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Anwendung der Vektor-Rechnung auf einige häufig
auftretende kristalloptische Probleme

Von Conrad Burri (Zürich)

Zusammenfassung

Die Methoden der Vektor-Reehnung eignen sich sehr gut zur Behandlung
häufig auftretender kristalloptischer Probleme, wie Konstruktion von
Stereogrammen zur Veranschaulichung der optischen Orientierung niedrig-symmetrischer
Kristallarten, Auffinden korrespondierender Richtungen in Zwillingen, Transformation

der Projektionsebene etc. Eine geeignete Formulierang der FRESNEiAschen

Konstruktion ermöglicht auf einfache Weise die Berechnung der Auslöschungsschiefe

fur beliebige Kristallflächen in bezug auf beliebige Bezugsrichtungen. Daran
anschliessend lassen sich leicht für beliebige Schwingungsrichtungen die zugehörigen

Brechungsindizes, sowie die Doppelbrechung für beliebige Wellennormalen-
richtungen ermitteln. Die vorgeschlagenen Methoden werden auf den Albit von
Rischuna als Beispiel angewandt.
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A. Einleitung

In der Kristalloptik hat sich für die Behandlung von Problemen,
welche die gegenseitigen Lagebeziehungen von optischen oder von
optischen und kristallographischen Richtungen betreffen, wie z.B. von
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optischen Achsen, Hauptschwingungsrichtungen, oder allgemein von
Schwingungsrichtungen, welche bestimmten Wellennormalenrichtungen
zugeordnet sind, sowie von Flächennormalen, Zonenachsen, Zwillings-
achsen etc. ein ganz allgemein übliches und vielfach bewährtes Verfahren
eingebürgert. Man betrachtet die interessierenden Richtungen nicht in
erster Linie als solche, sondern in ihren Durchstosspunkten (Polen) mit
einer um das Kristallzentrum geschlagenen Kugel. Indem man diese

stereographisch auf eine geeignete Ebene abbildet, erhält man ein
übersichtliches Bild der gegenseitigen Lagebeziehungen der interessierenden
Richtungen, welche ihrerseits Kugelradien entsprechen. Weil bekanntlich
durch die stereographische Projektion Kreise auf der Kugel wieder als
Kreise abgebildet werden, sowie weil diese zudem winkeltreu (konform)
ist, ergeben sich die gesuchten Lagebeziehungen durch trigonometrische
Auflösung der sphärischen Dreiecke mit den entsprechenden Polen als
Ecken. In vielen Fällen genügt die mit Hilfe des bekannten WuLFF'schen
Netzes graphisch erzielbare Genauigkeit vollauf. Bei rechnerischer Lösung
nach den Regeln der sphärischen Trigonometrie bietet das WuLFF'sche
Netz eine willkommene Kontrollmöglichkeit.

Die trigonometrischen Rechnungen jedoch sind meist sehr
langwierig, besonders wenn es sich um die Auflösung einer Reihe von
schiefwinkligen Dreiecken handelt. Zudem stellt sich oft während der Rechnung
die Notwendigkeit heraus ein neues Koordinatensystem einzuführen,
oder z. B. von rechtwinkligen Koordinaten zu Polarkoordinaten
überzugehen, bzw. umgekehrt, was meistens ebenfalls umständliche und
zeitraubende Rechnungen erfordert. Es soll daher im folgenden gezeigt
werden, wie sich gewisse häufig auftretende kristalloptische Probleme
mit Hilfe vektorieller Methoden sehr übersichtlich formulieren und leicht
lösen lassen. Die vektoriellen Methoden haben vor allem den Vorteil,
dass sie die interessierenden Richtungen selbst betrachten und nicht nur
die ihnen zugeordneten Pole auf der Kugel, was ihnen eine grössere
Anschaulichkeit verleiht. Aus diesem Grunde drängen sie sich ja auch
für die geometrische und strukturelle Kristallbeschreibung geradezu auf,
worauf L. Weber1) schon 1924 als erster hinwies. Angeregt durch diese

Darstellung sollen im folgenden einige beim praktischen Arbeiten immer
wieder auftretende kristalloptische Probleme unter Anwendung vektorieller

Methoden behandelt werden. Dies entspricht auch einer heute
weitverbreiteten Tendenz des naturwissenschaftlichen Hochschulunter-

x) L. Weber, Vektoranalytische Behandlung kristallographischer Aufgaben.
In: P. Niggli, Lehrbuch der Mineralogie I. 2. Aufl. Berlin (1924), 107—120.
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richtes, welche ganz allgemein bestrebt ist, diesen bis jetzt vorwiegend
von Mathematikern und Physikern angewandten Methoden eine weitere
Verbreitung zu geben.

B. Einige Grundbegriffe und Definitionen

Die Grundzüge des Rechnens mit Vektoren müssen hier als bekannt
vorausgesetzt werden, umsomehr als hierfür eine Reihe von ausgezeichneten

Einführungen existieren2). Hier sollen nur die wichtigsten
Grundbegriffe und Rechenregeln, soweit sie zum Verständnis der behandelten
Aufgaben unumgänglich notwendig sind, ohne nähern Beweis kurz
erwähnt werden.

1. Vektoren und Skalare

Vektoren sind gerichtete Grössen. Zu ihrer Bestimmung bedarf es

sowohl der Kenntnis ihres Absolutbetrages (Länge), wie ihrer Richtung.
Sie werden daher anschaulich durch Pfeile bestimmter Länge und Richtung

dargestellt. Vektoren werden mit deutschen Buchstaben bezeichnet.
Der Absolutwert (Länge) eines Vektors ti wird durch 0 symbolisiert.

Nicht gerichtete Grössen, welche durch einen reinen Zahlwert
charakterisiert werden, heissen Skalare. Sie werden mit lateinischen
Buchstaben symbolisiert.

2. Addition und Subtraktion von Vektoren

Die Addition von zwei Vektoren ti und tu erfolgt „geometrisch'',
indem man durch Parallelverschiebung ohne Richtungsänderung den

Anfangspunkt von tu an den Endpunkt von ti bringt. Die Summe ti + tu
wird durch den Vektor dargestellt, welcher den Anfangspunkt von ti mit
dem Endpunkt von tu verbindet. Die Subtraktion ti — tu wird nach dem

gleichen Prinzip durch Addition eines entgegengesetzt gerichteten Vek-

2) Ausser der schon erwähnten Darstellung von L. Weber seien auswahlsweise

etwa genannt : B. Bauxe, Die Mathematik des Naturforschers und Ingenieurs.
III. Analytische Geometrie, Leipzig (1943). B. Hague, An Introduction to Vector-
analysis. 4th ed. London (1950). G. Kowaxewski, Lehrbuch der höheren Mathematik

für Universitäten und Technische Hochschulen. I. Vektorrechnung und
analytische Geometrie, Leipzig (1933). D. E. Rutherford, Vector Methods, 4th ed.

Edinburgh and London (1946). E. Stiefel, Vektorielle Geometrie (Vorlesungs-
autographie E.T.H.), herausgegeben von H. Guggenheim und H. P. Künzi, im
Selbstverlag der Verfasser (1946).
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tors — to durchgeführt. Für die Addition und Subtraktion von Vektoren
gilt das kommutative Gesetz, d.h. es ist b + to to +1).

Über Addition und Subtraktion von Vektoren in Komponentenform
siehe unter 5.

3. Multiplikation eines Vektors mit einem Skalar

m 0 ist ein Vektor von der gleichen Richtung wie 0, jedoch vom m-fachen
Absolutbetrag (Länge) desselben.

4. Zerlegung eines Vektors in Komponenten

Jeder Vektor lässt sich parallel zu gegebenen Richtungen in
Komponenten zerlegen. Im Räume erfolgt die Zerlegung im allgemeinen nach
drei auf einander senkrechten Richtungen, entsprechend den Achsen des

»,'rechts "
X

"links "

Fig. 1. „Rechtes" und „linkes" carte-
sianisches Koordinatensystem

z

/ ^ /p/
V/'

°/
/*>, // Y

Fig. 2. Zerlegung eines Vektors b in
drei zu XYZ parallele Komponenten.

üblichen cartesianischen Koordinatensystems. Man hat sich dabei zu
entscheiden, ob man ein „rechtes" oder ein „linkes" (vgl. Fig. 1)

System einführen will. Im folgenden wird immer ein Rechtssystem
vorausgesetzt. Für ein solches gilt, dass die + X-Richtung durch eine

Drehung um den kleineren Winkel im positiven (Gegenuhrzeiger-) Sinne
in die +Y- und durch eine ebensolche Drehung in die +Z-Richtung
übergeführt wird. Eine andere Definition lautet: Führt man durch
Drehung um den kleinstmöglichen Betrag -l-X in +Y über, wobei man
gleichzeitig in der Richtung von +Z fortschreitet, so folgt man dem
Gange einer Rechtsschraube für ein Rechts-, einer Links-Schraube für
ein Linkssystem. Im Rechtssystem folgen +X, +Y und +Z in der
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gleichen Reihenfolge aufeinander wie die ausgestreckten Finger: Daumen,
Zeigefinger und Mittelfinger der rechten Hand, bei einem Linkssystem
jedoch wie die entsprechenden Finger der linken Hand.

Liegt der Anfang eines Vektors b (vgl. Fig. 2) im Ursprung 0 eines

derartigen rechtwinklig-räumlichen Systems XYZ, so lässt er sich in
drei zu X, Y, Z parallele Komponenten oder Grundvektoren bx,
bz zerlegen, so dass

Ö ÖX + ö!/ + Ö2 (1)

5. Einheitsvektoren und Ortsvektor eines Punktes

Man nennt Vektoren von der Länge 1 Einheitsvektoren und bezeichnet

sie allgemein mit dem Index Null, also z.B. b0.
Die Einheitsvektoren in Richtung der drei Koordinatenachsen X, Y, Z

bezeichnet man ususgemäss mit i, j, f. Jeder Vektor b lässt sich somit
durch

b bx + by + bz xi + yj + zï
darstellen.

Die drei Vektoren bx xi, by yj und bz z ï sind wiederum die oben
erwähnten Grundvektoren oder Komponenten von b, die drei
Zahlen (Skalare) x, y, z heissen die Koordinaten (Vektorkoordinaten)
von b in bezug auf die drei Einheitsvektoren i, j, Ï. Die
Vektorkoordinaten x, y, z stimmen mit den cartesianischen Koordinaten x, y, z
des Endpunktes P von b überein. Man nennt daher b auch den Orts-
vektor von P.

Sind zwei Vektoren b und tb in Komponentenform gegeben:

b xD + yu + Zjf
tb= x2t + y2j[ + z2!

so erfolgt ihre Addition bzw. Subtraktion durch Addition bzw. Subtraktion

ihrer Koordinaten :

b± tb (x1±x2)i + (y1±y2)j + (z1+(z1±z2)ï (3)

6. Richtungscosinus und Komponenten eines
Einheitsvektors

Führt man die Richtungswinkel a, ß, y von b gegenüber den
Koordinatenachsen + X, +Y, +Z ein, so lassen sich die drei Richtungscosinus

A cos a, fj, cos ß und v cos y wie folgt ausdrücken :
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"1 _ l^xl _
foî/1

_ fozl Ii \
M l»l l»l

l >

Betrachtet man den Einheitsvektor ü0 von der Länge [t)0| 1, so ist:

^=Kxl /*= Kl "=|üj (4a)

d. h. die nach den drei Achsen X, Y, Z eines rechtwinkligen Koordinatensystems

genommenen Komponenten des Einheitsvektors b0 entsprechen
seinen Richtungscosinus A, p., v.

7. Das skalare Produkt zweier Vektoren

Unter dem skalaren oder innern Produkt zweier Vektoren b und tu
versteht man den Skalar ]b[-1tu]cos(b, tu). Das skalare Produkt wird als
b • tu oder (b tu) symbolisiert. Die beiden Faktoren des skalaren Produktes
dürfen vertauscht werden, es ist kommutativ, d.h. (b tu) (tb b). Der
Ausdruck (b tu) 0 für den Fall, dass b und to selbst nicht gleich Null
sind, stellt die Bedingung dafür dar, dass b und tu senkrecht aufeinander
stehen.

Sind b und tu durch ihre Komponenten gegeben

b x^ + y^ +zj
tu x2i + y2i + z2!

so wird das skalare Produkt nach folgender Regel gebildet :

(b tu) x1x2 + y1y2 + z1z2 (5)

Im besondern gilt, wenn man b mit sich selbst skalar multipliziert:
b2 x12 + y12 + z12

woraus folgt |b] yx12 + y12 + y12 (6)

womit der absolute Betrag (Länge) von b erhalten wird. Die Kenntnis

von |b| ermöglicht sofort die Berechnung des Einheitsvektors b0.

Ist b=xt + yj + z!

sowM + <7)

Das skalare Produkt gibt auch die Möglichkeit, den von zwei Vektoren
b und tu eingeschlossenen Winkel a zu berechnen. Aus (b tu) |b [ • | tu | cos a
folgt (b tu)

c°s a J^.^I (b„too) (8)



Anwendung der Vektor-Rechnung 265

8. Das vektorielle Produkt zweier Vektoren

Unter dem vektoriellen oder äusseren Produkt zweier Vektoren b

und tu versteht man einen Vektor vom Absolutbetrag £= |to|- |tu| -sin^,
tu), welcher normal auf der von U und tu bestimmten Ebene steht und
so gerichtet ist, dass die drei Vektoren U, tu, £, in dieser Reihenfolge
analog wie t, j, ï ein Rechtssystem bilden. Der absolute Wert von ï ist
dabei auch gleich dem von U und tu aufgespannten Parallelogramm. Das
vektorielle Produkt von U und tu wird als U X tu oder [b tu] symbolisiert.
Seine Faktoren dürfen wegen der gemachten Verabredung dass U, tu, ï
ein Rechtssystem bilden sollen, nicht vertauscht werden. Es ist daher
zu beachten, daß [ütu]= — [tub]. Der Ausdruck [btü] 0 stellt für den
Fall, dass weder b noch tu selbst Null ist, die Bedingung dafür dar, dass

sin (b, tu) 0, d.h. der eingeschlossene Winkel 0 oder tt ist. Das
Vektorprodukt [b tu] verschwindet also, außer wenn ein Faktor Null ist, auch
noch, wenn die beiden Vektoren b und tu parallel oder antiparallel sind.

Sind b und tu durch ihre Komponenten gegeben :

b x^ + y^ + zj
tu= x2t + y2i + z2f

so erfolgt die Bildung des Vektorproduktes nach folgender Regel:

[b tu] i (yx z2 - z^a) + j (zx x2 -x^) + f (x1 y2 - yx x2) (9)

oder in Determinatenform :

[b tu]
i i Ï
xi yi z!
x2 y2 z2

(9a)

Zur Auswertung dieser dreizeiligen Determinate entwickelt man sie
nach der LAPLACB'schen Methode nach der ersten Zeile, wodurch man
in Übereinstimmung mit oben erhält :

[b tu] i yizi
y2z2

i XiZi
Xn Zo

+il xiyi
x2 y2

9. Das Volumprodukt dreier Vektoren

Unter dem Volumprodukt dreier Vektoren u, b, tu versteht man
den Ausdruck

(ubtu) (u[btu]) (b[tuu]) (tu[ub]) (10)

Schweiz. Min. Petr. Mitt., Bd. 30 Heft 2, 1950
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Er stellt das Volumen des von den drei Vektoren u, b, tu aufgespannten
Parallelepipedes dar und entspricht somit einem Skalar. Nimmt man z. B.
das durch u und ü aufgespannte Parallelogramm als Grundfläche G des

Parallelepipedes von der Höhe h, so ist sein Volumen V Gh |u| • |t>| • sin
(u,b)-iu-siny [ub] lu wenn man mit y den Winkel zwischen der Kante
tu und der Normalen zu G bezeichnet (vgl. Fig. 11). Der Inhalt des

Parallelepipedes wird positiv erhalten, wenn u, b, tu in dieser Reihenfolge
ein Rechtssystem bilden, negativ im Falle eines Linkssystems. Sind die
drei Vektoren u, b, tu durch ihre Komponenten gegeben:

u x^ + y^ +zj
b x2i + y2j + z2!
h>= x3i + y3i + z3ï

so lässt sich (ubtu) durch die dreizeilige Determinante

V
xi Ix zi
x2 y2 z2

x3 y3 z3

(11)

darstellen. Die Auswertung erfolgt, wie oben angegeben, durch Entwicklung

nach der ersten Zeile und führt auf den Ausdruck:

V x1 (y2 z3 - z2 y3) - yx (x2 z3 - z2 x3) + z1 (xx y2 - yx x2) (IIa)

C. Beziehungen zwischen Ortsvektoren und Kugelkoordinaten
für Pole der Einheitskugel

Im vorhergehenden Abschnitt wurden die wichtigsten Rechenregeln
für das Rechnen mit Vektoren kurz zusammengestellt. Ihre Anwendung
in bezug auf die Behandlung von kristallographischen und kristaflopti-
schen Problemen erfolgt nun derart, dass jedem Pol auf der Kugel ein
Vektor (Kugelradius) zugeordnet wird. Wird der Kugelradius 1 gesetzt
(Einheitskugel), so werden diese Ortsvektoren der Kugelpole alle zu
Einheitsvektoren. Dies bietet den Vorteil, dass die Rechnungen besonders
einfach werden, sowie dass die Richtungscosinus A, /x, v dieser
Einheitsvektoren den auf die rechtwinkligen Koordinatenachsen

XYZ bezogenen Vektorkoordinaten entsprechen. Resultiert

durch irgend eine Rechenoperation (vektorielle Addition oder

Multiplikation z.B.) ein Vektor von der Länge |b|>l, so lässt er sich
nach (7) immer auf den entsprechenden Einheitsvektor b0 zurückführen.
Dies ist ohne weiteres zulässig, weil nur die Lage der Pole auf der Kugel-
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Oberfläche, also die Orientierung des zugeordneten Ortsvektors im Räume,
und nicht dessen Absolutbetrag interessiert.

Die Lage der Pole auf der Kugel wird im allgemeinen durch krummlinige

(sphärische) bzw. Kugel-Koordinaten definiert. Zu diesem Zwecke
wählt man einen beliebigen Kugeldurchmesser als Achse und nimmt
auf dem dazu normalen Grosskreis G einen Punkt S als Ursprung an.
Durch den festzulegenden Pol P wird hierauf ein zweiter Grosskreis K
gelegt, welcher zugleich durch die gewählte Achse und somit normal zu
G verläuft. Sein Schnittpunkt mit G sei P' (vgl. Fig. 3). Man bezeichnet

der dazu normale Grosskreis G als Äquator. Ist S ein beliebig angenommener
Ursprungspunkt auf demselben, so kann P durch die sphärische Abszisse SP'
(geographische Länge) und die sphärische Ordinate PP' (geographische Breite) festgelegt

werden. Statt der letztern wird auch die dazu komplementäre Poldistanz p

verwendet.

nun SP' als sphärische Abszisse und PP' als sphärische Ordinate. Diese

Begriffe stehen in engster Beziehung zu den auf der Erdkugel gebräuchlichen

geographischen Koordinaten. Identifiziert man die eingangs
gewählte Achse mit der Erdachse, so entspricht G dem Äquator und S

dessen Schnittpunkt mit dem Nullmeridian und die sphärische Abszisse
und Ordinate von P der geographischen Länge und Breite3).

3) Die der geographischen Länge und Breite entsprechenden Kugelkoordinaten
werden in der Kristalloptik vielfach (z.B. bei A. Michel-Levy, F. Becke u.a.)

mit A und <p bezeichnet, gelegentlich (z.B. bei F. E. Wright) auch mit A und p.. Um
Verwechslrmgen mit dem GoLDSCHMiDT'sehen Azimut q> oder den auf XYZ
bezogenen Richtungscosinus Xpv vorzubeugen, wird hier die Länge immer mit f und
die Breite mit -q bezeichnet werden.
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Länge und Breite eines Poles P können entweder durch die auf der
Kugel gemessenen Bogenlängen SP' bzw. PP' oder in räumlichen
Polarkoordinaten durch die Winkel SOP' bzw. P'OP ausgedrückt werden,
wobei 0 den Kugelmittelpunkt darstellt. Statt der Breite 17 wird oft
auch die dazu komplementäre Poldistanz p=(7r/2 —77) angegeben.

Die Beziehungen der Kugelkoordinaten (£, 77) eines Punktes auf der
Kugel zu dessen cartesianischen Koordinaten (x, y, z), bezogen auf ein
rechtwinkliges Koordinatensystem XYZ mit Ursprung im Kugelmittelpunkt,

lassen sich sofort angeben. Sie sind von Bedeutung, weil für die

Einheitskugel die cartesianischen Koordinaten eines Poles P den
Richtungscosinus des Einheitsvektors entsprechen, welcher P zugeordnet ist.

Der allgemeine Fall, dass die zur Äquatorebene normale Achse in
bezug auf XYZ beliebige Lage hat, spielt keine Rolle und braucht
daher nicht behandelt zu werden. Praktisch von Bedeutung sind nur
die drei Fälle, für welche sie mit X, Y oder Z zusammenfällt, bzw. die
Äquatorebene in die YZ-, ZX- bzw. XY-Ebene zu liegen kommt. XYZ
wird dabei im folgenden immer als Rechtssystem angenommen.

Für diese drei Fälle ergeben sich die Zusammenhänge folgender-
massen: (vgl. Fig. 4a—c)

+Z

/

/ S /P/
•V

isy

oy

A
À %

/*>t.

+Y

Fig. 4. Beziehungen zwischen den sphärischen Koordinaten (f, ij) eines Punktes P
auf der Kugeloberfläche und seinen auf ein Rechtssystem XYZ bezogenen
cartesianischen Koordinaten (x, y, z). a) Die Äquatorebene liegt in der Koordinaten¬

ebene YZ, b) sie liegt in XZ, c) sie liegt in XY.

1. Achse II X, Äquatorebene YZ-£X wird von +Y aus im positiven
Sinne gezählt. Da OP' cosi71 ist, folgt:

%x * sinVl
bßy p*= cos cos ^x

bo2=" cos Visin £1

(12)
cotg £1= ^

sin i7x A

(12a)
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2. Achse II Y, Äquatorebene XZ-£2 wird von +Z aus im positiven
Sinne gezählt. Da OP" cos77, ist, folgt:

b0x=A cos rj2 sin £2

öoy M sin V2

— v — cos tj2 cos £2

(13)
cotg £2

sin rj2 p.

(13a)

3. Achse II Z, Äquatorebene XY-£3 wird von +X aus im positiven
Sinne gezählt. Da 0 P"' cos rj3 ist, folgt :

b0xcos 13 cos ^3

boy lx V3 s^n £3

bos =^ sin t]3

(14)
COtg £3 —

sin rj3= v

(14a)

Die Ausdrücke für die drei Fälle gehen somit durch zyklische
Vertauschung auseinander hervor wenn die Längen £ in der angegebenen
Weise gerechnet werden.

Es lassen sich auch ohne weiteres Beziehungen zwischen den Koordinaten

(£,17) für die drei Fälle angeben, wie dies z.B. schon F. E. Wright4)
getan hat.

Die Gleichungen (12) bis (14) gestatten für jeden durch seine
Kugelkoordinaten (£, 7]) charakterisierten Pol P auf der Einheitskugel die
Koordinaten des ihm zugeordneten Vektors (Einheitsvektors) anzugeben.
Da die Richtungswinkel ausgehend vom positiven Ast der Koordinatenachsen

von 0 bis 77 gezählt werden, können die Richtungscosinus und
somit auch die Koordinaten des Einheitsvektors alle Werte von +1 bis

-1 annehmen. Umgekehrt liefern die Gleichungen (12a) bis (14a) für
jeden Einheitsvektor (Kugelradius) die sphärischen Koordinaten seines

Endpunktes auf der Kugel.
Weil zu jedem Werte der cotg-Funktion immer zwei Winkel gehören,

besteht für die auf Grund von (12 a) bis (14 a) errechneten Längen £

prinzipiell Zweideutigkeit. Die richtige Lösung wird jedoch erhalten,
indem man die Lage des Vektors im Räume betrachtet und berücksichtigt,

dass die nach XYZ genommenen Komponenten des Einheitsvektors
b0, bzw. seine Richtungscosinus A/av, je nach der Lage in den verschiedenen

Oktanten verschiedenes Vorzeichen aufweisen. Folgende
Zusammenstellung gibt hierüber Aufschluss, wobei Figur 5 über die Numerierung

der Oktanten im Räume Auskunft gibt.

4) F. E. Wright, Graphical Methods in Microscopical Petrography. Am. J.
Sc. 36 (1913), 509—542, im bes. 511—512.
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Fig. 5. Bezeichnung der räumlichen Oktanten für ein Rechtssystem.

Oktant A P V Oktant A P
I + + + V + +

II — + + VI — +
III — — + VII — —

IV + — + VIII + —

In der Kristalloptik spielen besonders die Fälle 2 und 3 eine Rolle.
Für die übersichtliche Darstellung der optischen Orientierung der Plagio-
klase in Abhängigkeit von ihrem Chemismus wird seit E. v. Fedorow,
A. Michel-Levy und F. Becke eine stereographische Projektion der
obern Halbkugel mit den Polen der optischen Achsen und
Hauptschwingungsrichtungen benutzt. Dabei wird die Äquatorebene JL Y
gelegt, so dass ihre Spur in der stereographischen Projektion NS
verläuft, und der Punkt S, von welchem aus £ und rj gezählt werden (nach
oben und rechts als positiv, nach unten und links als negativ), im
Zentrum der Projektion angenommen. Leider besteht jedoch insofern keine
Übereinstimmung zwischen den verschiedenen Autoren, als E.V. Fedorow,
A. Michel-Levy und mit ihnen auch L. Duparc und M. Reinhard,
sowie W. W. Nikitin die c-Achse der Plagioklase in Z legen und M (010)
normal zu Y annehmen, während F. Becke und seine Schule vielfach
M(010) normal zu Z annehmen und c||X verlaufen lassen. Für die hier
angestellten Betrachtungen wird die ersterwähnte Art der Orientierung
mit c in Z und M (010) normal Y berücksichtigt.

Fall 3 entspricht im Prinzip den in der geometrischen Kristallographie

viel gebrauchten GoLDSCHMiDT'schen <p, p-Werten, wobei <p als
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Azimut und p als Poldistanz, oder in bezug auf eine Projektion auch
als Zentraldistanz bezeichnet wird. Im Unterschied zu der in Fig. 4c

angenommenen Orientierung benützt jedoch V. Goldschmidt ein Links-
System und zählt seine „Azimute" Längen) von der vom Ursprung
aus nach rechts verlaufenden -(-X-Achse aus im negativen (Uhrzeiger-)
Sinne. Ausserdem ist seine Poldistanz p das Komplement zu der in
Figur 4 c angegebenen Breite -q3. Diese Umstände bringen leider eine

gewisse Inkonsequenz für unsere Betrachtungen mit sich. Diese könnte
natürlich beseitigt werden, wenn man sich entweder allgemein für die

Einführung eines Linkssystems entschlösse, oder aber statt der Gold-
scHMiDT'schen <p, p-Werte die analogen, sich jedoch auf ein Rechtssystem
beziehenden (£37?3)-Werte benutzte. Der erste Ausweg empfiehlt sich

jedoch nicht, weil sich heute in der Vektorrechnung der ausschliessliche
Gebrauch des Rechtssystems durchgesetzt hat und dies z.B. in
sämtlichen Lehrbüchern allein berücksichtigt wird. Der zweite ist ebenfalls
nicht angängig, da sonst das gesamte sehr umfangreiche Material, welches
in den GoLDSCHMiDT'schen Tabellenwerken (Winkeltabellen, Index,
Atlas der Kristallformen) nicht weiter benutzt werden könnte.

Die Zusammenhänge zwischen den GoLDSCHMiDT'schen <p, p-Werten
eines Poles auf der Einheitskugel und den nach XYZ eines
Rechtssystems genommenen Komponenten ti0x, ü0i/, bn, des P zugeordneten
Einheitsvektors ti0, bzw. dessen Richtungscosinus Àp.v, lassen sich jedoch
sofort angeben, wenn man bedenkt, dass die durch Subtraktion einer
maximalen Anzahl rechter Winkel auf spitze Winkel zurückgeführten
Werte von <p und |3 sich zu 90° ergänzen und dass p und 773 ebenfalls
komplementär sind. Aus (14) bzw. (14a) folgt auf diese Weise:

Auch hier gilt natürlich das weiter oben über die Zweideutigkeit der
cotg-Funktion Gesagte und über die sich daraus ergebende Notwendigkeit,
die Lage des Vektors im Räume zu berücksichtigen.

Im folgenden soll die Anwendung der vektoriellen Methoden auf
Probleme der Kristalloptik an einer Reihe ausgewählter Beispiele demonstriert

werden. Es sollen für ein triklines Mineral aus den in
Kugelkoordinaten £ und rj gegebenen Positionen der optischen Achsen die

b0x A sin p sin 93

b0y p, sin p cos <p (15)
bo8 v c°s p COS p V

D. Anwendungen
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Grösse des Achsenwinkels 2 V und die <p, p-Werte für die drei Haupt-
schwingungsrichtungen berechnet werden. Auf Grund dieser Werte lässt
sich dann ein Stereogramm der optischen Orientierung zeichnen, wie es

z. B. für das Arbeiten mit dem U-Tisch benötigt wird. Daran anschliessend
soll die optische Orientierung eines nach einem bestimmten Gesetz ver-
zwillingten Kristalls berechnet werden und die Aufgabe der Transformation

der Projektionsebene durch Drehung des Koordinatensystems

behandelt werden. Hierauf wird die Auslöschungsschiefe
für drei verschiedene Schnittlagen, bezogen auf gegebene Bezugsrichtungen

bestimmt, und gezeigt, wie sich auf einfache und anschauliche Weise
die Brechungsindizes und die Doppelbrechung der beiden sich
senkrecht zu beliebigen Schnitten, z. B. Spaltblättchen, zweiachsiger Kristalle
fortpflanzenden Wellen berechnen lassen.

Als Beispiel wurde der Alb it von der Alp Rischuna im Valser-
tal (Graubünden) gewählt. Dieses prachtvolle Vorkommen eines Kluft-
albites aus penninischen Bündnerschiefern ist in morphologischer,
optischer und chemischer Hinsicht ausgezeichnet untersucht5). Die
chemischen Analysen ergeben im Mittel eine Zusammensetzung von Anx_2.
Die Positionen der optischen Achsen für die Aufstellung M(010)£2 0°,
i72 900 und [001]£2 0°, 172 0° wurden durch K. Chudoba und
H. Fischek wie folgt bestimmt: ABK. Chudoba £2' + 63°47' £2" -77°01'

(Methode Becke) 173' =—48° 17' 172"=—47° 13'

H. Fischer f2' + 64°41' |2"= -77°23'
(Methode Wülfing) i72'=-48°36' 172"= -47° 12'

Im folgenden sollen die Mittelwerte aus diesen beiden Bestimmungen
gebraucht werden :

Albit von Rischuna f2' -f 64° 14' £2" ~ I"° 12'

Mittelwerte der
Achsenpositionen r)2'= — 48°26' 172"=— 47° 12'

5) B. Krebs, Der Albit von Rischuna in morphologischer Beziehung. Z. Kri-
stallogr. 56 (1921), 386—407. S. Kôzu, The Dispersion Phenomena of Albite from
Alp Rischuna, Switzerland. Min. Mag. 17 (1915), 189—192. K. Seto, Chemical
Study of some Felspars. Sc. Rep. Tohoku Imp. Univ. Sendai (3) 1 (1923) 228.
K. Chudoba, Die optische Orientierung des Albites von Rischuna, Schweiz.
Tscherm. Mitt. 38 (Festband Fr. Becke) (1925), 88—99. H. Fischer, Über die
optischen Eigenschaften des Albites. Z. Kristallogr. 61 (1925), 226—249, im bes.
241—242. A. Engels, Chemismus und optische Orientierung kalifeldspathaltiger
Plagioklase. Inaug. Diss. Univ. Bonn. 44 p., im bes. 5—14. Bielefeld (1937).
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Da die Rechnungen durchgängig nur mit fünfstelligen Logarithmen
durchgeführt wurden, werden die Resultate nur auf 0,1° genau angegeben.

1. Berechnung des Achsenwinkels 2V aus den
Achsenpositionen

Aus den oben gegebenen sphärischen Koordinaten £, 77 für die

optischen Achsen A und B müssen zuerst die Koordinaten der beiden
A und B entsprechenden Einheitsvektoren 9[0 und 930 berechnet werden.

Nach (13) ergibt sich hierfür

9I0= — 0,59753 i — 0,74818 j + 0,28842!
930= + 0,66255i-0,73373 j + 0,15053

Der Achsenwinkel 2 Y folgt nach (8) aus dem skalaren Produkt (2I0930) zu

2V 78,7°

2) Konstruktion von Stereogrammen zur Yeranschaulichung
der optischen Orientierung niedrig-symmetrischer Kristall¬

arten

a) Berechnung der Positionen der beiden Bisektrizen

Die den beiden Bisektrizen ny und na entsprechenden Vektoren c

und a werden als Winkelhalbierende der beiden Vektoren 910 und 930

durch vektorielle Addition bzw. Subtraktion von 910 und 930 erhalten.
Weil Albit optisch + ist, halbiert c den spitzen und a den stumpfen
Achsenwinkel. Es ist also :

c 9t0 + 93„ a 910 - 930

In Komponentenform nach (3) :

C +0,06502 t- 1,48191 j + 0,43895

a= -l,26008i-0,01445j + 0,13789!

Zur Berechnung der cp, p-Werte müssen zuerst die Einheitsvektoren c0

und a„ berechnet werden. Dazu müssen die absoluten Werte |c| und |a|
bekannt sein, welche man nach (6) durch skalare Multiplikation gewinnt:

|c| 1,54690 |ct| 1,26768
Nach (7) folgt:

C0 +0,04216 t-0,95798j + 0,28382!
a0= -0,99400i-0,01138 j + 0,10877!



274 CONRAD BUBRI

und nach (15 a) : C a

<p 177,5° 269,3°

p 73,5° 83,7°

b) Berechnung der Position der optischen Normale

Der riß entsprechende Vektor 6 steht normal auf der Ebene der
optischen Achsen. Es ist daher:

Aus 210 - 0,59753i - 0,74818 j +0,28842!
930= + 0,66255 t — 0,73373 j + 0,15053!

erhält man durch Bildung des Vektorproduktes nach (9) bzw. (9a):

b= +0,09901 i + 0,28105 j +0,93414!

Nach (6) erhält man für den Absolutbetrag von h |£>| 0,98050 und nach
(7) für den Einheitsvektor h

b0= + 0,100982 t + 0,28663 j + 0,95270

Nach (15 a) ergeben sich daraus die gesuchten Koordinaten zu

<p =19,4° p 17,7°

Fig. 6. Stereographische Projektion auf die Ebene _L [001] für Albit, gezeichnet
auf Grund der aus den gegebenen Achsenpositionen errechneten q>, p-Werte für die

Hauptschwingungsrichtungen.

M(010)
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Damit sind die <p, p-Werte für die drei Hauptschwingungsrichtungen aus
den Achsenpositionen gewonnen und das Stereogramm der optischen
Orientierung lässt sich mit Zirkel und Lineal oder mit Hilfe eines Wulff-
schen Netzes zeichnen (Fig. 6).

Für die Richtigkeit der errechneten Koordinaten bestehen eine
Reihe von Kontrollen, indem z.B. die skalaren Produkte (910h0), (330h0),

(do&o)> (aoco)> (£>oco) alle den Wert Null und die vektoriellen Produkte
[a0b0], [b0c0], [c0a0], sowie das Volumprodukt (a0b0c0) den Wert 1

aufweisen müssen. Die numerische Berechnung der skalaren und vektoriellen
Produkte erfolgt am besten mit einer Rechenmaschine, wie es überhaupt
ein Vorteil der hier dargelegten Methode ist, daß das zeitraubende
Nachschlagen in der Logarithmentafel weitgehend durch das Rechnen mit
der Maschine ersetzt werden kann.

c) Bemerkungen über das Zeichnen der Stereogramme

Sind die Pole durch ihre <p, p-Werte gegeben, so lässt sich das Stereo-

gramm sofort zeichnen. Am einfachsten, wenn auch am wenigsten genau,
geschieht dies mit Hilfe eines WuLFF'schen Netzes. Besitzt dieses einen
Radius von 10 cm, so beträgt die erzielbare Genauigkeit im besten Falle
etwa 0,5°. Man legt ein transparentes Zeichenpapier, welches in gewohnter

Weise im Zentrum drehbar ist, über das Netz und trägt die Azimute
von einem festgelegten Ausgangspunkte aus mit Hilfe der Grundkreis -

teilung auf. Die Zentraldistanzen werden mit Hilfe eines der beiden
geradlinigen Durchmesser des Netzes erhalten.

Steht ein WuLFF'sches Netz in der gewünschten Grösse nicht zur
Verfügung, oder wird eine grössere Genauigkeit für die Zeichnung
angestrebt, so trägt man die Azimute, wie dies durch V. Goldschmidt6)
vorgeschlagen wurde, unter Zuhilfenahme einer Sehnen- oder Tangententafel

auf, wie sie sich in jeder Logarithmentafel finden, die Zentral-
distanzen vermittelst einer Tangententafel, da in der stereographischen
Projektion bekanntlich die Zentraldistanz d R tg p/2 ist.

Man kann jedoch auch die cp, p-Werte auf rechtwinklige Koordinaten
umrechnen und so das Stereogramm z.B. auf Millimeterpapier konstruieren.

Die hierfür in Betracht kommenden Beziehungen ergeben sich aus
Figur 7 a und b. Figur 7 a stellt einen Schnitt durch die Projektionskugel
parallel Z und senkrecht zur Projektionsebene E dar. Der Pol P auf der
Kugel wird auf E vom untern Augpunkt A aus stereographisch in P'

6) V. Goldschmidt, Über Projektion und graphische Kristallberechnung.
Berlin (1887), im bes. 15—21.
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abgebildet. Ist die Zentraldistanz von P auf der Kugel p, so ergibt sich

die Zentraldistanz seiner Projektion P' auf E zu d Rtg-~-oder für die

Einheitskugel (R l) zu d tg y weil der Peripheriewinkel 0 AP'gleich
der Hälfte des Zentriwinkels ZOP über dem gleichen Bogen ZP ist.
Wie aus Figur 7 b hervorgeht, kann die Zentraldistanz d in zwei
Komponenten parallel der X- und der Y-Achse zerlegt werden:

x d sin <p R tg A- sin 93
Ji

y d cos <p R tg y cos cp
Zi

(16)

bzw. für die Einheitskugel (R 1)

x tg y sin cp

P (16a)
y tg y COS 93

welche den rechtwinkligen Koordinaten des Poles P' in stereographischer
Projektion entsprechen und das Zeichnen des Stereogrammes ohne

Abtragung von Winkeigrössen erlauben.

Fig. 7. Entwurf eines Stereogrammes unter Benützung rechtwinkliger Koordinaten.

a) Schnitt der Projektionskugel normal zur Zeichenebene EE. b) Schnitt
der Projektionskugel parallel zur Zeichenebene.
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3. Bestimmung korrespondierender Richtungen für zentro-
symmetrische Zwillingskristalle bei bekannter Lage der

Z Willings ele m en te

Bei zentrosymmetrischen Kristallen kann eine Verzwillingung
bekanntlich immer auf zwei Arten gedeutet werden, nämlich durch eine

Halbdrehung (Hemitropie) um eine bestimmte Richtung, die sogenannte
Zwillingsachse (ZA), oder durch Spiegelung an einer zu ZA normalen
Ebene, der sogenannten Zwillingsebene (ZE), wobei mindestens eines

von den beiden Elementen rational ist. Die Möglichkeit der Deutung der
Verzwillingung durch Spiegelung ermöglicht für zentrosymmetrische
Kristalle eine einfache Berechnung korrespondierender Richtungen für
das Zwillingsindividuum, da die Operation der Spiegelung vektoriell sehr
einfach behandelt werden kann.

Fig. 8. Spiegelung des durch seinen Ortsvektor » gegebenen Punktes P an einer
durch ihren Normalvektor tt bestimmten Ebene E. Berechnung des Ortsvektors jç

des gespiegelten Punktes Q.

Es handelt sich ganz allgemein um die Aufgabe, zu einem durch
seinen Ortsvektor b gegebenen Punkte P den durch Spiegelung an einer
Ebene bekannter Lage zugeordneten Punkt Q bzw. dessen Ortsvektor ç

zu finden. In Figur 8 sei 0 der Ursprung und OP t> der Ortsvektor des
Punktes P. Dieser werde an der durch ihren Normalvektor (Einheits-

a) Allgemeines
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vektor) n0 definierten Ebene E, welche durch 0 verlaufe, nach Q gespiegelt.

Gesucht ist der Ortsvektor von Q, OQ £. Dieser wird durch vektorielle

Addition aus 0 und einem Vektor PQ erhalten, wie in der Figur gestrichelt
angedeutet ist. Der absolute Betrag von PQ ist 2RP. RP selbst ist die

Projektion von b auf die Richtung des Einheitsvektors tt0, also gleich

(tm„). Um den Vektor PQ vom doppelten Betrag 2 RP zu erhalten, muss

(bn„) mit — 2n0 skalar multipliziert werden, so dass für den gesuchten
Ortsvektor £ resultiert :

S= -2tt0(bn0) + b (17)

Für den Fall dass b b0 ein Einheitsvektor ist, so resultiert aus Symmetriegründen

auch £ als Einheitsvektor £0

b) Beispiel : Zwilling von Albit nach dem Gesetz Baveno-r

Es sollen für den Albit von Rischuna die <p, p-Werte der optischen
Achsen und die Hauptschwingungsrichtungen für ein nach dem Gesetz

Baveno-r verzwillingtes Individuum berechnet werden.
Nach den GoLDSCHMiDT'schen Winkeltabellen gilt für e(021) für

Albit (Schuster)
<p 22° 47' p 52°31'

Nennt man den Normalvektor (Einheitsvektor) von e(021) e0, so berechnet

sich dafür nach (15)

e0= + 0,30729i + 0,73162 j + 0,60853 f

Da die Ortsvektoren b der Pole auf der Kugel, welche an e (021) gespiegelt
werden sollen, Einheitsvektoren sind, so kommen die Ortsvektoren £ der
gespiegelten Pole ebenfalls als Einheitsvektoren heraus. Gleichung (17)
nimmt daher die Form an

£o= -2eo(ö0eo) + bo (17a)

wobei für b0 der Reihe nach 3X0, Ü80, a0, £>0, c0 zu setzen ist.

a) Optische Achse A 31

Nach früher ist: 3l0= -0,59753t-0,74818j + 0,28842!

PQ= -2(310e0)e0= +0,34139t+ 0,81280j + 0,67605 f
£0 PQ + 310 — 0,25614i + 0,06462 j + 0,96447 ï

daraus folgt nach (15a) <p 284,2° p 15,7°



Anwendung der Vektor-Rechnung 279

ß) Optische Achse B 330

Nach früher ist: ®o= +0,66255i — 0,73373j + 0,15053ï

PQ= -2(a30e0)e0= + 0,14850i + 0,35355j + 0,29407!

ïo PQ + 330 + 0,81105 i — 0,38018j + 0,44460!

daraus folgt nach (15a) 95=115,1° p 63,6°

y) Bisektrix ny c

Nach früher ist: c0= +0,04216i —0,95798j + 0,28382!

PQ= -2(c0e0)e0 + 0,31631 i+ 0,75384 j +0,62701

Ï0 PQ + C0 +0,35879 t-0,20414 j + 0,91083!

daraus folgt nach (15a) 95 121,4° p 24,4°

8) Bisektrix na a0

Nach früher ist: a0= -0,99400i-0,01138j + 0,10877!

PQ= -2(aoe0)e0 +0,15217t + 0,36229j + 0,30134!

j0 PQ + Ct0 — 0,84183 i + 0,35091 j + 0,41011

daraus folgt nach (15a) 95 292,4° p 65,8°

e) Optische Normale n^ b0

Nach früher ist: f>0= +0,10098i + 0,28663j + 0,95270!

PQ= -2(h0e0)e0 -0,50424i- 1,20056 j- 0,99857!

Ï0 PQ + b0 - o,40326i - 0,91393 j-0,04587!

darausfolgt: 95 203,8° p=—86,6°

Der negative p-Wert zeigt, dass der gespiegelte Pol von riß auf der
untern Halbkugel hegt. Da man konventioneller Weise nur die obere

Halbkugel betrachtet, so ergibt sich für den zu b0 entgegengesetzt gerichteten

Ortsvektor £0'

j0'= +0,40326 t+ 0,91393 j + 0,04587!

woraus folgt 95'= 23,8° p' 86,6°.
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4. Transformation der Projektionsebene durch Drehung des
Koordinatensystems

a) Allgemeines

Für die optische Mineralbestimmung mit den U-Tisch-Methoden
benötigt man Stereogramme der optischen Orientierung, welche auf die
drei zu n^n^n parallelen Vektoren a, b, C als Koordinatenachsen
bezogen werden, oder auch solche, deren Projektionsebene einer bestimmten

kristallographischen Fläche, wie z.B. (001) oder (010) entspricht,

Fig. 9. Transformation eines auf ein System YXZ bezogenen Vektors OP auf ein
neues System X' Y' Z'.

wie dies zuerst durch M. Reinhabd7) vorgeschlagen wurde. Diese
lassen sich aus den Diagrammen, wie sie in Abschnitt D. 2 behandelt
wurden, durch geeignete Transformationen der Projektionsebene
herleiten. Genügt die Genauigkeit, wie sie mit der bekannten graphischen
Lösung mit Hilfe des WiJLFr'schen Netzes erzielt werden kann, den
gestellten Anforderungen nicht, so müssen die Koordinaten der
interessierenden optischen und kristallographischen Richtungen berechnet werden.

Dies lässt sich durch eine Drehung des Koordinatensystems erreichen.

Die Aufgabe stellt sich hierbei folgendermassen (vgl. Fig. 9).

') M. Reinhard, Universaldrehtischmethoden. Basel (1931).
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Gegeben: In einem rechtwinkligen System XYZ ein Vektor

b xi + yj + z!

Gesucht: Die Koordinaten x', y', z' des gleichen Vektors im neuen
System X' Y' Z'.

Das neue System habe mit dem alten den Ursprung gemeinsam und
sei ebenfalls rechtwinklig, sowie von gleicher Art, d. h. Rechts- oder

Linkssystem wie das alte. Seine Achsen X' Y' Z' sind durch drei Tripel
von Richtungscosinus A, /x, v in bezug auf XYZ nach folgendem Schema

festgelegt :

X Y Z

X' At Mi "i
Y' a2 M2 "2

Z' a3 Ms "3

Die neuen Koordinaten x', y', z' sind dann mit den alten x, y, z durch
folgende Beziehungen verknüpft, welche gestatten bei Kenntnis der

Richtungscosinus die einen aus den andern zu berechnen:

x' A1x + /Lt1y + v1z

y' A2x + p2y + v2z
z ' A3x + /x3y + v3z

x Axx' +A2y' +A3z'
(18) y ^x' + pay' + pgz'} (18a)

Z V-jL X ~b 1^2 3^ ^3 ^

Nennt man die Einheitsvektoren in Richtung der alten Achsen i, j, ï,
diejenigen in Richtung der neuen i', j', so lassen sich die Richtungs-
cosinus i', j', !' durch die skalaren Produkte

Ar (ü') A2 (ij') A3 (iL)
mi=(ü') /*>=(ii') p3=(inf(19)
vi (It') v2 (fj') v3 (!!')

ausdrücken.

b) Beispiele: Konstruktion der Stereogramme der optischen Orientierung
von Albit mit der Ebene der optischen Achsen und M (010) als Projektions¬

ebenen

Als erstes Beispiel soll das Stereogramm für die optische Orientierung
für Albit, projiziert auf die Ebene J_ c (Fig. 6) auf die Achsenebene

umprojiziert werden. Die Rechnung soll für die Vektoren Flächennormale

von P(001), zugleich Zwillingsachse des Manebacher Gesetzes,
2k0 Flächennormale von M (010), zugleich Zwillingsachse des Albit-

ßchwela. Mim Petr. Mitt,, Bd. 30, Heft 2, 1930
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gesetzes, sowie für die kristallographische c-Achse, zugleich Zwillingsachse
3o des Karlsbadergesetzes durchgeführt werden. Anschliessend soll noch
die Zwillingsachse des des Albit-Karlsbader-Komplexgesetzes (Roc
Tourné-Gesetz) bestimmt werden.

Im alten System XYZ ist nach früher:

+ 0,44965i+ 0,06440 j + 0,89088 ï
0i+ lj + 0!

a0 -0,99400i-0,01138j + 0,10877!
60 =+0,10098i + 0,28663j+ 0,95270!
c0 =+0,04216i-0,95798j + 0,28382!

Als neue Koordinatenachsen X'Y'Z' werden die Hauptschwingungsrichtungen

parallel den Vektoren a0, b0, c0 gewählt. Um die
Übereinstimmung mit den bereits veröffentlichten Diagrammen dieser Art, z.B.
mit Reinhakds's Tafel 2 zu wahren, wo a0 b0 c0 als Linkssystem behandelt

wird, müssen b0 und c0 vertauscht werden. Nennt man die
Einheitsvektoren, genommen in den Richtungen der alten Achsen XYZ, i, j,
während diejenigen des neuen X'Y'Z', a0, b0, C0 sind, so gilt:

(to,,) -0,99400 A2 (ic„) +0,04216 A3 (if>0) +0,10098

/*i (iûo) -0,01138 (jc0) -0,95798 p.3 (jb0) +0,28663
Vl (!a0)= +0,10877 v2 (!c0)=+0,28382 v3 (!b0) =+0,95270

Für berechnen sich die neuen Koordinaten wie folgt:

Sß0' _ 0,35079i' + 0,21012 j' + 0,91261 !'
und nach (15a) <p=120,9° p 24,l°

Für 3JÎ0 erhält man :

- 0,01138i' - 0,95798j' + 0,28663 F

und nach (15 a) <p 0,7° p 73,3°

Für die Zwillingsachse des Karlsbadergesetzes ergibt sich

30' + 0,10877t' - 0,95798j' + 0,95270!'

und nach (15a) <p 200,0° p 17,7°

Die Zwillingsachse des Roc Tourné-Gesetzes 51 steht sowohl senkrecht
auf der Zwillingsachse des Karlsbader-, wie des Albitgesetzes, es ist also

Äo' IWäRo']
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Nach (9) bzw. (9a) ist daher

f0' - 0,63809i' + 0,04204 j' + 0,09328 !'

undnach(15a) <p 93,8° p 84,6°

Zur Feldspatbestimmung mit den U-Tischmethoden werden auch

Stereogramme gebraucht, welche wichtige Flächen zur Projektionsebene
haben, welche als Zwillingsebenen, Verwachsungsebenen oder
Spaltflächen eine Rolle spielen. Durch Reinhard (loc. cit.) wurden derartige
Darstellungen mit M(010) und P(001) als Projektionsebenen gegeben
und als Tafeln 3 und 4 seinem Werke beigefügt. Auch solche

Stereogramme lassen sich leicht durch eine Drehung des Koordinatensystems
erhalten, wie im folgenden gezeigt werden soll. Das gewählte Beispiel
soll zugleich zeigen, wie sich die Rechnungen ganz erheblich vereinfachen,
wenn die A, p, v spezielle Werte annehmen.

Gegeben seien im System XYZ die Vektoren:

9f0 -0,59753i-0,74818j + 0,2SS42f
S0 + 0,66255t-0,73373 j + 0,15053 t
Ct0 =-0,99400i-0,01138j + 0,10877!
60 =+0,10098i + 0,28663j + 0,95270!
C0 + 0,04216t-0,95798 j + 0,28382!
m0= oi + ij+ o!

Gesucht werden die gleichen Vektoren in einem neuen System
X'Y'Z' mit M(010) als Projektionsebene. Es wird somit die alte Y-Richtung

9JÎ0 zu Z' gemacht und ferner, in Übereinstimmung mit Reinhards
Tafel 3, das negative Ende der kristallographischen c-Achse zu Y'
gewählt, also Y' — Z gemacht. Die neue X'-Achse entspricht der alten
X-Achse und ist Drehachse des Systems bei einem Drehwinkel von 7t/2.

Nennt man die Einheitsvektoren in Richtung der alten XYZ-
Achsen genommen, wiederum i, j, so sind diejenigen in Richtung der
neuen X'Y'Z'-Achsen i, — W0 und es gilt:

A1 (ii) l Aa (-!:) =0 A3 (TO0i) =0
Mi=(ii)=0 M2 — ti) 0 p3=(^oi)=1
D (i!) 0 v2 — — 1 r3 (a»o!) 0

Die neuen Koordinaten lassen sich daher sofort anschreiben und die
<p, p-Werte nach (15a) berechnen. Es werden ususgemäss nur die
Vektoren der obern Halbkugel betrachtet. Wo nötig, erhält man diese aus
den entgegengesetzt gerichteten der untern durch Umkehr sämtlicher
Vorzeichen. Bezogen auf das neue System X'Y'Z' erhält man so:
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9I0'= + 0,59753 i + 0,28842 j + 0,

S30' — 0,66255 t + 0,15053 j + 0,

a0' +0,99400t+ 0,10877j + 0,

ß0' + 0,10098 t-0,95270j + 0,
C0' =-0,04216i + 0,28382j + 0,

*->CO00l> 9 64,2° p 41,6°
73373! 9 282,2° p 42,2°
01138! <p= 83,7° p 89,3°
28663! 9 173,9° p 73,3°
95798! 9 351,5° P 16,7°

5. Vektoranalytische Formulierung der FRESNEL'schen
Konstruktion und Berechnung von

Auslöschungsschiefen auf beliebigen Flächen

a) Allgemeines

Das wichtige Problem der Bestimmung von Auslöschungsschiefen
auf behebigen Flächen bei bekannter Lage der optischen Achsen wurde
bekanntlich schon durch A. Fresnel8) gelöst. Gemäss der nach diesem
Autor benannten Konstruktion ergeben sich die Schwingungsebenen
für die beiden Wellen, welche sich längs einer gemeinsamen Wehen-
normalen in einem zweiachsigen Kristah fortpflanzen, als die Halbierungsebenen

der räumlichen Winkel, welche die beiden durch die
Wehennormale und die beiden optischen Achsen gelegten Ebenen miteinander
bilden. Liegt die Wellennormale normal zu einer Kristallfläche, so sind
deren Schwingungsrichtungen die Spuren der Schwingungsebenen, oder
mit andern Worten, die Schwingungsrichtungen halbieren die Projektionen

der optischen Achsen auf die Kristallfläche in Richtung der
Wellennormalen. Der Beweis wird gewöhnhch folgendermassen geführt9).
Errichtet man auf die durch die Wehennormale N und die optische
Achse A gelegte Ebene Ex im Zentrum der Indikatrix das Lot r1, so hat
dieses, weil es dem Kreisschnitt Kx angehört, die Länge riß. Gleicherweise
kommt auch dem auf der durch N und B gelegten Ebene E2 errichtete
Lot r2 diese Länge zu. Beide Lote gehören jedoch auch dem zu N
normalen Ellipsenschnitt S der Indikatrix an. Als Radienvektoren gleicher
Länge müssen sie symmetrisch zu den Hauptachsen dieser Ellipse hegen,
welche ihrerseits die gesuchten Schwingungsrichtungen darstellen. Diese
halbieren somit die Winkel zwischen rx und r2, sowie auch diejenigen der

8) A. Fresnel, Second mémoire sur la double réfraction. Mém. Acad. se.

Paris 7 (1827), 45—176, wieder abgedruckt in: Oeuvres complètes d'Augustin
Fresnel. Tome II, Paris (1868), im bes. 581—584. Deutsch unter dem Titel: Über
die doppelte Strahlenbrechung, Pogg. Ann. 23 (1831), 372—434 und 494—557,
im bes. 542—545.

8) Vergl. z.B. Fig. 27—29, p. 53—54 in C. Burri, Das Polarisationsmikroskop,

Basel (1950).
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Spuren der zu ^ und r2 normalen Ebenen. Sie sind also auch identisch
mit den Spuren der oben erwähnten Halbierungsebenen der von Ex und
E2 gebildeten räumlichen Winkel, was es zu beweisen galt.

Die FRESNEL'sche Konstruktion lässt sich bekanntlich sehr gut mit
Hilfe eines WuLFF'schen Netzes in stereographischer Projektion
durchführen. Genügt die hierbei erzielbare Genauigkeit nicht, so muss der
Auslöschungswinkel durch trigonometrische Auflösung der entsprechenden

Dreiecke berechnet werden, was im allgemeinen Falle zu langwierigen
Rechnungen Anlass gibt.

Fig. 10. Fresnel'sche Konstruktion in neuer, für die vektorielle Behandlung
geeigneter Variante. Die beiden der Wellennormalrichtung N zugeordneten
Schwingunsrichtungen und S2 sind die Halbierungspunkte der durch r2 und r2
eingeschlossenen räumlichen Winkel. rx und r2 sind ihrerseits die Pole der beiden
durch den Pol von N und diejenigen der beiden optischen Achsen A und B ge¬

legten Grosskreise.

Es zeigt sich nun, dass die FRESNEL'sche Konstruktion in
ausgezeichnetem Masse der vektoranalytischen Behandlung zugänglich ist,
und dass sich diese Art der Betrachtung zudem durch grosse Anschaulichkeit

auszeichnet. Man betrachtet hierzu die gesuchten Schwingungsrichtungen

nicht als die Spuren der Halbierungsebenen der räumlichen
Winkel der beiden Ebenen Ex und E2, welche durch die Schliffnormale
und die beiden optischen Achsen gelegt werden, sondern als Vektoren,
welche die Winkel der beiden Lote rx und r2 halbieren, welche zu Ex und
E2 normal stehen. Diese Betrachtungsweise eignet sich übrigens auch
zur Durchführung der FRESNEL'schen Konstruktion in stereographischer
Projektion, wobei man gegenüber der üblichen Art des Vorgehens mit
geringerem Zeichenaufwand auskommt. Ist N (Fig. 10) die Platten-
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normale Wellennormalenrichtung) und sind A und B die beiden
optischen Achsen, so legt man durch NA und NB je einen Grosskreis.
Die Pole der beiden Grosskreise entsprechen den erwähnten Loten r4 und
r2. Diese bestimmen den zu N polaren Grosskreis, welcher dem betrachteten

Schnitt entspricht. Die gesuchten Schwingungsrichtungen sind die
Halbierungspunkte Sx und S2 der beiden durch rx und r2 eingeschlossenen
Winkel. Wünscht man nicht nur die Schwingungsrichtungen des zu N
normalen Kristallschnittes, sondern die Schwingungsebenen der beiden
sich in Richtung N fortpflanzenden Wellen, so erhält man sie sofort,
indem man die beiden durch N und Sx bzw. N und S2 verlaufenden
Grosskreise konstruiert. Die Schwingungsrichtung S4 entspricht ny' oder
na', je nachdem sich ny oder na im gleichen räumlichen Winkelraum der
beiden durch N und die optischen Achsen gelegten Ebenen befindet.

Wird nicht nur die Schwingungsrichtung S, sondern auch die
Auslöschungsschiefe a in bezug auf die Spur einer beliebigen Bezugsfläche
M verlangt, so legt man durch die Pole von N und M einen weiteren
Grosskreis und sucht dessen Pol m auf. Der gesuchte Auslöschungs-
winkel a ergibt sich als Sm.

Das Problem der Berechnung der Auslöschungsschiefe eines
beliebigen Schnittes eines zweiachsigen Kristalls in bezug auf eine beliebige
Bezugsrichtung, bei bekannter Lage der optischen Achsen, stellt sich
in vektoranalytischer Betrachtung folgendermassen :

Gegeben: Die Ortsvektoren (Einheitsvektoren) der Pole auf der
Einheitskugel für folgende Richtungen :

Optische Achse A : 310 x1i + y1j + z1ï
Optische Achse B: $80 x2i + y2j + z2ï

Normale zur beliebigen Fläche F, für welche die Auslöschungsschiefe

bestimmt werden soll : Xgi + ygj + Zgl

Normale zur Bezugsfläche M, auf deren Spur (Schnittgerade) auf F der

Auslöschungswinkel bezogen werden soll:

9^0= x4i + y4i + z4!

Gesucht: Auslöschungswinkel a auf F, bezogen auf Spur von M

Lösung:
1. Die auf den durch die optischen Achsen und N gelegten Ebenen

errichteten Lote r4 und r2 werden durch die Vektorprodukte
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ti [Bo3ro] *2 Wo%o\
dargestellt.

2. Die Schwingungsrichtungen Sx und S2 entsprechen zwei Vektoren,
welche die von rx und r2 eingeschlossenen Winkel halbieren. Man erhält
sie durch vektorielle Addition bzw. Subtraktion der Einheitsvektoren

ti r2
tlo= IrT t2»=TrTlril Rai

als @i rlo + r2o @2 ïi„-ï2o
3. Die Bezugsrichtung 91, auf welche die Auslöschungsschiefe bezogen

wird, ist die Spur von M auf F. Da diese als Schnittgerade der beiden
Flächen sowohl M wie F angehört, steht sie normal zu den beiden
Flächennormalen 9D10 und und entspricht dem vektoriellen Produkt

9! [9Jlo&>]

4. Die gesuchte Auslöschungsschiefe er folgt aus dem skalaren
Produkt (<S19l) bzw. (<S291) zu

(@iSR) _ (©afö)
C0Sffl_ ISxM^I cosa2_

Weil im allgemeinen nur einer der beiden zueinander komplementären

Auslöschungswinkel interessiert, braucht nur einer der beiden
Vektoren <B und nur ein Winkel <r berechnet zu werden. Es kann daher
im folgenden auf die Indizes 1,2 verzichtet werden.

Setzt man im Ausdruck für cos er an Stelle von 91 wiederum das

Vektorprodukt [3r09Jl0] ein, so erhält man, weil nach (10) das skalare
Produkt von [So®^o] @ (So®,lo@) ^> dem Volumen des von den
drei Vektoren aufgespannten Parallelepipeds ist (Fig. 11)

v= ISoH^ol sin (So. 3RoH@l coso-,

wobei a die Schiefe desselben gegenüber der auf der Grundfläche errichteten

Normalen bedeutet. Daraus folgt :

V
C0Sa~

|So|-Po|sin(So,9Jlo)-|@l

Weil jedoch der absolute Wert |9l| von 91 [g0®lo] ISol l^ol sin (5o,2)l0)
gleich dem Inhalt der Grundfläche G des Parallelepipeds ist, so ist
V/1911 V/G dessen Höhe h und es wird

h
COS er -J=rr|@|
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Führt man an Stelle von <B den entsprechenden Einheitsvektor @0 ein,
so wird

COS er h,

d.h. der Cosinus des Auslöschungswinkels ist gleich der Höhe des von
den drei Einheitsvektoren ^0,2k0 und @0 aufgespannten Parallelepipeds
mit als Grundfläche. Der Winkel ($o>^o) ist der Winkel, welchen
die betrachtete Fläche F mit der Bezugsfläche M bildet.

0

Fig. 11. Der Auslöschungswinkel a ist
gleich der Schiefe des durch die drei
Vektoren g0 (Einheitsnormalvektor
der betrachteten Fläche F), 2K0

(Einheitsnormalvektor der BezugsflächeM
und <5 (Schwingungsrichtung)

aufgespannten Parallelepipeds mit der
Grundfläche [y0 2R0].

Fig. 12. Steht die Bezugsfläche M normal

zu F, so genügt die Betrachtung
des durch die Einheitsvektoren 9R0und
S0 aufgespanntenParallélogrammes an
Stelle des Parallelepipeds von Fig. 11.

Eine bedeutende Vereinfachung tritt ein, wenn F und M senkrecht
aufeinander stehen. Dieser Spezialfall ist nicht nur für hochsymmetrische
Systeme von Bedeutung. Er findet sich auch im triklinen System
verwirklicht bei der Berechnung der Auslöschungsschiefe von Plagioklasen
für Schnitte der symmetrischen Zone J_ (010) in bezug auf die Spur
von M(010).

In diesem Falle ist [^o^o] 1 und es wird

cos er V,

d.h. der Cosinus des Auslöschungswinkels a ist gleich dem Volumen des

von den drei Einheitsvektoren und <30 aufgespannten Parallelepipeds.

Als Spezialfälle erhält man sofort, dass für V= 1, d.h. wenn die
drei Vektoren senkrecht aufeinander stehen, <r 0, und dass für V 0,

d.h. für den Fall, dass die drei Vektoren komplanar sind, u 90° sein

muss. Weil die Grundfläche G den Inhalt 1 hat, so ist V dem absoluten
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Werte nach gleich der Höhe h des Parallelepipeds, so dass auch in diesem

Fall, wie oben, cos er h wird.
Es genügt auch, das von den beiden Einheitsvektoren 9Jt0 und @0

aufgespannte Parallelogramm mit der Grundlinie 9DÎ0 zu betrachten. Sein

Inhalt J berechnet sich zu [9J10<30] sin (9Jt0, <50) und ist zugleich, weil
die Grundlinie die Länge 1 aufweist, dem absoluten Werte nach gleich
der Höhe h des Parallélogrammes (Fig. 12).

Weil der gesuchte Auslöschungswinkel a komplementär zum Winkel
(3K0,©0) ist, so gilt auch hier cosct J h, d.h. der Cosinus des

Auslöschungswinkels ist dem absoluten Werte nach gleich der Fläche des

von den beiden Einheitsvektoren 9J10 und @0 aufgespannten Parallélogrammes

bzw. gleich dessen Höhe h.

b) Beispiele. Berechnung der Auslöschungsschiefe für Albit

a) Auf P(001), bezogen auf die Spur von M (010) (vg. Fig. 13).

Gegeben: Die weiter oben aus den Achsenpositionen berechneten
Ortsvektoren für die Pole der beiden optischen Achsen:

9t0= — 0,59753 i — 0,74818 j + 0,28842
230= + 0,66255i — 0,73373 j + 0,15053

Die <p, p-Werte für die Basis P(010) 93 81°51' p 27°01' und der daraus
nach (15) berechnete Ortsvektor des Poles

5ß0 + 0,44965i+ 0,06440) + 0,890881

Die 93, p-Werte für das seitliche Pinakoid M(010) <p 0°0' p 90°0' und
der sich daraus ergebende Ortsvektor

gk0=oi+ij + ot

Gesucht: Auslöschungsschiefe a auf P in bezug auf Spur von M

Berechnung von ^ [2t01)ß0] und r2 [S80^ß0]

Die Berechnung der beiden Vektorprodukte nach (9) bzw. (9a) ergibt :

rx= - 0,68511 i+ 0,66201 j + 0,29794 ï
r2= -0,66366t-0,52257)+ 0,37260!

Daraus ergeben sich nach (6) die Absolutbeträge

1^1 0,99820 |r2| 0,92302

und nach (7) die Einheitsvektoren
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rlo= — 0,68634i + 0,66321 j + 0,29848 ï
r2o= — 0,71868i — 0,56616 j + 0,40367 ï

Die Schwingungsrichtungen <31 und @2 sind die Winkelhalbierenden von
rx und r2. Es ist somit :

©x rlo + r2o - 1,40502 i — 0,09705j + 0,70215!
@2 ïi„ - Ï2„ - 0,03234i - 1,22967j + 0,10519

Fig. 13. Zur Berechnung der Auslöschungsschiefe auf P (001) von Albit, bezogen
auf die Spur von M(010). Die beiden Vektoren rx=[S)J3t] bzw. r2=[9tSB] stehen
normal auf den durch die Normale St auf P (001) und die optischen Achsen 91 bzw. SB

aufgespannten Ebenen E' bzw. E". Die gesuchten Schwingungsrichtungen ©x und
©2 werden durch vektorielle Addition bzw. Subtraktion der Einheitsvektoren ti0
und r2() erhalten. Die Bezugsrichtung 3t, welche der kristallographischen a-Achse
entspricht, ist Schnittkante von P(001) und M(010), d.h. es ist 3t=[3K3t]. Der

gesuchte Auslöschungswinkel a ergibt sich aus dem skalaren Produkt (©i9t).
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Nach (6) folgt daraus für die Absolutwerte:

I©!) 1,57370 und |©2| 1,23457

und nach (7) für die Einheitsvektoren:

©lo= — 0,89284i + 0,06167 j + 0,44615
@2o= — 0,02619i — 0,99602 j + 0,08519 ï

Die Auslöschungsschiefe wird nur in bezug auf @1 (im folgenden zur
Vereinfachung als © bezeichnet) berechnet.

Berechnung des Vektors der Bezugsrichtung 9Î:

Als Schnittgerade von P und M ergibt sich der gesuchte Vektor zu

5R [^05K0]

Aus + 0,44965t + 0,06440} + 0,89088 ï
und 2k0= °i+ !j+ 0Ï

folgt nach (9) bzw. (9a):

91 - 0,89088i + 0} + 0,44965 ï

und für den Absolutwert nach (6) |9Î| 0,99790

Berechnung der Auslöschungsschiefe:

Nach früher ist © =- 1,40502t-0,09705}+ 0,70215!
und |@| 1,57370

Aus dem skalaren Produkt (91©) folgt nach (8)

(fô@) OK«008 "WW '

Nach der bekannten ScHUSTER'schen Regel ist der Auslöschungswinkel
positiv zu rechnen. Nach dem Diagramm von L. Duparc und M.
Reinhard10) entspricht <x= +3,5° auf P(001) ein Anorthitgehalt von 4%.

Berechnung der Auslöschungsschiefe nach der „Parallelepiped-
methode".

Aus den Vektoren }ß0, 9J£0 und ©0 ergibt sich für das Volumen V des

durch sie aufgespannten Parallelepipedes nach (11) bzw. (IIa)
V 0,99605

10) L. Duparc et M. Reinhard, La détermination des plagioelases dans les

coupes minces. Mém. Soc. Phys. Hist. Nat. Genève 40 (1924) 23.
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und für seine Höhe h V/[9Î| 0,99814 cos<r. Daraus folgt in
Übereinstimmung mit oben a= +3,5°.

ß) Auf M(010) bezogen auf die Spur von P(001).

Gegeben: 9t0= -0,59753i-0,74818j + 0,28842!
930 + 0,66 2 55 t — 0,73373j + 0,15053

sowie die Ortsvektoren der Flächenpole von M und P

SR0 Oi + lj + 0!
5ß0 + 0,449651 + 0,06440 j + 0,89088

Gesucht: Auslöschungswinkel er auf M, bezogen auf die Spur von P
Die beiden Vektorprodukte rt [Siosol und r2 [930^o] ergeben:

rx - 0,28842i + 0j + 0,59753 ï
r2= -0,15053i + 0j + 0,66255!

Nach (6) folgt daraus für die Absolutwerte :

1^1 0,66350 und |r2| 0,67943

und nach (7) für die Einheitsvektoren:

rlo= + 0,4347 li + 0j + 0,90058!

r2o= -0,22155i + 0j + 0,97515!

Die Scbwingungsricbtungen ©]_ und <S2 sind wieder die Winkelhalbierenden

der von und r2 gebildeten Winkel. Es ist somit:

@i ti0 + r2o + 0,21316 t+ 0j+ 1,87573!
@2 ü0 - r2o - 0,65626i + 0 j + 0,07457

Nach (6) folgt hieraus für die Absolutwerte:

1^1 1,8870 und |©2| 0,66050

und nach (7) für die Einheitsvektoren:

<Slo= + 0,11292i + 0j +0,99366!
@2o= -0,99360i + 0j + 0,11290!

D:e Bezugsricbtung SR ergibt sich als Schnittgerade von P(001) mit
M (010) zu

5R [?o^o]
5R= _0,89088i + 0j+ 0,44965!
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Nach (6) folgt hieraus für den Absolutbetrag |9I| 0,99792 und nach (7)

9î0= - 0,89272i + 0 j + 0,45059 ï

Der gesuchte Auslöschungswinkel ergibt sich aus cos er (@05R0) nach (8) zu

a 20,3°

Nach der ScHUSTER'schen Regel ist der Auslöschungswinkel als positiv
zu rechnen. Das Diagramm von L. Duparc und M. Reinhard (loc. cit.
1924) führt auf reinen Albit.
y) Für Schnitte normal zur kristallographischen a-Achse, bezogen auf
die Spur von M (010).

Diese Schnitte spielen in der Praxis der Plagioklasbestimmung eine

grosse Rolle, weil sie an der symmetrischen Auslöschung in bezug auf
die Spur von M(010), sowie daran, dass die Spaltrisse nachP(OOl) zugleich
senkrecht zur Schliffebene stehen, leicht erkannt werden können. Ihre
Verwendung wurde ungefähr gleichzeitig durch F. Becke und G. F.
Becker vorgeschlagen.

Wie Figur 14 zeigt, ist der Normalvektor $ der Fläche normal zur
kristallographischen a-Achse gleich dieser selbst, somit identisch mit
dem unter a) mit 9Î bezeichneten Vektor. Es ist somit:

%=- 0,88088 t + 0 j + 0,44965 ï

Aus den Vektoren gr, 2I0 und 330 berechnet sich nach (9) bzw. (9 a):

*i [$ 5Io]= + 0,33642i-0,01171j + 0,66654ï
ï2 [S Soi + 0,32992i + 0,43201 j + 0,65367 ï

Daraus ergeben sich nach (6) die Absolutbeträge

rx 0,74672 r2 0,85016

und nach (7) die Einheitsvektoren

rlo + 0,45054i - 0,01568 j + 0,892621

r2o= + 0,38807i+ 0,50815 j + 0,768881

Von den beiden Schwingungsrichtungen, welche sich aus rlo + r2o bzw.

ti0 —r2o ergeben, wird nur die erste

g rlo + r2o + 0,838612i + 0,49247 j + 1,66150 ï

berücksichtigt. Nach (6) ergibt sich der Absolutbetrag |<5| 1,9251 und
nach (7) der Einheitsvektor

@0= + 0,43560 i + 0,25580 j + 0,86304 f



294 CONKAD BUEKI

Fig. 14. Zur Berechnung der Ausloschungsschiefe fur einen Schnitt _La, bezogen
auf die Spur von M(010) fur Albit. Die beiden Vektoren rx= [9Î9I] bzw. r3 [9193]

stehen normal auf den durch die Normale zur betrachteten Fläche 91 a und die
beiden optischen Achsen 91 bzw. 93 bestimmten Ebenen E' und E". Die beiden
Schwingungsrichtungen ©j und S, werden durch vektorielle Addition bzw.
Subtraktion der Einheitsvektoren rlo und r2o erhalten. Die Bezugsrichtrmg SR ist die
Schnittkante der Ebene _La mit M (010), d. h. es ist SR= [SR9R]. Der gesuchte Aus¬

löschungswinkel a ergibt sich aus dem skalaren Produkt (©tSR).
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Die Bezugsrichtung R' ist die Schnittkante der Fläche J_a mit M (010)

ar=[3rSR0]

9Ko= Oi+lj + OÏ

g -0,89088i + 0j + 0,44965!

Nach (9) bzw. (9a) wird

31'= +0,44965t+ 0j + 0,89088 t

und nach (6) |3l'| 0,99790

Der gesuchte Auslöschungswinkel u folgt aus dem skalaren Produkt
(31'©) nach (8) zu

—a
Der Winkel ist negativ zu rechnen, da die Schwingungsrichtung na' im
spitzen Winkel P/M hegt. Das Diagramm von L. Duparc und M. Reinhard

(loc. cit. 1924) führt auch hier auf reinen Albit.

Berechnung der Auslöschungsschiefe nach der „Parallelogramm-Methode"

Der Inhalt J des von den Vektoren s]k0 und ©0 aufgespannten
Parallélogrammes ergibt sich zu |3| 0,96674. Weil die Grundlinie 9Ji0= 1

ist, ist |3| h cos er, woraus a in Übereinstimmung mit oben zu 14,8°
folgt. Berechnet man den zu a komplementären Winkel (9ÛÎ0, S0), so

erhält man (äJi0@0) 0,25580 sin a und hieraus ebenfalls er 14,8°.

6) Berechnung der Brechungsindizes für beliebig orientierte
Schnitte zweiachsiger Kristalle

a) Allgemeines

Die Brechungsindizes na' und ny' der beiden Wehen, welche sich in
einem zweiachsigen Kristall mit gemeinsamer Wehennormalenrichtung
fortpflanzen, entsprechen den beiden positiven Wurzeln n der Gleichung

A2 u2 p2
1 — 1 011111 1 (20)

n2 na2 n2 n^2 n2 ny2

in welcher A, g, v die Richtungscosinus der betrachteten Wehennormalenrichtung

in bezug auf die Hauptschwingungsrichtungen na, n^, ny sind.
Der Ausdruck stellt die sogenannte Indexfläche in Polarkoordinaten dar.
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Diese ist zweischalig und ihre Radienvektoren entsprechen den Brechungsindizes

derjenigen Wellen, welche sich in ihrer Richtung fortpflanzen.
Der Ausdruck folgt aus der Gleichung der ebenfalls zweischaligen
Normalengeschwindigkeitsfläche

A2 u2 r2^
r ° (21)v2 — a2 v2 — b2 v2

wenn man die Normalengeschwindigkeiten a > b > c und v durch die
dazu reziproken Brechungsindizes na < n^ < ny und n ersetzt. Die
Normalengeschwindigkeitsfläche selbst lässt sich ihrerseits leicht aus der
Indikatrix ableiten11).

Die Berechnung der Brechungsindizes aus der Gleichung der Indexfläche

führt jedoch auf eine Gleichung 4. Grades, deren Lösimg sehr
umständlich ist. Man bevorzugt daher in der Praxis den durch P.
Neumann12) aufgezeigten Weg, indem man die Wellennormalenrichtung durch
die beiden Winkel & und &' charakterisiert, welche sie mit den beiden
optischen Achsen einschliesst, statt durch die drei Hauptschwingungsrichtungen

na, n^, ny bezogenen Richtungscosinus A, /x, v. Für diesen
Fall lassen sich nämlich die Quadrate der Normalengeschwindigkeiten in
einfacher Form, ohne Wurzelzeichen, wie folgt darstellen:

a2 + c2 a2 —c2
Vi, 2= S + « COS (!?+!?) (22)

oder wenn an Stelle der Normalengeschwindigkeiten die Brechungsindizes
eingesetzt werden :

nay nynaj/ny2
+ na2 + (ny2 - na2) cos (&+ &')

Mit Hilfe dieser sogenannten NEUMANN'schen Formeln lassen sich z.B.
die Brechungsindizes von Spaltblättchen berechnen. Diese lassen sich

diagnostisch verwenden, weil sie sich mit der Immersionsmethode oft
bedeutend rascher und sicherer bestimmen lassen als die Hauptbrechungsindizes.

Dies gilt besonders für niedrig symmetrische und gut spaltbare
Kristallarten, wie z.B. die Plagioklase, für welche S. Tsuboi13) auf

u) Vergl. z.B. F. Pockels, Lehrbuch der Kristalloptik, Leipzig (1906), 33-34.
12) F. E. Neumann, Über die optischen Axen und die Farben zweiaxiger

Kristalle im polarisierten Licht. Poggend. Ann. 33 (1834), 257—282, im bes. 278.

lî) S. Tsuboi, A dispersion method of determining plagioclases in cleavage
flakes. Min. Ma. 20 (1923), 108—122. — A straight-line diagramm for determining
plagioclases by the dispersion method. Jap. J. Geogr. 11 (1934), 325—326.
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dieser Basis eine Bestimmungsmethode vorgeschlagen hat, welche sich
in der Praxis sehr gut bewährt. Im folgenden soll nun gezeigt werden,
wie die Brechungsindizes für beliebig orientierte Präparate zweiachsiger
Kristalle, also z.B. Spaltblättchen, im Anschluss an die mit vektoriellen
Methoden durchgeführte Berechnung der Auslöschungsschiefen ohne

grossen Rechenaufwand erhalten werden können.
Es handelt sich dabei um das einfache Problem, für einen bestimmten

Indikatrixradius (Schwingungsrichtung @) die Länge zu berechnen. Geht
man von der Gleichung der Indikatrix, bezogen auf die drei
Hauptschwingungsrichtungen als Koordinatenachsen aus:

x2 y2 z2

-2+ -, + — (24
n<x nß~ V

und bezeichnet man einen beliebigen Radius der Indikatrix mit n, so ist
x ncosa nA, y ncos/3 np, und z=ncosy nr. In die Gleichung
der Indikatrix eingesetzt, erhält man:

/a2 r2
_

1

n 2
4"

2 4" ~ 2 7)2 ' 'w0'
a n(3 ny n

die Gleichung der Indikatrix in Polarkoordinaten, n ist hierbei die Länge
des Indikatrixradius, welcher in bezug auf die drei Hauptschwingungsrichtungen

(Symmetrieachsen der Indikatrix) na, n^, ny die Richtungscosinus

A, jj,, v aufweist. Kennt man diese Richtungscosinus für eine

beliebige Schwingungsrichtung, so lässt sich das zugehörige n als Länge
des Indikatrixradius wie folgt berechnen:

1 n2 n«2 n„
A2 /a2 r2 A2 n/32ny2 + /x2 na2 ny2 + v2 na2 nß

' 9 ~T~
T-i 2 ti 2 2
na fty

n= n«nßnr (26)i A2 n^2 ny2 + /A na2 ny2 + v2 na2 n^2

Bei der Berechnung der Auslöschungsschiefen wurden die Schwingungsrichtungen

S als Vektoren @i ïi0 + t2o bzw. 32 ti0 — f2o erhalten. Es
ist nun nur notwendig, die Richtungscosinus der Vektoren und @2,

bezogen auf das neue System a0 b0 c0 zu bestimmen, um n berechnen zu
können. Zu diesem Zwecke bestimmt man zuerst die absoluten Werte
|©1| und |S2] und mit ihnen die Einheitsvektoren <3lo und 32q Die
Richtungscosinus A/, p./, vx' für @lo bezogen auf das neue System a0b0c0
sind dann nach (19) gleich den skalaren Produkten

Schweiz. Min. Petr. Mltt., Bd. 30 Heft 2, 1950 7
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V (@ioao) Mi'= (@i0&0) "i' (@i0Co)

bzw. für @20

^2 =(©20&o) M2 (@20&O) v2 =(©20CO)

Setzt man sie in den oben gegebenen Ausdruck (26) an Stelle von X, /x, v

ein, so erhält man die gesuchten Brechungsindizes nx und n2

b) Beispiele

Als Beispiele sollen für den Albit von Rischuna die Brechungsindizes
der Spaltblättchen nach P(001) und M (010), für welche bereits die
Auslöschungsschiefen berechnet wurden, ermittelt werden.

Vom Albit von Rischuna existieren folgende Lichtbrechungsbestimmungen,

von welchen die erste und dritte nach der Methode der
Totalreflexion, die mittlere nach der Prismenmethode durchgeführt wurden:

na n/3

K. Chudoba, Tscherm. Mitt. 38 (1925) 93 1,5293 1,5334 1,5397
H. Fischer, Z. Kristallogr. 61 (1925) 244 1,5290 1,5329 1,5388
S. Kôzu, Min. Mag. 17 (1915) 189 1,5289 1,5330 1,5392

Im folgenden wird das Mittel aus diesen drei gut übereinstimmenden
Angaben benützt :

Albit von Rischuna, Mittelwerte der na jiß ny
Lichtbrechung (D) 1,5291 1,5331 1,5392

a) Berechnung der Brechungsindizes für P(001)

Gegeben sind die Vektoren:

a0 -0,99400i-0,01138i + 0,10877ï
b0 =+0,10098 t+ 0,28663i +0,95270!
C0 =+0,04216 t-0,95798j +0,28382!
@lo - 0,89283i + 0,06167j + 0,44615
@2o - 0,02619i - 0,99602j + 0,08519

Daraus berechnen sich die Richtungscosinus Ax', ju./, v/ für @lo in bezug
auf das neue System a0b0co wie folgt:

V (ao<3i„)= +0,93531
Hi (60@lo) +0,35257 In (26) eingesetzt folgt
"i' (Co @i„) + 0,02991 na' 1,5296
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Gleicherweise erhält man für die Richtungscosinus von <S20

V (a0@2„)= +0,04666
jj,2' (b0©20)= +0,20698 In (26) eingesetzt folgt
"2' (Co @2.) + 0,97726 n/ 1,5389

ß) Berechnung der Brechungsindizes für M (010)

Ausgegangen wird wiederum von den drei oben gegebenen Vektoren
a0 £>0 c0, sowie von den ebenfalls schon berechneten Vektoren der
Schwingungsrichtungen

©lo= +0,11292i + 0i + 0,99366!
@2o= -0,99360i + 0j + 0,112901

Die Richtungscosinus bezogen auf das neue System a0 b0 c0 berechnen
sich wie folgt:

V (Oo@lfl)= -0,00417
fijl (b„@1#)= +0,95807 In (26) eingesetzt folgt
V (Co @i„) + 0,28679 n/ 1,5335

Gleicherweise erhält man für die Schwingungsrichtung ©2

V (a0@2„)=+ 0,99992
fj,2' (b0©2o) +0,00723 In (26) eingesetzt folgt
"2' (Co @20) - 0,00985 n,' 1,5291

Die Brechungsindizes von Spaltblättchen nach P(001) und M(010) für
den Albit von Rischuna mit 1-2% An betragen somit:

V ny'
P (001) 1,5296 1,5389
M(010) 1,5291 1,5335

Aus den von S. Tstjboi (loc. cit. 1923) gegebenen Kurven ergibt sich für
diese Werte ein um ca. 1% höherer Anorthitgehalt. In Anbetracht
dessen, dass die Kurven dieses Autors sich im in Betracht kommenden
Gebiet nur auf die Punkte An 0 und An 13 stützen, sowie dass bei den
vorliegenden Berechnungen mit Mittelwerten operiert und optische
Untersuchung und chemische Analyse nicht am gleichen Material
ausgeführt wurde, ist die Übereinstimmung somit durchaus befriedigend.
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7. Berechnung der Doppelbrechung für beliebige Schnitte
bzw. beliebige Wellennormalenrichtungen zweiachsiger

Kristalle14)

a) Näherungsweise Berechnung für den Fall niedriger Doppelbrechung

Bezeichnet man die von der Flächennormale (Wellennormalenrich-
tung) F und den beiden optischen Achsen A und B eingeschlossenen
Winkel mit & und so gilt für die Absolutbeträge der schon Seite 289

berechneten Vektorprodukte rx [9T0 f^o] bzw. r2 [330i?o] ^ass

|r]J=sin# und |r2] sin

Es ist somit möglich die bekannte MALLARD'sche Näherungsformel15)
für kleine Doppelbrechungen

(ny' - na' (ny - nJ sin & sin &' (ny — nj | x11 • | r21 (27

anzuwenden und bei bekannter maximaler Hauptdoppelbrechung (ny — na)
die Doppelbrechung in Richtung von F zu berechnen.

b) Beispiele

Anwendung auf den Albit von Rischuna: Berechnung der
Doppelbrechung für Spaltblättchen nach P(001) und M(010)

Aus den Vektoren 910= — 0,59753i —0,74818j +0,288421
230= + 0,66255 t — 0,73373} + 0,150531

sowie dem Normalvektor auf P(001)

)ß0 + 0,44965i + 0,06440) + 0,890881

folgt nach (9)

[rx[ 0,99820 sin#
[t2| 0,92302 sin

Die maximale Doppelbrechung ergibt sich aus den weiter oben gegebenen

Brechungsindizes zu (ny — nj 0,0101, worauf nach (27) folgt

(n/-0 0.0093

14) Die Anregung zu diesem Abschnitte verdanke ich einer Diskussionsbemerkung

von Herrn Kollegen W. Nievwenkamp (Utrecht) anlässlich der Davoser
Tagung der Schweiz. Min. Petr. Ges. vom 28. 8. 50.

15) Über die Herleitung dieser Formel siehe z.B. C. Burri, Das Polarisationsmikroskop.

Basel, Birkhäuser (1950), 60—61.
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Dieser Wert steht in Übereinstimmung mit dem direkt aus den weiter
oben berechneten Brechungsindizes für Spaltblättchen nach P(001)
erhaltenen. Analogerweise erhält man aus 9I0 und 330 und dem Normalvektor

F auf M(010)
3f0=2Jl0 oi+ii + ot

nach (9)
1^1 0,66350 sin;?
jr2[ 0,67943 sin i?'

woraus sich nach (27) ergibt:

(n/-na') 0,0045

während sich aus den für M (010) berechneten Brechungsindizes in
befriedigender Übereinstimmung ableitet (ny'—na') 0,0044.

c) Exakte Berechnung für den Fall höherer Doppelbrechung

Für höhere Doppelbrechung muss die Berechnung nach der exakten
Formel16)

erfolgen, deren Auswertung allerdings etwas umständücher ist. Die
reziproken Quadrate der Lichtbrechung entnimmt man dazu am besten den

von F. E. Wright17) gegebenen Tabellen, wo die Werte von 1/n2 für
Brechungsindizes von 1,400 bis 2,400 auf 6 Dezimalstellen gegeben sind.
Für die vierte Stelle von n muss interpoliert werden.

d) Beispiele

Der Gang der Berechnung soll wiederum am Beispiel des Albites
von Rischuna gezeigt werden. Aus ny= 1,5392 ergibt sich aus den
WRiGHT'schen Tabellen l/ny2 0,422095 und aus na= 1,5291 folgt l/na2
0,427689, somit l/na2—l/ny2 0,005594. Aus diesem Wert und den oben
gegebenen Werten für sin # und sin folgt aus (28) für P (001)

19) Für die Herleitung siehe z.B. C. Burri, loc. cit. Basel (1950), 58—59.
17) F. E. Weight, Graphical Methods in Microscopical Petrography. Amer.

J. Sc. 36 (1913), 509—542, im bes. 518—526.
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Um aus diesem Werte (ny' — na') zu erhalten, muss entweder ny' oder na'
selbst bekannt sein. Nimmt man den in Abschnitt 6 berechneten Wert
na'= 1,5296 als bekannt an, so folgt daraus l/na'2 0,427410 und l/ny'2
l/na'2 —0,00515 0,42226, woraus ny'= 1,5389 folgt. Somit wird

in Übereinstimmung mit dem aus der Mallard'sehen Näherungsformel
und aus den berechneten Brechungsindizes direkt erhaltenen Wert.

Für M (010) erhält man in analoger Weise

Unter Verwendung des in Abschnitt 6 berechneten Wertes na' 1,5291
erhält man

in Übereinstimmung mit dem aus der Näherungsformel erhaltenen Wert.
Ist weder ny' noch na' bekannt und lässt sich keiner der beiden

Werte nach dem oben angegebenen Verfahren berechnen, weil z.B. der
Vektor © nicht bekannt ist, so müssen die Neumann'sehen Formeln
angewandt werden. Aus (22) bzw. (23) ergibt sich, dass z.B.

Für den Albit von Rischuna berechnet sich auf Grund der weiter oben

gegebenen Daten für die Lichtbrechung

(ny'—na') 0,0093

(n/-na') 0,0045

Für Spaltblättchen nach P(001) berechnet sich ferner

# aresin 0,99820 86°34'
&'= aresin 0,92302 67° 28',

woraus folgt (& —19,') 19°12'. In (29) eingesetzt erhält man

l/na'2 0,427533, woraus folgt na' l,5294
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Ferner ist l/ny'2= l/na'2 —0,00515 0,42238, und somit ny' 1,5387. Man
erhält somit für Spaltblättchen nach P(001) in Übereinstimmung mit
früher

(n/-na') 0,0093

Für Spaltblättchen nach M (010) ergibt sich in analoger Weise

& aresin 0,66350 41°34'
aresin 0,67943 42°48'

und (# — #') 1°14'. Daraus berechnet sich nach (29) l/na'2 0,427685
und na'= 1,5291. Weil ferner l/n/2= l/na'2-0,002522 0,425163 ist, so

wird ny' 1,5336 und für die Doppelbrechung erhält man, in
Übereinstimmung mit dem früheren Ergebnis

(n/-na') 0,0045.

Summary

The methods of vector calculation are well adapted for the solution of
commonly occurring problems of crystal optics such as the following : construction
of stereograms to ülustrate the optical orientation of crystals with low symmetry;
the identification of corresponding directions in twins ; transformations of the plane
of projection etc. A suitable formulation of Fresnel's construction provides a
simple method of calculating the extinction angle of any crystal plane in respect
to any desired direction. In this connection the refractive indices for any desired
vibration directions as well as the birefringence can easily be calculated. As a
practical example of the methods here described a detailed calculation of albite
from Rischuna is given.

Zürich, Mineralogisch-Petrographisches Institut der Eidg. Technischen
Hochschule.

Erhalten: 5. August 1950.
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