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Beziehungen zwischen der Symmetrie des Kristall-,
Fourier- und Patterson-Raumes.

II. Die Harker-Maxima in den triklinen, monoklinen
und orthorhombischen Raumgruppen*).

Von Werner Nowacki (Bern)

Als Fortsetzung der Arbeit in H. 1, S. 147 (Nowacki, 1950)1) dieser
Zeitschrift wurde begonnen, die Harker-Maxima der allgemeinen Punktlagen

in allen Raumgruppen zusammenzustellen. Es ist üblich geworden,

als ,,Harker-Maxima" diejenigen Maxima einer Pattersonsyn-
these, welche den Abständen gleichwertiger Punkte (gleichwertig in
bezug auf eine Raumgruppe) entsprechen, zu bezeichnen; die übrigen
als „Nicht-Harker-Maxima". Dabei sei vorausgesetzt, dass kristallogra-
phisch gleichwertige Punkte auch von chemisch gleichwertigen Teilchen
der Elektronenzahl Zr besetzt werden.

Um die Harker-Maxima nach Lage und Gewicht zu erhalten, geht
man vom allgemeinen Gitterkomplex (Niggli, 1919), der für eine

Raumgruppe charakteristisch ist, aus und berechnet sich die Komponenten
aller Vektoren zwischen gleichwertigen Punkten durch Differenzenbildung
ihrer Koordinaten. Die Gewichte erhält man, indem man nachsieht, wie
oft derselbe Vektor vorkommt. Dies sei an einigen Beispielen erläutert.

1. Raumgruppe Cjj —Cm; allgemeiner Gitterkomplex [x^zlx^z^
|i + x> i + y> z|i + x> j — y> zj; die Differenzenbildung ergibt die Harker-
Maxima der Tabelle 1.

Tabelle 1

Vektoren zwischen Harker-Maxima
den Punkten Gewicht

u, v, w Charakter

aa, bb, cc, dd 4Z= 0 0 0 Punkt Px
ab, cd 2 Z2 0 2y 0 Gerade Gt
ba, de 2 Z2 0, 2y, 0 Gerade Gx

ac, bd 2 Z2 i i o Punkt P2

ca, db 2 Z2 i i 0 Punkt P2

ad, cb 2 Z2 h i-2y, 0 Gerade G2

da, bc 2 Z2 i + 2y, 0 Gerade G2

*) Mitteilung Nr. 56 von W. N. und Mitarbeitern.
1) Diese Arbeit sei als I bezeichnet.
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Fig. 1. A. Kristallraum C3,-Cm mit allgemeiner Punktlage a, b, c, d
B. Harker-Maxima des zugehörigen Pattersonraumes : (000) und (£ £ 0) mit dem
Gewicht 4 Z/; (0, 2y, 0), (0, 2y, 0), (£, £ + 2y, 0) und (£, £ — 2y, 0) mit dem Gewicht

Das Maximum am Nullpunkt (u, v, w, 0, 0, 0) ist trivial; sein
Gewicht ist überall gleich der Zähligkeit der allgemeinen Punktlage mal
Zj. Zum Maximum (0, 2y, 0) gehört als gleichwertiges (aber davon
verschiedenes) dasjenige auf derselben Harker-Geraden Gx bei (0, 2y, 0),
da jeder Pattersonraum zentrosymmetrisch ist (vgl. I). Die Maxima
(ac, bd) und (ca, db) fallen zusammen und ergeben in (|, 0) ein solches

vom Gewicht 4Z3, das auch aus (000) durch die Translation C ^0
entstanden gedacht werden kann, da die Symmetrie des Pattersonraumes
C2h—C2/m (vgl. Tab. 3, S. 156 in I) ist. Die Maxima (£, \ + 2y, 0) und
(|, \ — 2y,0) je vom Gewicht 2Z^ sind auf einer zweiten Harker-Geraden
G2 zentrosymmetrisch zum Punkt (^ \ 0) gelegen (G2 ist durch die Translation

C mit Gj gleichwertig) (Fig. 1) und sind mit den Maxima (0, 2 y, 0)
und (0, 2y, 0) gleichwertig. — In abgekürzter Schreibweise, unter
Weglassung des Maximums am Nullpunkt und des Buchstabens Zf und unter
Berücksichtigung der Translationsgruppe C ergibt sich für C3—Cm
folgende Charakteristik:

Cs3—Cm; 0, 2y, 0/2; + C
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2. Raumgruppe D2 — I222 ; allgemeiner Gitterkomplex [xyz I

L fl»

xyz|xyz|xyz| + (Hi)]; die Differenzenbildung ergibt die Harker-
Maxima der Tabelle 2.

Tabelle 2

Vektoren zwischen
den Punkten Gewicht

Harker-Maxima
u, v, w Charakter

aa bis hh 8Z2 0 0 0 Punkt Pj
ab, ef 2 Z2 2x, 2y, 0 Ebene E4
ba, fe 2Z2 2x, 2y, 0 Ebene Ei
ac, eg 2Z2 0, 2y, 2z Ebene E2
ca, ge 2 Z2 0, 2y, 2z Ebene E2
ad, eh 2 Z; 2x, 0, 2z Ebene E3
da, he 2 Z2 2x, 0, 2z Ebene E3

ae, bf, cg, dh 4Z2 * i i Punkt P2

ea, fb, gc, hd 4Z2 i i i Punkt P2

af, eb 2Z2 £-2x, J-2y, b Ebene E4
fa, be 2 Z2 i+ 2x, J + 2y, J Ebene E4

ag, ec 2 Z2 i-2y, i—2z Ebene E5

ga, ce 2 Z; b> i+2y, ^ + 2 z Ebene Es
ah, ed 2 Z2 £-2x, £, £-2z Ebene E6
ha, de 2 Z; i + 2x, J, J + 2z Ebene E6
bc, fg 2Z2r 2x, 0, 2z mit ad und da
cb, gf 2Z- 2x, 0, 2z gleichwertig
bd, fh 2Z2 0, 2y, 2z mit ac und ca
db, hf 2 Z'i 0, 2y, 2z gleichwertig
cd, gh 2 Z2 2x, 2y, 0 mit ab und ba
de, hg 2 Z2 2x, 2y, 0 gleichwertig
bg, fc 2 Z; J- + 2x, b> b — 2z mit ah und ha
gb, cf 2 Z2 J— 2x, b, % + 2z gleichwertig
bh, fd 2Z; h i+ 2y, j— 2z mit ag und ga
hb, df 2 Z2r h ï-2y, i+ 2z gleichwertig
ch, gd 2 Z2 J— 2x, b + 2y, b mit af und fa
hc, dg 2 Z2 | + 2x, ï —2y, b gleichwertig

Abgekürzt lautet für D®—1222 die Charakteristik:

Df—1222; 2x, 2y, 0/2; 0, 2y, 2z/2; 2x, 0, 2z/2; +1

3. Raumgruppe T>1~I212121; allgemeiner Gitterkomplex

Ii-x,y, | + z|i+ x. i-y, z|x, i + y, i-z| + (iH)l; die Differenzenbil-
b c d e t g h J'

dung ergibt die Harker-Maxima der Tabelle 3.
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Tabelle 3

Vektoren zwischen Harker-Maxima
den Punkten Gewicht

u, v, w
Charakter

aa bis hh 8 Z2 0 0 0 Punkt Pj
ab, ef 2 Z; i + 2x, 2y, i Ebene Ex
ac, eg 2Z; h i + 2y. 2z Ebene E2
ad, eh 2 Z2 2x, J, £ + 2z Ebene E3

-I- zentrosymmetrische +
abgekürzt :

Df—I 212121; i + 2x, 2y, £/2; | + 2y,2z/2; 2x, £, £ + 2z/2; +1.

Bemerkung: Df—I 222 und Df—I 212121 gehören zur selben Aus-
lösehungseinheit mmml (vgl. I.) und können mittels Auslöschungen
alleine nicht voneinander unterschieden werden. Die Patterson-Harker-
Synthesen gestatten eine eindeutige Unterscheidung.

4. Raumgruppe C*—PI; allgemeiner Gitterkomplex [xyz|xyz];
die Differenzenbildung ergibt die Harker-Maxima (000) vom Gewicht 2Zf
und (2x, 2y, 2z) vom Gewicht Zf, während bei der Raumgruppe C}—PI
nur ein Harker-Maximum (000) vom Gewicht lZf auftritt. C}—PI
und Cj—P1 gehören zur selben Auslöschungseinheit 1 PI, unterscheiden
sich aber durch ihre Harker-Maxima.

Auf diese Weise wurde Tabelle 4 berechnet, welche für die triklinen,
monoklinen und orthorhombischen Raumgruppen die Harker-Maxima
der allgemeinen Punktlage in der abgekürzten Schreibweise angibt;
diejenigen der speziellen Punktlagen sind durch Einsetzen spezieller
Parameterwerte leicht zu erhalten (die Gewichte müssen gesondert berechnet
werden). Ausser bei Cj—PI ist das Maximum am Nullpunkt und
translatorisch identische stets weggelassen. Translatorisch identische Harker-
Punkte (0 Parameter), —-Geraden (1 Parameter), —Ebenen (2
Parameter) oder —Räume (3 Parameter) sind nur durch das Symbol C, A, F
oder I gekennzeichnet.

Diese Harker-Maxima sind für die Raumgruppen ebenso
charakteristisch wie die Koordinaten der allgemeinen Punktlage, aus
denen sie gewonnen worden sind. Lage und Gewichte der Harker-Maxima
gestatten im triklinen, monoklinen und orthorhombischen Fall eine
eindeutige Raumgruppenbestimmung. Von den enantiomorphen Paaren
abgesehen, gilt dies allgemein. Die praktische Schwierigkeit liegt im
Erkennen der Maxima einer aus den beobachteten |F|2-Werten berechneten

Pattersonsynthese als Harker-Maxima und in der Notwendigkeit
der Verwendung dreidimensionaler Synthesen auf absoluter Basis.
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Tabelle 4

Raumgruppe Lage und Gewichte der Harker-Maxima

Triklin
Ci -P 1 000/1
C1, -P 1 2x, 2y, 2z/l

Monoklin
C1, -Pm 0, 2y, 0/1
Ci -Pc 0, 2y, 4/1
C3, -Cm 0, 2y, 0/2+ C

Ci -Ce 0, 2y, 4/2+ C

C\ -P 2 2x, 0, 2z/l
Ci - P 2j_ 2x, 4, 2z/l
Ci —C 2 2x, 0, 2 z/2 + C

cL —P2/m 0, 2y, 0/2; 2x, 0, 2z/2; 2x, 2y, 2z/l
Cih-P21/m 0, 4 + 2y, 0/2; 2x, 4, 2z/2; 2x, 2y, 2z/1
Cih — C 2/m 0, 2y, 0/4; 2x, 0, 2z/4 + C

CL-P2/C 0, 2y, 4/2; 2x, 0, 4 + 2z/2
CL-P21/c 0, 4 + 2y. 4/2; 2x, 4, 4 + 2z/2
C«h-C2/c 0, 2y, 4/4; 2x, 0, 4 + 2z/4 + C

Orthorhombisch
CjT — Pmm 2x, 0, 0/2; 0, 2y, 0/2; 2x, 2y, 0/1
Civ — Pmc 2x, 0, 0/2; 0, 2y, 4/2; 2x, 2y, 4/1
CL-Pce 2x, 0, 4/2; 0, 2y, 4/2; 2x, 2y, 0/1

CL-Pma 4 + 2x, 0, 0/2; 4, 2y, 0/2; 2x, 2y, 0/]
CL-Poa 4 + 2x, 0, 4/2; 4, 2y, 0/2; 2x, 2y, 4/1

Civ-Pnc 2x, 4, 4/2; 0, 4 + 2y, 4/2; 2x, 2y, 0/1
Civ — Pmn 2x, 0, 0/2; 4, 2y, 4/2; 4 + 2x, 2y, 4/1

CL-Pba 4+ 2x, 4, 0/2; 4, 4 + 2y, 0/2; 2x, 2y, 0/1

CL-Pna 4 + 2x, 4, 4/2; 4, 4 + 2y, 0/2; 2x, 2y, 4/1

CL-Pnn 4 + 2x, 4, 4/2; 4> 4 + 2y, 4/2; 2x, 2y, o/l
CÏi — Cmm 2x, 0, 0/4; 0, 2y, 0/4; 2x, 2y, 0/2 + C

CL — Cmc 2x, 0, 0/4; 0, 2y, 4/4; 2x, 2y, 4/2 + C

CL — Ccc 2x, 0, 4/4; 0, 2y, 4/4; 2x, 2y, 0/2 + C

CÏi-Amm 2x, 0, 0/4; 0, 2y, 0/4; 2x, 2y, 0/2 +A
CL-Abm 2x, 4, 0/4; 0, 4 + 2y, 0/4; 2x, 2y, 0/2 +A

— Ama 4+ 2x, 0, 0/4; 4, 2y, 0/4; 2x, 2y, 0/2 +A
CL-Aba 4 + 2x, 4, 0/4; 4, 4 + 2y, 0/4; 2x, 2y, 0/2 + A
C'L - Fmm 2x, 0, 0/8; 0, 2y, 0/8; 2x, 2y, 0/4 +F
CL-Fdd 4-2x, J, 4/4; 4, 4 —2y, 4/4; 2x, 2y, 0/4 + F
CL-Imm 2x, 0, 0/4; 0, 2y, 0/4; 2x, 2y, 0/2 + 1

CL-Iba 4 + 2x, 4, 0/4; 4, 4 + 2y, 0/4; 2x, 2y, 0/2 + 1

CL-Ima 4 + 2x, 0, 0/4; 4» 2y, 0/4; 2x, 2y, 0/2 + 1
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(Fortsetzung Tabelle 4)

Raumgruppe Lage und Gewichte der Harker-Maxima

DJ -P 222
D; — P222x
Dl — P21212
DJ -P212121
Dl —C2221
DJ —C222
DJ -F222
D8 -1222
DJ -12^^!
Djh — Pmmm

Djh — Pnnn

DL — Pecm

D6 —-L'oh

DL-

D8 —

D9 -

D10-J-'Qh

D11 -±J2h

D12-J-'oh

D13-'-'2h

D"-
D15 -2h

D1XJ.)\

Pnna

Pmna

Pcca

Pbam

Pcen

Pbcm

Pnnm

Pmmn

Pbcn

Pbca

Pnma

2x, 2y, 0/1; 0, 2y, 2z/l; 2x, 0, 2z/l
2x, 2y, 4/1; 0, 2y, 2z/1 ; 2x, 0, 4 + 2z/l
2x, 2y, 0/1; 4 + 2y, 2z/l; 4 + 2x, 4, 2z/l
4 + 2x, 2y, 4/1; 4, 4 + 2y, 2z/1; 2x, 4, 4 + 2z/l
2x, 2y, 4/2; 0, 2y, 2z/2; 2x, 0, 4 + 2z/2 + C

2x, 2y, 0/2; 0, 2y, 2z/2; 2x, 0, 2z/2 + C

2x, 2y, 0,4; 0, 2y, 2z/4; 2x, 0, 2z/4 + F
2x, 2y, 0/2; 0, 2y, 2z/2; 2x, 0, 2z/2 + I
4 + 2x, 2y, 4/2; 4, 4 + 2y, 2z/2; 2x, 4, 4 + 2z/2 + I
2x, 0, 0/4; 0, 2y, 0/4; 0, 0, 2z/4; 2x, 2y, 0/2; 0, 2y, 2z/2;
2x, 0, 2z/2; 2x, 2y, 2z/l
4 + 2x, 4, J/4; 4, 4 + 2y, 4/4; 4, 4, 4+2z/4; 2x, 2y, 0/2;
0, 2y, 2 z/2 ; 2x, 0, 2z/2; J+2x, 4 + 2y, 4 + 2z/I
2x, 0, 4/4; 0, 2y, 4-/4; 0, 0, 2z/4; 2x, 2y, 0/2; 0, 2y,J + 2z

/2; 2x, 0, 4 + 2z/2; 2x, 2y, 2z/l
4 + 2x, 4, 0/4; 4, 4 + 2y, 0/4; 4, 4, 2z/4; 2x, 2y, 0/2; 0, 2y,
2z/2; 2x, 0, 2z/2; 4 + 2x, 4- + 2y, 2z/l
4 + 2x, 0, 0/4; 0, 2y, 0/4; J, 0, 2z/4; 4 + 2x, 2y, 0/2; 4,

2y, 2z/2; 2x, 0, 2z/2; 2x, 2y, 2z/l
2x, 4, 4/4; 4-, 4 + 2y, 4/4; 4, 0, 2z/4; 4 + 2x, 2y, 0/2; 0,

4 + 2y, 4 + 2z/2; 4 + 2x, 4, 4 + 2z/2; 2x, 2y, 2z/l
2x, 0, 0/4 ; 4, 2y,4/4;4, 0, 4 + 2 z/4; 4 + 2x, 2y, 4/2;0,2y,
2z/2; 4 + 2x, 0, 4 + 2z/2; 2x, 2y 2z/l
4 + 2x, 0, 4/4; 0, 2y, 4/4; 4, 0, 2z/4; 4 + 2x, 2y, 0/2; 4,

2y, 4 + 2z/2; 2x, 0, 4 + 2z/2; 2x, 2y, 2z/l
4 + 2X, 4, 0/4; 4, 4 + 2y, 0/4; 0, 0, 2z/4; 2x, 2y, 0/2; 4,

4 + 2y, 2z/2; 4 + 2x, 4, 2z/2; 2x, 2y, 2z/l
4 + 2x, 0, 4/4; 0, 4 + 2y, 4/4; 4, 4, 2z/4; 4 + 2x, 4 + 2y,
0/2; 4, 2y, 4 + 2z/2; 2x, 4, 4 + 2z/2; 2x, 2y, 2z/1
2x, 4, 0/4; 0, 4 + 2y, 4/4; 0, 0, 4 + 2z/4; 2x, 2y, 4/2; 0,
4 + 2y, 2z/2; 2x, J, 4+2z/2; 2x, 2y, 2z/l
4 + 2x, 4, 4/4; 4, 4 + 2y, 4/4; 0, 0, 2z/4; 2x, 2y, 0/2; 4,

4 + 2y, 4 + 2z/2; 4 + 2x, 4, 4 + 2z/2; 2x, 2y, 2z/l
2x, 0, 0/4; 0, 2y, 0/4; 4, 4, 2z/4; 2x, 2y, 0/2; 4, 4 + 2y,
2z/2; 4 + 2x, 4, 2z/2; 4 + 2x, 4 + 2y, 2z/l
4 + 2X, 4, 0/4; 0, 2y, 4/4; 4, 4, 4 + 2z/4; 4 + 2x, 4 + 2y,
4/2; 4, 4 + 2y, 2z/2; 2x, 0, 4 + 2z/2; 2x, 2y, 2z/l
4 + 2x, 4, 0/4; 0, 4 + 2y, 4M> i' i + 2z/4; 4 + 2x, 2y,
4/2; 4, 4 + 2y, 2z/2; 2x, 4, 4 + 2z/2; 2x, 2y, 2z/l
4 + 2x, 4> il&'> 0, 4 + 2y, 0/4; 4> 0, 4 + 2z/4; 4 + 2x, 2y,
II2
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(Fortsetzung Tabelle 4)

Raumgruppe Lage und Gewichte der Harker-Maxima

D2h — Cmcm

Djjj — Omca

— Cmmm

— Cccm

DjJ — Cmma

D^-Ccca

DjjJ — Fmmm

D^-Fddd

— Immm

— Ibam

Djl — Ibca

TD^b — Imma

2x, 0, 0/8; 0, 2y, i/8; 0, 0, i + 2z/8; 2x, 2y, i/4; 0, 2y,
2z/4; 2x, 0, i+ 2z/4; 2x, 2y, 2z/2 + C

2x, 0, 0/8; 0, i + 2y, i/8; 0, i, } + 2z/8; 2x, i+ 2y, i/4;
0, 2y, 2z/4; 2x, i, i + 2z/4; 2x, 2y, 2z/2 + C

2x, 0, 0/8; 0, 2y, 0/8; 0, 0, 2z/8; 2x, 2y, 0/4; 0, 2y, 2z/4;
2x, 0, 2z/4; 2x, 2y, 2z/2 + C

2x, 0, i/8; 0, 2y, i/8; 0, 0, 2z/8; 2x, 2y, 0/4; 0, 2y,i + 2z

/4; 2x, 0, i+ 2z/4; 2x, 2y, 2z/2 + C

i+2x, 0, 0/8; 0, 2y, 0/8; i, 0, 2z/8; i+ 2x, 2y, 0/4; i,
2y, 2z/4; 2x, 0, 2z/4; 2x, 2y, 2z/2 + C

i+ 2x, 0, i/8; 0, 2y, i/8; i, 0, 2z/8; i+ 2x, 2y, 0/4; i,
2y, i + 2z/4; 2x, 0, i + 2z/4; 2x, 2y, 2z/2 + C

2x, 0, 0/16; 0, 2y, 0/16; 0, 0, 2z/16; 2x, 2y, 0/8; 0, 2y,
2z/8; 2x, 0, 2z/8; 2x, 2y, 2z/4 + F

i + 2x, J, J/16; i, J + 2y, i/16; J, J, i + 2z/16; 2x, 2y, 0/8;
0, 2y, 2z/8; 2x, 0, 2z/8; i + 2x, i+2y, i + 2z/4 + F
2x, 0, 0/8; 0, 2y, 0/8; 0, 0, 2z/8; 2x, 2y, 0/4; 0, 2y,
2z/4; 2x, 0, 2z/4; 2x, 2y, 2z/2 + I
i+2x, i, 0/8; i, i+ 2y, 0/8; 0, 0, 2z/8; 2x, 2y, 0/4; i,
i+ 2y, 2z/4; i+ 2x, i, 2z/4; 2x, 2y, 2z/2 + I
i+ 2x, i, 0/8 ; 0, i+ 2y, i/8 ; i, 0, i + 2z/8 ; i+ 2x, 2y,
i/4; i, i + 2y, 2z/4; 2x, i, i+ 2z/4; 2x, 2y, 2z/2 + I
i + 2x, 0, 0/8; 0, 2y, 0/8; i, 0, 2z/8; i + 2x, 2y, 0/4; i,
2y, 2z/4; 2x, 0, 2z/4; 2x, 2y, 2z/2 + I
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