Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 30 (1950)

Heft: 1

Artikel: Beziehungen zwischen der Symmetrie des Kristall-, Fourier- und

Patterson-Raumes

Autor: Nowacki, Werner

DOI: https://doi.org/10.5169/seals-24440

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beziehungen zwischen der Symmetrie des Kristall-, Fourier- und Patterson-Raumes

Von Werner Nowacki (Bern)

Seit einiger Zeit beschäftigt uns die Frage der Beziehungen der Symmetrie eines Kristallraumes, seines reziproken Raumes mit Gewicht (≡ Fourierraum) und des zugehörigen Pattersonraumes. Die ersten erhaltenen Resultate sind in einem herauskommenden Buche "Fouriersynthese von Kristallen und ihre Anwendung in der Chemie", dessen Manuskript letztes Jahr dem Verlage eingereicht wurde, enthalten. Die letzten Publikationen von Buerger (1949, a, b; 1950, a, b) befassen sich ebenfalls mit diesem Problem.

Es seien folgende Bezeichnungen eingeführt:

 $\gamma_{K} = Kristallklasse (Punktsymmetriegruppe) des Kristallraumes (K-Raum)$

 $\gamma_{\rm K}'=$ Höchstsymmetrische Untergruppe erster Art von $\gamma_{\rm K}$

 $\gamma_{\rm L}$ = Laueklasse des K-Raumes = $\gamma_{\rm |F|^2}$ = Punktsymmetriegruppe des $\rm |F|^2$ -Körpers = $\gamma_{\rm K} + (C_i - \overline{1})$

 $\Gamma_{\rm K}$ = Raumgruppe des K-Raumes

 $\gamma_{\mathrm{F}} = \mathrm{Punktsymmetriegruppe}$ des F-Körpers

 $\gamma_{\rm P}$ = Punktsymmetriegruppe des Pattersonraumes (P-Raum)

 $\Gamma_{\rm P}=$ Raumgruppe des P-Raumes.

Zu jedem K-Raum kann der reziproke Raum mit Gewicht (\equiv Fourierraum) konstruiert werden. Jeder Punkt (h, k, l) des reziproken Gitters erhält das Gewicht F (h, k, l) = $|F(h, k, l)|e^{i\alpha(h, k, l)}$, "angeschrieben". Wegen des Abfalls der Atomformamplituden f_i und der Endlichkeit der Wellenlänge λ weist dieser F-Raum aber keine Periodizität auf und wird deshalb besser als F-Körper bezeichnet. Seine Symmetrie ist diejenige einer kristallographischen Punktgruppe γ_F . Die Kenntnis dieser Gruppe γ_F d.h. der Symmetrie des F-Körpers alleine genügt aber im allgemeinen nicht einmal zur Bestimmung der Kristallklasse γ_K , geschweige denn der Raumgruppe Γ_K des K-Raumes, wie dies aus Tabelle 1a und b hervorgeht.

Tabelle 1 a) Beziehungen zwischen $\gamma_{\rm F}$, $\varGamma_{\rm K}$ und $\gamma_{\rm K}$ im zweidimensionalen Fall

Nr. der a-Kl.	$oldsymbol{\gamma}_{\mathbf{F}}$	$arGamma_{f K}$	Zahld. $\Gamma_{ m K}$	$\gamma_{ m K}$
4 5	$egin{array}{lll} C_3 & -3 \\ C_4 & -4 \\ C_6 & -6 \\ C_8 & -m \\ C_k & -m \\ C_{2v} & -2 & mm \\ C_{2v} & -2 & mm \\ C_{3v} & -3 & m & 1 \\ C_{3s} & -31 & m \\ C_{4v} & -4 & mm \end{array}$	$\begin{array}{c} C_{1}^{I} & -p \ 1; \ C_{s}^{II} - p \ 1 \ g \\ C_{2}^{I} & -p \ 2; \ C_{2v}^{II} - p \ 2 g g; \ C_{2v}^{III} - p \ 2 g m \\ C_{3}^{I} & -p \ 3 \\ C_{4}^{I} & -p \ 4; \ C_{4v}^{II} - p \ 4 \ g \ m \\ C_{5}^{I} & -p \ 6 \\ C_{s}^{I} & -p \ 1 \ m \\ C_{s}^{III} - c \ 1 \ m \ (\equiv C_{k}^{I}) \\ C_{2v}^{I} - p \ 2 \ m m \\ C_{2v}^{IV} - c \ 2 \ m m \ (\equiv C_{2k}^{I}) \\ C_{3v}^{I} - p \ 3 \ m \ 1 \\ C_{3v}^{I} - p \ 3 \ m \ 1 \\ C_{4v}^{I} - p \ 4 \ m m \\ C_{6v}^{I} - p \ 6 \ m m \end{array}$	3 1 2 1 1 1 1 1	$\begin{array}{l} C_1 - 1; C_s - m \\ C_2 - 2; C_{2v} - 2 mm \\ C_3 - 3 \\ C_4 - 4; C_{4v} - 4 mm \\ C_6 - 6 \\ C_s - m \\ C_k - m \\ C_{2v} - 2 mm \\ C_{2k} - 2 mm \\ C_{3v} - 3 m 1 \\ C_{3s} - 31 m \\ C_{4v} - 4 mm \\ C_{6v} - 6 mm \end{array}$
Total 13	,		Total 17	

b) Im dreidimensionalen Fall

Nr. der a-Kl.	$\gamma_{ m F}$	sym. $\Gamma_{ m K}$	hemisym. $\Gamma_{ exttt{K}}$	asymmorphe $arGamma_{ extsf{K}}$	Zahld. $\Gamma_{ m K}$	γ _K (g-Klassen)
1	C_1 -1	C_1^1	$C_s^{2,4}$	C_2^2 , $C_{2v}^{5,9}$, $D_2^{4,9}$, $C_4^{(2,4),3}$, $C_3^{(2,3)}$,	12+3	$C_1, C_s, C_2, C_{2v}, D_2, \\ C_4, C_3, C_6$
2	$C_i - \bar{1}$	C_i^1	$\mathrm{C}^{4,6}_{2\mathrm{h}}$	$C_6^{(2,3)}$ $C_{2h}^{(2,5)}, D_{2h}^{6,8,10,11},$ $D_{2h}^{14,15,16,27}$	13	$\mathrm{C_i}$, $\mathrm{C_{2h}}$, $\mathrm{D_{2h}}$
3	$C_{s\alpha} - m$	C_s^1		$C_{2v}^{2,7}$ C_{2v}^{12}	3 2	$egin{array}{l} ext{C}_{ ext{s}}, \ ext{C}_{2 ext{v}} \ ext{C}_{ ext{s}}, \ ext{C}_{2 ext{v}} \end{array}$
4 5	$egin{array}{ll} \mathrm{C_{seta}} & -\mathrm{m} \ \mathrm{C_{2lpha}} & -2 \end{array}$	$egin{array}{c} \mathbf{C_s^3} \\ \mathbf{C_2^1} \end{array}$	C3 4,6,8,10	$D_{2}^{2,3}, C_{4v}^{8}, \\ D_{2}^{(3,7),(4,8)}$	11+2	
6	$C_{2oldsymbol{eta}}-2$	C_2^3	$C^{13,15,16,17,19}_{2v}, \ C^{21,22}_{2v}$	$D_2^5, C_4^6, C_{4v}^{12}, \\ D_3^{(3,5),(4,6)},$	15+4	$egin{aligned} & & & & & & & & & & & & & & & & & & &$
7	$\mathrm{C_{2hlpha}-2/m}$	$\mathrm{C^1_{2h}}$	${ m D_{2h}^3}$	$C_6^{(4,5)}, D_6^{(2,3)}$ $D_{2h}^{5,7,9,12}, C_{4h}^2,$	8	$C_{2h}, D_{2h}, C_{4h}, D_{4h}$
8	$\mathrm{C_{2heta}-2/m}$	C^3_{2h}	$\mathbf{D}^{20,21,26}_{2h}$	$egin{array}{c} {\bf D_{4h}^{13}} \ {\bf D_{2h}^{17,18,28}} \end{array}$	7	$\mathbf{C_{2h}}$, $\mathbf{D_{2h}}$

Nr. der		sym.	hemisym.	asymmorphe	Zahl d.	$\gamma_{\mathbf{K}}$
a-Kl.	$\gamma_{ m F}$	$oldsymbol{arGamma_{K}}$	$\Gamma_{\mathbf{K}}$	$arGamma_{\mathbf{K}}$	$\Gamma_{ m K}$	(g-Klassen)
			<u> </u>		<u> </u>	
9	$C_{2v\alpha}-mm$	$\mathbf{C^1_{2v}}$		D_{2h}^{13} , $C_{4v}^{3,4,7}$	5	C_{2v} , D_{2h} , C_{4v}
10	$C_{2v\alpha}$ mm	$\mathrm{C_{2v}^{18}}$		$\mathcal{D}_{2h}, \mathcal{O}_{4v}$	1	$\mathrm{C_{2v}}, \mathrm{D_{2h}}, \mathrm{C_{4v}}$
11	$C_{2\nu\beta} - mm$	C_{2v}^{2v}	1	C_{4v}^{11}	2	C_{2v} , C_{4v}
12	$C_{2v\gamma} - mm$	$C_{2\mathrm{v}}^{11}$	3	$\mathcal{O}_{4 extsf{v}}$	1	$\mathrm{C}_{2\mathrm{v}}$, $\mathrm{C}_{4\mathrm{v}}$
13	$C_{2v\delta} - mm$	$\mathrm{C}^{2\mathrm{v}}_{2\mathrm{v}}$			1	$\mathrm{C}_{2\mathbf{v}}^{2\mathbf{v}}$
14	$C_{2v\epsilon} - mm$ $D = 222$	$\mathbf{D^{1}_{2}}$	$\mathbf{D^{2,4}_{2h}}$	${f D}^{2,5,6}_4$	6	$\mathbf{D_{2}},\mathbf{D_{2h}},\mathbf{D_{4}}$
15	$D_{2\alpha} - 222$ $D_{\alpha} - 222$	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	$egin{array}{c} \mathbf{D_{2h}^{2h}} \\ \mathbf{D_{2h}^{24}} \end{array}$	D_4	2	
16	$D_{2\beta} - 222$	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	10 _{2h}	$\mathbf{D_4^{10}}$	2	D_2, D_{2h}
17	$D_{2\gamma} - 222$		$\mathbf{D^{22}_{2h}}$	$\mathbf{D_6^{(4,5)}}$	$\begin{vmatrix} 2 \\ 3+1 \end{vmatrix}$	D_2, D_4
18	$D_2\delta - 222$	$\mathbf{D_2^6}$	D_{2h}	D ₆	1	D_2 , D_{2h} , D_6
19	$D_{2h\alpha}$ -mmm	D^{1}_{2h}		$\mathbf{D_{4h}^{9,10,14}}$	4	D_{2h} , D_{4h}
20	$D_{2h\beta}$ - mmm	$\mathbf{D_{2h}^{23}}$	1		1	$\mathbf{D_{2h}}$
	$D_{2h\gamma} - mmm$	${ m D_{2h}^{25}}$			1	D_{2h}
21	$D_{2h\delta}$ - mmm	$\mathbf{D^{19}_{2h}}$	C)6	$T^{4, 5}$		$\mathbf{D_{2h}}$
22	$C_{3\alpha} - \frac{3}{3}$	C_3^4	C _{3 v}		4	C_3 , C_{3v} , T
23	$C_{3i\alpha} - \overline{3}$	$\mathrm{C_{3i}^2}$		$T_h^{6,7}, O_h^{10}$	4	C_{3i} , T_h , O_h
24	$C_{3 \text{ v}\alpha} - 3 \text{ m}$	$C_{3 \text{ v}}^5$	D6	$O^{(6,7),8}$	1	C_{3v}
25	$D_{3\alpha} - 32$	$\mathbf{D_{3}^{7}}$	$\mathbf{D}_{3\mathrm{d}}^{6}$	0.0,1,,,0	4+1	D_3 , D_{3d} , O
26	$D_{3d\alpha} - \overline{3} m$	$\mathbf{D_{3d}^5}$	C3.4	C)6	1 1	$\mathbf{D_{3d}}$
27	$C_{3\delta} - \frac{3}{5}$	C_3^1	C _{3 v}	C_6^6	4	C_3 , C_{3v} , C_6
28	$C_{3i\delta} - \bar{3}$	C_{3i}^1	$\mathbf{D_{3d}^4}$	$\mathbf{C^2_{6h}}$	3	C_{3i} , D_{3d} , C_{6h}
29	$C_{3v\delta} - 3m$	$C_{3 \text{ v}}^1$		$C_{6\mathrm{v}}^4$	2	C_{3v}, C_{6v}
30	$C_{3v_{\epsilon}} - 3 \text{ mm}$	$C_{3\mathrm{v}}^2$	D4	$\mathrm{C^3_{6v}}$	2	C_{3v}, C_{6v}
31	$D_{3\delta} - 32$	$\mathbf{D_3^2}$	$\begin{array}{c c} \mathbf{D^4_{3h}} \\ \mathbf{D^2} & \mathbf{D^2} \end{array}$	T)6	2	D_3 , D_{3h}
32	$D_{3\epsilon} - 32$	$\mathbf{D_{3}^{1}}$	$\mathbf{D}^2_{3\mathrm{d}}$, $\mathbf{D}^2_{3\mathrm{h}}$	$\mathbf{D_6^6}$	4	D_3, D_{3d}, D_{3h}, D_6
33	$D_{3d\delta} - \frac{3}{2} m$	$\mathbf{D_{3d}^3}$		D_{6h}^4	2	D_{3d} , D_{6h}
34	$D_{3d\epsilon} - \bar{3} m$	$\mathbf{D^{1}_{3d}}$		$\mathbf{D_{6h}^3}$	2	D_{3d} , D_{6h}
35	C_{3h} $-\bar{6}$	C_{3h}^3			1	$\mathbf{C_{3h}}$
36	$D_{3h\delta} - \overline{6} m 2$	$\mathbf{D_{3h}^3}$			1 1	$\mathbf{D_{3h}}$
37	$D_{3h\epsilon} - \overline{6} \text{ m } 2$	$\mathbf{D^{1}_{3h}}$	~2.5.B	8	1	$\mathbf{D_{3h}}$
38	$C_{4\alpha}$ -4	$\mathbf{C_4^1}$	$C_{4v}^{2,5,6}$		4	C_4 , C_{4v}
39	$C_{4\beta} - 4$	$\mathbf{C_4^5}$	C _{4v}	C4 T-9.4	2	C_4 , C_{4v}
40	$S_{4\alpha} - \bar{4}$	S_4^1	$C_{4h}^3, D_{2d}^{2,6,7,8}$	C_{4h}^4 , $D_{2d}^{3,4}$,	12	S_4 , C_{4h} , D_{2d} , D_{4h}
	_			$\mathbf{D_{4h}^{8,11,16}}$	2000	
41	$S_{4\beta}$ $-\bar{4}$	S_4^2	$\mathbf{D}_{2\mathrm{d}}^{10}$	C_{4h}^6 , D_{2d}^{12} ,	6	S_4 , D_{2d} , C_{4h} ,
80 800				${ m D_{4h}^{20}}$, ${ m T_d^6}$		$\mathrm{D_{4h}}$, $\mathrm{T_d}$
42	$C_{4v\alpha} - 4 \text{ mm}$	C_{4v}^1			1	C_{4v}
43	$C_{4v\beta}-4 \text{ mm}$	$C_{4\mathrm{v}}^9$			1	$\mathbf{C_{4v}}$
44	$C_{4h\alpha} - 4/m$	$\mathbf{C^1_{4h}}$	$\mathbf{D^2_{4h}}$	$\mathbf{D^{5,6}_{4h}}$	4	C_{4h} , D_{4h}
45	$C_{4h\beta} - 4/m$	$\mathbf{C^5_{4h}}$	$\mathbf{D^{18}_{4h}}$		2	C_{4h} , D_{4h}
46	$D_{2d\alpha}-42 m$	$\mathbf{D^{1}_{2d}}$		$\mathbf{D^{7,12,15}_{4h}}$	4	D_{2d} , D_{4h}
47	$D_{2d\delta}-42 m$	$\mathbf{D^5_{2d}}$			1	$\mathbf{D_{2d}}$
48	$D_{2d\beta} - \bar{4}2 m$	$\mathbf{D^9_{2d}}$		$\mathbf{D^{19}_{4h}}$	2	$\mathbf{D_{2d}}$, $\mathbf{D_{4h}}$
49	$D_{2d\gamma} - \bar{4}2 m$	$\mathbf{D^{11}_{2d}}$			1	$\mathbf{D_{2d}}$
	•					

Nr. der a-Kl.	$\gamma_{ m F}$	sym. $\Gamma_{\rm K}$	hemisym. $\Gamma_{ m K}$	asymmorphe $arGamma_{ extbf{K}}$	Zahl d. $\Gamma_{ m K}$	γ _K (g-Klassen)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73	$\begin{array}{c} D_{4\alpha} - 42 \\ D_{4\beta} - 42 \\ D_{4h\alpha} - 4/mmm \\ D_{4h\beta} - 4/mmm \\ C_6 - 6 \\ C_{6v} - 6 \\ mm \\ C_{6h} - 6/m \\ D_6 - 62 \\ D_{6h} - 6/mmm \\ T_{\alpha} - 23 \\ T_{\beta} - 23 \\ T_{\beta} - 23 \\ T_{\beta} - 3 \\ T_{\alpha} - m \\ 3 \\ T_{h\gamma} - m \\ 3 \\ T_{h\gamma} - m \\ 3 \\ T_{d\alpha} - \frac{1}{43} \\ m \\ T_{d\beta} - \frac{1}{43} \\ m \\ T_{d\gamma} - 43 \\ m \\ O_{\alpha} - 43 \\ O_{\beta} - 43 \\ O_{\beta} - 43 \\ O_{h\alpha} - m \\ 3m \\ O_{h\beta} - m \\ 3m \\ O_{h\beta} - m \\ 3m \\ O_{h\gamma} - m \\ 3m \\ O_{h\gamma}$	$\begin{array}{c} D_{4}^{1} \\ D_{4}^{9} \\ D_{4h}^{17} \\ D_{4h}^{17} \\ D_{4h}^{16} \\ C_{6}^{1} \\ C_{6h}^{1} \\ D_{6h}^{11} \\ T^{1} \\ T^{3} \\ T_{1d}^{10} \\ T_{2d}^{10} \\ T_{3d}^{10} \\ T_{1d}^{2} \\ T_{2d}^{3} \\ T_{1d}^{3} \\ T_{2d}^{10} \\ T_{2d}^{3} \\ T_{3d}^{10} \\ T_{2d}^{3} \\ T_{3d}^{10} \\ T_{3d$	$egin{array}{c} D_{4h}^{3,4} \\ C_{6v}^2 \\ D_{6h}^2 \\ T_h^2, T_d^4 \\ T_h^4, T_d^5 \\ O_h^6 \\ O_h^6 \end{array}$	O ² O ⁴ , O ⁸ O ³ h O ⁴ O ⁷ O ⁷	3 1 1 2 1 2 1 4 5 1 2 1 2 1 2 1 2 1 2 1 2 1	D ₄ , D _{4h} D ₄ D _{4h} D _{4h} D _{4h} C ₆ , C _{6v} C _{6v} C _{6h} , D _{6h} D ₆ D _{6h} T, T _h , T _d , O T, T _h , T _d , O, O _h T T _h T _d , O _h T _d O, O _h O, O _h O O _h O O _h O O _h
Total 73					Total 219+11	

In dieser Tabelle wurden nicht die gewöhnlichen Kristallklassen der geometrischen Kristallographie (sog. g-Klassen), sondern die von Burckhardt (1947) und dem Verfasser (Niggli und Nowacki, 1935) eingeführten arithmetischen Kristallklassen (sog. a-Klassen) verwendet. Es zeigt sich immer wieder, wie übersichtlich dieser Begriff die Verhältnisse zu gestalten vermag, wenn er auch keineswegs Allgemeingut der Kristallographen geworden ist. Es gibt mehr a- als g-Klassen (in der Ebene 13, im Raume 73). Dies rührt daher, dass der arithmetischen Inäquivalenz der zu einer g-Klasse gehörigen a-Klassen die Verschiedenheit der Stellung derselben Symmetrieelemente dieser g-Klasse gegenüber einem Koordinatensystem, dessen Achsen die Richtungen und Grösse eines primitiven Translationstripels haben und die mit Spiegelebenen oder Drehachsen zusammenfallen oder deren Zwischenwinkel

halbieren, entspricht. Die verschiedenen, zu einer g-Klasse gehörigen a-Klassen werden durch einen griechischen Buchstaben als Index gekennzeichnet. Im übrigen sei auf unsere Arbeit (1935) verwiesen.

Es ergibt sich nun folgender Satz, mit Hilfe dessen Tabelle 1 abgeleitet wurde.

Satz über die Symmetrie des F-Körpers:

Die Symmetriegruppe γ_F des zu einem K-Raum gehörigen F-Körpers ist gleich der Gesamtheit der durch den Nullpunkt des K-Raumes gehenden, translationsfreien Symmetrieelemente, m.a.W. gleich der Symmetriebedingung oder der Eigensymmetrie des Nullpunktes in der betreffenden Raumgruppe Γ_K des K-Raumes.

Translationshaltige Symmetrieelemente, d.h. Schraubenachsen und Gleitspiegelebenen, welche durch den Nullpunkt gehen, bewirken, wie bekannt ist, eine Phasenänderung. Gehen hingegen Drehungsachsen, Drehinversionsachsen oder Spiegelebenen durch den Nullpunkt des K-Raumes, so kommen diese in der Punktsymmetriegruppe $\gamma_{\rm F}$ des F-Körpers wieder vor. Nach Fedoroff (1900) unterscheidet man symmorphe, hemisymmorphe und asymmorphe Raumgruppen. Eine Raumgruppe $\Gamma_{
m K}$ ist symmorph, wenn es in ihr Punkte der Eigensymmetrie γ_K gibt, wobei $\gamma_{\rm K}$ die zu $\Gamma_{\rm K}$ entsprechende Kristallklasse ist (Beispiel: $\Gamma_{\rm K} = {\rm O_h^1}$, $\gamma_{\rm K} = {\rm O_h}$; Punkte der Symmetrie O_h sind in O_h vorhanden). Es gibt insgesamt 73 symmorphe Raumgruppen (s) [Fedoroff (1900), Niggli und Nowacki (1935)]. Man erhält sie durch Einsetzen der 32 g-Klassen an die Gitterpunkte der 14 Bravais-Gitter, wobei man noch die verschiedenen Stellungsmöglichkeiten der Symmetrieelemente zu den Translationskomponenten berücksichtigen muss. Lässt man in den 73 symmorphen Raumgruppen alle Translationen gleich null werden, so erhält man die 73 a-Klassen. Eine Raumgruppe $\Gamma_{\mathbb{K}}$ ist hemisymmorph, wenn es in ihr keine Punkte der Symmetrie γ_K , wohl aber der Symmetrie γ'_K , gibt, wobei $\gamma'_{\mathbb{K}}$ die höchstsymmetrische Untergruppe ersten Art (nur Drehungsachsen) von γ_{K} ist (Beispiel: $\Gamma_{K} = O_{h}^{2}$, $\gamma_{K} = O_{h}$, $\gamma_{K}' = O$; Punkte der Symmetrie O sind in O_b vorhanden). Es gibt 54 hemisymmorphe Raumgruppen (h). Alle übrigen 92+11 Raumgruppen sind asymmorph (a) [vgl. Tabelle III, S. 326—7 in Niggli und Nowacki (1935]. Dem Charakter von $\Gamma_{\mathbf{K}}$ und der Wahl des Nullpunktes entsprechend erhält man Symmetrien $\gamma_{\rm F}$ des F-Körpers, welche mit $\gamma_{\rm K}$ übereinstimmen oder eine Untergruppe davon sind. In den gebräuchlichen Raumgruppentabellen

sind die Punktsymmetrien aller Punkte angegeben; diejenige des Nullpunktes ist gleich $\gamma_{\rm F}$.

Unser Satz entspricht dem Theorem of reciprocal symmetry von Buerger (1949, a, b). Mit seiner Hilfe können sämtliche Beziehungen zwischen den F (h, k, l), den |F(h, k, l)| und den α (h, k, l) für alle Raumgruppen sogleich angegeben werden. Ein Teil derselben ist in den Tabellen von Lonsdale (1936) in explicite aufgeführt. Dies sei an einigen Beispielen auseinandergesetzt:

- 1. $\Gamma_{\mathbf{K}} = \mathbf{C}_{2h\,a}^1 \mathbf{P}_{2/m} = \text{symmorphe Raumgruppe}, \ \gamma_{\mathbf{K}} = \mathbf{C}_{2h\,a} 2/m,$ $\gamma_{\mathbf{F}} = \mathbf{C}_{2h\,a} 2/m = \mathbf{P}_{2h\,a} + \mathbf{P}_{2$
- 2. $\Gamma_{\mathbf{K}} = C_{2\mathbf{v}}^{13} \mathrm{Cec} = \mathrm{hemisymmorphe}$ Raumgruppe, $\gamma_{\mathbf{K}} = C_{2\mathbf{v}\delta} 2\,\mathrm{mm}$, $\gamma_{\mathbf{K}}'; = C_{2\beta} 2$, $\gamma_{\mathbf{F}} = C_{2\beta} 2 = \mathrm{Punktsymmetrie}$ des Nullpunktes in $\Gamma_{\mathbf{K}};$ gleichwertige Flächen allgemeiner Lage in C_2 sind hkl, $\bar{\mathbf{h}}\bar{\mathbf{k}}\mathbf{l}$, somit wird $\mathbf{F}(\mathbf{h},\mathbf{k},\mathbf{l}) = \mathbf{F}(\bar{\mathbf{h}},\bar{\mathbf{k}},\mathbf{l})$ und wegen $\mathbf{F}(\mathbf{h},\mathbf{k},\mathbf{l}) = |\mathbf{F}(\mathbf{h},\mathbf{k},\mathbf{l})| \mathrm{e}^{\mathrm{i}\alpha(\mathbf{h},\mathbf{k},\mathbf{l})}$ $|\mathbf{F}(\mathbf{h},\mathbf{k},\mathbf{l})| = |\mathbf{F}(\bar{\mathbf{h}},\bar{\mathbf{k}},\mathbf{l})|$ und $\alpha(\mathbf{h},\mathbf{k},\mathbf{l}) = \alpha(\bar{\mathbf{h}},\bar{\mathbf{k}},\mathbf{l})$. Ausserdem wegen des Satzes von Friedel (Laueklasse = $\gamma_{\mathbf{L}} = \gamma_{\mathbf{K}} + C_{\mathbf{l}} = D_{2\mathbf{h}\delta}$)

$$|\mathbf{F}(\mathbf{h}, \mathbf{k}, \mathbf{l})| = |\mathbf{F}(\overline{\mathbf{h}}, \overline{\mathbf{k}}, \mathbf{l})| = |\mathbf{F}(\overline{\mathbf{h}}, \overline{\mathbf{k}}, \overline{\mathbf{l}})| = |\mathbf{F}(\mathbf{h}, \mathbf{k}, \overline{\mathbf{l}})| = |\mathbf{F}(\mathbf{h}, \overline{\mathbf{k}}, \overline{\mathbf{l}})| = |\mathbf{F}(\mathbf{h}, \overline{\mathbf{k}}, \overline{\mathbf{l}})| = |\mathbf{F}(\overline{\mathbf{h}}, \mathbf{k}, \overline{\mathbf{l}})| = |\mathbf{F}(\overline{\mathbf{h}}, \overline{\mathbf{k}}, \overline{\mathbf{l}})|.$$

Alle diese Beziehungen gelten für irgendwelche hkl-Werte. Weitere Beziehungen zwischen den α (h, k, l)-Werten ergeben sich für spezielle Indizes:

$$\begin{array}{lll} h+k=2n,\, l=2n & \alpha \; (h,\, k,\, l) \, = \, \alpha \; (\overline{h},\, \overline{k},\, l) \, = \, \alpha \; (\overline{h},\, k,\, \overline{l}) \, = \\ & \alpha \; (h,\, \overline{k},\, l) \, = -\, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = -\, \alpha \; (h,\, k,\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = -\, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, k,\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, k,\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},\, \overline{l}) \, = \\ & -\, \alpha \; (h,\, \overline{k},\, \overline{l}) \, = \, \alpha \; (\overline{h},\, \overline{k},$$

3. $\Gamma_{\rm K}={\rm D_2^4-P}~2_12_1={\rm asymmorphe}~{\rm Raumgruppe},~\gamma_{\rm K}={\rm D_{2\alpha}-222},~{\rm in}~\Gamma_{\rm K}$ keine Punkte der Symmetrie ${\rm D_2}$ vorhanden, $\gamma_{\rm F}={\rm C_1-1}={\rm Punkt-symmetrie}~{\rm des}~{\rm Nullpunktes}~{\rm in}~\Gamma_{\rm K};~{\rm mehrere}~{\rm gleichwertige}~{\rm Flächen}~{\rm allgemeiner}~{\rm Lage}~{\rm in}~{\rm C_1}~{\rm gibt}~{\rm es}~{\rm nicht},~{\rm h\,k\,l}~{\rm ist}~{\rm alleine},~{\rm allgemeine}~{\rm Beziehungen}~{\rm zwischen}~{\rm den}~{\rm F}~({\rm h,\,k,\,l})~{\rm bzw.}~\alpha~({\rm h,\,k,\,l})~{\rm existieren}~{\rm nicht}.~{\rm Wegen}~{\rm des}~{\rm Satzes}~{\rm von}~{\rm Friedel}~{\rm wird}~(\gamma_{\rm L}=\gamma_{\rm K}+{\rm C_i}={\rm D_{2h\,\alpha}})~{\rm allgemein}$

$$|\mathbf{F}(\mathbf{h}, \mathbf{k}, \mathbf{l})| = |\mathbf{F}(\overline{\mathbf{h}}, \overline{\mathbf{k}}, \overline{\mathbf{l}})| = |\mathbf{F}(\overline{\mathbf{h}}, \mathbf{k}, \mathbf{l})| = |\mathbf{F}(\mathbf{h}, \overline{\mathbf{k}}, \overline{\mathbf{l}})|$$

$$= |\mathbf{F}(\mathbf{h}, \overline{\mathbf{k}}, \mathbf{l})| = |\mathbf{F}(\overline{\mathbf{h}}, \mathbf{k}, \overline{\mathbf{l}})| = |\mathbf{F}(\mathbf{h}, \mathbf{k}, \overline{\mathbf{l}})| = |\mathbf{F}(\overline{\mathbf{h}}, \overline{\mathbf{k}}, \mathbf{l})|;$$

dazu kommen noch Beziehungen zwischen den α (h, k, l) für spezielle h k l-Werte.

4. $\Gamma_{\mathbf{K}} = S_4^1 - P \; \overline{\mathbf{4}} = \text{symmorphe Raumgruppe}, \; \gamma_{\mathbf{K}} = S_{4\alpha} - \overline{\mathbf{4}}, \; \gamma_{\mathbf{F}} = S_{4\alpha} - \overline{\mathbf{4}} = \text{Symmetrie des Nullpunktes in } \Gamma_{\mathbf{K}}; \; \text{gleichwertige Flächen allgemeiner Lage in } S_4 \; \text{sind hkl}, \; \overline{\mathbf{h}} \; \overline{\mathbf{k}} \; \mathbf{l}, \; \mathbf{k} \; \overline{\mathbf{h}} \; \overline{\mathbf{l}}, \; \text{somit wird allgemein} = \mathbf{F} \; (\mathbf{h}, \mathbf{k}, \mathbf{l}) = \mathbf{F} \; (\overline{\mathbf{h}}, \overline{\mathbf{k}}, \mathbf{l}) = \mathbf{F} \; (\overline{\mathbf{k}}, \mathbf{h}, \overline{\mathbf{l}}) = \mathbf{F} \; (\mathbf{k}, \overline{\mathbf{h}}, \overline{\mathbf{l}}), \; \mathbf{d}. \; \mathbf{h}.$ $|\mathbf{F} \; (\mathbf{h}, \mathbf{k}, \mathbf{l})| = |\mathbf{F} \; (\overline{\mathbf{h}}, \overline{\mathbf{k}}, \mathbf{l})| = |\mathbf{F} \; (\overline{\mathbf{k}}, \mathbf{h}, \overline{\mathbf{l}})| = |\mathbf{F} \; (\mathbf{k}, \overline{\mathbf{h}}, \overline{\mathbf{l}})| \; \text{und}$ $\alpha \; (\mathbf{h}, \mathbf{k}, \mathbf{l}) = \alpha \; (\overline{\mathbf{h}}, \overline{\mathbf{k}}, \mathbf{l}) = \alpha \; (\overline{\mathbf{k}}, \mathbf{h}, \overline{\mathbf{l}}) = \alpha \; (\mathbf{k}, \overline{\mathbf{h}}, \overline{\mathbf{l}}).$

Ausserdem wegen des Satzes von Friedel $(\gamma_L = \gamma_K + C_i = C_{4h\alpha})$

$$|\mathbf{F}(\mathbf{h}, \mathbf{k}, \mathbf{l})| = |\mathbf{F}(\overline{\mathbf{h}}, \overline{\mathbf{k}}, \overline{\mathbf{l}})| = |\mathbf{F}(\mathbf{h}, \mathbf{k}, \overline{\mathbf{l}})| = |\mathbf{F}(\mathbf{k}, \overline{\mathbf{h}}, \mathbf{l})| = |\mathbf{F}(\overline{\mathbf{k}}, \mathbf{h}, \mathbf{l})|.$$

Damit ist das Vorgehen im Einzelfalle erläutert: man sucht die Symmetrie γ_F des Nullpunktes der Raumgruppe auf, stellt sich die gleichwertigen Flächen allgemeiner Lage $\{hkl\}$ (= allgemeine Kristallform) von γ_F zusammen und erhält damit die gesuchten allgemeinen Beziehungen zwischen den F(h,k,l)- bzw. den $\alpha(h,k,l)$ -Werten. Wegen des Satzes von Friedel ergeben sich weitere Beziehungen zwischen den |F(h,k,l)|- und für spezielle Indizes (h,k,l) eventuell weitere zwischen den $\alpha(h,k,l)$ -Grössen. Auf diese Weise können leicht alle 219+11 Raumgruppen in explicite untersucht werden. Für den zweidimensionalen Fall sind die Beziehungen zwischen den F(h,k) schon von Patterson (1935) (Table I, p. 545) angegeben worden; Tabelle 1 mit Angabe der γ_F stammt aus unserem Buche; über die Anwendung bei der Fouriersynthese vergleiche Buerger (1949, b).

Nimmt man zur Symmetrie des F-Körpers die Auslöschungen hinzu, so ergibt sich auch damit im allgemeinen noch keine eindeutige Raumgruppenbestimmung, da es vielfach mehrere Raumgruppen $\Gamma_{\rm K}$ gibt, welche dieselben Auswahlregeln erzeugen (Auslöschungseinheiten): die qualitative Röntgenkristallographie reicht zur eindeutigen Raumgruppenbestimmung nicht aus. Wäre es aber möglich, alle |F| und alle α genau quantitativ zu messen, so wäre man prinzipiell im Stande, alle Beziehungen zwischen den F(h,k,l) zu finden und damit die Raumgruppe $\Gamma_{\rm K}$ eindeutig zu bestimmen; m. a. W. erst eine quantitative Röntgenkristallographie ist in der Lage, dies zu tun. Da es aber zur Zeit trotz der gemachten Fortschritte im allgemeinen nicht möglich ist, alle Phasenwerte zu bestimmen, kommt diese Art quantitativer Analyse (mit Hilfe des F-Körpers) vorläufig nicht in Betracht.

Dies ist der Grund, weshalb man an Stelle des F- den $|F|^2$ -Körper (Schdanow, 1945) verwendet. Statt der F- werden die $|F(h,k,l)|^2$ -Werte den Punkten h, k, l des reziproken Gitters beigegeben. Auch der $|F|^2$ -Körper ist ein Gebilde ohne Translationen, dessen Symmetrie gleich der einer kristallographischen Punktgruppe $\gamma_{|F|^2}$ mit $\gamma_{|F|^2} = \gamma_L = \gamma_K + C_i$ ist, d.h. die Symmetrie des $|F|^2$ -Körpers gestattet nur die Laueklasse γ_L des K-Raumes zu ermitteln.

Es sei erwähnt, dass uns Theorem 3 von Buerger (1949, a, p. 201) z.T. nicht ganz verständlich ist. Dort heisst es bezüglich des Fourier-Raumes: ,,... The position and absolute-magnitude symmetry is the same as that of the point group isomorphous with the space group,..."; dann wäre in unserer Ausdrucksweise $\gamma_{|\mathbf{F}|} = \gamma_{\mathbf{K}}$. Wegen des Satzes von Friedel gilt aber $\gamma_{|\mathbf{F}|} = \gamma_{|\mathbf{F}|^2} = \gamma_{\mathbf{L}} = \gamma_{\mathbf{K}} + C_{\mathbf{i}}$.

Nimmt man die Auslöschungen hinzu, so erhält man im Raume 120 (Buerger, 1942) und in der Ebene 10 verschiedene Auslöschungseinheiten. Die 10 ebenen Auslöschungseinheiten sind in Tabelle 2, nach den 6 ebenen Laueklassen geordnet, vereinigt.

Eindeutig sind röntgenographisch nur vier ebene Gruppen, nämlich $C_{2v}^{II} - p 2gg$, $C_4^I - p 4$, $C_{4v}^I - p 4$ mm und $C_{4v}^{II} - p 4$ gm bestimmbar.

Symmetrien des $|F|^2$ -Körpers und Auslöschungen bilden die Grundlage der qualitativen Röntgenkristallographie; durch Ausführung von $|F|^2$ -Synthesen kann diese zu einer quantitativen ausgestaltet werden (Buerger, 1946).

Der Pattersonraum (P-Raum)

$$P(u, v, w) = \frac{1}{V} \sum_{3} |F(h, k, l)|^{2} \cos 2 \pi (hu + kv + lw)$$

ist im Gegensatz zum K-Raum

$$\rho(x,y,z) = \frac{1}{V} \sum_{3} |F(h,k,l)| \cos \left[2 \pi (hx + ky + lz) - \alpha (h,k,l)\right]$$

stets zentrosymmetrisch. Seine Kristallklasse γ_P ist einer der Laueklassen gleich. Der P-Raum besitzt ebenfalls (drei) linear unabhängige Translationen; seine Raumgruppe sei Γ_P . Es gilt folgender

Satz über die Symmetrie eines Pattersonraumes:

Die Ramugruppe $\Gamma_{\rm P}$ des zu einem K-Raum gehörigen P-Raumes ist der aus der arithmetischen Laueklasse $\gamma_{\rm L}$ entstehenden zentrosymmetrischen, symmorphen Raumgruppe gleich.

In Tabelle 3 a, b sind die gewonnenen Daten für die Ebene und den Raum vereinigt. Alle zur selben arithmetischen Laueklasse γ_L gehörigen

$\begin{tabular}{ll} Tabelle~2\\ Die~10~ebenen~Auslöschungseinheiten \end{tabular}$

I. Laue-Klasse C_2-2

Nr.	Auslöschungssymbol	Auslöschungen	Ebene Gruppe
1	2 p 2		$C_2^{I} - p 2; C_1^{I} - p 1$

II. Laue-Klasse C_{2v}-2 mm

86	1 1			
2 mmp				$C_{2v}^{I} - p 2 mm; C_{s}^{I} - p 1 m$
			k	$C_{2y}^{\text{III}} - p 2 \text{gm}; C_{s}^{\text{II}} - p 1 \text{g}$
2 mmp-gg	_	h	k	$C_{2\mathbf{v}}^{\Pi} - \mathbf{p} \; 2 \; \mathbf{g} \mathbf{g}$
$2 \mathrm{mmc}$ – –	h+k			$C_{2y}^{IV}-c~2~mm$; $C_{8}^{III}-c~1~m$
	2 mmp-g- 2 mmp-gg	2 mmp-g- — — — — 2 mmp-gg —	2 mmp-g h	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

III. Laue-Klasse C_4-4

		hk	h 0	0 k	
6	4 p –	_			$C_4^I - p 4$

IV. Laue-Klasse C_{4v}-4 mm

		h k	h 0	0 k	
7 8	4 mmp $4 mmp - g -$	_	h	 k	$\begin{array}{c} C_{4v}^{I} - p \ 4 \ mm \\ C_{4v}^{II} - p \ 4 \ gm \end{array}$

V. Laue-Klasse C_6-6 mm

Ĩ	_			
1	9	o p —	 $C_6^{I} - p 6; C_3^{I} - p 3$	

VI. Laue-Klasse C_{6 v} – 6 mm

10	6 mmp – – –		$C_{6v}^{I} - p \ 6 \text{ mm}; \ C_{3v}^{I} - p \ 3 \text{ m 1}; $ $C_{3v}^{II} - p \ 31 \text{ m}$
		2 12 12 12 12 12 12 12 12 12 12 12 12 12	L

Anmerkung: — bedeutet: alle Reflexe hk, h0 oder 01 vorhanden; h oder k oder h+k bedeutet, daß die betreffenden Reflexe nur mit h=2 n, k=2 n oder h+k=2 n vorhanden sind.

Tabelle~3a) Beziehungen zwischen $\varGamma_{\rm K}$ und $\varGamma_{\rm P}$ für die Kristallebene

Nr.	$arGamma_{ t K}$	$\gamma_{ m L} \! = \! \gamma_{ m P}$	$\Gamma_{ exttt{P}}$
1	$C_1^{I} - p 1; C_2^{I} - p 2$		$C_2^{\mathbf{I}} - \mathbf{p} 2$
2	$C_s^{I} - p 1 m$, $C_s^{II} - p 1 g$; $C_{2v}^{I} - p 2 mm$,	$C_{2v}-2 \text{ mm}$	$C_{2v}^{I}-p \ 2 \ mm$
	$C_{2v}^{II} - p \ 2 \ gg, \ C_{2v}^{III} - p \ 2 \ g \ m$		
3	$C_{\rm s}^{\rm III} - c \ 1 \ {\rm m} \ (\equiv C_{\rm k}^{\rm I}); \ C_{2 {\rm v}}^{\rm IV} - c \ 2 \ {\rm mm} \ (\equiv C_{2 {\rm k}}^{\rm I})$	$C_{2k}-2 \text{ mm}$	
4	$C_4^{\text{I}} - p 4$	$C_4 - 4$	
5	$C_{4v}^{I} - p 4 mm, C_{4v}^{II} - p 4 g m$		$C_{4v}^{I}-p$ 4 mm
6	${ m C_3^I} -{ m p} 3 ; { m C_6^I} - { m p} 6$	$C_6 - 6$	
7	$C_{3v}^{I} - p \ 3 \ m \ 1, \ C_{3v}^{II} - p \ 31 \ m \ (\equiv C_{3s}^{I}),$	$C_{6v}-6 \text{ mm}$	$C_{6v}^{I}-p 6 mm$
	$C_{6v}^{I} - p 6 mm$		

b) Beziehungen zwischen $\varGamma_{\mathbbm{K}}$ und $\varGamma_{\mathbbm{P}}$ für den Kristallraum

Nr.	$\gamma_{ m L} = { m zentro} \cdot { m symmetr.}$					
	a-Klasse			hemisymmorph	asymmorph	
1	C_{i}		$egin{array}{ c } \hline C_1^1 \\ \hline C_1^1 \end{array}$			1
		$\mathbf{C_i}$	C_1^1			1
2	C _{2h \alpha}		C^1_{2h}	C _{2 h}	$ ext{C}^{2,5}_{2 ext{h}}$	4
		$egin{array}{c} \mathrm{C_{2}}_{lpha} \ \mathrm{C_{s}}_{lpha} \end{array}$	$egin{array}{c} C_2^1 \ C_8^1 \ \end{array}$		C_2^2	2
		$C_{s\alpha}$	C_s^1	$\mathrm{C}^2_{\mathfrak{s}}$		2
3	C2h \$		$\boxed{\mathbf{C^3_{2h}}}$	$\mathbf{C^{6}_{2h}}$		2
		$egin{array}{c} \mathrm{C}_{_{2}oldsymbol{eta}} \ \mathrm{C}_{_{8}oldsymbol{eta}} \end{array}$	$egin{array}{c} \mathbf{C_2^3} \\ \mathbf{C_s^3} \\ \end{array}$			1
		$C_{s}_{oldsymbol{eta}}$	C_s^3	C_s^4		2
4	$D_{2h\alpha}$		$\boxed{\mathbf{D^1_{2h}}}$	${ m D}^{3,2,4}_{2{ m h}}$	${f D_{2h}^{5,7,9,12,13,11,6,8}} \ {f D_{2h}^{10,14,16,15}}$	16
		$D_{2\alpha}$	$\mathbf{D_2^1}$		${f D}_2^{2,3,4}$	4
	J.	C _{2 v \alpha}	$C_{2\mathbf{v}}^{1}$	C _{2 v} ^{3,4,6,8,10}	C2,7,5,9	10
5	$\mathbf{D_{2h}\beta}$		$\frac{\left \mathbf{D^{23}_{2h}}\right }{\mathbf{D^{7}_{2}}}$	$\mathbf{D^{24}_{2h}}$		2
		$egin{array}{c} \mathbf{D_{2oldsymbol{eta}}} \ \mathbf{C_{2oldsymbol{ au}oldsymbol{eta}}} \end{array}$	$\overline{\mathbf{D_{2}^{7}}}$			1
		Czvβ	C_{2v}^{18}	C _{2 v}		2
6	$\mathbf{D_{2h}_{\gamma}}$		$\overline{\mathbf{D^{25}_{2h}}}$	$\mathbf{D^{26}_{2h}}$	$\mathbf{D^{28,27}_{2h}}$	4
		$C_{2v\gamma}$	$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} B_2^8 \ C_{2\mathbf{v}}^{20} \end{array} \end{array}$	- 00 01	$\mathbf{D_2^9}$	2
		Czvy	$\mathbf{C_{2v}^{20}}$	$C_{2v}^{22,21}$		3

Nr.	$\gamma_{ m L} = { m zentro-} { m symmetr.}$ a-Klasse	nicht zentro- symmetr. a-Klasse	$\Gamma_{\mathtt{K}} = \mathrm{Sym.} \ \mathrm{des} \ \mathrm{K-Raumes}$ $\Gamma_{\mathtt{P}} = \boxed{} = \mathrm{Sym.} \ \mathrm{des} \ \mathrm{P-Raumes}$			Anzahl
				hemisymmorph	asymmorph	
7	D _{2h} δ	$egin{array}{c} \mathbf{D_{2\delta}} \\ \mathbf{C_{2\star\delta}} \\ \mathbf{C_{2\star\epsilon}} \end{array}$	$\begin{array}{ c c }\hline D_{2h}^{19}\\\hline D_{2h}^{6}\\\hline C_{2v}^{11}\\\hline C_{2v}^{14}\\\hline \end{array}$	$egin{array}{c} { m D_{2h}^{21,20,22}} \\ { m C_{2v}^{13}} \\ { m C_{2v}^{15,16,17}} \end{array}$	$egin{array}{c} \mathbf{D^{17,18}_{2h}} \\ \mathbf{D^5_2} \\ \mathbf{C^{12}_{2v}} \end{array}$	6 2 3 4
8	$C_{3i}{}_{\alpha}$	$C_{3\alpha}$	$\frac{\boxed{\begin{bmatrix}\mathbf{C_{31}^2}\end{bmatrix}}}{\mathbf{C_{3}^4}}$			1 1
9	$C_{3i\delta}$	$\mathbf{C_{3\delta}}$	$\frac{\boxed{\begin{bmatrix}\mathbf{C^1_3}_1}\end{bmatrix}}{\mathbf{C^1_3}}$		$C_{(2,3)}^{(2,3)}$	$1 \\ 2+1$
10	$D_{3d\alpha}$	$egin{array}{c} \mathbf{D_{3}}_{lpha} \ \mathbf{C_{3}}_{lpha} \end{array}$	$\begin{array}{c c} \hline \mathbf{D_{3d}^5} \\ \hline \mathbf{D_{3}^7} \\ \mathbf{C_{3v}^5} \end{array}$	$\mathbf{D^6_{3d}}$ $\mathbf{C^6_{3v}}$		2 1 2
11	D _{3d}	$egin{array}{c} \mathbf{D_{3}}_{\delta} \ \mathbf{C_{3v\delta}} \end{array}$	$\frac{\left \begin{array}{c} \mathbf{D^3_{3d}} \\ \mathbf{D^2_3} \\ \mathbf{C^1_{3v}} \end{array}\right $	$\mathrm{D^4_{3d}}$ $\mathrm{C^3_{3v}}$	$\mathbf{D}_3^{(4,6)}$	2 2+1 2
12	$\mathbf{D_{3d}}_{oldsymbol{\epsilon}}$	$\begin{array}{c} \mathbf{D_{3}}_{\boldsymbol{\epsilon}} \\ \mathbf{C_{3}}_{\boldsymbol{v}\boldsymbol{\epsilon}} \end{array}$	$\begin{array}{c} \boxed{\mathbf{D^1_{3\mathrm{d}}}} \\ \mathbf{D^1_{3}} \\ \mathbf{C^2_{3\mathrm{v}}} \end{array}$	$\mathbf{D^2_{3d}}$ $\mathbf{C^4_{3v}}$	${ m D}_3^{(3,5)}$	$egin{array}{c} 2 \ 2+1 \ 2 \end{array}$
13	$C_{4h\alpha}$	$egin{array}{c} C_{4lpha} \ S_{4lpha} \end{array}$	$\begin{array}{c c} \hline \mathbf{C^1_{4h}} \\ \hline \mathbf{C^1_4} \\ \mathbf{S^1_4} \\ \end{array}$	C _{4h}	$C_{4h}^{2,4}$ $C_{4}^{3,(2,4)}$	$\begin{array}{c c} 4\\ 3+1\\ 1\end{array}$
14	C4h ß	$egin{array}{c} \mathrm{C}_{m{4}m{eta}} \ \mathrm{S}_{m{4}m{eta}} \end{array}$	$\begin{array}{ c c }\hline C_{4\mathrm{h}}^5 \\ \hline C_{4}^5 \\ S_{4}^2 \\ \end{array}$		$egin{array}{c} \mathbf{C_{4h}^6} \\ \mathbf{C_4^6} \end{array}$	2 2 1
15	$D_{4h\alpha}$	$\mathbf{D_{4\alpha}}$ $\mathbf{C_{4v\alpha}}$	$\begin{array}{ c c }\hline D^1_{4h}\\\hline D^1_4\\ C^1_{4v}\\ D^1_{2d}\\\hline \end{array}$	${ m D}_{4{ m h}}^{2,3,4}$ ${ m C}_{4{ m v}}^{2,5,6}$	$D^{5,6,7,8,9,10,14,13,12}_{4h}, \\ D^{11,15,16}_{4h}, \\ D^{2,5,6,(3,7),(4,8)}_{4,4,7,8}$	16 6+2 8
		$\left. egin{array}{l} D_{2dlpha} \ D_{2d\delta} \end{array} ight\}$	$\begin{array}{c} \mathbf{D^1_{2d}} \\ \mathbf{D^5_{2d}} \end{array}$	$egin{array}{c} { m D^2_{2d}} \\ { m D^{6,7,8}_{2d}} \end{array}$	$\mathbf{D^{3,4}_{2d}}$	4

Nr.	$\gamma_{\rm L} = { m zentro}$	nicht zentro-	$\Gamma_{ ext{K}} = ext{Sym. des K-Raumes}$ $\Gamma_{ ext{P}} = = ext{Sym. des P-Raumes}$			Anzah
	symmetr. a-Klasse			hemisymmorph	asymmorph	
16	$D_{4h\beta}$		$\boxed{\mathbf{D_{4h}^{17}}}$	$\mathbf{D^{18}_{4h}}$	${f D^{19,20}_{4h}}$	4
		$D_{4\beta}$	$\begin{array}{c} D_4^9 \\ C_{4\mathrm{v}}^9 \\ D_{2\mathrm{d}}^9 \\ D_{2\mathrm{d}}^{11} \end{array}$		$\mathbf{D^{10}_4}$	2
		\cup_{4}	$C_{4\mathrm{v}}^9$	C_{4v}^{10}	$C_{4v}^{11,12}$	4
		$D_{2d\beta}$	$\mathbf{D^9_{2d}}$	$\mathbf{D^{10}_{2d}}$		2
		$D_{2a\gamma}$	D_{2d}^{11}		$\mathbf{D^{12}_{2d}}$	2
17	C_{6h}		$C^1_{6\mathtt{h}}$		$\mathbf{C^2_{6h}}$	2
		C_6	C_6^1		$C_6^{6,(4,5),(2,3)}$	4+2
		C_{3h}	C _{3 h}			1
18	D _{6 h}	i.	$\overline{\left \mathbf{D_{6h}^{1}}\right }$	$\mathbf{D^2_{6h}}$	$\mathbf{D^{3,4}_{6h}}$	4
		$\mathbf{D_6}$	$\overline{{ m D}_6^1}$		$\mathbf{D}_{6}^{6,(4,5),(2,3)}$	4+2
		C _{6 v}	$\mathbf{C^{1}_{6 extbf{v}}}$ $\mathbf{D^{3}_{3 extbf{h}}}$	C_{6}^2	$C_{6\ v}^{3,4}$	4
		$D_{3h\delta}$	D_{3h}°	$\begin{array}{c} \mathbf{D^4_{3h}} \\ \mathbf{D^2_{3h}} \end{array}$		2
		$D_{3h\epsilon}$	D _{3 h}	$\mathbf{D^2_{3h}}$		2
19	$T_{\mathtt{h} \pmb{lpha}}$		$\left \mathbf{T_{h}^{l}} \right $	${ m T_h^2}$	${f T_h^6}$	3
		$\mathbf{T}_{\pmb{lpha}}$	$\mathbf{T^1}$		$\mathbf{T^4}$	2
20	$T_{holdsymbol{eta}}$		$\overline{\left \mathbf{T_{h}^{3}} \right }$	T_h^4		2
		${f T}_{m eta}$	$\mathbf{T^2}$			1
21	Thy		$ \mathbf{T_h^5} $		${f T_h^7}$	2
	-7	$\mathbf{T}_{oldsymbol{\gamma}}$	$\mathbf{T^3}$		$\mathbf{T}^{ar{5}}$	2
22	O _{h \alpha}	,	O _h	O_h^2	$O_{\mathbf{h}}^{3,4}$	4
	hα	O_{α}	$\frac{ \mathcal{O}_{\mathbf{h}} }{\mathbf{O^1}}$	O _h	$O_{h}^{2,(6,7)}$	3+1
		$T_{d\alpha}$	$\mathbf{T_d^1}$	$\mathbf{T_{d}^4}$,	2
23	O _h β		O_h^5	O_h^6	O _h ^{7,8}	4
	пр	00	O_3		O^4	2
		$egin{array}{c} \mathrm{O}_{oldsymbol{eta}} \ \mathrm{T}_{\mathrm{d}oldsymbol{eta}} \end{array}$	${f T_d^2}$	$\mathbf{T_{d}^{5}}$	_,	2
24	Ohy		O_h^9		O_h^{10}	2
	",	O_{γ}	O^{5}		O_8	2
		$T_{d\gamma}^{\gamma}$	${f T_d^3}$		$\mathbf{T_d^6}$	2
Cotal						Tota
24						219+

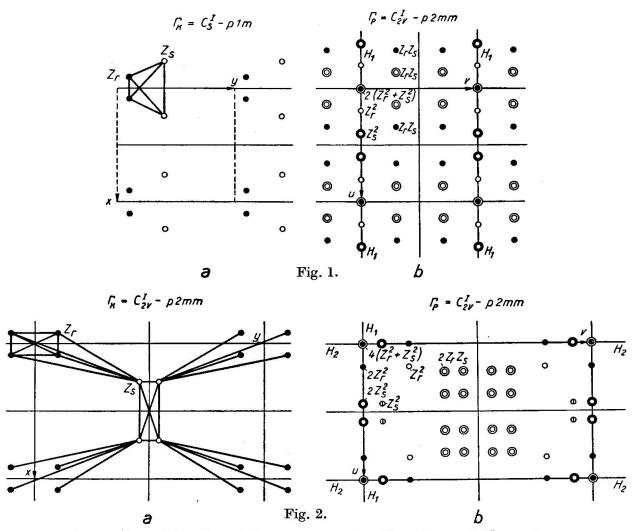


Fig. 1 und 2. Kristall- und Pattersonraum für $C_s^I - p$ 1 m und $C_{2v}^I - p$ 2 mm.

Raumgruppen $\Gamma_{\mathbf{K}}$ sind im dreidimensionalen Fall in den Kolonnen 4—6 angeführt; die umrahmte Raumgruppe \square stellt die Symmetrie $\Gamma_{\mathbf{P}}$ der zu diesen $\Gamma_{\mathbf{K}}$ gehörigen P-Räume dar. Wir erhalten 24 verschiedene Gruppen $\Gamma_{\mathbf{P}}$, die bereits in unserem Buche aufgeführt sind. Buerger, in seiner interessanten Arbeit (1950, b) unterscheidet 23 Gruppen; es rührt dies daher, dass bei ihm die Klassen $D_{3d\delta}$ und $D_{3d\epsilon}$ zusammengenommen werden¹). Nun sind die P-Räume für $\Gamma_{\mathbf{K}} = D_{3d}^3 - C \ \overline{3} \ \mathrm{m} \ 1 \ \mathrm{und} D_{3d}^1 - C \ \overline{3} \ \mathrm{m} \ 1 \ \mathrm{der}$ der Spiegelebenen durch alle Trigyren, bei $D_{3d}^1 - C \ \overline{3} \ \mathrm{m} \ \mathrm{nur} \ \mathrm{durch}$ ein Drittel derselben).

¹) Anm. bei der Korrektur: Inzwischen erschien eine Berichtigung in Acta Cryst. 3 (1950) 243.

 $\Gamma_{\rm P}$ ist im allgemeinen nicht einfach gleich $\Gamma_{\rm K}+{\rm C_i^1}$, sondern gleich der symmorphen Raumgruppe mit demselben Translationsgitter in der Laueklasse, welcher der Kristall angehört; Beispiel: $\Gamma_{\rm K}={\rm D_2^4-P}~2_12_12_1$, $\gamma_{\rm L}={\rm D_{2h\,a}-mmm},~~\Gamma_{\rm K}+{\rm C_i^1}={\rm D_{2h}^{15}-Pb}~{\rm ca}~~{\rm oder}~~{\rm D_{2h}^{16}-Pn}~{\rm ma}$, jedoch $\Gamma_{\rm P}={\rm D_{2h}^1-Pm}~{\rm mm}~{\rm m}$.

Die Kenntnis von $\Gamma_{\mathbf{p}}$ alleine, ohne näheres Studium der Einzelheiten der Pattersonsynthese, erlaubt im allgemeinen keine Bestimmung der Raumgruppe $\Gamma_{\mathbf{K}}$. Es ist nun aber von fundamentaler Bedeutung, dass solch ein detailliertes Studium die Gruppe $\Gamma_{\mathbf{K}}$ (bis auf enantiomorphe Paare) eindeutig zu ermitteln gestattet. Dies sei abschliessend noch an einem ebenen Beispiele (vgl. Buch) gezeigt.

In den zwei Gruppen C_s^I-p 1 m und C_{2v}^I-p 2 mm nehme man je ein Teilchen (r) der Ladung Z_r und ein Teilchen (s) der Ladung Z_s in allgemeiner Lage an und konstruiere die dazu gehörigen Pattersonebenen (Fig. 1 und 2). C_s^I und C_{2v}^I können, da sie zur selben Auslöschungseinheit (Nr. 2 in Tab. 2) gehören, mittels der Auslöschungen nicht unterschieden werden. Die Pattersonebenen sind in Fig. 1b und Fig. 2b dargestellt. Sie unterscheiden sich wesentlich darin, dass bei 1b nur eine Harkergerade H_1H_1 , bei 2b hingegen zwei solche, H_1H_1 und H_2H_2 vorhanden sind. Auch haben die Nicht-Harker-Maxima bei 2b ein doppelt so grosses Gewicht. Trotz gleicher Gesamtsymmetrie $\Gamma_P = C_{2v}^I - p$ 2 mm sind diese beiden Fälle infolge der verschiedenen "inneren Symmetrie" eindeutig unterscheidbar.

Literatur

BUERGER, M. J. (1942). X-ray Crystallography. New York: Wiley.

- (1946). J. appl. Physics 17, 579.
- (1949, a). Proc. Natl. Acad. Sci., Washington 35, 198.
- (1949, b). Amer. Mineral. 34, 771.
- (1950, a). Amer. Mineral. 35, 122.
- (1950, b). Acta Cryst. 3, 87.

Burckhardt, J. J. (1947). Die Bewegungsgruppen der Kristallographie. Basel: Birkhäuser.

FEDOROFF, E. S. (1900). Abh. Bayer. Akad. Wiss. II. Kl. 20, 1.

Lonsdale, K. (1936). Simplified structure factor and electron density formulae for the 230 space groups of mathematical crystallography. London: Bell & Sons. Niggli, P. und Nowacki, W. (1935). Z. Krist. 91, 321.

NOWACKI, W. Fouriersynthese von Kristallen und ihre Anwendung in der Chemie. Patterson, A. L. (1935). Z. Krist. 90, 543.

SCHDANOW, G. (1945). J. exp. theor. Phys. U.S.S.R. 15, 703.

Eingegangen: 12. April 1950.

Abt. für Kristallographie und Strukturlehre, Mineral. Petr. Institut Universität Bern, Schweiz.