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Anwendung der Vektor-Rechnung auf einige hiiufig
auftretende kristalloptische Probleme

Von Conrad Burri (Ziirich)

Zusammenfassung

Die Methoden der Vektor-Rechnung eignen sich sehr gut zur Behandlung
hiufig auftretender kristalloptischer Probleme, wie Konstruktion von Stereo-
grammen zur Veranschaulichung der optischen Orientierung niedrig-symmetrischer
Kristallarten, Auffinden korrespondierender Richtungen in Zwillingen, Transfor-
mation der Projektionsebene etc. Eine geeignete Formulierung der FRESNEL’schen
Konstruktion ermoglicht auf einfache Weise die Berechnung der Ausléschungs-
schiefe fur beliebige Kristallflichen in bezug auf beliebige Bezugsrichtungen. Daran
anschliessend lassen sich leicht fiir beliebige Schwingungsrichtungen die zugehéri-
gen Brechungsindizes, sowie die Doppelbrechung fiir beliebige Wellennormalen-
richtungen ermitteln. Die vorgeschlagenen Methoden werden auf den Albit von

Rischuna als Beispiel angewandt.
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In der Kristalloptik hat sich fiir die Behandlung von Problemen,
welche die gegenseitigen Lagebeziehungen von optischen oder von opti-
schen und kristallographischen Richtungen betreffen, wie z.B.

von
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optischen Achsen, Hauptschwingungsrichtungen, oder allgemein von
Schwingungsrichtungen, welche bestimmten Wellennormalenrichtungen
zugeordnet sind, sowie von Flachennormalen, Zonenachsen, Zwillings-
achsen etc. ein ganz allgemein iibliches und vielfach bewéhrtes Verfahren
eingebiirgert. Man betrachtet die interessierenden Richtungen nicht in
erster Linie als solche, sondern in ihren Durchstosspunkten (Polen) mit
einer um das Kristallzentrum geschlagenen Kugel. Indem man diese
stereographisch auf eine geeignete Ebene abbildet, erhilt man ein iiber-
sichtliches Bild der gegenseitigen Lagebeziehungen der interessierenden
Richtungen, welche ihrerseits Kugelradien entsprechen. Weil bekanntlich
durch die stereographische Projektion Kreise auf der Kugel wieder als
Kreise abgebildet werden, sowie weil diese zudem winkeltreu (konform)
ist, ergeben sich die gesuchten Lagebeziehungen durch trigonometrische
Auflésung der sphirischen Dreiecke mit den entsprechenden Polen als
Ecken. In vielen Féllen geniigt die mit Hilfe des bekannten WurLrFr’schen
Netzes graphisch erzielbare Genauigkeit vollauf. Bei rechnerischer Lésung
nach den Regeln der sphérischen Trigonometrie bietet das WuLrF’sche
Netz eine willkommene Kontrollmoglichkeit.

Die trigonometrischen Rechnungen jedoch sind meist sehr lang-
wierig, besonders wenn es sich um die Auflosung einer Reihe von schief-
winkligen Dreiecken handelt. Zudem stellt sich oft wihrend der Rechnung
die Notwendigkeit heraus ein neues Koordinatensystem einzufiihren,
oder z.B. von rechtwinkligen Koordinaten zu Polarkoordinaten iiber-
zugehen, bzw. umgekehrt, was meistens ebenfalls umsténdliche und zeit-
raubende Rechnungen erfordert. Es soll daher im folgenden gezeigt
werden, wie sich gewisse hidufig auftretende kristalloptische Probleme
mit Hilfe vektorieller Methoden sehr iibersichtlich formulieren und leicht
losen lassen. Die vektoriellen Methoden haben vor allem den Vorteil,
dass sie die interessierenden Richtungen selbst betrachten und nicht nur
die ihnen zugeordneten Pole auf der Kugel, was ihnen eine grdssere
Anschaulichkeit verleiht. Aus diesem Grunde dringen sie sich ja auch
fiir die geometrische und strukturelle Kristallbeschreibung geradezu auf,
worauf L. WEBER!) schon 1924 als erster hinwies. Angeregt durch diese
Darstellung sollen im folgenden einige beim praktischen Arbeiten immer
wieder auftretende kristalloptische Probleme unter Anwendung vekto-
rieller Methoden behandelt werden. Dies entspricht auch einer heute
weitverbreiteten Tendenz des naturwissenschaftlichen Hochschulunter-

1) L. WEBER, Vektoranalytische Behandlung kristallographischer Aufgaben.
In: P. Nigerr, Lehrbuch der Mineralogie 1. 2. Aufl. Berlin (1924), 107—120.
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richtes, welche ganz allgemein bestrebt ist, diesen bis jetzt vorwiegend
von Mathematikern und Physikern angewandten Methoden eine weitere
Verbreitung zu geben.

B. Einige Grundbegriffe und Definitionen

Die Grundziige des Rechnens mit Vektoren miissen hier als bekannt
vorausgesetzt werden, umsomehr als hierfiir eine Reihe von ausgezeich-
neten Einfithrungen existieren?). Hier sollen nur die wichtigsten Grund-
begriffe und Rechenregeln, soweit sie zum Verstindnis der behandelten
Aufgaben unumginglich notwendig sind, ohne nidhern Beweis kurz
erwiahnt werden.

1. Vektoren und Skalare

Vektoren sind gerichtete Grossen. Zu ihrer Bestimmung bedarf es
sowohl der Kenntnis ihres Absolutbetrages (Liange), wie ihrer Richtung.
Sie werden daher anschaulich durch Pfeile bestimmter Linge und Rich-
tung dargestellt. Vektoren werden mit deutschen Buchstaben bezeichnet.
Der Absolutwert (Linge) eines Vektors v wird durch |v| symbolisiert.

Nicht gerichtete Grossen, welche durch einen reinen Zahlwert cha-
rakterisiert werden, heissen Skalare. Sie werden mit lateinischen Buch-
staben symbolisiert.

2. Addition und Subtraktion von Vektoren

Die Addition von zwei Vektoren v und v erfolgt ,,geometrisch®,
indem man durch Parallelverschiebung ohne Richtungsinderung den
Anfangspunkt von v an den Endpunkt von p bringt. Die Summe b + o
wird durch den Vektor dargestellt, welcher den Anfangspunkt von v mit
dem Endpunkt von v verbindet. Die Subtraktion v — o wird nach dem
gleichen Prinzip durch Addition eines entgegengesetzt gerichteten Vek-

2) Ausser der schon erwiéhnten Darstellung von L. WEBER seien auswahls-
weise etwa genannt: B. BAULE, Die Mathematik des Naturforschers und Ingenieurs.
III. Analytische Geometrie, Leipzig (1943). B. HAcUE, An Introduction to Vector-
analysis. 4th ed. London (1950). G. KowarEwskr, Lehrbuch der héheren Mathe-
matik fiir Universitédten und Technische Hochschulen. I. Vektorrechnung und
analytische Geometrie, Leipzig (1933). D. E. RUTHEERFORD, Vector Methods, 4th ed.
Edinburgh and London (1946). E. STIEFEL, Vektorielle Geometrie {Vorlesungs-
autographie E.T.H.), herausgegeben von H. GuceexEEIM und H.P. KUNzI, im
Selbstverlag der Verfasser (1946).
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tors — tv durchgefiihrt. Fir die Addition und Subtraktion von Vektoren
gilt das kommutative Gesetz, d.h. es ist b+t =10+0D.

Uber Addition und Subtraktion von Vektoren in Komponentenform
siche unter 5.

3. Multiplikation eines Vektors mit einem Skalar

m Y ist ein Vektor von der gleichen Richtung wie 1, jedoch vom m-fachen
Absolutbetrag (Linge) desselben.

4. Zerlegung eines Vektors in Komponenten

Jeder Vektor Jdsst sich parallel zu gegebenen Richtungen in Kom-
ponenten zerlegen. Im Raume erfolgt die Zerlegung im allgemeinen nach
drei auf einander senkrechten Richtungen, entsprechend den Achsen des

Z
2,
z 4 p
»
d
X , r
X rechts” V' fioks™ ’
X
Fig. 1. ,,Rechtes* und ,,linkes‘‘ carte- Fig. 2. Zerlegung eines Vektors b in
sianisches Koordinatensystem drei zu XYZ parallele Komponenten.

tblichen cartesianischen Koordinatensystems. Man hat sich dabei zu
entscheiden, ob man ein ,,rechtes oder ein , linkes* (vgl. Fig. 1)
System einfithren will. Im folgenden wird immer ein Rechtssystem
vorausgesetzt. Fir ein solches gilt, dass die + X-Richtung durch eine
Drehung um den kleineren Winkel im positiven (Gegenuhrzeiger-) Sinne
in die +Y- und durch eine ebensolche Drehung in die + Z-Richtung
ibergefiihrt wird. Eine andere Definition lautet: Fithrt man durch
Drehung um den kleinstmdoglichen Betrag + X in + Y iiber, wobei man
gleichzeitig in der Richtung von +Z fortschreitet, so folgt man dem
Gange einer Rechtsschraube fiir ein Rechts-, einer Links-Schraube fiir
ein Linkssystem. Im Rechtssystem folgen +X, +Y und +Z in der
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gleichen Reihenfolge aufeinander wie die ausgestreckten Finger: Daumen,
Zeigefinger und Mittelfinger der rechten Hand, bei einem Linkssystem
jedoch wie die entsprechenden Finger der linken Hand.

Liegt der Anfang eines Vektors p (vgl. Fig. 2) im Ursprung 0 eines
derartigen rechtwinklig-rdumlichen Systems X Y Z, so lisst er sich in
drei zu X, Y, Z parallele Komponenten oder Grundvektoren v, v,
b, zerlegen, so dass

b=p,+b,+0, (1)

5. Einheitsvektoren und Ortsvektor eines Punktes

Man nennt Vektoren von der Linge ! Einheitsvektoren und bezeich-
net sie allgemein mit dem Index Null, also z.B. p,.

Die Einheitsvektoren in Richtung der drei Koordinatenachsen X,Y,Z
bezeichnet man ususgemiss mit 1, j, f. Jeder Vektor v ldsst sich somit
durch

b=0,+v,+0, = xi+yj+zt
darstellen.

Die drei Vektoren v, =x1, b, =yj und v,=z{ sind wiederum die oben
erwihnten Grundvektoren oder Komponenten von v, die drei
Zahlen (Skalare) x, y, z heissen die Koordinaten {Vektorkoordinaten)
von p in bezug auf die drei Einheitsvektoren i,j, f. Die Vektor-
koordinaten x, y, z stimmen mit den cartesianischen Koordinaten x, y, z
des Endpunktes P von p iiberein. Man nennt daher v auch den Orts-
vektor von P.

Sind zwei Vektoren v und 1 in Komponentenform gegeben:

b = X1i+y1i+zlf

W= Xyi+ys]+2Z,f
so erfolgt ihre Addition bzw. Subtraktion durch Addition bzw. Subtrak-
tion ihrer Koordinaten:

b+ 0= (X; £ Xp) i+ (y; £ y2)i+ (2, + (2, £ 25) ¥ (3)

6. Richtungscosinus und Komponenten eines
Einheitsvektors

Fiihrt man die Richtungswinkel «, B, y von v gegeniiber den Koor-
dinatenachsen +X, +Y, +Z ein, so lassen sich die drei Richtungs-
cosinus A = cos a, p = cos B und » = cos y wie folgt ausdriicken:
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o, o) o,
A= Tl “= o) "= )

Betrachtet man den Einheitsvektor v, von der Léange |vg|=1, so ist:

A::Ib():c' #zlboy| V=|U0zl (4a)

d.h. die nach den drei Achsen X, Y, Z eines rechtwinkligen Koordinaten-
systems genommenen Komponenten des Einheitsvektors v, entsprechen
seinen Richtungscosinus A, u, v.

7. Das skalare Produkt zweier Vektoren

Unter dem skalaren oder innern Produkt zweier Vektoren v und o
versteht man den Skalar |v|- |tv|cos (v, tv). Das skalare Produkt wird als
v-1p oder (b ) symbolisiert. Die beiden Faktoren des skalaren Produktes
diirfen vertauscht werden, es ist kommutativ, d.h. (b )= (1w v). Der
Ausdruck (v w)=0 fiir den Fall, dass v und v selbst nicht gleich Null
sind, stellt die Bedingung dafiir dar, dass b und tv senkrecht aufeinander
stehen.

Sind v und v durch ihre Komponenten gegeben

h = Xli+yli+Z1f
= X,i+y,]+2,f

so wird das skalare Produkt nach folgender Regel gebildet:
(b 10) = XX+ Y1 Vo +21%, (5)
Im besondern gilt, wenn man b mit sich selbst skalar multipliziert:

woraus folgt [o]=¥x2+y:2+y:2 (6)

womit der absolute Betrag (Liénge) von p erhalten wird. Die Kennt-
nis von [p| ermdglicht sofort die Berechnung des Einheitsvektors b,.

Ist v=xi+yj+zt
. b X, y. =z
so wird 0= o = o] i+ o] i+ o] 5 (7)

Das skalare Produkt gibt auch die Moglichkeit, den von zwei Vektoren
b und v eingeschlossenen Winkel « zu berechnen. Aus (v fv) = || |tv|cosa
folgt

COS o= _IUQIJ_T:%T = (g 1Dg) , (8)
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8. Das vektorielle Produkt zweier Vektoren

Unter dem vektoriellen oder dusseren Produkt zweier Vektoren b
und 1 versteht man einen Vektor vom Absolutbetrag ¢=|v|-|t|-sin (b,
fv), welcher normal auf der von v und v bestimmten Ebene steht und
so gerichtet ist, dass die drei Vektoren v, iv, g, in dieser Reihenfolge
analog wie 1, ], I ein Rechtssystem bilden. Der absolute Wert von f ist
dabei auch gleich dem von v und v aufgespannten Parallelogramm. Das
vektorielle Produkt von v und v wird als v X v oder [b tv] symbolisiert.
Seine Faktoren diirfen wegen der gemachten Verabredung dass v, iv, ¢
ein Rechtssystem bilden sollen, nicht vertauscht werden. Es ist daher
zu beachten, daB [vmw]= —[twb]. Der Ausdruck [bv]=0 stellt fiir den
Fall, dass weder v noch v selbst Null ist, die Bedingung dafiir dar, dass
sin (b, tv) =0, d.h. der eingeschlossene Winkel =0 oder = ist. Das Vektor-
produkt [p tv] verschwindet also, auller wenn ein Faktor Null ist, auch
noch, wenn die beiden Vektoren p und v parallel oder antiparallel sind.

Sind v und tv durch ihre Komponenten gegeben:

b = X1i+yli+zlf
rp= X2i+ygi+22f

so erfolgt die Bildung des Vektorproduktes nach folgender Regel:

[010]=1(y125—21F2) +1 (21X — X1 25) + £ (X, Y5 — F1 %) (9
oder In Determinatenform:
i i f
[bw] = |x; ¥; 24 (9a)
Xo Yo 2y

Zur Auswertung dieser dreizeiligen Determinate entwickelt man sie
nach der Larrack’schen Methode nach der ersten Zeile, wodurch man
in Ubereinstimmung mit oben erhilt:

Y121 _

Y2%Zg

X%y
Xp Zg

f X1 Y1

bio]=1
[oe] X5 ¥s

9. Das Volumprodukt dreier Vektoren

Unter dem Volumprodukt dreier Vektoren u, v, iv versteht man
den Ausdruck
(ubw) = (ulow]) = (v[wui) = (wuv]) (10)

Schweiz. Min. Petr. Mitt., Bd. 30 Heft 2, 1950 &
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Er stellt das Volumen des von den drei Vektoren u, b, to aufgespannten
Parallelepipedes dar und entspricht somit einem Skalar. Nimmt man z. B.
das durch u und p aufgespannte Parallelogramm als Grundfliiche G des
Parallelepipedes von der Héhe h, so ist sein Volumen V=Gh=|u|-|v]-sin
(u,0)-tw-siny=[up] v wenn man mit y den Winkel zwischen der Kante
ip und der Normalen zu G bezeichnet (vgl. Fig. 11). Der Inhalt des
Parallelepipedes wird positiv erhalten, wenn u, v, tv in dieser Reihenfolge
ein Rechtssystem bilden, negativ im Falle eines Linkssystems., Sind die
drei Vektoren u, v, v durch ihre Komponenten gegeben:

U= Xi+y;j+z,t
D = X2i+yzi+Z2f
0= X31+ V3] +2,1

so ldsst sich (upiv) durch die dreizeilige Determinante

1V 4

V =%y 2 (11)
X3 Y3 23

darstellen. Die Auswertung erfolgt, wie oben angegeben, durch Entwick-
lung nach der ersten Zeile und fiithrt auf den Ausdruck:

V=x,(7323 —Z:¥3) — Y1 (X223 — ZoX3) + 2, (X1 Yo — Y1 X3) (11a)

C. Beziehungen zwischen Ortsvektoren und Kugelkoordinaten
fiir Pole der Einheitskugel

Im vorhergehenden Abschnitt wurden die wichtigsten Rechenregeln
fiir das Rechnen mit Vektoren kurz zusammengestellt. Ihre Anwendung
in bezug auf die Behandlung von kristallographischen und kristallopti-
schen Problemen erfolgt nun derart, dass jedem Pol auf der Kugel ein
Vektor (Kugelradius) zugeordnet wird. Wird der Kugelradius =1 gesetzt
(Einheitskugel), so werden diese Ortsvektoren der Kugelpole alle zu Ein-
heitsvektoren. Dies bietet den Vorteil, dass die Rechnungen besonders
einfach werden, sowie dass die Richtungscosinus A, u, v dieser Ein-
heitsvektoren den auf die rechtwinkligen Koordinatenach-
sen XYZ bezogenen Vektorkoordinaten entsprechen. Resul-
tiert durch irgend eine Rechenoperation (vektorielle Addition oder
Multiplikation z.B.) ein Vektor von der Liange |o|S1, so ldsst er sich
nach (7) immer auf den entsprechenden Einheitsvektor v, zuriickfihren.
Dies ist ohne weiteres zulissig, weil nur die Lage der Pole auf der Kugel-
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oberfliche, also die Orientierung des zugeordneten Ortsvektors im Raume,
und nicht dessen Absolutbetrag interessiert. '

Die Lage der Pole auf der Kugel wird im allgemeinen durch krumm-
linige (sphirische) bzw. Kugel-Koordinaten definiert. Zu diesem Zwecke
withlt man einen beliebigen Kugeldurchmesser als Achse und nimmt
auf dem dazu normalen Grosskreis G einen Punkt S als Ursprung an.
Durch den festzulegenden Pol P wird hierauf ein zweiter Grosskreis K
gelegt, welcher zugleich durch die gewéhlte Achse und somit normal zu
G verlduft. Sein Schnittpunkt mit G sei P’ (vgl. Fig. 3). Man bezeichnet

Fig. 3. Definition der Lage eines Punktes P auf der Kugeloberfliche durch sphé-
rische Koordinaten. Ein beliebiger Kugeldurchmesser wird als Achse gewahlt und
der dazu normale Grosskreis G als Aquator. Ist S ein beliebig angenommener Ur-
sprungspunkt auf demselben, so kann P durch die sphérische Abszisse SP’ (geo-
graphische Lénge) und die sphérische Ordinate PP’ (geographische Breite) festgelegt
werden. Statt der letztern wird auch die dazu komplementéire Poldistanz p
verwendet.

nun SP’ als sphirische Abszisse und PP’ als sphérische Ordinate. Diese
Begriffe stehen in engster Beziehung zu den auf der Erdkugel gebriuch-
lichen geographischen Koordinaten. Identifiziert man die eingangs
gewihlte Achse mit der Erdachse, so entspricht G dem Aquator und S
dessen Schnittpunkt mit dem Nullmeridian und die sphirische Abszisse
und Ordinate von P der geographischen Linge und Breite?).

%) Die der geographischen Liinge und Breite entsprechenden Kugelkoordina-
ten werden in der Kristalloptik vielfach (z.B. bei A. MicHEL-LEVY, F. BECKE u.a.)
mit A und ¢ bezeichnet, gelegentlich (z.B. bei F. E. WriGHT) auch mit A und p. Um
Verwechslungen mit dem GoLpscemIpT’schen Azimut ¢ oder den auf XY Z bezo-
genen Richtungscosinus Auv vorzubeugen, wird hier die Lange immer mit ¢ und
die Breite mit 4 bezeichnet werden.
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Liange und Breite eines Poles P konnen entweder durch die auf der
Kugel gemessenen Bogenlingen SP’ bzw. PP’ oder in rdumlichen Polar-
koordinaten durch die Winkel SOP’ bzw. P'OP ausgedriickt werden,
wobei O den Kugelmittelpunkt darstellt. Statt der Breite n wird oft
auch die dazu komplementire Poldistanz p=(7/2 — ) angegeben.

Die Beziehungen der Kugelkoordinaten (¢, ») eines Punktes auf der
Kugel zu dessen cartesianischen Koordinaten (x, y, z), bezogen auf ein
rechtwinkliges Koordinatensystem XY Z mit Ursprung im Kugelmittel-
punkt, lassen sich sofort angeben. Sie sind von Bedeutung, weil fiir die
Einheitskugel die cartesianischen Koordinaten eines Poles P den Rich-
tungscosinus des Einheitsvektors entsprechen, welcher P zugeordnet ist.

Der allgemeine Fall, dass die zur Aquatorebene normale Achse in
bezug auf XYZ beliebige Lage hat, spielt keine Rolle und braucht
daher nicht behandelt zu werden. Praktisch von Bedeutung sind nur
die drei Fille, fiir welche sie mit X, Y oder Z zusammenfillt, bzw. die
Aquatorebene in die YZ-, ZX- bzw. X Y-Ebene zu liegen kommt. XY Z
wird dabei im folgenden immer als Rechtssystem angenommen.

Fiir diese drei Fille ergeben sich die Zusammenhinge folgender-
massen: (vgl. Fig. 4a—c)

+Z
____________ )
1
1
Y
E P
froees v i
! n i
| b |
i ]
' »,
N bl% .y
; 3
VA
PIII

Fig. 4. Beziehungen zwischen den sphirischen Koordinaten (£, o} eines Punktes P

auf der Kugeloberfliche und seinen auf ein Rechtssystern XYZ bezogenen carte-

sianischen Koordinaten (x, y, z). a) Die Aquatorebene liegt in der Koordinaten-
ebene YZ, b) sie liegt in XZ, e) sie liegt in XY.

1. Achse || X, Aquatorebene YZ-£, wird von +Y aus im positiven

Sinne gezdblt. Da O P’ =cos), ist, folgt:
by, = p=cos ), cos §; (12)

Do, =7 =C08 7, 8in &; sin n;= A

cotg &= - (12a)
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2. Achse || Y, Aquatorebene XZ-§, wird von +Z aus im positiven
Sinne gezihlt. Da OP" = cos 7, ist, folgt:

Do, =A=1c0S 7, sin &, l _ v
Doy == SiN 7 J (13) otg &= 3 | (13a)

Do, =¥ =008 7, COs &, sin = u
3. Achse || Z, Aquatorebene XY -£&; wird von +X aus im positiven
Sinne geziahlt. Da O P” =cos 1, ist, folgt:

Do =A=c0S 7, C‘?S &3 cotg &3 = A
by, =p =C0S 7, sIn &3 (14) i S
e RS, sin gy =v

Die Ausdriicke fir die drei Félle gehen somit durch zyklische Ver-
tauschung auseinander hervor wenn die Lingen ¢ in der angegebenen
Weise gerechnet werden.

Es lassen sich auch ohne weiteres Beziehungen zwischen den Koordi-
naten (£, n) fiir die drei Fille angeben, wie dies z. B. schon F. E. WrIGHT %)
getan hat.

Die Gleichungen (12) bis (14) gestatten fiir jeden durch seine Kugel-
koordinaten (£, ) charakterisierten Pol P auf der Einheitskugel die
Koordinaten des ihm zugeordneten Vektors (Einheitsvektors) anzugeben.
Da die Richtungswinkel ausgehend vom positiven Ast der Koordinaten-
achsen von 0 bis 7 gezdhlt werden, kénnen die Richtungscosinus und
somit auch die Koordinaten des Einheitsvektors alle Werte von +1 bis
—1 annehmen. Umgekehrt liefern die Gleichungen (12a) bis (14a) fiir
jeden Einheitsvektor (Kugelradius) die sphérischen Koordinaten seines
Endpunktes auf der Kugel.

Weil zu jedem Werte der cotg-Funktion immer zwei Winkel gehdren,
besteht fiir die auf Grund von (12a) bis (14a) errechneten Langen £
prinzipiell Zweideutigkeit. Die richtige Ldsung wird jedoch erhalten,
indem man die Lage des Vektors im Raume betrachtet und beriicksich-
tigt, dass die nach X YZ genommenen Komponenten des Einheitsvektors
by, bzw. seine Richtungscosinus Apv, je nach der Lage in den verschie-
denen Oktanten verschiedenes Vorzeichen aufweisen. Folgende Zusam-
menstellung gibt hieriiber Aufschluss, wobei Figur 5 iiber die Numerie-
rung der Oktanten im Raume Auskunft gibt.

4) F. E. WrigHT, Graphical Methods in Microscopical Petrography. Am. J.
Sc. 36 (1913), 509—542, im bes. 511—512.
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4
y/4 /4

Z
Fig. 5. Bezeichnung der rdumlichen Oktanten fiir ein Rechtssystem.

Oktant A p v Oktant A p v
I + + + vV + + -

IT - + 4+ vi - + -
111 - - + vir - - -
v + - + vilr + - —

In der Kristalloptik spielen besonders die Fille 2 und 3 eine Rolle.
Fiir die iibersichtliche Darstellung der optischen Orientierung der Plagio-
klase in Abhéngigkeit von ihrem Chemismus wird seit E. v. FEDorROW,
A.MicrEL-LEvY und F. BEckE eine stereographische Projektion der
obern Halbkugel mit den Polen der optischen Achsen und Haupt-
schwingungsrichtungen benutzt. Dabei wird die Aquatorebene | Y
gelegt, so dass ihre Spur in der stereographischen Projektion NS ver-
lauft, und der Punkt S, von welchem aus £ und » gezdhlt werden (nach
oben und rechts als positiv, nach unten und links als negativ), im Zen-
trum der Projektion angenommen. Leider besteht jedoch insofern keine
Ubereinstimmung zwischen den verschiedenen Autoren, als E. v. FEDOROW,
A. MicHEL-LEvY und mit ihnen auch L. DuParc und M. REINHARD,
sowie W. W. NIxiTIN die c-Achse der Plagioklase in Z legen und M(010)
normal zu Y annehmen, wihrend F. BEcke und seine Schule vielfach
M (010) normal zu Z annehmen und c¢||X verlaufen lassen. Fiir die hier
angestellten Betrachtungen wird die ersterwihnte Art der Orientierung
mit ¢ in Z und M (010) normal Y beriicksichtigt.

Fall 3 entspricht im Prinzip den in der geometrischen Kristallo-
graphie viel gebrauchten GorLpscEMIDT schen ¢, p-Werten, wobei ¢ als
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Azimut und p als Poldistanz, oder in bezug auf eine Projektion auch
als Zentraldistanz bezeichnet wird. Im Unterschied zu der in Fig. 4c¢
angenommenen Orientierung beniitzt jedoch V. GoLpSCEMIDT ein Links-
System und zdhlt seine ,,Azimute (= Lingen) von der vom Ursprung
aus nach rechts verlaufenden + X-Achse aus im negativen (Uhrzeiger-)
Sinne. Ausserdem ist seine Poldistanz p das Komplement zu der in
Figur 4c angegebenen Breite 7. Diese Umstédnde bringen leider eine
gewisse Inkonsequenz fiir unsere Betrachtungen mit sich. Diese konnte
natiirlich beseitigt werden, wenn man sich entweder allgemein fiir die
Einfiihrung eines Linkssystems entschlésse, oder aber statt der GoLb-
SCHMIDT schen ¢, p-Werte die analogen, sich jedoch auf ein Rechtssystem
beziehenden (£;%;)-Werte benutzte. Der erste Ausweg empfiehlt sich
jedoch nicht, weil sich heute in der Vektorrechnung der ausschliessliche
Gebrauch des Rechtssystems durchgesetzt hat und dies z.B. in simt-
lichen Lehrbiichern allein beriicksichtigt wird. Der zweite ist ebenfalls
nicht angingig, da sonst das gesamte sehr umfangreiche Material, welches
in den GorLpscEMIDT schen Tabellenwerken (Winkeltabellen, Index,
Atlas der Kristallformen) nicht weiter benutzt werden kénnte.

Die Zusammenhinge zwischen den GoLDSCHMIDT schen ¢, p-Werten
eines Poles auf der Einheitskugel und den nach XYZ eines Rechts-
systems genommenen Komponenten v,,, ,,, vy, des P zugeordneten
Einheitsvektors v,, bzw. dessen Richtungscosinus Aupv, lassen sich jedoch
sofort angeben, wenn man bedenkt, dass die durch Subtraktion einer
maximalen Anzahl rechter Winkel auf spitze Winkel zuriickgefiihrten
Werte von ¢ und &, sich zu 900 ergiinzen und dass p und 7, ebenfalls
komplementir sind. Aus (14) bzw. (14a) folgt auf diese Weise:

Doz =A=sin p sin ¢ " _ A l
Doy=nm=sinpcose ; (15) EP= M (15a)
Dy, =v=C08 p COS p=v

Auch hier gilt natiirlich das weiter oben iiber die Zweideutigkeit der
cotg-Funktion Gesagte und iiber die sich daraus ergebende Notwendigkeit,
die Lage des Vektors im Raume zu beriicksichtigen.

D. Anwendungen

Im folgenden soll die Anwendung der vektoriellen Methoden auf
Probleme der Kristalloptik an einer Reihe ausgewahlter Beispiele demon-
striert werden. Es sollen fiir ein triklines Mineral aus den in Kugel-
koordinaten £ und 7 gegebenen Positionen der optischen Achsen die
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Grosse des Achsenwinkels 2V und die ¢, p-Werte fir die drei Haupt-
schwingungsrichtungen berechnet werden. Auf Grund dieser Werte lisst
sich dann ein Stereogramm der optischen Orientierung zeichnen, wie es
z.B. fiir das Arbeiten mit dem U-Tisch benétigt wird. Daran anschliessend
soll die optische Orientierung eines nach einem bestimmten Gesetz ver-
zwillingten Kristalls berechnet werden und die Aufgabe der Transfor-
mation der Projektionsebene durch Drehung des Koordinaten-
systems behandelt werden. Hierauf wird die Ausléschungsschiefe
fiir drei verschiedene Schnittlagen, bezogen auf gegebene Bezugsrichtun-
gen bestimmt, und gezeigt, wie sich auf einfache und anschauliche Weise
die Brechungsindizes und die Doppelbrechung der beiden sich senk-
recht zu beliebigen Schnitten, z. B. Spaltbliattchen, zweiachsiger Kristalle
fortpflanzenden Wellen berechnen lassen.

Als Beispiel wurde der Albit von der Alp Rischuna im Valser-
tal (Graubiinden) gewihlt. Dieses prachtvolle Vorkommen eines Kluft-
albites aus penninischen Biindnerschiefern ist in morphologischer,
optischer und chemischer Hinsicht ausgezeichnet untersucht®). Die che-
mischen Analysen ergeben im Mittel eine Zusammensetzung von An, ,.
Die Positionen der optischen Achsen fiir die Aufstellung M (010) £,=0°,
17,=90% und [001]£,=0% %,=0° wurden durch K. CHUDOBA und
H. FiscaEr wie folgt bestimmt:

A B
K. CHUDOBA &' = +63047 £, = -T77°01"
(Methode BECKE) Ny = —48017" 7,/ = —47°13%
H. F1scHER £, = +64041" &)/ = —-77023'

(Methode WULFING) Ny = —48936" 5, = — 47012’

Im folgenden sollen die Mittelwerte aus diesen beiden Bestimmungen

gebraucht werden:
A B
Albit von Rischuna £/ = +64014" £, =—-77012
Mittelwerte der

Achsenpositionen o = —48026' 75, = —47012'

5) B. KrEBs, Der Albit von Rischuna in morphologischer Beziehung. Z. Kri-
stallogr. 56 (1921), 386—407. S. Kozvu, The Dispersion Phenomena of Albite from
Alp Rischuna, Switzerland. Min. Mag. 17 (1915), 189—192. K. SETO, Chemical
Study of some Felspars. Sc. Rep. Tohoku Imp. Univ. Sendai (3) 1 (1923) 228.
K. Cruposa, Die optische Orientierung des Albites von Rischuna, Schweiz.
Tscherm. Mitt. 38 (Festband Fr. Becke) (1925), 88—99. H. FiscaER, Uber die
optischen Eigenschaften des Albites. Z. Kristallogr. 61 (1925), 226—249, im bes.
241242, A. EngELs, Chemismus und optische Orientierung kalifeldspathaltiger
Plagioklase. Inaug. Diss. Univ. Bonn. 44 p., im bes. 5—14. Bielefeld (1937).
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Da die Rechnungen durchgingig nur mit fiinfstelligen Logarithmen
durchgefithrt wurden, werden die Resultate nur auf 0,1° genau angegeben.

1. Berechnung des Achsenwinkels 2V aus den
Achsenpositionen

Aus den oben gegebenen sphirischen Koordinaten ¢,  fiir die
optischen Achsen A und B miissen zuerst die Koordinaten der beiden
A und B entsprechenden Einheitsvektoren A, und B, berechnet werden.

Nach (13) ergibt sich hierfiir

Ay= —0,597531—0,748181 + 0,28842¢
By= +0,662551—0,73373]+0,15053 ¢

Der Achsenwinkel 2V folgt nach (8) aus dem skalaren Produkt (9, B,) zu
2V = 178,79

2) Konstruktion von Stereogrammen zur Veranschaulichung
der optischen Orientierung niedrig-symmetrischer Kristall-
arten

a) Berechnung der Positionen der beiden Bisektrizen

Die den beiden Bisektrizen n, und n, entsprechenden Vektoren ¢
und a werden als Winkelhalbierende der beiden Vektoren U, und B,
durch vektorielle Addition bzw. Subtraktion von %, und B, erhalten.
Weil Albit optisch + ist, halbiert ¢ den spitzen und a den stumpfen
Achsenwinkel. Es ist also:

C=QIO+§BO a=%0_%0
In Komponentenform nach (3):

¢ = +0,065021—1,48191]+ 0,43895¢
a=—1,26008{—0,01445j+0,13789¢

Zur Berechnung der ¢, p-Werte miissen zuerst die Einheitsvektoren c,
und a, berechnet werden. Dazu miissen die absoluten Werte |c| und |a]
bekannt sein, welche man nach (6) durch skalare Multiplikation gewinnt:

c|=1,54690  [a|=1,26768
Nach (7) folgt:
Co = +0,042161 — 0,95798] + 0,28382 f
Gy = —0,994001 — 0,01138] +0,10877f



274 CoxraDp Burrr

und nach (15a): B a
@ 177,50 269,30
p 73,5 83,70

b) Berechnung der Position der optischen Normale

Der nfg entsprechende Vektor b steht normal auf der Ebene der
optischen Achsen. Es ist daher:

b= [?Io SBO]

Aus Wy= —0,597531—0,74818j + 0,28842%
B, = +0,662551—0,73373]+ 0,15053

erhilt man durch Bildung des Vektorproduktes nach (9) bzw. (9a):
b= +0,09901i + 0,28105] + 0,93414 ¢

Nach (6) erhdlt man fiir den Absolutbetrag von b [b|=0,98050 und nach
(7) fiir den Einheitsvektor b

b= +0,1009821 + 0,28663] + 0,95270 ¢

Nach (15a) ergeben sich daraus die gesuchten Koordinaten zu

p=19,40 =177

Mww)

Fig. 6. Stereographische Projektion auf die Ebene | [001] fiir Albit, gezeichnet
auf Grund der aus den gegebenen Achsenpositionen errechneten ¢, p-Werte fiir die
Hauptschwingungsrichtungen. '
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Damit sind die ¢, p-Werte fiir die drei Hauptschwingungsrichtungen aus
den Achsenpositionen gewonnen und das Stereogramm der optischen
Orientierung lisst sich mit Zirkel und Lineal oder mit Hilfe eines WuLFF-
schen Netzes zeichnen (Fig. 6).

Fiir die Richtigkeit der errechneten Koordinaten bestehen eine
Reihe von Kontrollen, indem z.B. die skalaren Produkte (;0,), (Boby),
(apbg), (agCy), (bocy) alle den Wert Null und die vektoriellen Produkte
[aoB0], [BoCol, [Cotol, sowie das Volumprodukt (a,byc,) den Wert 1 auf-
weisen miissen. Die numerische Berechnung der skalaren und vektorielien
Produkte erfolgt am besten mit einer Rechenmaschine, wie es tiberhaupt
ein Vorteil der hier dargelegten Methode ist, dal} das zeitraubende Nach-
schlagen in der Logarithmentafel weitgehend durch das Rechnen mit
der Maschine ersetzt werden kann.

¢) Bemerkungen iiber das Zeichnen der Stereogramme

Sind die Pole durch ihre ¢, p-Werte gegeben, so lisst sich das Stereo-
gramm sofort zeichnen. Am einfachsten, wenn auch am wenigsten genau,
geschieht dies mit Hilfe eines WuLFF’schen Netzes. Besitzt dieses einen
Radius von 10 cm, so betrigt die erzielbare Genauigkeit im besten Falle
etwa 0,5°. Man legt ein transparentes Zeichenpapier, welches in gewohn-
ter Weise im Zentrum drehbar ist, {iber das Netz und trigt die Azimute
von einem festgelegten Ausgangspunkte aus mit Hilfe der Grundkreis-
teilung auf. Die Zentraldistanzen werden mit Hilfe eines der beiden
geradlinigen Durchmesser des Netzes erhalten.

Steht ein WuLrr’sches Netz in der gewiinschten Groésse nicht zur
Verfiigung, oder wird eine gréssere (Genauigkeit fiir die Zeichnung ange-
strebt, so trigt man die Azimute, wie dies durch V. GoLpscHMIDT®)
vorgeschlagen wurde, unter Zuhilfenahme einer Sehnen- oder Tangenten-
tafel auf, wie sie sich in jeder Logarithmentafel finden, die Zentral-
distanzen vermittelst einer Tangententafel, da in der stereographischen
Projektion bekanntlich die Zentraldistanz d=R tg p/2 ist.

Man kann jedoch auch die ¢, p-Werte auf rechtwinklige Koordinaten
umrechnen und so das Stereogramm z.B. auf Millimeterpapier konstru-
leren. Die hierfiir in Betracht kommenden Beziehungen ergeben sich aus
Figur 7a und b. Figur 7a stellt einen Schnitt durch die Projektionskugel
parallel Z und senkrecht zur Projektionsebene E dar. Der Pol P auf der
Kugel wird auf E vom untern Augpunkt A aus stereographisch in P’

%) V. GoLpscamipt, Uber Projektion und graphische Kristallberechnung.
Berlin (1887), im bes. 15—21.



276 CoNrAD BURRI

abgebildet. Ist die Zentraldistanz von P auf der Kugel p, so ergibt sich
die Zentraldistanz seiner Projektion P’ auf E zu d=Rtg§oder fir die
Einheitskugel (R=1) zu d =tg &, weil der Peripheriewinkel O AP’ gleich

der Hilfte des Zentriwinkels ZOP iiber dem gleichen Bogen ZP ist.
Wie aus Figur 7b hervorgeht, kann die Zentraldistanz d in zwei Kom-
ponenten parallel der X- und der Y-Achse zerlegt werden:

x=d sin ¢=Rtg%sinqo

y=dCOSqD=Rtg%COSrp (16)
bzw. fiir die Einheitskugel (R =1)
O
X=tg g Sin @
y=tg%cos<p (16a)

welche den rechtwinkligen Koordinaten des Poles P’ in stereographischer
Projektion entsprechen und das Zeichnen des Stereogrammes ohne
Abtragung von Winkelgriossen erlauben.

4

a

Fig. 7. Entwurf eines Stereogrammes unter Beniitzung rechtwinkliger Koordi-
naten. a) Schnitt der Projektionskugel normal zur Zeichenebene EE. b) Schnitt
der Projektionskugel parallel zur Zeichenebene. ‘
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3. Bestimmung korrespondierender Richtungen fiir zentro-
symmetrische Zwillingskristalle bei bekannter Lage der
Zwillingselemente

a) Allgemeines

Bei zentrosymmetrischen Kristallen kann eine Verzwillingung
bekanntlich immer auf zwei Arten gedeutet werden, namlich durch eine
Halbdrehung (Hemitropie) um eine bestimmte Richtung, die sogenannte
Zwillingsachse (ZA), oder durch Spiegelung an einer zu ZA normalen
Ebene, der sogenannten Zwillingsebene (ZE), wobei mindestens eines
von den beiden Elementen rational ist. Die Moglichkeit der Deutung der
Verzwillingung durch Spiegelung erméglicht fiir zentrosymmetrische
Kristalle eine einfache Berechnung korrespondierender Richtungen fiir
das Zwillingsindividuum, da die Operation der Spiegelung vektoriell sehr
einfach behandelt werden kann.

Fig. 8. Spiegelung des durch seinen Ortsvektor b gegebenen Punktes P an einer
durch ihren Normalvektor n bestimmten Ebene E. Berechnung des Ortsvektors g
des gespiegelten Punktes Q.

Es handelt sich ganz allgemein um die Aufgabe, zu einem durch
seinen Ortsvektor v gegebenen Punkte P den durch Spiegelung an einer
Ebene bekannter Lage zugeordneten Punkt Q bzw. dessen Ortsvektor g
zu finden. In Figur 8 sei O der Ursprung und OP =1 der Ortsvektor des
Punktes P. Dieser werde an der durch ihren Normalvektor (Einheits-
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vektor) 1, definierten Ebene E, welche durch 0 verlaufe, nach Q gespiegelt.
Gesucht ist der Ortsvektor von Q, OQ=1z. Dieser wird durch vektorielle

Addition aus v und einem Vektor ﬁerhaltem, wie in der Figur gestrichelt
angedeutet ist. Der absolute Betrag von PQ ist 2 RP. RP selbst ist die
Projektion von p auf die Richtung des Hinheitsvektors n,, also gleich

(v1g). Um den Vektor PQ, vom doppelten Betrag 2 RP zu erhalten, muss
(o11,) mit —2n, skalar multipliziert werden, so dass fiir den gesuchten
Ortsvektor ¢ resultiert: .

= —2ny(omg)+Do (17)

Fiir den Fall dass b =, ein Einheitsvektor ist, so resultiert aus Symmetrie-
griinden auch g als Einheitsvektor g,

b) Beispiel: Zwilling von Albit nach dem Gesetz Baveno-r

Es sollen fir den Albit von Rischuna die ¢, p-Werte der optischen
Achsen und die Hauptschwingungsrichtungen fiir ein nach dem Gesetz
Baveno-r verzwillingtes Individuum berechnet werden.

Nach den GorpscEMIDT’schen Winkeltabellen gilt fir e(021) fur -
Albit (SCHUSTER)

p=22047" p=52031"

Nennt man den Normalvektor (Einheitsvektor) von e(021) e,, so berech-
net sich dafiir nach (15)

eo= +0,307291+0,73162] 4 0,60853 ¢

Da die Ortsvektoren v der Pole auf der Kugel, welche an e (021) gespiegelt
werden sollen, Einheitsvektoren sind, so kommen die Ortsvektoren ¢ der
gespiegelten Pole ebenfalls als Einheitsvektoren heraus. Gleichung (17)
nimmt daher die Form an

To= —2¢g(vgep) + 1y (17a)

wobei fiir b, der Reihe nach %, By, a5, by, ¢y zu setzen ist.

«) Optische Achse A=

Nach frither ist: Ay= —0,597531—0,74818] + 0,28842
PQ=—2(,e,) e, = +0,34139i +0,81280] + 0,67605F
L,=PQ+, = —0,256141+ 0,06462] +0,96447

daraus folgt nach (15a) ¢ =284,2° p=15,7°



Anwendung der Vektor-Rechnung

B) Optische Achse B=1%,

Nach friiher ist: B, = +0,662551 —0,733731+ 0,15053 ¢
PQ = —2(B,e,)eq= +0,14850i + 0,35355] + 0,29407 £
Lo=PQ+%B, = +0,81105i — 0,38018] -+ 0,44460

daraus folgt nach (15a) ¢=115,1° p=63,6°

y) Bisektrix n,=c

Nach friiher ist: Co= +0,042161—0,95798] + 0,28382¢f
PQ= —2(coeo)ep = +0,31631i+0,75384] +0,62701
Lo=PQ+¢, = +0,35879i — 0,20414] + 0,91083 ¢

daraus folgt nach (15a) ¢=121,4° p=24,4°

8) Bisektrix n,=a,

Nach friiher ist: 4= —0,99400i —0,01138] +0,10877F
PQ=—2(agep) e = +0,156217i +0,36229] + 0,30134 ¢
L,=PQ +a, = —0,841831+0,35091{ +0,41011F

daraus folgt nach (15a) ¢=292,4°% p=65,8°

€) Optische Normale ng=5,

Nach friiher ist: bo= +0,100981 + 0,28663 -+ 0,95270 %
PQ=—2(bye,)e, = —0,504241— 1,20056] — 0,99857 ¥
t,=PQ+5, = —0,403261 —0,91393] — 0,04587

daraus folgt: ¢=203,8° p= —86,60

Der negative p-Wert zeigt, dass der gespiegelte Pol von ng auf der
untern Halbkugel liegt. Da man konventioneller Weise nur die obere
Halbkugel betrachtet, so ergibt sich fiir den zu b, entgegengesetzt gerich-

teten Ortsvektor g,
I, = +0,403261 +0,91393] + 0,04587

woraus folgt ¢'=23,80 p'=86,60.
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4. Transformation der Projektionsebene durch Drehung des
Koordinatensystems

a) Allgemeines

Fiir die optische Mineralbestimmung mit den U-Tisch-Methoden
bendtigt man Stereogramme der optischen Orientierung, welche auf die
drei zu ngy, ng, n, parallelen Vektoren a,b, ¢ als Koordinatenachsen
bezogen werden, oder auch solche, deren Projektionsebene einer bestimm-
ten kristallographischen Fliche, wie z.B. (001) oder (010) entspricht,

Fig. 9. Transformation eines auf ein System YXZ bezogenen Vektors OP auf ein
neues System X' Y’ Z’.

wie dies zuerst durch M. REINHARD?) vorgeschlagen wurde. Diese
lassen sich aus den Diagrammen, wie sie in Abschnitt D. 2 behandelt
wurden, durch geeignete Transformationen der Projektionsebene her-
leiten. Geniigt die Genauigkeit, wie sie mit der bekannten graphischen
Losung mit Hilfe des Wurrr’'schen Netzes erzielt werden kann, den
gestellten Anforderungen nicht, so miissen die Koordinaten der interes-
sierenden optischen und kristallographischen Richtungen berechnet wer-
den. Dies ldsst sich durch eine Drehung des Koordinatensystems errei-
chen. Die Aufgabe stellt sich hierbei folgendermassen (vgl. Fig. 9).

7) M. REmwHARD, Universaldrehtischmethoden. Basel (1931).
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Gegeben: In einem rechtwinkligen System XY Z ein Vektor
b=xi+yj+zt

Gesucht: Die Koordinaten x’,y’,z" des gleichen Vektors im neuen
System X' Y' Z'.

Das neue System habe mit dem alten den Ursprung gemeinsam und
sei ebenfalls rechtwinklig, sowie von gleicher Art, d. h. Rechts- oder
Linkssystem wie das alte. Seine Achsen X’ Y’ Z’ sind durch drei Tripel
von Richtungscosinus A, x, v in bezug auf X YZ nach folgendem Schema
festgelegt :

[ X Y Z
XA pov
Y Ay pe vy
A | Ay 3 v

’

Die neuen Koordinaten x’, y’, z’ sind dann mit den alten x, y, z durch
folgende Beziehungen verkniipft, welche gestatten bei Kenntnis der
Richtungscosinus die einen aus den andern zu berechnen:

Y = AX+pyy+vyz ¢ (18) Y = X +py +ugz’ ¢ (18a)
' = A3X+ gy + vz z = X 4y +vz

Nennt man die Einheitsvektoren in Richtung der alten Achsen i,j, {,
diejenigen in Richtung der neuen i’, ', ¥, so lassen sich die Richtungs-
cosinus i, j’, ¥’ durch die skalaren Produkte

A = (i) A = (ij) A = (iY)
= (it) pe= (i) pe= () o (19)
o= {E) v =) w= ()

ausdriicken.

b) Beispiele: Konstruktion der Stereogramme der optischen Orientierung
von Albit mit der Ebene der optischen Achsen und M (010) als Projektions-
ebenen

Als erstes Beispiel soll das Stereogramm fiir die optische Orientierung
fir Albit, projiziert auf die Ebene | ¢ (Fig. 6) auf die Achsenebene
umprojiziert werden. Die Rechnung soll fiir die Vektoren 3, = Fldchen-
normale von P(001), zugleich Zwillingsachse des Manebacher Gesetzes,
M, = Flichennormale von M(010), zugleich Zwillingsachse des Albit-

Schwelz, Min. Petr. Mitt., Bd. 30, Heft 2, 1950 8
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gesetzes, sowie fiir die kristallographische c-Achse, zugleich Zwillingsachse
Bo des Karlsbadergesetzes durchgefiihrt werden. Anschliessend soll noch
die Zwillingsachse des &, des Albit-Karlshader-Komplexgesetzes (Roc
Tourné-Gesetz) bestimmt werden.

Im alten System XY Z ist nach friiher:

By = +0,449651 + 0,06440] 4 0,89088 ¢
M= 0i+ 1i+0¢

a, = —0,99400i - 0,01138] +0,10877 ¥
b, = +0,100981+0,28663] +0,95270f
¢g = +0,04216{—0,95798] + 0,28382 f

Als neue Koordinatenachsen X'Y'Z’ werden die Hauptschwingungs-
richtungen parallel den Vektoren ag, by, ¢, gewdhlt. Um die Uberein-
stimmung mit den bereits verdffentlichten Diagrammen dieser Art, z.B.
mit REINHARDS’s Tafel 2 zu wahren, wo a, b, ¢, als Linkssystem behan-
delt wird, miissen b, und c; vertauscht werden. Nennt man die Einheits-
vektoren, genommen in den Richtungen der alten Achsen XYZ, i,i, f,
wihrend diejenigen des neuen X'Y'Z’, q,, by, ¢, sind, so gilt:

A = (iag) = —0,99400 A, = (icy) = +0,04216 A, — (ibg) = +0,10098
i = (ag) = —0,01138  y = (jco) = —0,95798 py = (jby) = + 0,28663
Vl = (fa0)= +0,10877 V2 = (fCD)z +O,28382 V3 = (fbo):' +O,95270

Fiir ‘B, berechnen sich die neuen Koordinaten wie folgt:

By = —0,350791 +0,21012§' +0,91261 ¥

und nach (15a) ¢=120,9° p=24,1°

Fiir M, erhilt man:

My’ = —0,011381"—0,95798j" + 0,28663 1’

und nach (15a) p=0,7 p="73,30

Fir die Zwillingsachse des Karlsbadergesetzes ergibt sich
8o = +0,10877{ — 0,95798]' +0,95270 ¥

und nach (15a) ¢=200,00 p=17,7°

Die Zwillingsachse des Roc Tourné-Gesetzes { steht sowohl senkrecht
auf der Zwillingsachse des Karlsbader-, wie des Albitgesetzes, es ist also

£o'=[Bo My']
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Nach (9) bzw. (9a) ist daher
Ky’ = —0,638091" + 0,042041" + 0,09328¢
und nach (15a) p=93,80 p=84,6°

Zur Feldspatbestimmung mit den U-Tischmethoden werden auch
Stereogramme gebraucht, welche wichtige Flachen zur Projektionsebene
haben, welche als Zwillingsebenen, Verwachsungsebenen oder Spalt-
flichen eine Rolle spielen. Durch REINHARD (loc. cit.) wurden derartige
Darstellungen mit M (010) und P(001) als Projektionsebenen gegeben
und als Tafeln 3 und 4 seinem Werke beigefiigt. Auch solche Stereo-
gramme lassen sich leicht durch eine Drehung des Koordinatensystems
erhalten, wie im folgenden gezeigt werden soll. Das gewihlte Beispiel
soll zugleich zeigen, wie sich die Rechnungen ganz erheblich vereinfachen,
wenn die A, u, v spezielle Werte annehmen.

Gegeben seien im System XY Z die Vektoren:

A, = —0,597531—0,74818] + 0,2884 2§
B, = +0,662551—0,73373] +0,15053 f
a, = —0,99400i—0,01138j+0,10877f
by = +0,10098i+ 0,28663]+0,95270¢f
Co = +0,042161—0,95798] + 0,28382 ¢
My= 01+ 1j+ Of

Gesucht werden die gleichen Vektoren in einem neuen System
X'Y'Z" mit M(010) als Projektionsebene. Es wird somit die alte Y-Rich-
tung = 9N, zu Z’ gemacht und ferner, in Ubereinstimmung mit REINHARDs
Tafel 3, das negative Ende der kristallographischen c-Achse zu Y’
gewiihlt, also Y'= —Z gemacht. Die neue X'-Achse entspricht der alten
X-Achse und ist Drehachse des Systems bei einem Drehwinkel von /2.

Nennt man die Einheitsvektoren in Richtung der alten XYZ-
Achsen genommen, wiederum i, i, f, so sind diejenigen in Richtung der
neuen X'Y'Z’-Achsen i, — ¥, M, und es gilt:

Ay = (i) =1 A, = (—ti)=0 A = (Pyi) =0
By = (1) =0 pe= () =0 - pg= (M) =1
= ({)=0 v =(-th=-1 = Mi)=0

Die neuen Koordinaten lassen sich daher sofort anschreiben und die
@, p-Werte nach (15a) berechnen. Es werden ususgeméiss nur die Vek-
toren der obern Halbkugel betrachtet. Wo nétig, erhidlt man diese aus

den entgegengesetzt gerichteten der untern durch Umkehr sdmtlicher
Vorzeichen. Bezogen auf das neue System X'Y’Z’ erhilt man so:
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Ay = +0,59753140,28842] +0,74818F o= 64,20 p=41,60
B, = —0,662551 +0,15053]+0,73373F  =282,20 =420
ay’ = +0,99400{+0,10877{+0,01138f  @= 83,7 ,==89,30
By = +0,10098{—0,95270] +0,28663f  ¢=173,9° ="73,30
¢y’ = —0,042161+0,28382{ +0,95798%F  ¢=351,5° p=16,7°

5. Vektoranalytische Formulierung der FrRESNEL’schen
Konstruktion und Berechnung von
Ausléschungsschiefen auf beliebigen Flachen

a) Allgemeines

Das wichtige Problem der Bestimmung von Ausldschungsschiefen
auf beliebigen Flichen bei bekannter Lage der optischen Achsen wurde
bekanntlich schon durch A. FrRESNEL®) gelost. Gemaiss der nach diesem
Autor benannten Konstruktion ergeben sich die Schwingungsebenen
fir die beiden Wellen, welche sich lings einer gemeinsamen Wellen-
normalen in einem zweiachsigen Kristall fortpflanzen, als die Halbierungs-
ebenen der raumlichen Winkel, welche die beiden durch die Wellen-
normale und die beiden optischen Achsen gelegten IEbenen miteinander
bilden. Liegt die Wellennormale normal zu einer Kristallfliche, so sind
deren Schwingungsrichtungen die Spuren der Schwingungsebenen, oder
mit andern Worten, die Schwingungsrichtungen halbieren die Projek-
tionen der optischen Achsen auf die Kristallfliche in Richtung der
Wellennormalen. Der Beweis wird gewohnlich folgendermassen gefiihrt?®).
Errichtet man auf die durch die Wellennormale N und die optische
Achse A gelegte Ebene E, im Zentrum der Indikatrix das Lot r;, so hat
dieses, weil es dem Kreisschnitt K, angehort, die Lénge ng. Gleicherweise
kommt auch dem auf der durch N und B gelegten Ebene E, errichtete
Lot r, diese Liange zu. Beide Lote gehoren jedoch auch dem zu N nor-
malen Ellipsenschnitt S der Indikatrix an. Als Radienvektoren gleicher
Linge miissen sie symmetrisch zu den Hauptachsen dieser Ellipse liegen,
welche ihrerseits die gesuchten Schwingungsrichtungen darstellen. Diese
halbieren somit die Winkel zwischen r; und r,, sowie auch diejenigen der

8) A. FrEsSNEL, Second mémoire sur la double réfraction. Mém. Acad. sc.
Paris 7 (1827), 45—176, wieder abgedruckt in: Oeuvres complétes d’Augustin
Fresnel. Tome IT, Paris (1868), im bes. 581—584. Deutsch unter dem Titel: Uber
die doppelte Strahlenbrechung, Pogg. Ann. 23 (1831}, 372—434 und 494557,
im bes. 542—545,

%) Vergl. z.B. Fig. 27—29, p. 53—54 in C. Burri, Das Polarisationsmikro-
skop, Basel (1950). '
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Spuren der zu r, und r, normalen Ebenen. Sie sind also auch identisch
mit den Spuren der oben erwihnten Halbierungsebenen der von E,; und
E, gebildeten rdumlichen Winkel, was es zu beweisen galt.

Die FresNEL’sche Konstruktion ldsst sich bekanntlich sehr gut mit
Hilfe eines WuLrr'schen Netzes in stereographischer Projektion durch-
fithren. Gentigt die hierbei erzielbare Genauigkeit nicht, so muss der
Ausléschungswinkel durch trigonometrische Auflésung der entsprechen-
den Dreiecke berechnet werden, was im allgemeinen Falle zu langwierigen
Rechnungen Anlass gibt.

Fig. 10. Fresnel’sche Konstruktion in neuer, fiir die vektorielle Behandlung ge-

eigneter Variante. Die beiden der Wellennormalrichtung N zugeordneten

Schwingunsrichtungen S; und S, sind die Halbierungspunkte der durch r, und r,

eingeschlossenen rdumlichen Winkel. r; und r, sind ihrerseits die Pole der beiden

durch den Pol von N und diejenigen der beiden optischen Achsen A und B ge-
legten Grosskreise.

Es zeigt sich nun, dass die FrREsNEL’sche Konstruktion in aus-
gezeichnetem Masse der vektoranalytischen Behandlung zuginglich ist,
und dass sich diese Art der Betrachtung zudem durch grosse Anschau-
lichkeit auszeichnet. Man betrachtet hierzu die gesuchten Schwingungs-
richtungen nicht als die Spuren der Halbierungsebenen der riumlichen
Winkel der beiden Ebenen E; und E,, welche durch die Schliffnormale
und die beiden optischen Achsen gelegt werden, sondern als Vektoren,
welche die Winkel der beiden Lote r; und r, halbieren, welche zu E; und
E, normal stehen. Diese Betrachtungsweise eignet sich iibrigens auch
zur Durchfiihrung der FrESNEL’schen Konstruktion in stereographischer
Projektion, wobei man gegeniiber der iiblichen Art des Vorgehens mit
geringerem Zeichenaufwand auskommt. Ist N (Fig. 10) die Platten-
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normale (= Wellennormalenrichtung) und sind A und B die beiden
optischen Achsen, so legt man durch NA und NB je einen Grosskreis.
Die Pole der beiden Grosskreise entsprechen den erwihnten Loten r; und
r,. Diese bestimmen den zu N polaren Grosskreis, welcher dem betrach-
teten Schnitt entspricht. Die gesuchten Schwingungsrichtungen sind die
Halbierungspunkte S; und S, der beiden durch r; und r, eingeschlossenen
Winkel. Wiinscht man nicht nur die Schwingungsrichtungen des zu N
normalen Kristallschnittes, sondern die Schwingungsebenen der beiden
sich in Richtung N fortpflanzenden Wellen, so erhilt man sie sofort,
indem man die beiden durch N und S; bzw. N und S, verlaufenden
Grosskreise konstruiert. Die Schwingungsrichtung S, entspricht n," oder
n,’, je nachdem sich n, oder n, im gleichen riumlichen Winkelraum der
beiden durch N und die optischen Achsen gelegten Ebenen befindet.

Wird nicht nur die Schwingungsrichtung S, sondern auch die Aus-
léschungsschiefe o in bezug auf die Spur einer beliebigen Bezugsfliche
M verlangt, so legt man durch die Pole von N und M einen weiteren
Grosskreis und sucht dessen Pol m auf. Der gesuchte Ausléschungs-
winkel o ergibt sich als Sm.

Das Problem der Berechnung der Ausléschungsschiefe eines belie-
bigen Schnittes eines zweiachsigen Kristalls in bezug auf eine beliebige
Bezugsrichtung, bei bekannter Lage der optischen Achsen, stellt sich
in vektoranalytischer Betrachtung folgendermassen:

Gegeben: Die Ortsvektoren (Einheitsvektoren) der Pole auf der
Einheitskugel fiir folgende Richtungen:

Optische Achse A: Wy = X31+y,i+7
Optische Achse B: By = Xp1+Vai+2zst

Normale zur beliebigen Fliche F, fiir welche die Ausldschungsschiefe
bestimmt werden soll: Fo = X3t +ysi+zst

Normale zur Bezugsfliche M, auf deren Spur (Schnittgerade) auf F der
Ausloschungswinkel bezogen werden soll:

Mo= x,i+yaj+2,8
Gesucht: Ausloschungswinkel o auf F, bezogen auf Spur von M

Loésung:
1. Die auf den durch die optischen Achsen und N gelegten Ebenen
errichteten Lote r; und r, werden durch die Vektorprodukte
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o =[UFol ta=[BoFol
dargestellt.
2. Die Schwingungsrichtungen S, und S, entsprechen zwei Vektoren,
welche die von r; und r, eingeschlossenen Winkel halbieren. Man erhalt
sie durch vektorielle Addition bzw. Subtraktion der Einheitsvektoren

31 Ty
1), = i Ly, = T2
ST 27
alS 61=r10+r20 62=t10—t20

3. Die Bezugsrichtung R, auf welche die Ausldschungsschiefe bezo-
gen wird, ist die Spur von M auf F. Da diese als Schnittgerade der beiden
Flichen sowohl M wie F angehort, steht sie normal zu den beiden
Flachennormalen M, und §§, und entspricht dem vektoriellen Produkt

R= [Emo %o]

4. Die gesuchte Ausléschungsschiefe o folgt aus dem skalaren Pro-
dukt (&, R) bzw. (E,R) zu

(@, %) R
[EARES % 7= T8, 1R

Weil im allgemeinen nur einer der beiden zueinander komplemen-
taren Ausléschungswinkel interessiert, braucht nur einer der beiden
Vektoren & und nur ein Winkel o berechnet zu werden. Es kann daher
im folgenden auf die Indizes 1,2 verzichtet werden.

Setzt man im Ausdruck fiir cosc an Stelle von R wiederum das
Vektorprodukt [F,M,] ein, so erhdlt man, weil nach (10) das skalare
Produkt von [§M,] mit & =(F,M,E)=V, dem Volumen des von den
drei Vektoren aufgespannten Parallelepipeds ist (Fig. 11)

V= [Fo| - MMy sin (Fo, M) - [S] coso,
wobei ¢ die Schiefe desselben gegeniiber der auf der Grundfliche errich-
teten Normalen bedeutet. Daraus folgt:
v
(Fol - [TMo| sin (Fo, My)- |S]

Weil jedoch der absolute Wert |R| von R = [T Mol = [Fol - [Mo| sin (For M)
gleich dem Inhalt der Grundfliche G des Parallelepipeds ist, so ist
V/|R|=V/G dessen Hohe h und es wird

h
[

COS o=

CO8 o=
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Fihrt man an Stelle von & den entsprechenden Einheitsvektor &, ein,
so wird
coso=h,

d.h. der Cosinus des Ausléschungswinkels ist gleich der Héhe des von
den drei Einheitsvektoren §,,9M, und &, aufgespannten Parallelepipeds
mit §&,M, als Grundfliche. Der Winkel (§,,M,) ist der Winkel, welchen
die betrachtete Fliche F mit der Bezugsfliche M bildet.

??A
7
A" / / P SR
7
e} / ?;
= )7 6

0 v o
Fig. 11. Der Ausléschungswinkel o ist Fig. 12. Steht die Bezugsfliche M nor-
gleich der Schiefe des durch die drei mal zu F, so geniigt die Betrachtung
Vektoren &, (Einheitsnormalvektor des durch die Einheitsvektoren I, und
der betrachteten Fliche F), I, (Ein- 8, aufgespannten Parallelogrammes an
heitsnormalvektor der Bezugsfliche M) Stelle des Parallelepipeds von Fig. 11.

und & (Schwingungsrichtung) aufge-
spannten Parallelepipeds mit der
Grundfliche [, T, ]-

Eine bedeutende Vereinfachung tritt ein, wenn F und M senkrecht
aufeinander stehen. Dieser Spezialfall ist nicht nur fiir hochsymmetrische
Systeme von Bedeutung. Er findet sich auch im triklinen System ver-
wirklicht bei der Berechnung der Ausléschungsschiefe von Plagioklasen
fiir Schnitte der symmetrischen Zone |_(010) in bezug auf die Spur
von M(010).

In diesem Falle ist [{,MM,]=1 und es wird

coso =V,

d.h. der Cosinus des Ausléschungswinkels o ist gleich dem Volumen des
von den drei Einheitsvektoren &,,9M, und &, aufgespannten Parallel-
epipeds. Als Spezialfille erhdlt man sofort, dass fiir V=1, d.h. wenn die
drei Vektoren senkrecht aufeinander stehen, =0, und dass fiir V=0,
d.h. fiir den Fall, dass die drei Vektoren komplanar sind, o=90° sein
muss. Weil die Grundfliche G den Inhalt 1 hat, so ist V dem absoluten
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Werte nach gleich der Héhe h des Parallelepipeds, so dass auch in diesem
Fall, wie oben, cose =h wird.

Es geniigt auch, das von den beiden Einheitsvektoren M, und &,
aufgespannte Parallelogramm mit der Grundlinie SR, zu betrachten. Sein
Inhalt J berechnet sich zu [IM,S,]=sin(IM,,S,) und ist zugleich, weil
die Grundlinie die Linge 1 aufweist, dem absoluten Werte nach gleich
der Hohe h des Parallelogrammes (Fig. 12).

Weil der gesuchte Ausloschungswinkel ¢ komplementéir zum Winkel
(M,,S,) ist, so gilt auch hier coso=J=h, d.h. der Cosinus des Aus-
loschungswinkels ist dem absoluten Werte nach gleich der Fliche des
von den beiden Einheitsvektoren M, und &, aufgespannten Parallelo-
grammes bzw. gleich dessen Hohe h.

b) Beispiele. Berechnung der Ausldschungsschiefe fiir Albit
a) Auf P(001), bezogen auf die Spur von M (010) (vg. Fig. 13).

Gegeben: Die weiter oben aus den Achsenpositionen berechneten
Ortsvektoren fiir die Pole der beiden optischen Achsen:

Ay= —0,597531—0,74818] + 0,28842 f
By= +0,662551—0,73373]+ 0,15053 ¢

Die ¢, p-Werte fiir die Basis P (010) ¢ =81°51" p=27°01" und der daraus
nach (15) berechnete Ortsvektor des Poles

Fo=Bo= +0,449651+ 0,06440] + 0,89088

Die ¢, p-Werte fiir das seitliche Pinakoid M{010) ¢ =0°0" p=90°0" und
der sich daraus ergebende Ortsvektor

My=01+17+0¢F
Gesucht: Ausléschungsschiefe ¢ auf P in bezug auf Spur von M
Berechnung von 1, =[%,B,] und t,=[B,R,]
Die Berechnung der beiden Vektorprodukte nach (9) bzw. (9a) ergibt:

t,= —0,685111+ 0,66201] + 0,29794
r,= —0,663661 —0,52257} +0,37260F

Daraus ergeben sich nach (6) die Absolutbetrige
|t,]=0,99820 |r,| =0,92302

und nach (7) die Einheitsvektoren
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¥y, = —0,68634i+0,66321j + 0,29848¢
Ty, = —0,718681—0,56616] + 0,40367 £

Die Schwingungsrichtungen &, und &, sind die Winkelhalbierenden von
r; und t,. Es ist somit:

B, =1y, — Tp, = — 0,032341 — 1,22067] + 0,10519F

%
(70g)

)

Fig. 13. Zur Berechnung der Ausloschungsschiefe auf P (001) von Albit, bezogen
auf die Spur von M(010). Die beiden Vektoren r;=[NA] bzw. r,=[NB] stehen
normal auf den durch die Normale i auf P (001) und die optischen Achsen U bzw. B
aufgespannten Ebenen E’ bzw. E”. Die gesuchten Schwingungsrichtungen &; und
@, werden durch vektorielle Addition bzw. Subtraktion der Einheitsvektoren ty,
und t, erhalten. Die Bezugsrichtung R, welche der kristallographischen a-Achse
entspricht, ist Schnittkante von P (001) und M(010), d. h. es ist R=[IMN]. Der
gesuchte Ausléschungswinkel o ergibt sich aus dem skalaren Produkt (S,R).
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Nach (6) folgt daraus fiir die Absolutwerte:
18, =1,57370 und |&,|=1,23457
und nach (7) fiir die Einheitsvektoren:

S,,= —0,892841+0,06167]+0,44615f
©,,= —0,026191—0,99602] + 0,08519

Die Ausloschungsschiefe wird nur in bezug auf &; (im folgenden zur
Vereinfachung als © bezeichnet) berechnet.

Berechnung des Vektors der Bezugsrichtung R:
Als Schnittgerade von P und M ergibt sich der gesuchte Vektor zu

R= [‘Boimo]
Aus B, = +0,449651 + 0,06440] + 0,89088 £

folgt nach (9) bzw. (9a):
R= —0,89088{+0j+0,44965¢
und fiir den Absolutwert nach (6) |R|=0,99790

Berechnung der Ausléschungsschiefe:

Nach friiher ist @ = —1,40502i —0,09705] +0,70215%
und |G| =1,57370

Aus dem skalaren Produkt (R&) folgt nach (8)
(R ©)

= —3.50
T mer

Nach der bekannten ScHUSTER’schen Regel ist der Ausléschungswinkel
positiv zu rechnen. Nach dem Diagramm von L. Duparc und M. REIN-
HARD!0) entspricht o= + 3,5° auf P (001) ein Anorthitgehalt von 49,.

Berechnung der Ausléschungsschiefe nach der ,,Parallelepiped-
methode®.

Aus den Vektoren B, N, und &, ergibt sich fiir das Volumen V des
durch sie aufgespannten Parallelepipedes nach (11) bzw. (11a)

V =0,99605

10) L. Duparc et M. REINHARD, La détermination des plagioclases dans les
coupes minces. Mém. Soc. Phys. Hist. Nat. Gendve 40 (1924) 23,
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und fiir seine Hohe h=V/|R|=0,99814 = coso. Daraus folgt in Uberein-
stimmung mit oben o= + 3,5°.

B) Auf M(010) bezogen auf die Spur von P (001).

Gegeben: Ay=—0,597531—0,74818]+0,28842%
B, = +0,662551—0,733731+0,15053 f

sowie die Ortsvektoren der Fldchenpole von M und P

B,y = +0,449651+ 0,064407 + 0,89088

Gesucht: Ausléschungswinkel ¢ auf M, bezogen auf die Spur von P
Die beiden Vektorprodukte r, =[%,M,] und t,=[B,M,] ergeben:

1= —0,288421+ 0i +0,59753
t,= —0,150531+ 0]+ 0,66255 ¢

Nach (6) folgt daraus fiir die Absolutwerte:
|t;|=0,66350 und [r,|=0,67943
und nach (7) fiir die Einheitsvektoren:

15, = +0,43471i+ 0]+ 0,90058
Ty, = —0,221551+ 0§+ 0,97515¢%

Die Schwingungsrichtungen &, und &, sind wieder die Winkelhalbieren-
den der von 1; und 1, gebildeten Winkel. Es ist somit:

&, =14, + 1y, = +0,21316i +0j + 1,87573 ¢
Gy=1y, — 1z, = —0,656261 40 +0,07457F

Nach (6) folgt hieraus fiir die Absolutwerte:
|,]=1,8870 und |&,|=0,66050
und nach (7) fiir die Einheitsvektoren:

&y, = +0,11292i + 0§ +0,99366 f
Gy, = —0,993601 +0j +0,11290 %

D'e Bezugsrichtung R ergibt sich als Schnittgerade von P(001) mit
M (010) zu
R =T Mo]

R=—0,890881+4 0]+ 0,44965¢



Anwendung der Vektor-Rechnung 293

Nach (6) folgt hieraus fiir den Absolutbetrag |R|=0,99792 und nach (7)
Ry, = —0,892721+ 0]+ 0,45059
Der gesuchte Ausloschungswinkel ergibt sich aus coso = (&, NR,) nach (8) zu
o = 20,30

Nach der ScHUsTER’schen Regel ist der Ausléschungswinkel als positiv
zu rechnen. Das Diagramm von L. Duparc und M. RemnEARD (loc. cit.
1924) fiithrt auf reinen Albit.

y) Fiir Schnitte normal zur kristallographischen a-Achse, bezogen auf
die Spur von M (010).

Diese Schnitte spielen in der Praxis der Plagioklasbestimmung eine
grosse Rolle, weil sie an der symmetrischen Ausloschung in bezug auf
die Spur von M (010), sowie daran, dass die Spaltrisse nach P (001) zugleich
senkrecht zur Schliffebene stehen, leicht erkannt werden konnen. Ihre
Verwendung wurde ungefihr gleichzeitig durch F. BeEcke und G. F.
BECKER vorgeschlagen.

Wie Figur 14 zeigt, ist der Normalvektor % der Fliche normal zur
kristallographischen a-Achse gleich dieser selbst, somit identisch mit
dem unter «) mit R bezeichneten Vektor. Es ist somit:

% — —0,880881+ 0] +0,44965
Aus den Vektoren &, 2, und B, berechnet sich nach (9) bzw. (9a):
1y =[F Ayl = +0,33642{ — 0,01171] +0,66654
£y = [} B,] = +0,32992i + 0,43201] + 0,65367 £
Daraus ergeben sich nach (6) die Absolutbetrige
1, =0,74672 1,=0,85016

und nach (7) die Einheitsvektoren

1y, = +0,450541 — 0,01568] + 0,89262 f

1y, = +0,388071 +0,50815] +0,76888 ¥
Von den beiden Schwingungsrichtungen, welche sich aus 1, + 1, bzw.
1y, — T, €rgeben, wird nur die erste

©= Tyt 1=+ 0,8386121-+0,49247]+1,66150f

berticksichtigt. Nach (6) ergibt sich der Absolutbetrag [&|=1,9251 und
nach (7) der Einheitsvektor

S, = +0,435601 + 0,25580] -+ 0,86304
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+C

=-C

(010)

Fig. 14. Zur Berechnung der Ausléschungsschiefe fiir einen Schnitt _| a, bezogen
auf die Spur von M (010) fiir Albit. Die beiden Vektoren r,=[RU] bzw. r,=[NB]
stehen normal auf den durch die Normale zur betrachteten Fliche R =a und die
beiden optischen Achsen ¥ bzw. 8 bestimmten Ebenen E’ und E’. Die beiden
Schwingungsrichtungen €, und &, werden durch vektorielle Addition bzw. Sub-
traktion der Einheitsvektoren r; und 1, erhalten. Die Bezugsrichtung R ist die
Schnittkante der Ebene | a mit M(OlO), d. h. es ist = [NM]. Der gesuchte Aus-
loschungswinkel ¢ ergibt sich aus dem skalaren Produkt (&,R).
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Die Bezugsrichtung R’ ist die Schnittkante der Fliche | a mit M(0L0)

R =[FM,]
My = 0i+1j+0¥
% = —0,890881+ 0]+ 0,44965

Nach (9) bzw. (9a) wird
R = +0,449651+ 0j+0,89088 f
und nach (6) |R’'|=0,99790
Der gesuchte Ausloschungswinkel o folgt aus dem skalaren Produkt
(R'S) nach (8) zu

|R]- €]
Der Winkel ist negativ zu rechnen, da die Schwingungsrichtung n,’ im
spitzen Winkel P/M liegt. Das Diagramm von L. Duparc und M. REIN-

HARD (loc. cit. 1924) fiihrt auch hier auf reinen Albit.

o=14,8°

Berechnung der Ausléschungsschiefe nach der ,,Parallelogramm-Methode’

Der Inhalt J des von den Vektoren M, und &, aufgespannten
Parallelogrammes ergibt sich zu || =0,96674. Weil die Grundlinie IR, =1
ist, ist |§|=h=coso, woraus ¢ in Ubereinstimmung mit oben zu 14,8°
folgt. Berechnet man den zu o komplementidren Winkel (I, &,), so
erhilt man (I, &,)=0,25580 =sinc und hieraus ebenfalls o = 14,89,

6) Berechnung der Brechungsindizes fiir beliebig orientierte
Schnitte zweiachsiger Kristalle

a) Allgemeines

Die Brechungsindizes n,” und n,’ der beiden Wellen, welche sich in
einem zweiachsigen Kristall mit gemeinsamer Wellennormalenrichtung
fortpflanzen, entsprechen den beiden positiven Wurzeln n der Gleichung

A2 (2 2
T 1T 1t o1 =
n? n2 n* ng n? np?

(20)

in welcher A, u, v die Richtungscosinus der betrachteten Wellennormalen-
richtung in bezug auf die Hauptschwingungsrichtungen n,, ng, n, sind.
Der Ausdruck stellt die sogenannte Indexfliche in Polarkoordinaten dar.
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Diese ist zweischalig und ihre Radienvektoren entsprechen den Brechungs-
indizes derjenigen Wellen, welche sich in ihrer Richtung fortpflanzen.
Der Ausdruck folgt aus der Gleichung der ebenfalls zweischaligen Nor-
malengeschwindigkeitsfliche

A2 (2 55
vZ-a2 v2_h? vE_g?

~0 (21)

wenn man die Normalengeschwindigkeiten a>b>c¢ und v durch die
dazu reziproken Brechungsindizes n,<ng<n, und n ersetzt. Die Nor-
malengeschwindigkeitsfliche selbst ldsst sich ihrerseits leicht aus der
Indikatrix ableitenl),

Die Berechnung der Brechungsindizes aus der Gleichung der Index-
fliche fiihrt jedoch auf eine Gleichung 4. Grades, deren Ldsung sehr
umstédndlich ist. Man bevorzugt daher in der Praxis den durch F. NEU-
MANN12) aufgezeigten Weg, indem man die Wellennormalenrichtung durch
die beiden Winkel ¢ und &' charakterisiert, welche sie mit den beiden
optischen Achsen einschliesst, statt durch die drei Hauptschwingungs-
richtungen n,, ng, n, bezogenen Richtungscosinus A, p, v. Fiir diesen
Fall lassen sich nidmlich die Quadrate der Normalengeschwindigkeiten in
einfacher Form, ohne Wurzelzeichen, wie folgt darstellen:

_ai+c®  at-c?
V1,2— 2 + 2

cos (& F &) (22)

oder wenn an Stelle der Normalengeschwindigkeiten die Brechungsindizes
eingesetzt werden:

, 2
n',,=n,n
kT "‘Vnyz + 1% + (0,2 —n,?) cos (¥ &)

(23)

Mit Hilfe dieser sogenannten NEuMANN’schen Formeln lassen sich z.B.
die Brechungsindizes von Spaltblittchen berechnen. Diese lassen sich
diagnostisch verwenden, weil sie sich mit der Immersionsmethode oft
bedeutend rascher und sicherer bestimmen lassen als die Hauptbrechungs-
indizes. Dies gilt besonders fiir niedrig symmetrische und gut spaltbare
Kristallarten, wie z.B. die Plagioklase, fiir welche S. Tsuso1r!?) auf

11) Vergl. z.B. F. PockEgLs, Lehrbuch der Kristalloptik, Leipzig (1906), 33-34.

12) F. E. NEumann, Uber die optischen Axen und die Farben zweiaxiger
Kristalle im polarisierten Licht. Poggend. Ann. 33 (1834), 257—282, im bes. 278,

13) S, TsuBor, A dispersion method of determining plagioclases in cleavage
flakes. Min. Ma. 20 (1923), 108—122. — A straight-line diagramm for determining
plagioclages by the dispersion method. Jap. J. Geogr. 11 (1934), 325—326.
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dieser Basis eine Bestimmungsmethode vorgeschlagen hat, welche sich
in der Praxis sehr gut bewidhrt. Im folgenden soll nun gezeigt werden,
wie die Brechungsindizes fiir beliebig orientierte Praparate zweiachsiger
Kristalle, also z.B. Spaltbliattchen, im Anschluss an die mit vektoriellen
Methoden durchgefiihrte Berechnung der Ausloschungsschiefen ohne
grossen Rechenaufwand erhalten werden kdénnen.

Es handelt sich dabei um das einfache Problem, fiir einen bestimmten
Indikatrixradius (Schwingungsrichtung &) die Linge zu berechnen. Geht
man von der Gleichung der Indikatrix, bezogen auf die drei Haupt-
schwingungsrichtungen als Koordinatenachsen aus:

Ly S (24)

n,  ng* n,
und bezeichnet man einen beliebigen Radius der Indikatrix mit n, so ist
x=ncosa=nA, y=ncos B=np und z=ncos y=nv. In die Gleichung
der Indikatrix eingesetzt, erhéilt man:

Mg g v L (25)

+ !
2 2 2
n, ng® n n

die Gleichung der Indikatrix in Polarkoordinaten. n ist hierbei die Linge
des Indikatrixradius, welcher in bezug auf die drei Hauptschwingungs-
richtungen (Symmetrieachsen der Indikatrix) n,, ng, n, die Richtungs-
cosinus A, p, v aufweist. Kennt man diese Richtungscosinus fiir eine
beliebige Schwingungsrichtung, so ldsst sich das zugehérige n als Liange
des Indikatrixradius wie folgt berechnen:

]. n 2 n 2 n 2
n?= — o B Ty
;\722 4 ,,H“22 e “V_zmz A2 nﬂznyz + tu'z na2 ny2 + Ve 1'10‘2 IlB2
Ila l’lﬁ 'u,y
n, nB ny (26)

¥ Az nﬁ2 ny2 +p2n,2 n},2+v2 n2 nﬂz

Bei der Berechnung der Ausloschungsschiefen wurden die Schwingungs-
richtungen © als Vektoren &, =1, +1, bzw. &,=1, —1, erhalten. Es
ist nun nur notwendig, die Richtungscosinus der Vektoren &; und &,,
bezogen auf das neue System q, b, ¢, zu bestimmen, um n berechnen zu
konnen. Zu diesem Zwecke bestimmt man zuerst die absoluten Werte
|&,| und |&,| und mit ihnen die Einheitsvektoren &, und &, . Die
Richtungscosinus A’ u,’, v,’ fiir €;, bezogen auf das neue System a,b,¢,
sind dann nach (19) gleich den skalaren Produkten

Schweiz. Min. Petr. Mitt, Bd. 30 Heft 2, 1950 7
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Ay = (G4, a0) ' = (©4,0) v = (610 Co)
bzw. fir &,,

Ay’ = (€, by) o’ = (Sy,by) vy = (s, Co)

Setzt man sie in den oben gegebenen Ausdruck (26) an Stelle von A, u, v
ein, 80 erhélt man die gesuchten Brechungsindizes n, und n,

b) Beispiele

Als Beispiele sollen fiir den Albit von Rischuna die Brechungsindizes
der Spaltblittchen nach P(001) und M (010), fiir welche bereits die Aus-
loschungsschiefen berechnet wurden, ermittelt werden.

Vom Albit von Rischuna existieren folgende Lichtbrechungsbestim-
mungen, von welchen die erste und dritte nach der Methode der Total-
reflexion, die mittlere nach der Prismenmethode durchgefiihrt wurden:

n, n,3 ny
K. Cauposa, Tscherm. Mitt. 38 (1925) 93 11,5293 1,5334 1,5397
H. FiscHER, Z. Kristallogr. 61 (1925) 244  1,5290 1,5329 1,6388
S. Kozu, Min. Mag. 17 (1915) 189 1,56289 1,5330 1,56392

Im folgenden wird das Mittel aus diesen drei gut iibereinstimmenden
Angaben beniitzt:

Albit von Rischuna, Mittelwerte der n, ng n,
Lichtbrechung (D) 1,5291 1,5331 1,5392

«) Berechnung der Brechungsindizes fiir P (001)
Gegeben sind die Vektoren:

a, = —0,99400i-0,01138j+0,10877¢
b, = +0,10098{+0,286631+ 0,95270¢f
¢ = +0,04216i{—0,95798j+ 0,28382%
©,, = —0,89283140,06167j+ 0,44615¢%
©,,= —0,026191—0,99602] -+ 0,08519%

Daraus berechnen sich die Richtungscosinus A,’, u,’, »," fiir €, in bezug
auf das neue System ayb, ¢, wie folgt:

Al’ - (a0610)= +0,93531
gy’ = (0,S;,)= +0,35257 In (26) eingesetzt folgt
vy = (¢ S,,) = +0,02991 n, =1,5296
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Gleicherweise erhilt man fiir die Richtungscosinus von &,,

Ay = (0,8,,) = +0,04666
pe' = (b)) = +0,20698 In (26) eingesetzt folgt
vy = (co Gg,) = +0,97726 n,’ =1,5389

B) Berechnung der Brechungsindizes fiir M (010)

Ausgegangen wird wiederum von den drei oben gegebenen Vektoren
ap by ¢y, sowie von den ebenfalls schon berechneten Vektoren der
Schwingungsrichtungen

©y,= +0,112921 4+ 074 0,99366 %
Sg,= —0,993601+ 01+ 0,11290 %

Die Richtungscosinus bezogen auf das neue System q, b, ¢, berechnen
sich wie folgt:

A = (0,8,,) = —0,00417
' = (0,8,,)= +0,95807 In (26) eingesetzt folgt
14 - (

v’ = (0 S,,)= +0,28679 n,’'=1,5335

Gleicherweise erhilt man fir die Schwingungsrichtung &,

Agl = ((10620) = +O,99992
pe' = (byS,,) = +0,00723 In (26) eingesetzt folgt
vy = (¢yS,,) = —0,00085 n, ' =1,5291

Die Brechungsindizes von Spaltbldttchen nach P(001) und M(010) fiir
den Albit von Rischuna mit 1-29, An betragen somit:

’ !

n, n,
P (001)  1,5296  1,5389
M(010)  1,5291  1,5335

Aus den von S. TsuBor1 (loc. cit. 1923) gegebenen Kurven ergibt sich fiir
diese Werte ein um ca. 1% hoéherer Anorthitgehalt. In Anbetracht
dessen, dass die Kurven dieses Autors sich im in Betracht kommenden
Gebiet nur auf die Punkte An 0 und An 13 stiitzen, sowie dass bei den
vorliegenden Berechnungen mit Mittelwerten operiert und optische
Untersuchung und chemische Analyse nicht am gleichen Material aus-
gefiihrt wurde, ist die Ubereinstimmung somit durchaus befriedigend.
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7. Berechnung der Doppelbrechung fiir beliebige Schnitte
bzw. beliebige Wellennormalenrichtungen zweiachsiger
Kristallel4)

a) Ndaherungsweise Berechnung fir den Fall niedriger Doppelbrechung

Bezeichnet man die von der Flichennormale (Wellennormalenrich-
tung) F und den beiden optischen Achsen A und B eingeschlossenen
Winkel mit # und &', so gilt fiir die Absolutbetrige der schon Seite 289
berechneten Vektorprodukte r,=[,%,] bzw. 1, =[B,F,] dass

|t]=sin® und |t,|=sind

Es ist somit moglich die bekannte MarLarD’sche Niaherungsformel!®)
fiir kleine Doppelbrechungen

(n,' —n,’) =(n,—n,)sin #sin & = (n, —n,) |1;]- 15| (27)

anzuwenden und bei bekannter maximaler Hauptdoppelbrechung (n, —n,)
die Doppelbrechung in Richtung von F zu berechnen.

b) Beispiele

Anwendung auf den Albit von Rischuna: Berechnung der Doppel-
brechung fiir Spaltbliattchen nach P (001) und M (010)

Aus den Vektoren ;= —0,597531—0,74818j+0,28842%
B, = +0,662551 —0,73373]+0,15053

sowie dem Normalvektor auf P(001)

Fo="PBo= +0,449651 +0,06440] + 0,89088

folgt nach (9)
[t,|=0,99820 =sin &
|t| =0,92302 =sin &

Die maximale Doppelbrechung ergibt sich aus den weiter oben gegebenen
Brechungsindizes zu (n,—n,)=0,0101, worauf nach (27) folgt

(n,”—n,")=0,0093

Y
1) Die Anregung zu diesem Abschnitte verdanke ich einer Diskussions-
bemerkung von Herrn Kollegen W. NieuweENkaMP (Utrecht) anlésslich der Davoser
Tagung der Schweiz. Min. Petr. Ges. vom 28. 8. 50.
15) Uber die Herleitung dieser Formel siehe z.B. C. Burri, Das Polarisations-
mikroskop. Basel, Birkhéduser (1350), 60—61. '
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Dieser Wert steht in Ubereinstimmung mit dem direkt aus den weiter
oben berechneten Brechungsindizes fur Spaltblittchen nach P(001)
erhaltenen. Analogerweise erhilt man aus %, und B, und dem Normal-
vektor F auf M(010)

Fo=MWMy=01+1]+0F
nach (9)

lt,| = 0,66350 =sin &

|t,| =0,67943 =sin &'

woraus sich nach (27) ergibt:

(n,’—n,")=0,0045

b4

wihrend sich aus den fiir M(010) berechneten Brechungsindizes in
befriedigender Ubereinstimmung ableitet (n,"—n,')=0,0044.

¢) Ezakte Berechnung fur den Fall héherer Doppelbrechung

Fiir hohere Doppelbrechung muss die Berechnung nach der exakten
Forme] 1¢)

1 1 i 1Y . x 1 1
(_,ﬁzaﬂ)=( —2)Sln19811119‘=(112.—;§) ezl ral  (28)

n’',2 n', n2 n, . g

erfolgen, deren Auswertung allerdings etwas umstindlicher ist. Die rezi-
proken Quadrate der Lichtbrechung entnimmt man dazu am besten den
von F. E. WricaT!?) gegebenen Tabellen, wo die Werte von 1/n? fir
Brechungsindizes von 1,400 bis 2,400 auf 6 Dezimalstellen gegeben sind.

Fiir die vierte Stelle von n muss interpoliert werden.

d) Beisptele

Der Gang der Berechnung soll wiederum am Beispiel des Albites
von Rischuna gezeigt werden. Aus n,=1,5392 ergibt sich aus den
WricHT’schen Tabellen 1/n,2=0,422095 und aus n, = 1,5291 folgt 1/n,*=
0,427689, somit 1/n 2% — 1/n,?=0,005594. Aus diesem Wert und den oben
gegebenen Werten fiir sin ¢ und sin &' folgt aus (28} fiir P (001)

( - L) =0,00515

T2 L7 2
n’, n,

18) Fir die Herleitung siehe z.B. C. Burri, loc. cit. Basel (1950), 58—59.
17) F. E. WricHT, Graphical Methods in Microscopical Petrography. Amer.
J. Sc. 36 (1913), 509—542, im bes. 518—526.
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Um aus diesem Werte (n,’ —n,’) zu erhalten, muss entweder n,’ oder n,’
selbst bekannt sein. Nimmt man den in Abschnitt 6 berechneten Wert
n,'=1,5296 als bekannt an, so folgt daraus 1/n,*=0,427410 und 1/n,"%=
1/n,"2—0,00515 = 0,42226, woraus ny’ =1,5389 folgt. Somit wird

(n, —n,’)=0,0093

Y

in Ubereinstimmung mit dem aus der MaLLARD schen Niherungsformel
und aus den berechneten Brechungsindizes direkt erhaltenen Wert.
Fiir M (010) erhélt man in analoger Weise

(L2 s iz) = 0,002522
n',2 n',

Unter Verwendung des in Abschnitt 6 berechneten Wertes n,'=1,5291
erhélt man

(n,’—n,'}=0,0045

4

in Ubereinstimmung mit dem aus der Niherungsformel erhaltenen Wert.

Ist weder n,” noch n,’ bekannt und lisst sich keiner der beiden
Werte nach dem oben angegebenen Verfahren berechnen, weil z.B. der
Vektor © nicht bekannt ist, so miissen die NEuUMANN’schen Formeln
angewandt werden. Aus (22) bzw. (23) ergibt sich, dass z.B.

L fE N R

n',2" 2 |n2+n? nt—n?

=_;_( 1 +%)+;( 1 Lz) cos (& —9') (29)

iy -
n,® n, n?A n,

Fiir den Albit von Rischuna berechnet sich auf Grund der weiter oben
gegebenen Daten fiir die Lichtbrechung

(1) Co404802 1 (L . L) =0,002797
2 \n2" np? 2 \n2 np?

Fiir Spaltblittchen nach P(001) berechnet sich ferner

& = arcsin 0,99820 = 86°34’
&' = aresin 0,92302=67928’,

woraus folgt (#—39')=19912". In (29) eingesetzt erhdlt man

1/n,'2=0,427533, woraus folgt n,'=1,5294
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Ferner ist 1/n,'2=1/n,"?—0,00515 = 0,42238, und somit n,’=1,5387. Man
erhilt somit fiir Spaltblittchen nach P(001) in Ubereinstimmung mit

frither
(n,’ —n,’) =0,0093

Fiir Spaltblittchen nach M (010) ergibt sich in analoger Weise

? = arcsin 0,66350=41934’
&' = arcsin 0,67943 = 42048’

und (#—&)=1°14", Daraus berechnet sich nach (29) 1/n,'>=0,427685
und n'=1,5291. Weil ferner l/ny'2= 1/n,"?—0,002522 = 0,425163 1st, so
wird n,’=1,5336 und fiir die Doppelbrechung erhilt man, in Uberein-
stimmung mit dem fritheren Ergebnis

(n,"—n,")=0,0045,

¥

Summary

The methods of vector calculation are well adapted for the solution of
commonly oceurring problems of crystal optics such as the following: construction
of stereograms to illustrate the optical orientation of crystals with low symmetry;
the identification of corresponding directions in twins; transformations of the plane
of projection ete. A suitable formulation of Fresnel’s construction provides a
simple method of calculating the extinction angle of any crystal plane in respect
to any desired direction. In this connection the refractive indices for any desired
vibration directions as well as the birefringence can easily be calculated. As a
practical example of the methods here described a detailed calculation of albite
from Rischuna is given.

Ziirich, Mineralogisch-Petrographisches Institut der Eidg. Technischen
Hochschule.

Erhalten: 5. August 1950.
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