**Zeitschrift:** Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

**Band:** 29 (1949)

Heft: 2

**Artikel:** Mineralogische Notizen I

**Autor:** Zsivny, Victor

**DOI:** https://doi.org/10.5169/seals-23694

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Mineralogische Notizen I

Von Victor Zsivny, Budapest

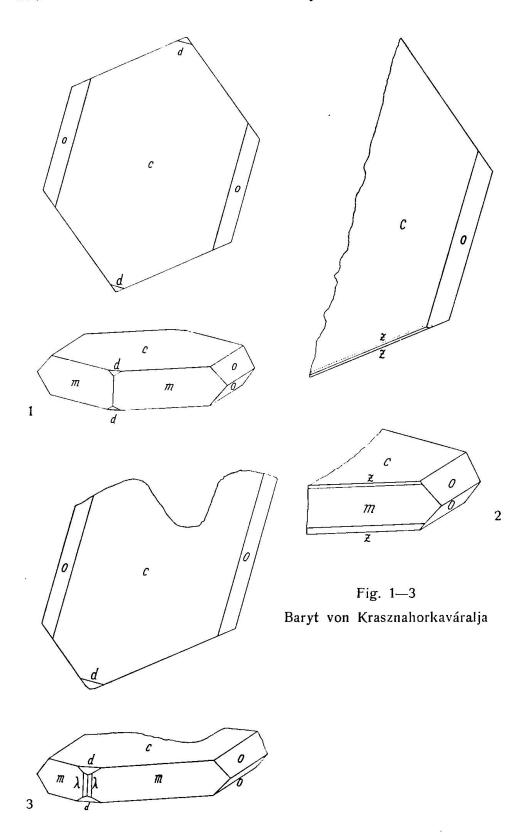
## 1. Baryt von Krasznahorkaváralja

Die im folgenden zu beschreibenden Barytkristalle vom Málhegy [= Mál-Berg] bei Krasznahorkaváralja [= Krásnohorské Podhradie; Tschechoslovakei] in der Nähe von Rozsnyó [= Rožňava] finden sich an Stufen aus limonitischen Erzen, welche Dr. Johannes Erdélyj im Jahre 1940 für die min.-petrogr. Abt. des Magyar Nemzeti Muzeum sammelte 1).

Die wasserklaren, manchmal mit undurchsichtiger weisser Kruste überzogenen, nach der Basis tafeligen Barytkristalle können in der Richtung der a-Achse eine Länge von 12 mm erreichen. An den 5 untersuchten, davon 2 gemessenen Kristallen, konnten die nachfolgenden 6 Formen beobachtet werden:

c {001} m {110} o {011} d {102} z {111} 
$$\lambda$$
 {210}

ausserdem noch eine nicht messbare {hkl} Pyramide. Die beobachteten und berechneten Winkelwerte sind folgende:


|                    |                          | beobachtet | berechnet                     | Differenz      |
|--------------------|--------------------------|------------|-------------------------------|----------------|
| m m <sup>III</sup> | $(110):(1\bar{1}0)$      | 78° 38′    | $78^{\circ} \ 22^{1}/_{2}{'}$ | $+15^{1/2}$    |
| o o III            | $(011):(01\overline{1})$ | 74° 43′    | 74" 34'                       | +9'            |
| $z z^V$            | $(111):(11\bar{1})$      | 51° 18′    | 510 22'                       | <b>4'</b>      |
| mλ                 | (110):(210)              | 16° 59′    | $17^0 \frac{1}{2}'$           | $-1^{1}/_{2}'$ |
| d d <sup>III</sup> | $(102):(10\bar{2})$      | 1020 24'   | 102° 17′                      | +7'            |

Es konnten die folgenden Kombinationen festgestellt werden:

c m o d (Fig. 1) 
$$^2$$
)  
c m  $\lambda$  o d (Fig. 3)  
c m  $\lambda$  o d z

<sup>1)</sup> Über ein älteres Vorkommen kristallisierten Barytes am Málberge (Wolnyn) berichtete A. Schmidt (Wolnyn von Kraszna-Horka-Váralja, Revue des Inhaltes der Természettudományi füzetek [Naturwissenschaftliche Hefte], Budapest, 3, 291—294, [1879].

<sup>&</sup>lt;sup>2</sup>) Der Kristall in Fig. 1 ist ergänzt dargestellt. Die Flächen d,  $\lambda$  und z sind in den Figuren aus zeichnungstechnischen Gründen bedeutend grösser als dem wirklichen Verhältnis entsprechend eingezeichnet.



an einem verstümmelten und nicht ergänzbaren Kristall:

Über die Beschaffenheit der Flächen der einzelnen Formen kann folgendes mitgeteilt werden:

- {001}: manchmal ein wenig gekrümmt (mehrfache, unter allen Formen im allgemeinen die am wenigsten guten Reflexe) und weniger glänzend als die Flächen der übrigen Formen, die alle starken Glanz aufweisen;
- {110}: ausserordentlich fein gerieft, beinahe || mit der Kante m/c und zum Teil \( \preceq\) auf letztgenannte; ein Teil der Riefung reflektiert zugleich mit der Fläche (111); Reflexe ein- oder mehrfach;

das Flächenpaar (011) (01 $\bar{1}$ ) ist mitunter in sehr ungleicher Breite entwickelt;

- {210} und {102} erscheinen mit sehr schmalen bzw. kleinen Flächen und geben, obzwar gewöhnlich mehr oder weniger verschwommene, seltener scharfe, aber immer einfache Reflexe;
- {111}: kann mit mangelhafter Flächenzahl und mit ausserordentlich schmalen Flächen erscheinen; Reflexe einfach und scharf, oder verschwommen bzw. sehr schwach und auseinandergezogen;
- {hkl} erschien mit einer einzigen winzigen Fläche ( $\bar{h}k\bar{l}$ ) (in der Fig. 2 nicht dargestellt) an der Ecke gebildet von (01 $\bar{l}$ ), ( $\bar{l}10$ ) und (00 $\bar{l}$ ).

Begleitmineralien sind Quarz (gemeiner Quarz und Chalcedon), blassrosabarbiger Rhodochrosit<sup>3</sup>), Zinnober, Eisenglimmer und Pyrit.

### 2. Baryt von Kisbánya

Im Juni des Jahres 1942 erhielt ich gelegentlich meiner Sammelreise im Auftrage des Magyar Nemzeti Muzeum vom weiland Oberbergingenieur Julius Adamcsik einige kleine Barytkristallgruppen aus der Herzsagrube bei Kisbánya [= Chiuzbaia; Rumänien]. Nach mündlicher Mitteilung des Obengenannten fand er dieselben als Seltenheit im Mai desselben Jahres, nachdem er das Vorkommen von Baryt in Kisbánya bereits im Jahre 1933 festgestellt hatte, was aber in wissenschaftlichen Kreisen damals nicht bekannt wurde. Im

<sup>&</sup>lt;sup>3</sup>) Über die chemische Zusammensetzung dieses Rhodochrosites siehe V. Zsivny - M. Rapszky: Calcit von Kapnikbánya und Rhodochrosit von Krasznahorkaváralja, Földtani Közlöny (Budapest), 79, 266—269, [1949].

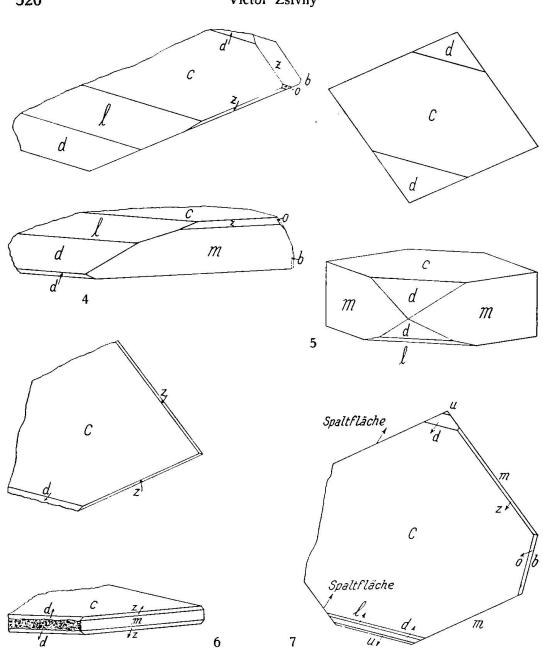



Fig. 4-7. Baryt von Kisbánya

folgenden soll über die Kristalle des Vorkommens von 1942 an Hand der obenerwähnten kleinen Kristallgruppen berichtet werden 4).

Es wurden ein Kristall und 9 Bruchkristalle gemessen, an welchen folgende 11 Formen beobachtet werden konnten:

<sup>4)</sup> Im Dezember des Jahres 1942 hat A. Koch des letztgenannten Vorkommens des Barytes in Kisbánya bereits ganz kurz Erwähnung getan (Pótfüzetek a Természettudományi Közlönyhöz, 74, 168—172 (170), [1942]).

```
c {001} b {010} m {110} u {101} o {011} z {111}
d {102} r {112}
l {104} v {115}
P {116}
```

Zu ihrer Bestimmung dienten folgende Winkelwerte:

|   |     |                     | gefunden                     | berechnet                    | Differenz      |
|---|-----|---------------------|------------------------------|------------------------------|----------------|
| m | m I | $(110):(\bar{1}10)$ | 101° 36′                     | 101° 38'                     | -2'            |
| m | b   | : (010)             | 50° 48′                      | 50° 49′                      | <b>—1</b> ′    |
| u | c   | (101): (001)        | 58° 06′                      | $58^{\circ} \ 10^{1}/_{2}'$  | $-4^{1}/_{2}'$ |
| d | c   | (102):(001)         | 38° 51′                      | 38° 511/2'                   | - 1/2'         |
| d | u   | : (101)             | 19° 25′                      | 19º 19'                      | +6'            |
| 1 | C   | (104):(001)         | 21° 55′                      | $21^{\circ}  56^{1}/_{2}{'}$ | $-1^{1}/_{2}'$ |
| 1 | d   | : (102)             | 16° 58′                      | 16° 55′                      | +3'            |
| o | c   | (011):(001)         | 52° 33′                      | 52° 43′                      | <b>—10</b> ′   |
| 0 | b   | : (010)             | 37° 22′                      | 37° 17′                      | +5'            |
| Z | c   | (111): (001)        | 64° 17′                      | 64° 181/2'                   | $-1^{1}/_{2}'$ |
| Z | m   | : (110)             | 25° 37′                      | $25^{\circ} 41^{1/2}$        | $-4^{1/2}'$    |
| r | m   | (112): (110)        | 43° 22′                      | $43^{0} 53^{1}/_{2}{}'$      | $-31^{1}/_{2}$ |
| V | m   | (115):(110)         | $67^{\circ}\ 13^{1}/_{2}{'}$ | $67^{\circ}\ 25^{1}/_{2}'$   | <b>—12</b> ′   |
| P | c   | (116):(001)         | 19° 11′                      | $19^{0} 6^{1}/_{2}'$         | $+4^{1/2}$     |
| P | m   | : (110)             | $70^{0} \ 49^{1}/_{2}{}'$    | $70^{\circ} 53^{1/2}$        | <b>4'</b>      |

{112} und {115} konnten mit je einer Fläche an demselben einzigen Kristall, je eine Fläche von {116} an diesem und noch zwei anderen Kristallen beobachtet werden. {100} scheint nicht aufzutreten.

Die Dicke der nach der Basis tafeligen Kristalle wechselt von papierdünn bis ca. ½ mm; letztere Dicke wird aber selten erreicht. Soweit es an den Stufen zu beobachten war, sind die Kristalle im allgemeinen nach der b-Achse gestreckt; ihr freistehender Teil erreicht in dieser Richtung kaum 1 cm. Sie sind miteinander hypoparallel derart dicht verwachsen, dass ich bloss einen rundherum ausgebildeten Kristall beobachten konnte. Da die eng aneinander gewachsenen, sehr zerbrechlichen Kristalle bei ihrer Herunternahme noch verstümmelt wurden, konnte unter den 10 gemessenen Kristallen bloss an dem vorgenannten eine ganze Kombination (c m d z) festgestellt werden. Dieser Kristall und die verhältnismässig am wenigsten mangelhaften Bruchkristalle sind in den Figuren 4—7 dargestellt.

Neben der Basis herrscht im allgemeinen {110} vor; es kann jedoch vorkommen, dass letztgenannte Form mit einer Fläche erscheint, die gleich breit oder sogar noch schmäler als die eine oder andere {111}-Fläche ist.

Die Flächen der Pyramiden, Prismen zweiter Art, von {011} und {010} erscheinen im allgemeinen als mehr oder weniger schmale bis linienartige Streifen; {112} und {115} konnte ich ausschliesslich als linienartige Streifen beobachten. {101} und {011} können noch als winziges, mit unbewaffnetem Auge punktförmig erscheinendes Dreieck auftreten. Der ungewöhnlichen Erscheinung von {111} ist bereits Erwähnung getan.

Die streifenartigen Flächen von {010} können mit der a- oder c-Achse parallel verlaufen. Wenn sie breiter sind, kann es vorkommen, dass sie bloss rahmenartig ausgebildet sind; in diesem Falle ist der Teil innerhalb des glänzenden Rahmens uneben (Fig. 8).







Fig. 8

Die Flächen der Pyramiden, Prismen zweiter Art oder von {011} sind oft asymmetrisch, mit mangelhafter Flächenzahl entwickelt.

Während die Basisflächen uneben oder gekrümmt und nur von unvollkommenem Glanze sind, besitzen diejenigen der Prismen, Pyramiden und von {010} Spiegelglanz. Wenn sie aber klein oder linienartig sind, geben sie notwendigerweise sehr schwache, stark auseinandergezogene Reflexbänder.

Die von den durchscheinenden oder durchsichtigen Kristallen gebildeten Gruppen erscheinen mit mehr oder weniger gelblicher Farbe. Sie überwachsen Pyrit- und Quarzkristalle (letztere sind Mittelkristalle von {1011}, {0111} und {1010}), die sie ganz einhüllen können.

## 3. Dolomit vom Lahoczaberge bei Recsk

Über das Vorkommen von Dolomitkristallen in der Erzgrube von Mátrabánya bei Recsk (Komitat Heves, Ungarn) berichtete ich bereits in den Jahren 1922 und 1925 5). Die seitdem von L. von Zombory im chemischen Laboratorium des Magyar Nemzeti Muzeum aus-

<sup>&</sup>lt;sup>5</sup>) Victor Zsivny, Mineralogical notes from Recsk, Annales Mus. Nat. Hung. (Budapest), 19, 150—152 (152), [1922], und Über einige Mineralien des Lahoczaberges bei Recsk (Komitat Heves), Zeitschr. f. Krist., 62, 489—505 (500—501), [1925].

geführte chemische Analyse der Originalkristalle aus Hohlräumen von makrokristallinem Dolomit (wo sie von Schwefel und Whewellit begleitet werden) ergab folgende Zusammensetzung:

 $d_4^{26} = 2,879$ 

also die eines normalen Dolomites, auf welche Wahrscheinlichkeit bereits (Annales Mus. Nat. Hung., loc. cit., 152) hingewiesen wurde<sup>5</sup>).

Die Winkelmessungen wurden im Min.-Petrogr. Institute der Pázmány-Universität zu Budapest ausgeführt. Herrn Professor Dr. BÉLA MAURITZ, dem Vorstand des Institutes, spreche ich auch an dieser Stelle meinen wärmsten Dank aus.

Budapest, Min.-Petrogr. Abt. des Magyar Nemzeti Muzeum und Min.-Petrogr. Institut der Universität; Mai 1949.

Eingegangen: 3. Juni 1949.