementen zum Ausdruck. Da-
neben sind fiir die einzelnen Punktsymmetriegruppen die moglichen
Schwingungstypen in ihrer tiblichen Bezeichnung und mit Angabe der
Restsymmetrien aufgefithrt. Zwei Gleichheitszeichen bedeuten, dass der
betreffende Typ mit einem bereits angegebenen zusammentillt und
nicht mehr in Rechnung zu stellen ist. Das ist dann der Fall. wenn sich
die Charaktere beziiglich der Symumetrieelemente mit k £0 nicht unter-
scheiden. Schliesslich sind darunter alle méglichen Punktlagen mit ihren
Symmetriebedingungen und Zihligkeiten Z zusammengestellt: ihnen
entsprechen die Anzahlen u der Punkte, die auf den einzelnen Synume-
trieelementen liegen und deshalb gegeniiber der zugehorigen Transfor-
mation invariant sind. Die Werte u’, die beim Abzug der unecigentlichen
Schwingungen eine Rolle spielen, sind fiir Operationen [. Art um 2
niedriger als u; fir Operationen II. Art fallen sie mit den u zusammen.

In den Tabellen fiir die wirteligen Punktsvmmetriegruppen sind
ibrigens von den zur Hauptachse gehorigen Zyvklen nur die zweizéih-
ligen gesondert aufgefiithrt. Alle tibrigen werden erhalten, indem man x
bis zur angegebenen Grenze laufen lasst. Die Charaktere der entarteten
Schwingungen kommen dann heraus, wenn y dieselben Werte durch-
lauft. m, n und p haben die gleiche Bedeutung wie in Tabelle I.

Zwischen den Grossen der Tabellen I11 gelten mannigfache Beziehun-
gen, etwa innerhalb der eigentlichen Charakterentafel die. welche aus den
Orthogonalititseigenschaften folgen. Das Verhalten der gesamten Punkt-
symmetriegruppe wird aber durch diejenigen Ausdriicke beschrieben, in
denen tber alle Symmetriezyklen der Gruppe summiert wird, und die sich

deshalb in die Form ];,% (k@) bringen lassen, wo fiir @ beliebige Funk-

tionen eingesetzt werden kdnnen.

11 Schweiz. Min. Petr. Mitt.,, Bd. 31, Heft 2, 1951
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a) Fir jede Punktsymmetriegruppe gilt:

1 —

ﬁ%)kR =1

NZ (ke)g = Zahl der Freiheitsgrade fiir den Symmetriehaupt-
& punkt (Z=1)

1% % (ke = 1 fiir isometrische (kubische, ikosaedrische)

2 fiir wirtelige

3 fiir orthorhombische

4 fiir monokline

6 fiir trikline Punktgruppen

b) Fiir jede Punktlage in einer Gruppe gilt:

1%; (ku)g = I
% Y (keu), = Zahl der Freiheitsgrade fiir die Punktlage selbst
3
¢) Fir jede Schwingungsklasse in einer Gruppe gilt:
~1q2 (ky)g = 1 fir die (totalsymmetrische) Hauptdarstellung A 1
TR 0 fiir alle iibrigen Klassen
12 (kx*e)g = 1 fur symmetrische und antisymmetrische Klassen
NE A und B
2 fiir Doppelschwingungen E und E
3 fiir dreifach entartete Klassen F
4 fir vierfach entartete Klassen G
5 fiir fiinffach entartete Klassen H
1 Mkex)g # O fiir infrarot-aktive Schwingungsklassen
N'R = 0 fir infrarot inaktive Schwingungsklassen
;{Z (ke'x)g + O fiir im Ramaneffekt erlaubte Schwingungsklassen
R _

0 fur im Ramaneffekt verbotene Schwingungsklassen

d) Fiir jede Punktlage und Schwingungsklasse gilt:

(10)%1 >itkexu)y = Zahl der Normalschwingungen (einschliesslich un-

R eigentliche)

11) % Ditkexu')g = Zahl der eigentlichen Normalschwingungen
R

(12

e) Fiir jede Kombination von q Punktlagen und jede Klasse gilt:
%Z ((kc XZ ) = Zahl aller Normalschwingungen
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a
(13) I}I i [kc X (ul' + Zui)] =Zahl der eigentlichen Normalschwingungen
R R

f} Fiir jede reduzible Klasse mit den Charakteren ' gilt:

(14) ‘i* ER:(k xx')r = Zahl, wie oft sie in einer Schwingungsklasse vorkommt
Die Beniitzung der Tabellen gestaltet sich sehr einfach, wenn man
sich die Bedeutung dieser Formeln klargemacht hat. (1) ist nur ein Aus-
druck dafiir, dass die Anzahl verschiedener Symmetrieoperationen gleich
der Ordnung der Gruppe ist. (2) teilt die Punktgruppen ein nach den Frei-
heitsgraden ihrer Symmetriebedingung, wihrend (3) ein Mass fiir die
Symmetrie des Koordinatensystems gibt. (4) ist ein anderer Ausdruck fiir
den Satz, dass das Produkt aus Zihligkeit und geometrischer Wertigkeit
einer Punktlage gleich der Ordnung der Gruppe ist; (5) verkniiptt damit
die Zahl der Freiheitsgrade fiir die Punktlage. (6) folgt aus den Orthogo-
nalitdtsbeziehungen. (7) gibt das Mass fiir die Entartung: seine umstéind-
liche Form beruht auf den Schwierigkeiten, die die Trennbarkeit der
Doppelschwingungen E bei der Einfiihrung des Entartungsfaktors e be-
reitet. (8) enthilt die Auswahlregel fiir die Beobachtbarkeit einer Schwin-
gung im Infrarotspektrum. Die Richtung des entstehenden elektrischen
Moments liasst sich dazu leicht aus dem in der Charakterentafel gegebenen
Symmetrieverhalten feststellen. Die Auswahlregel fiir den Ramaneffekt ist
in (9) enthalten. Hier sind von den beobachtbaren Schwingungen stets die
totalsymmetrischen ,,polarisiert* {Depolarisationsgrad p < 6/7, fiir iso-
metriseche Gruppen = 0), und alle iibrigen ,,depolarisiert’ (p = 6/7). (10) bis
(13) ermoglichen die Berechnung der Anzahlen von Normalschwingungen
jeder Klasse fiir einzelne Punktlagen und Kombinationen. (13) zeigt, dass
fiir den Abzug der uneigentlichen Schwingungen nur fiir eine beliebige
Punktlage die u’-Werte einzusetzen sind, fir alle iibrigen die u-Werte.
Eine Kontrolle der Ergebnisse besteht darin, dass die Gesamtzahl der
eigentlichen Normalschwingungen aller Klassen den zu Beginn des Ab-
schnitts (S. 514) angegebenen Betrag annehmen muss. Dazu sind n-fach
entartete Schwingungen n-mal in Rechnung zu stellen. Seoll die Unter-
suchung auf Kombinations- und Oberschwingungen ausgedehnt werden,
so zeigt (14), in welchen Klassen die reduziblen Darstellungen dieser
Schwingungen enthalten sind. Dabei ist im Falle einer Kombination der
Klassen i und j xp = (xx;)g und im Falle einer 1. Oberschwingung
Xr =% (X} + xp) zu setzen mit R2=f,3, wenn R den Index q hat.
Schliesslich sind die Angaben noch fir die bei linearen Konfigura-
tionen auftretenden Zylindergruppen zu erginzen. Endliche Zihlig-
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keiten liefern dort nur die Punktlagen auf der Hauptachse. Das hat zur
Folge, dass trotz der unendlichen Mannigfaltigkeit von Unterachsen keine
antisymmetrischen und héchstens zwei Klassen entarteter Schwingungen
auftreten konnen. Ausserdem verliert bei Beschriankung auf die Punkt-
lagen endlicher Zihligkeit die Unterscheidung der polaren Gruppen C,
und C_, sowie der unpolaren C,,, D, und D, ihre Bedeutung, so dass
es genigt, im Anschluss an KoHLrAUSCH (7) direkt die Eigenschaften der
Normalschwingungen fiir C., und D, in Tabelle IV zusammenzustellen.

Tabelle IV.
1. Punktsymmetriegruppe C .

Punktlagen: a) C_, (Z=1)
Schwingungs- } Symmetriezyklen Auswahl Zahl eigentlicher
klasse ‘ £, f, s I.R. Ram. |Normalschwingungen
A s s s M, p a—1
E ‘ s e - 0y dp a—2

2. Punktsymmetriegruppe D,

Punktlagen: a) C, (Z=2), b) D, (Z=1)
Schwingungs- Symmetriezyklen Auswahl Zahl eigentlicher
klasse f, f, ful s, syl s, I.R. Ram. |Normalschwingungen
A, s & s 8 8 s ia P a
A, S s s as as as Mm, v ath-—1
K, s e — s as — ia dp a—1
E, s e — as 8§ - n, \% at+b—1

s = symmetrisch, as = antisymmetrisch, e = entartet, ia = inaktiv,
p = polarisiert, dp = depolarisiert, v = verboten

IV. Der Schluff vom Schwingungsspektrum auf die Molekiilstruktur

Die Berechnung der Schwingungen und ihrer Eigenschaften fiir eine
gegebene Konfiguration lidsst sich nach den Angaben des vorhergehenden
Abschnittes durchaus eindeutig durchfiihren. Leider ist das bei der Um-
kehrung des Verfahrens, wie sie durch die Frage nach der Anordnung des
Systems gefordert wird, nicht der Fall. Natiirlich kann durch Vergleich
von beobachteten und errechneten Schwingungen eine vermutete Struk-
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tur widerlegt oder wahrscheinlicher gemacht werden; an dieser Stelle
interessieren aber die direkten Schliisse, die auf die Konfiguration ge-
zogen werden konnen. Die Vieldeutigkeiten, die dabei im allgemeinen
auf mehreren Stufen der Betrachtung entstehen, seien nun am Beispiel
des Benzolmolekiils erldautert.

Die Formel C,Hg legt die Vermutung nahe, dass das Molekiil aus
(6 + 6) gleichwertigen Teilchen aufgebaut sei. Ausserdem konnte die Kon-
figuration allerdings noch von Symmetriefillen vorgetiuscht werden, in
denen nicht alle 6 C- und alle 6 O-Atome unter sich gleichwertig sind. Es
sind dies von allen Fillen, die in Tabelle II unter der Gesamtzahl 12 auf
den Fall (6 + 6) folgen, diejenigen, deren Anzahlen sich zu zwei Gruppen
von je 6 Teilchen zusammensetzen lassen, also die Fille unter (6 + 3 + 3),
(6+34+24+1), (6+3+14+14+1), (64+2+2+2), (6+14+1+14+14141),
(b+5+1+1),(534+24+2+24+1), (3+1+1+14+1+1+141), (4 +44+242)
(44+4+2+1+1), (4+4+14+1+14+1), ($+2+242+2), ++24+24+2+
+1+1), (4+24+2+14+14+141), (4424+14+14+14+14141), (44+1+
+141+14+14+14+141), B+34+34+3), 3+3+3+2+1), B3+3+3+
+14+14+1),3+3+2+242), 3+3+1+1+1+14+14+1), (B+24+2424
+241), B+14+14+14+1414+1414+141), 24+24+24+24+242), (2424
+242424141), 24242424141 4+141), 2424241414141+
+1+1), C+24+14+1+1+14+14+14+14+1), 24+14+1+14+1+14+14+1+4
F14+141), Q41 +14+1 41414141 +14+1+1+1).

Bleibt man aber bei der Annahme einer Kombination von zwei
Sechspunktnern, so sind nach Tabelle II grundsatzlich 16 verschiedene
Konfigurationen moglich, von denen wiederum 3 durch verschiedene
Punktsymmetriegruppen erzeugt werden konnen. Geeignete Wahl der
Punktlagen fiihrt iiberdies zu den folgenden Ubergingen: a) kann aus c),
d), h), k); b) aus c), e), g); ¢) aus f); d) aus f), 1); e) aus f); g) ausi); h) aus
i), m}; k) aus 1), m); n) aus m), p); o) aus m), p), und q) aus h) hervor-
gehen. Die tatsidchlich im Benzolmolekiil vorliegende Konfiguration kann
also unter Voraussetzung der Gleichwertigkeit fiir beide Atomarten ins-
gesamt von 11 Symmetriefillen erzeugt werden. Symmetriebedingt ist
sie als 2C,, in Dg,, 2C, in D, 2C, in D,,;; nicht notwendig folgt sie
als 2C, in Cg, 2C, in Cy,, 2C; in Cg, 2CL in D", 2C, in Gy, 2C, in Dy,
2C, in Cy;, 2C, in Dy, Der kursiv gedruckte Fall ist der héchstsymmetri-
sche: wenn keine Gegengriinde vorliegen, hat er die grosste Wahrschein-
lichkeit fiir sich.

Die Entscheidung zwischen moglichen Konfigurationen wird oft
durch die Heranziehung anderer Untersuchungsmethoden erleichtert.
Zur Einschrinkung der Vieldeutigkeit beziiglich der Punktgruppen, die
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eine Konfiguration erzeugen kénnen, liefert aber die Beobachtbarkeit
der Schwingungen in den Spektren selbst ein vorziigliches Mittel. So gibt
es im Falle des 12atomigen Benzolmolekiils insgesamt 3-12—6=30
Freiheitsgrade der Schwingung, die sich fiir die tatsdchliche Konfigura-
tion auf 10 A- oder B- und 10 E-Typen verteilen. Damit wird wiederum
10-14-10-2=30. Die feinere Aufspaltung der Klassen in den 11 mog-
lichen Punktgruppen ist die folgende:

Lo 20, in Dgyt 2A 1, + A, A +2B, +2B,, + 2By + B, +3E +
4 By + 2K,

2C, nmDg:2A,+2A,+2B;+4B,+4E;+ 6L,

20, in Dgg: 2A,, +2A; +34A,, +3A,, +5E,, +5E;,

2C, in Cg i BA, + A +2B, +4B, +E, +3E +4E, + 2K,
2C, in Cyor 3A;+A,+4B,+2B,+4E, + 6K,

6. 2C; inC; : 4A+6B+4E, 46K,

T 2CL in Dyt 4A+2A,"+3A+A+TE, +3E/)

8. 2C, in Cy: 5A;+5A,+10E,

9. 2C; in Dgy: 4A 4+ 2A, +A, +3A, +5E,+5E,

10, 2C; inDy:6A,+4A,+10E,

11, 2C; inCy : 5A+5A +5E,+5E,

[ S N

=t

Die Beobachtbarkeit der insgesamt 20 Normalfrequenzen unterscheidet
sich in den 11 Fillen folgenderweise:

& | | Nach beiden Me- | Im ganzen beob-
aman | Infrarot w ) .

Fall i ' thaden beobacht- ‘ achtbare Schwin-
) dp ‘t m, M,  bare Sc]m'ingungen; gungen (von 20)

1 2 51 1 3 — 11

3 2 5 3 b — 15

2 2 10 2 4 4 14

4 3 5 1 3 — 12

5 3 10 3 4 3+4 13

9 4 5 3 5 — 17

T 4 10 1 7 7 15

6 4 10 4 4 4+4 14

1 . 5 5 5 5 — 20

8 ' 5 10 5 10 5410 15

10 G 10 4 10 10 20

Man sieht, dass sich in diesem Beispiel alle 11 Fille auseinanderhalten
lassen. Das ist nun freilich nicht immer so, wie etwa die Rechnung fiir
die kubischen 4-, 6-, 8- und 12-Punktner zeigt. Fiir die tetraedrische
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Anordnung sind nédmlich die beiden Fille T; und T ununterscheidbar,
fiir die hexaedrische Anordnung konnen die Falle Oy, O, T, Ty und T
alle voneinander unterschieden werden, fiir die oktaedrische An-
ordnung unterscheidet sich nur der Fall O von den beiden Fillen O
und T,, und fir die rhombendodekaedrische Anordnung schliesslich
werden wieder alle Fille Oy, O, T,, T; und T unterscheidbar.

Auf diese Weise kann man nicht nur fiir jede beliebige Konfigura-
tion die Unterscheidbarkeit der moglichen Punktgruppen untersuchen,
sondern es lassen sich auch fiir verschiedene in Betracht fallende Kon-
figurationen die Eigenschaften der beobachtbaren Normalschwingungen
vergleichen. Damit ist aber grundsiitzlich die Mdoglichkeit gegeben, die
symmetriebedingte Vieldeutigkeit wenigstens im Einzelfall zu um-
schreiben.
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