Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 29 (1949)

Heft: 1

Artikel: Über ein Vorkommen von Montmorillonit in der ostschweizerischen

Molasse

Autor: Hofmann, F. / Geiger, Th. / Schwarzacher, W.

DOI: https://doi.org/10.5169/seals-23685

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über ein Vorkommen von Montmorillonit in der ostschweizerischen Molasse

Von F. Hofmann, Th. Geiger und W. Schwarzacher (Zürich)

I. Geologische Situation (F. H.)

Die nachstehend beschriebenen Montmorillonittone stehen im Zusammenhang mit einem Vorkommen von vulkanischem Tuff, das am linken Steilhang der Thur, 2,5 km WSW Bischofszell, oberhalb Rengishalde liegt. Die Tuffschicht besitzt eine horizontale Erstreckung von 400 m längs des Thurhanges, bei einer maximalen Mächtigkeit von bis zu 3 m. Im Norden und Süden begrenzen sie die Seiten von Nagelfluhstromrinnen, zwischen denen die Tuffe zur Ablagerung gelangten.

Geologisch liegen die Tuffe von Bischofszell an der Basis der Öhningerschichten, in flachliegenden Nagelfluh-Mergelkomplexen der obern fluvioterrestrischen Molasse (Tortonien bis Sarmatien). Die stratigraphische Lage entspricht den vulkanischen Erscheinungen des Hegau.

In seiner petrographischen Ausbildung weicht dieses Tuffvorkommen sehr stark von jenen des Hegau ab. Es handelt sich um feine, teils bimssteinartige, reine Gesteine, teils um solche, die mit Molassematerial durch leichte Verschwemmung vermischt sind. Die Tuffe enthalten keinerlei Auswürflinge tieferer Schichten, ebensowenig Lapilli. Es handelt sich um Produkte feiner Aschenregen.

Die Tuffschicht wird stellenweise unterlagert von einer wenig mächtigen Lage reinen Montmorillonits als Zersetzungsprodukt glasiger Asche. Diese Montmorillonitschicht entspricht einer ersten Eruptionsphase, deren Glasaschenablagerung unter dem Einfluss des subtropischen Klimas terrestrisch verwitterte, und die dann von einer zweiten Eruption mit einer mächtigeren Tuffschicht eingedeckt wurde. Die Tuffe selbst bestehen aus einer Hauptmasse feiner vulkanischer Glassplitter, zwischen die sich montmorillonitisches Zersetzungsprodukt lagert. Die Zersetzung erreichte hier nur einen geringen Grad, was daher rührt, dass das ganze Lager nachher rasch von Molasse einsedimentiert wurde.

Der Montmorillonit wurde durch verdankenswerte röntgenographische Untersuchungen von Herrn Prof. Dr. E. Brandenberger (Zürich) als solcher erkannt. Die nachstehend beschriebenen mineralogisch-petrographischen Untersuchungen wurden sowohl an den reinen Montmorillonittonen, wie auch an den Glasaschentuffen durchgeführt, die erst eine teilweise Zersetzung aufweisen.

Das Auftreten und die Bedeutung dieses Tuff-Montmorillonitvorkommens im Zusammenhang mit der Sedimentation des Miocäns des Bodenseegebietes, sowie weitere petrographische Untersuchungen (Körner- und Schweremineralbestimmungen) werden in der demnächst erscheinenden Dissertation des ersten Autors (F. H.) (Lit. 1) eingehend dargestellt.

II. Mineralogische Kennzeichnung (Th. G. und W. S.)

a) Kornverteilung

Das Ergebnis der Schlämmanalyse des Tones (Fig. 1) zeigt einen unerwartet grossen Anteil der gröbern Fraktionen, die eigentliche Tonfraktion (<0,002 mm) macht nur 18 % aus. Die gröbern Fraktionen wurden im Kopezkyapparat nur qualitativ getrennt. Sowohl die röntgenographische, wie auch die mikroskopische Untersuchung dieser Fraktionen zeigt, dass es sich auch hier wie in der Tonfraktion, vorwiegend um nicht dispergierbare Aggregate von Montmorillonit handelt.

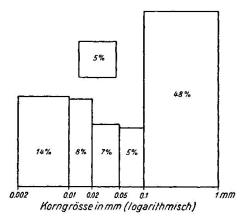


Fig. 1. Korngrössenverteilung des Montmorillonites in flächentreuer Darstellung

b) Röntgen ographische und mikroskopische Kennzeichnung

Sowohl in den feinen, als auch in den gröbern Fraktionen des reinen Tones ist mikroskopisch im wesentlichen nur Montmorillonit feststellbar. Die Lichtbrechung des Montmorillonits wurde zu 1,510 bestimmt. Neben Montmorillonit lassen sich in sehr geringen Mengen noch Quarz, Kalzit, Biotit, Feldspat und Chlorit nachweisen. Röntgenaufnahmen nach der Pulvermethode ergeben sowohl beim reinen Ton, als auch beim Tuff ausschliesslich Montmorillonit-Interferenzen; im Diagramm des Tuffes ist das Interferenzsystem des Montmorillonits als Ganzes allerdings wesentlich schwächer, was auf die Anwesenheit von Glas neben Montmorillonit zurückzuführen ist, wie sich dies bei mikroskopischer Untersuchung dann auch bestätigt.

c) Entwässerung

Die Tonfraktion wurde vorerst bis zur Sättigung mit Wasserstoff dyalisiert. Dieser H-Ton zeigt im Pulverdiagramm die reinen Linien von Montmorillonit. An einem Teil des H-Tones wurde eine Entwässerungskurve aufgenommen (Fig. 2), welche in der Tat den für Montmorillonit charakteristischen Verlauf zeigt.

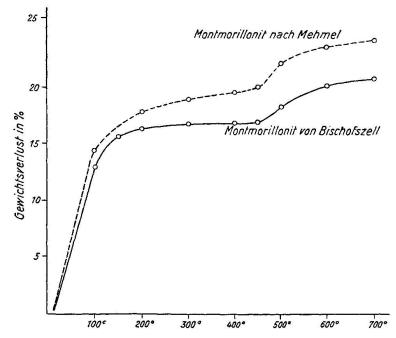


Fig. 2. Thermische Entwässerungskurven von Montmorillonit

d) Quellung

Ein anderer Teil des H-Tones wurde mit Na und Ca gesättigt; bis der Austausch vollzogen war, wurde unter Kontrolle des pH NaOH bzw. Ca(OH)₂ zugegeben. Darauf wurde der Na-Montmorillonit chlorfrei gewaschen und im Enslingerät die Wasseraufnahmefähigkeit untersucht. In Fig. 3 ist der zeitliche Verlauf der Wasseraufnahme dargestellt. Da es sich zeigt, dass der Verlauf dieser Kurve in diesem Bereich einem logarithmischen Gesetz gehorcht, wurde die Wasseraufnahme in Fig. 4 mit logarithmischem Zeitmasstab aufgetragen; dies bietet den Vorteil, dass die Kurven zu Geraden werden. Gleichzeitig zeigt sich, dass dem Knickpunkt, der bei den meisten Enslinkurven nach 5-20 Minuten auftritt, keine physikalische Bedeutung zuzukommen braucht, das heisst die Deutung, dass es sich im steilen Teil der Kurve nur um Porenwasser, im zweiten, langsam ansteigenden Teil der Kurve, um das Wasser, das für die Quellung verbraucht wird, handelt, ist mit Vorsicht zu gebrauchen. Der Vorgang der Wasseraufnahme müsste noch besser untersucht werden. Die dargestellten Kurven lassen erkennen, dass die Wasseraufnahmefähigkeit des Na-Tones grösser ist als die des H-Tones. Dass die Wasseraufnahmefähigkeit nach dem Erhitzen über 4500 bedeutend zurückgeht, bringt die Kurve des bei 8000 geglühten Tones zum Ausdruck.

Die durch Wasseraufnahme hervorgerufene Gitterquellung des Montmorillonites ist im Röntgendiagramm deutlich sichtbar. Der

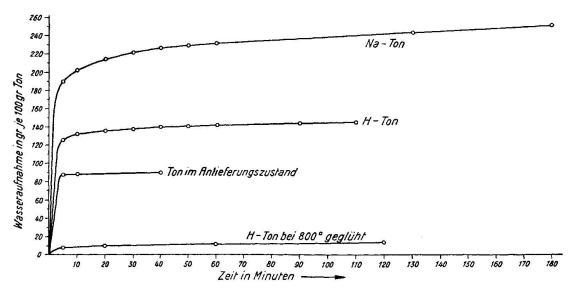


Fig. 3. Wasseraufnahmefähigkeit des Montmorillonites (gewöhnlicher Zeitmasstab)

Netzebenenabstand von (001) beträgt bei der mit Wasser gesättigten Probe 19,5 Å. Im lufttrockenen Zustand misst dieser Abstand nur noch 15,8 Å und nach Erhitzen auf 400 bloss 12,5 Å. Diese eindimensionale Schrumpfung des Montmorillonitgitters ist bis gegen 450 reversibel, wie dies auch Enslinversuche belegen.

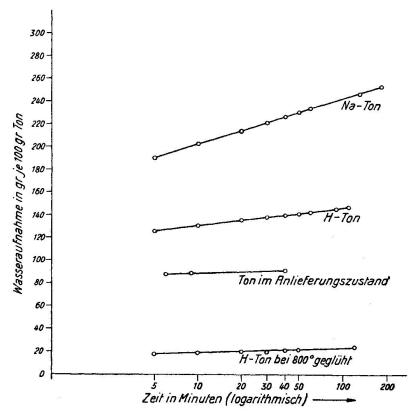


Fig. 4. Wasseraufnahmefähigkeit des Montmorillonites (logarithmischer Zeitmasstab)

e) Verhalten von Montmorillonit-Ton und -Tuff beim Glühen auf 800-11000

Zwei Proben reiner Ton und typischer Tuff wurden im elektrischen Ofen bei den Temperaturen 400°, 600°, 800°, 950° und 1100° je 6 Stunden geglüht und die Gewichtsverluste bestimmt.

	Ton (reiner Montmorillonit)	Tuff (Montmorillonit + Glas)
	Glühverlust in Gew.%	Glühverlust in Gew.0/0
400°	21,7 %	12,3 %
600°	24,1	14,4
800°	25,7	14,9
950°	25,8	15,0 deutlich gesintert
1100°	25,8 schwach gesintert	15,0 stark gesintert

Aus dem Verhältnis der H₂O-Gehalte des reinen Tones (25,8 %) und des Tuffes (15,0 %) kann für den letzteren der Montmorillonit-Anteil zu etwa 58 % berechnet werden, d. h. der untersuchte Tuff enthält etwas mehr Montmorillonit als Glas.

Röntgenographische Kennzeichnung der Glühprodukte

Auf Grund von Pulveraufnahmen mit Cu--K-Strahlung ergibt sich folgende mineralogische Zusammensetzung der Glühprodukte.

- 800 ° Ton und Tuff: Keine Interferenzlinien. Im wesentlichen herrscht somit eine amorphe Phase vor.
- 950 ° Ton: Von unbehandeltem Montmorillonit vollkommen verschiedenes Röntgendiagramm. Die Interferenzen liessen sich jedoch keiner bekannten Kristallart zuordnen oder als Gemisch aus verschiedenen bekannten Kristallarten deuten.

 Tuff: Diagramm mit wenigen und nicht sehr intensiven Interferenzen, die sich als die stärksten Linien von Cristobalit erweisen. Daneben noch einzelne Zusatzlinien, die z. T. den stärksten, nicht deutbaren Interferenzen des Diagramms an
- 1100 ° Ton: Relativ scharfes Diagramm, das im wesentlichen aus einer Überlagerung der Interferenzsysteme von Spinell (mit $a_{\rm w}=8,1$ Å) und Cristobalit besteht.

bei 9500 geglühtem Ton entsprechen.

Tuff: Schärferes Diagramm als bei 9500, mit den Linien von Cristobalit und den stärksten Interferenzen von Spinell.

Interpretation des röntgenographischen Befundes

Durch Erhitzen auf 800 ° wird das Kristallgitter des Montmorillonits unter Bildung einer amorphen Phase praktisch vollständig zerstört. Diese Feststellung steht nicht in voller Übereinstimmung mit Angaben von U. Hofmann, K. Endell und D. Wilm (Lit. 2), wonach das Montmorillonitgitter auch nach dem Glühen bei 800 ° erhalten bleiben und erst bei höhern Temperaturen der Zerfall eintreten soll. Nach dem Glühen bei 950 ° kann beim reinen Ton die Bildung einer neuen Kristallart festgestellt werden, deren röntgenographische Bestimmung jedoch noch nicht gelungen ist. Bei noch höheren Temperaturen (1100 °) verschwindet diese Kristallart wieder und es entsteht ein Gemisch von Spinell und Cristobalit. Offenbar ist im Montmorillonit-Ton noch etwas MgO vorhanden, das dann mit Al₂O₃ Spinell bildet, während SiO₂ in Cristobalit übergeht.

Der Tuff unterscheidet sich von dem reinen Ton dadurch, dass schon bei 950° Cristobalit auftritt. Bei 1100° herrscht immer noch Cristobalit vor, daneben erscheint nun aber auch Spinell, allerdings in etwas geringerer Menge als beim reinen Ton.

Unsere Beobachtungen über den thermischen Zerfall von Montmorillonit stehen in Übereinstimmung mit Untersuchungen von R. E. Grim und W. F. Bradley (Lit. 3), die ebenfalls im wesentlichen eine Umwandlung des Montmorillonites beim Glühen in Spinell und Cristobalit festgestellt haben. Erst bei noch höhern Temperaturen als 1100 haben diese Autoren eine Bildung von Mullit nachgewiesen. Für unsern Fall ist wesentlich, dass sich der reine Ton und der Montmorillonit haltige Tuff beim Glühen nicht grundlegend verschieden verhalten. Das deutlich stärkere Hervortreten von Cristobalit im geglühten Tuff zeigt, dass der Glasanteil des Tuffes vorwiegend aus SiO₂ bestehen dürfte.

Literatur

- 1. Hofmann, F.: Beitrag zur Stratigraphie und Tektonik des st. gallisch-thurgauischen, fluvioterrestrischen Miocäns zwischen Wil und dem Bodensee und zur Bodenseegeologie. Diss. Univ. Zürich (im Druck).
- 2. Hofmann, U., Endell K. und Wilm D.: Kristallstruktur und Quellung von Montmorillonit. Z. Krist. 86 (1933) 340.
- 3. Grim R. E. and Bradley W. F.: Investigation of the effect of heat on the clay minerals Illite and Montmorillonite. Journ. Amer. Ceramic Soc. 23 (1940) 242.

Eingegangen: 14. Dez. 1948.