Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 29 (1949)

Heft: 1

Artikel: Mitteilung über einige in den letzten Jahren durchgeführte

Untersuchungen auf dem Gebiete der Funkgeologie

Autor: Fritsch, Volker

DOI: https://doi.org/10.5169/seals-23684

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mitteilung über einige in den letzten Jahren durchgeführte Untersuchungen auf dem Gebiete der Funkgeologie

Von Volker Fritsch (Wien)

Die Methoden der Funkgeologie entstammen zum Teil der all-gemeinen Geoelektrik, zum Teil der Radiomesstechnik. Es ist dies aus der historischen Entwicklung verständlich. Schon in den ersten Tagen der Radiotechnik wurde der bedeutende Einfluss des Untergrundes auf die Ausbreitung des hochfrequenten Hertzschen Feldes erkannt. Daher wurden schon vor dem ersten Weltkrieg umfangreiche funkgeologische Untersuchungen durchgeführt, die sehr beachtenswerte Ergebnisse zeigten. Später jedoch entwickelte sich die Radiotechnik vorwiegend in der Richtung der hohen Frequenzen. Die Ausbreitung dieser hohen Frequenzen wird aber vor allem durch die Beschaffenheit der Ionosphäre beeinflusst, und wurde daher Funkgeologie durch die Ionosphärenforschung abgelöst. Inzwischen interessierte sich neben dem Radiotechniker auch der Geophysiker für diese Verfahren. Während nun der Radiotechniker von Anbeginn für diese Untersuchungen eine eigene Messtechnik entwickelte, versuchte man in der Geophysik die für Gleichstrom und Niederfrequenz geschaffenen Verfahren für Hochfrequenz einzurichten. Hochfrequenzverfahren sind besonders dort nötig, wo zur Unterscheidung schlechter geologischer Leiter die Bestimmung der Dielektrizitätskonstante nötig wird. Auch gewisse Grossraum-probleme scheinen sich für die funkgeologische Behandlung besonders zu eignen.

1. Allgemeines

In den vergangenen Kriegsjahren wurde in Europa und in Amerika auf diesem Gebiet eifrig gearbeitet. Trotzdem militärische Gesichtspunkte die Arbeit bestimmten, so konnte doch auch manches rein wissenschaftlich interessante Problem einer Lösung näher ge-

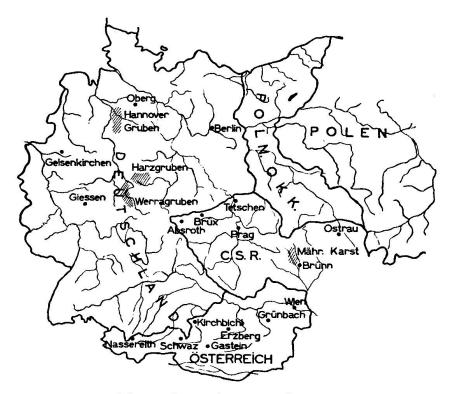


Fig. 1. Karte der Versuchsorte

bracht werden. Da während des Krieges manches nicht veröffentlicht werden durfte, so glaube ich, dass die folgende kurze Übersicht über die von mir geleiteten Untersuchungen vielleicht gerechtfertigt ist.

Fig. 1 zeigt die Lage der Versuchsorte. Es handelt sich meistens um Gruben, und zwar um Erzgruben (z. B. Schwaz, Nassereith), um Kohlengruben (z. B. Mährisch-Ostrau, Gelsenkirchen), um Kaligruben (z. B. Hannover, Werra und Harz) und schliesslich um Versuchsgelände für Oberflächenmessungen (z. B. Absroth). Der Vollständigkeit halber sind in dieser Karte auch die Messungen eingetragen, die ich nach Kriegsende in Österreich durchgeführt habe.

Fig. 2 zeigt eine Übersicht über die Gebiete der Geoelektrik. In dieser erscheinen auch die niederfrequenten Messungen.

Die Geoelektrik behandelt nicht nur rein geophysikalische Arbeiten, sondern sie reicht auch in das Gebiet der Elektrotechnik und der Radiotechnik hinein. Das in Fig. 2 dargestellte Arbeitsgebiet ist auch das meiner an der Wiener Technischen Hochschule neu gegründeten Dozentur. Diese betreut nicht nur den Vorlesungs- und Übungsbetrieb, sondern bearbeitet zentral und in enger Zusammenarbeit mit allen anderen staatlichen Stellen den überwiegenden Teil aller in Österreich notwendigen geoelektrischen Untersuchungen.

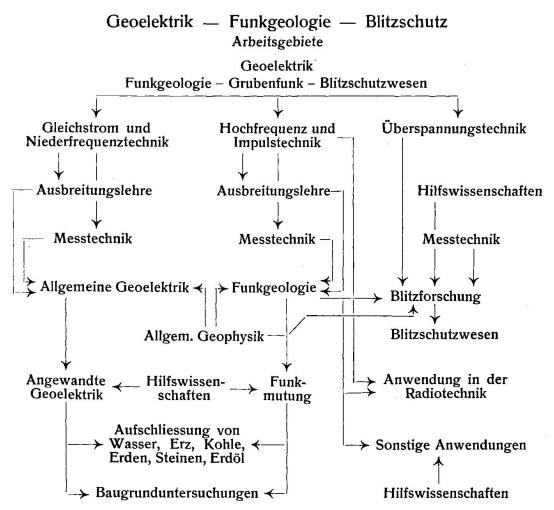


Fig. 2. Übersicht über das Arbeitsgebiet

2. Untersuchungen an geologischen Leitern

Der geologische Leiter ist physikalisch ein komplexer Widerstand. Während nun bei Gleichstrom- und Niederfrequenzmessungen nur die Ohmsche Komponente zu berücksichtigen ist, müssen bei Hochfrequenzuntersuchungen auch Selbstinduktion und besonders die Kapazität beachtet werden. Vor allem interessiert daher der Ohmsche Widerstand und die Dielektrizitätskonstante. Nun sind diese beiden besonders vom Porenvolumen, vom Gehalt an wässriger Lösung und von der elektrischen Beschaffenheit der Porenlösung abhängig. Die feste Phase spielt demgegenüber meist eine verhältnismässig geringe Rolle. Da wir in der Funkgeologie sehr oft (z. B. bei Ausbreitungsmessungen) ausgesprochen grossflächige Probleme zu behandeln haben, so müssen wir auch die Untersuchungen danach ausrichten. Es wurden daher in bestimmten Gebieten z. B. die Änderung der

Wasserleitfähigkeit über grössere Strecken in Abhängigkeit von der Jahreszeit untersucht. Da zwischen der Wasserleitfähigkeit und der Wasserhärte ein bestimmter Zusammenhang besteht, so bieten solche Untersuchungen auch in hydrographischer und geologischer Hinsicht wichtige Anhaltspunkte. Die von mir untersuchten Gebiete sind der

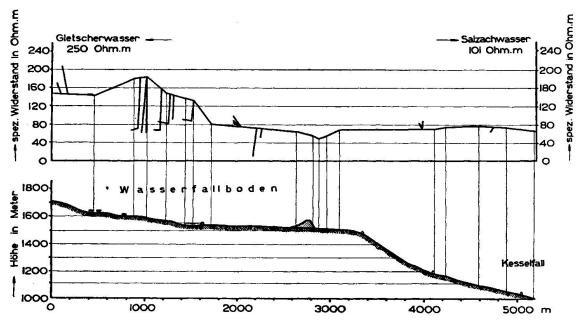


Fig. 3. Elektrohydrographische Untersuchungen Kaprun

Raum von Kaprun, in dem zur Zeit eine der grössten europäischen Talsperren gebaut wird, und das Einzugsgebiet der Gasteiner Thermalquellen.

In Fig. 3 ist die Änderung der Wasserleitfähigkeit im Gebiet von Kaprun dargestellt. Man sieht, wie das Gletscherwasser, dessen Leitfähigkeit stets sehr gering ist, in der Kalkzone (Hilfsstaudamm, Baugrube) an Leitfähigkeit gewinnt. Diese Untersuchungen sind für den Baugrundtechniker interessant. Wenn z. B. die Sperre im klüftigen Kalkgebirge liegt, das Wasser dagegen aus kalkarmen Zonen kommt, so wird sich in den Klüften des Sperrengebietes das Wasser anreichern und daher die vorhandenen Klüfte auslaugen. In einem solchen Falle erscheint die künstliche Anreicherung der Gletscherbäche, bevor sie noch in das Staubecken eintreten, am Platze. Auch in dieser Richtung wurden umfangreiche Messungen durchgeführt. Ein weiteres Diagramm zeigt Fig. 4. Es ist deshalb interessant, weil es über die elektrischen Verhältnisse verschiedenster Quellen und Oberflächenwässer Auskunft gibt. Die Messungen fanden zum Teil im freien Gelände statt (Anlaufbach und Gasteiner

Ache), teilweise in Stollen (Paselstolln) und Tunnelstrecken (Tauerntunnel). Bemerkenswert sind die Untersuchungen im Paselstolln, wo es sich, nach den hohen Temperaturen zu schliessen, um juvenile Wässer handelt.

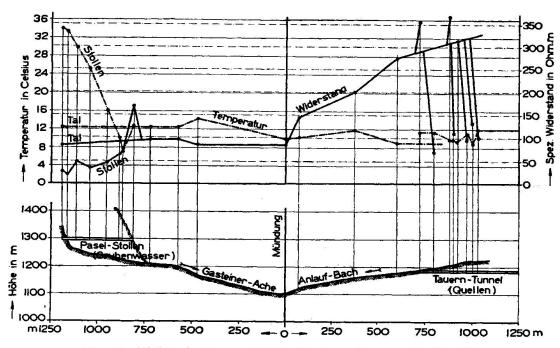


Fig. 4. Elektrohydrographische Untersuchungen in Gastein

Tabelle 1a

Lösung	Messort	Widerstand in Ohm. m
Kaltes Bachwasser	Gastein	187
Kalte Quellen	,,	184
Quellen im Tunnel	Tauerntunnel	132
Stollenwasser kalt	Böckstein (Salzburg)	56
Stollenwasser heiss	"	32
Thermalquelle	Gastein	20
Flusswasser	Wien	10
Quelle im Stadtgebiet	Wien	16
Wasserleitungswasser	Wien	47
Auszug aus Lehm	Wien	16
Auszug aus Schwimmsand	Brüx	21
Auszug aus Schiefer	Schwaz	35
Auszug aus Kalk	Nassereith	44
Auszug aus Kalk	Kaprun	55
Auszug aus Glimmerschiefer	Kaprun	65
Auszug aus Dolomit	Schwaz	63
Auszug aus Gneis	Gastein	80
Auszug aus Braunkohle	Brüx	23

In Tabelle 1a sind zunächst einige Widerstandswerte für verschiedene Wasserproben zusammengestellt.

Der auffallend geringe Widerstand des Wiener Flusswassers ist selbstverständlich auf starke Verunreinigungen zurückzuführen, denen jeder Wasserlauf im Stadtgebiet ausgesetzt ist. In gleicher Weise dürfte auch der Widerstand einer Quelle mitten im Stadtgebiet zu erklären sein.

In der Tabelle 1b sind Widerstände verschiedener geologischer Leiter zusammengestellt. Von den hunderten Untersuchungen, die in den letzten Jahren durchgeführt wurden, habe ich nur einige charak-

Tabelle 1b

Geologischer Leiter	Beschaffenheit	Fundort	ϱ in Ohm. m
Humus	naturfeucht	verschieden	10-50 *)
Sumpf	6080 % Wassergehalt	Brüx	\sim 20
Lehm	bergfeucht	Schwaz (Tirol)	820
Schotter	20 º/o Porosität	verschieden	1500 **)
Sandschichten	5 % Wassergehalt 20-30 % 40 %	Brüx "	~ 500 ~ 30
Schwimmsand	$20-40^{\circ}/_{\circ}$	**	2030
Schiefer	trocken bergfeucht	Kotterbach	10 000 ***) 3000 ***)
Schiefer (rein)	trocken bergfeucht	Schwaz (Tirol)	1,000 000 ***) 10 000 ***)
Schiefer mit Letten durchsetzt	bergfeucht	Schwaz (Tirol)	10—100
Buntsandstein	2 º/ ₀ Porosität 5 º/ ₀ 10 º/ ₀	Schwaz (Tirol) "" ""	750 300 150
Dolomit	bergfeucht, wenig gestört	Schwaz (Tirol)	10 000
Basalttuff Tephrit Kalk Quarzgemenge	trocken trocken bergfeucht bergfeucht	Tetschen " Brünn verschieden	10 ⁷ 10 000 10 000 10 ⁸

^{*)} bei langdauernder Dürre auch bis zu 200 Ohm. m und mehr.

^{**)} sehr stark von der Leitfähigkeit des im Schotter enthaltenen Wassers abhängig.

^{***)} abhängig von der Schieferungsrichtung.

teristische ausgewählt. Bei Schiefer ist auch der Einfluss der Schieferungsrichtung wichtig. Parallel zu dieser Richtung ist der Widerstand viel kleiner als senkrecht dazu. Die angeführten Werte sind durchwegs Mittel über grössere Volumen.

In der Tabelle 2 sind schliesslich noch einige Dielektrizitätskonstanten zusammengestellt. Die Dielektrizitätskonstante gewisser geologischer Leiter (z. B. Lehm, Ton, Tegel etc.) ist allerdings meist sehr schwer zu ermitteln, und es sind daher auch in der Tabelle gewisse Schwankungen berücksichtigt.

Tabelle 2. DK-Werte trockener geologischer Leiter

Geologischer	Werte bei	Geologischer	Werte bei
Leiter	Gleichspannung	Leiter	Gleichspannung
	DK		DK
Granit	79	Grauwacke	9 10
Syenit	1914	Kalk	21 38
Basalt	12	Blaue Tonerde	$29 \dots 75$
Trachyt	89	Tonerde und Sand	42 48
Gneis	89	Lehm	$25 \dots 54$
Phyllit	13	Lehm und Tonerde	21
Quarzitschiefer	9	Steinsalz	5,6
Muschelkalk	12		

Die meisten Widerstandswerte der in der Natur vorkommenden geologischen Leiter schwanken nicht unbeträchtlich mit der Witterung und der Jahreszeit. Genaue Untersuchungen dieser Art wurden im Versuchsfeld Absroth ausgeführt, über deren Ergebnis noch an anderer Stelle berichtet wird. Hier möchte ich nur einige Werte über die Schwankungen des Leitvermögens verschiedener Oberflächenund Grubenwässer mitteilen (vgl. Tabelle 3).

Besonders auffallend sind die abnormalen Augustwerte. Sie sind aber verständlich, wenn man berücksichtigt, dass im Jahre 1947, in dem diese Werte ermittelt wurden, die Niederschlagsmenge im August nur 10—20 % des langjährigen Mittels betrug. Die Widerstandsschwankungen der Stollenwässer sind oft durch Verunreinigungen bedingt. Sehr deutlich ist in diesem Diagramm der Leitfähigkeitsunterschied der Gewässer, die aus kalkarmem und kalkreichem Gebirge kommen. Während der Untersuchungszeit hat sich der Gletscher zurückgezogen. Dadurch wurde offenbar die Gletscherzunge in eine Zone zurückgerückt, die noch verhältnismässig wenig erodiert ist. In dieser war daher die Anreicherung des Gletscherwassers geringer als in jener, die unter dem alten Gletschertor lag. Auch

Tabelle 3

	(Mittelwerte aus zahlreichen Einzelwerten)						
Art der Gewässer	Leitvermögen in Siemens cm ⁻¹ ·10 ⁻⁵						
	Sept. 1946	Juni 1947	Juli 1947	August 1947	Okt. 1947	Nov. 1947	
Gletschertorwasser Gletscherbäche	4,0 4,6	3,6 6,0	6,0 7,7	1,7 2,6	3,5 4,7	6,0 8,2	
Wasser aus kalkarmem Gebirge Wasser aus kalkreichem Gebirge	5,4 13,3	3,2 9,6	5,3 15,1	2,5 8,0	4,1 8,4	7,4 14,0	
Wasser der Ache	6,4		8,0	2,7	5,0	8,6	
Wasser aus einem Stausee	13,6	16,2	18,1	7,3	9,3	14,6	
Stollenwasser	18,4	70,8		35,7	50,3	108,6	
Wasser der Ache vor der Ein- mündung in den Fluss		7,9	10,0	3,5	8,7	19,2	
Flusswasser	9,9	9,6	8,2	4,5	7,1	10,3	

diese Untersuchungen, die bei der Anlage von Talsperren wichtig sind, wurden in grösserem Masstab im Jahre 1948 fortgesetzt. In Tabelle 4 schliesslich sehen wir noch die Änderung des Lösungswiderstandes einer Kalklösung.

Tabelle 4

Widerstand zu Beginn des Lösungsvorganges	Widerstand der Kalklösung in Ohm. m nach				
Ohm. m	1	3	5	8	13 Tagen
121	108	91	80	70	63
137	115	97	82	66	62
150	119	98	82	88	61
178	131	103	84	70	62
Durchschnitt	112	97	82	68	62

Dem reinen Gletscherwasser wurde pulverisierte Kalklösung zugesetzt und der Widerstand nach Ablauf verschiedener Zeiten bestimmt. Man sieht, dass dieser rasch fällt und sich nach ungefähr zwei Wochen dem Grenzwerte nähert, der ungefähr halb so gross ist als jener des reinen Wassers.

Durch solche Untersuchungen kann man heute brauchbare Mittelwerte für grössere Flächen angeben. Selbstverständlich ist der

Ohmsche Widerstand bei Hochfrequenz von jenem, der bei Niederfrequenz gilt, meist verschieden. Die Verhältnisse sind sogar recht kompliziert. Im Bereiche der Wellen über 100 Meter kann indessen der Gleichstromwiderstand zumindest als relativer Vergleichswert herangezogen werden. Im Bereiche der kurzen Wellen unter 40 m Wellenlänge dagegen gibt es jedoch Anomalien, die noch durch besondere Versuche zu klären sind.

3. Ausbreitung hochfrequenter Hertzscher Felder in geologischen Leitern

Die Feldstärken \mathfrak{C}_0 und \mathfrak{C} an den Endpunkten eines Weges s, der in einem Raum verläuft, der von geologischen Leitern erfüllt ist, verhalten sich zueinander wie folgt:

$$\mathfrak{E} = \mathfrak{E}_0 e^{-\gamma s}$$

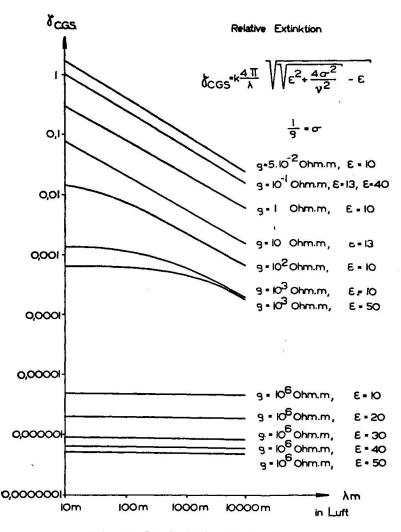


Fig. 5. Verlauf der Extinktion

Es bedeutet in dieser Gleichung γ die sogenannte Extinktion, die die Leitfähigkeit σ und die Dielektrizitätskonstante ε der geologischen Leiter, sowie die Frequenz ν in folgender Weise bestimmen:

$$\gamma = K \frac{4\pi}{\lambda} \sqrt{\sqrt{\epsilon^2 + \frac{4\sigma^2}{\nu^2} - \epsilon}}$$

In Fig. 5 ist zunächst die Extinktion als Funktion der Luftwellenlänge λ dargestellt. Man sieht, dass bei geringer Leitfähigkeit (z. B. trockenes Feld etc.) die Extinktion bei Änderung der Wellenlänge ziemlich konstant ist. In diesem Gebiete ist die Extinktion vorwiegend durch die Dielektrizitätskonstante bestimmt. Bei hoher Leitfähigkeit (z. B. gebräche Schiefer, Lehmschichten, Humus etc.) ist aber die Abhängigkeit von der Frequenz bedeutend. Allerdings haben experimentelle Untersuchungen im Wellenbereich unter 100 Meter Anomalien gezeigt, die bisher noch nicht geklärt sind.

Die Ausbreitung eines Feldes im Gebirge ist aber nicht nur durch die Extinktion bestimmt, sondern auch durch die Führung entlang gutleitender Klüfte, Verwerfer etc. Diese ist besonders im geologisch gestörten Gebiet kompliziert. Die experimentelle Behandlung

Tabelle 5. Verzeichnis der Versuchsgruben

Nr.		Land	Gestein	Welle
1	Tunnel bei Brünn	Mähren	Brünner Eruptiv	k, m, l
2	Mährischer Karst	Mähren	Devonkalk	k, m
3	Kotterbach	Slowakei	Erz — Schiefer	k, m, 1
4	Porač	Slowakei	Kalk	k, m
5	Erzberg	Steiermark	Eisenerz	m, I
6	Kirchbichl	Tirol	Kohle	m, 1
7	Schwaz	Tirol	Erz — Dolomit	k, m, 1
8	Nassereith	Tirol	Erz — Kalk	k, m, l
9	Brüx	Böhmen.	Braunkohle	m, 1
10	Ostrau	Mähren	Steinhohle	m, l
11	Gelsenkirchen	Westfalen	Steinkohle	k, m, l
12	Godenau	Hannover	Kali	k, m, 1
13	Freden	Hannover	Kali	m, 1
14	Hildesia	Hannover	Kali	k, 1
15	Wolkramshausen	Südharz	Kali	k, m, 1
16	Berka	Thüringen	Kali	k, m, l
17	Abterode	Thüringen	Kali	k, m, 1
18	Heiligenrode	Thüringen	Kali	ķ, m, l
19	Wintershall	Thüringen	Kali	k, 1
20	Herfa	Thüringen	Kali	1
21	Grünbach	NÖsterreich	Steinkohle	k, l
22	Gastein	Salzburg	Gneis und Granit	k, m, I

dieses schwierigen Problems verdient meist den Vorzug gegenüber der rein mathematischen. Sind die Voraussetzungen klar, so stimmen experimentelle und berechnete Resultate gut überein. Der Verfasser hat viele solche Untersuchungen in den letzten Jahren durchgeführt. In der Tabelle 5 sind die Versuchsorte mitgeteilt.

In der Spalte "Welle" ist angegeben, ob mit Kurz- (k), Mittel) (m), Langwellen (l) gearbeitet wurde. Durch die Ermittlung der Extinktion in Abhängigkeit von der Leitfähigkeit σ' und der Dielektrizitätskonstante ε der im Raum vorhandenen geologischen Leiter kann man für eine bestimmte Betriebswellenlänge λ die Reichweite s' berechnen. In der Tabelle 6 ist die Reichweite für das Verhältnis $J_S/J_E = \sim 10^3$ ¹) angegeben, wobei J_S der Strom im Strombauch der Sendeantenne und J_E der Strom in der Empfangsantenne ist.

Tabelle 6
Eigenschaften geologischer Leiter und berechnete Reichweiten

Geologischer Leiter	σ	8	3	λ	s'	Autor
Wässrige Lösung	10 ⁻⁶ Siemens	über		10 ⁵ m	3400 m	Brüne
wassinge Losaing	10 ⁻⁶	"	81	100	205	
	10 ⁻⁶		81	1	0,04	"
	10-4	"	81	10 ⁵	318	,,
	10-4	"	81	100	16,7	"
	10-4	"	81	1	0,04	,,
	10^{-2}	"	81	10 ⁵	31,8	**
	10-2	"	81	100	1,0	"
	10^{-2}		81	1	0,03	**
Erz	5.10	"	∞	2·10 ⁴	0,06	" Doborzynski
Wässrige Lösung	10^{-2}	übei		$2 \cdot 10^4$	4,12	
wassinge Losung	10^{-2}	"	81	20	0,13	"
	10^{-2}	"	81	2	0,05	"
Homogener Boden	10-4	"	14	2·10 ⁴	41,2	,,
Tromogener Douch	10^{-4}	"	14	20	2,1	"
	10-4		14	2	2	**
	$10^{-5} \dots 10^{-6}$	"	5	$2 \cdot 10^{4}$	420	**
	$10^{-5} \dots 10^{-6}$	"	5	2000	159	**
	$10^{-5} \dots 10^{-6}$	"	5	300	118,5	**
	$10^{-5} \dots 10^{-6}$	"	5	20	118,5	"
Homogenes Gebirge	$10^{-5} \dots 10^{-6}$	"	13	300	10080	" O Fritsch
Gestein mit Erzlösung		"	13	300	24	
occion in zi-ocang	$7 \dots 10 \cdot 10^3$	"	10	500		"
Lehm	10^{-3}		40	500	10	
Humus	1	"	50	300	50	"
	$\frac{1}{(5\cdot 10^2)}$	"	4 0	200		,,,
Granit	1010	. ,,	10	1000	70 000 000) "

¹⁾ $J_s/J_E \sim 10^3$. Für 106 ungefähr doppelt so grosse Reichweite.

Mit diesen berechneten Reichweiten sind in Tabelle 7a Reichweiten verglichen, die unter günstigen Verhältnissen, nämlich im trockenen Kaligebirge, erzielt wurden.

Tabelle 7a. Reichweiten in Kaligruben

Lagerstätten-	Frequenz	Antennen-	Sende-	Reich	weite
zone		strom	leistung	Graphie	Phonie
Hannover	1000 kHz	1,2 Amp.	100 W		720 m
	500	0,1	10		600
	295	0,5	100		4000
	3000	0,4	15	14000 m	
	8000		1		500
	4000		1		500
	40000	-	1		550
	150000	(1		100
				ŧi	
Werra	1200	- Table 1	100		5000
	3000	_	15		4000
	3000	12 	15	4000	
	3200	0	15		7500
Harz	3000	e province	15		
	800	1,0	100	ca. 2000 m	ca. 2000 m
·	246	0,3 1,0	100	ca. 2000 III	Cu. 2000 III

Tabelle 7 b. Funkverbindungen zwischen Kaligruben bei einer Sendeleistung von 15 Watt und einer Frequenz von 3000 kHz

Von	Nach	Lautstärke in qsa	Betrieb
Alexanderschacht	Abterode	34	Phonie
Abterode	Heringen	45	Phonie
Alexanderschacht	Heringen	1	Phonie
Alexanderschacht	Heringen	3	Graphie
Heringen	Alexanderschacht	3	Graphie
Heringen	Abterode	35	Phonie
Heringen	Alexanderschacht	35	Phonie
Heringen	Heiligenrode	35	Phonie
Heiligenrode	Abterode	25	Phonie
Heiligenrode	Alexanderschacht	14	Phonie
Alexanderschacht	Heiligenrode	12	Phonie
Alexanderschacht	Heiligenrode	4	Graphie

Man sieht, dass die obere Grenze bei ungefähr 14 Kilometer liegt. In Fig. 6a sind verschiedene Reichweiten miteinander verglichen, die in der Grube Godenau in Hannover erzielt wurden.

In Fig. 6b sehen wir eine schematische Darstellung eines versuchsweise durchgeführten Grubenfunks in den mitteldeutschen Werragruben. Die zugehörigen Angaben über die Art des Betriebes und die erzielte Lautstärke sind in Tabelle 7b enthalten.

Se	nder		
λm	Leistung W	Reichweite	
2,9-3,7	0,01		
7-8	~1		
40-61	~1	über 1000 m	
40-100	15	Höchste Reichweite aus örtl. Gründen nicht feststellbar	
200-1200	100	über 1000 m , Höchste Reichweite aus örtl. Gründen nicht feststellbar	

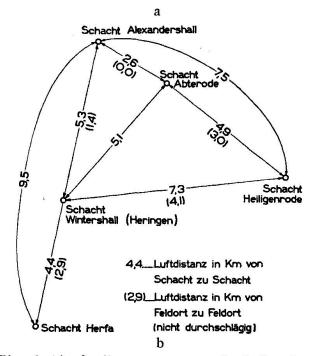


Fig. 6. Ausbreitungsmessungen in Kaligruben

Man sieht, dass die Reichweiten sowohl im Graphie- als auch im Phonieverkehr sehr beträchtlich sind. Diese Untersuchungen haben eindeutig gezeigt, dass jede geologische Inhomogenität, z. B. jede Spur von Feuchtigkeit und jede Störungszone, aber auch jede Änderung der Struktur, die Reichweite beeinflusst. Die grösste Reichweite betrug ungefähr 14 Kilometer. Die Lage der beiden Gruben Godenau

und Freden, zwischen denen dieser Verkehr möglich war, sind schematisch in Fig. 7 dargestellt. Es handelt sich um eine Lagerstätte

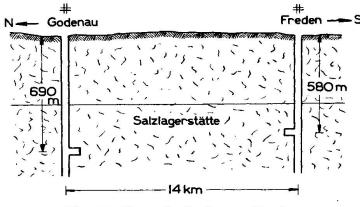


Fig. 7. Versuch Godenau, Freden

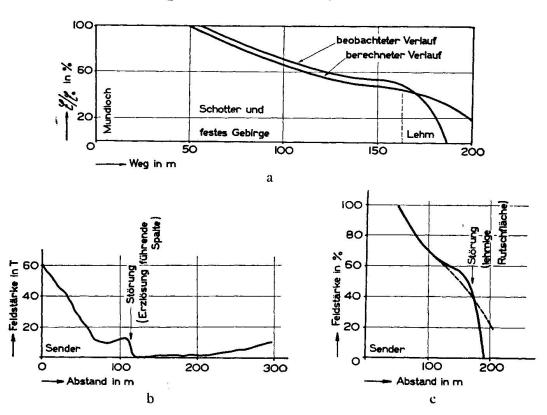


Fig. 8. Ausbreitungsdiagramme

des Hannoverischen Typus. In Fig. 8a sehen wir die gute Übereinstimmung zwischen den experimentell bestimmten und dem berechneten Verlauf der Feldstärke. Die Kurven wurden für die Grube Schwaz in Tirol gezeichnet. Bei einem Abstand von ungefähr 165 m fällt die Messkurve, die bis dorthin parallel zur berechneten Kurve

verlief, plötzlich steil ab. Dies ist durch eine lehmige Rutschfläche hoher Extinktion bedingt. Fig. 8b schliesslich zeigt den Einfluss einer Verwerfung, an deren Kluft Erzlösungen herabfliessen, die aus einer darüber lagernden Lagerstätte stammen. Man erkennt sehr deutlich den elektrischen Schatten hinter der Störungszone. In grösserer Entfernung verschwindet dieser und die Feldstärke steigt neuerlich an. Fig. 9 stellt eine schematische Skizze des Versuchsgeländes südlich von Gastein dar.

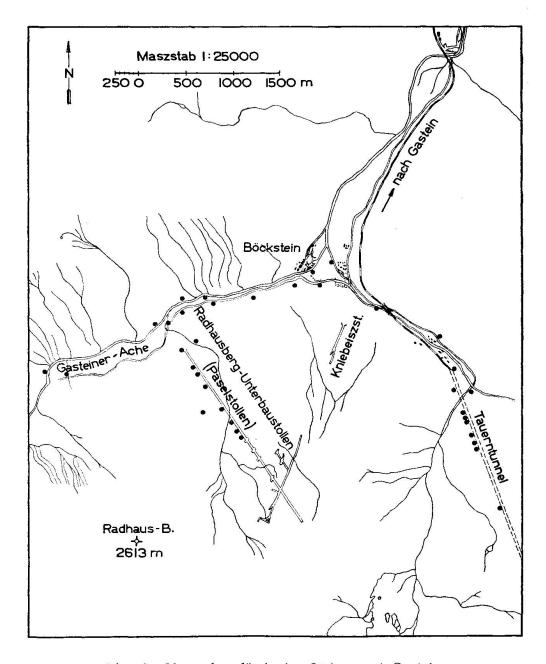


Fig. 9. Versuchsgelände im Süden von Gastein

An verschiedenen Stellen des Paselstollns, des Kniebeiss-Stollens und des Tauerntunnels wurden Sender und Empfänger aufgestellt und durch das Gebirge hindurch gearbeitet. Das Untersuchungsgebiet liegt zur Gänze im Gneiss und Granit der Zentralalpen. Der Gebirgskörper ist von Störungen durchzogen, und in einigen Spalten steigen heisse juvenile Wässer empor. Diese Zonen sind durch ihre hohe Extinktion deutlich ausgeprägt. Die genauen Ergebnisse erschienen an anderer Stelle²). Eine zusammenfassende Darstellung der erzielten Messergebnisse zeigt Tabelle 8.

Tabelle 8. Ergebnisse der untertägigen Sende- und Empfangsversuche im Bereich des Radhausberges

Sendeort	Empfangsort	Sender-Empfänger- abstand	Emp	ofang
		m	D	I
US 0,000	US 2,003	2003	0	0
N 0,317	US 2,000	375		bis r 8
N 0,500	N 0,320	180	r 3	r 8
N 0,500	N 0,000	500	r 2	r 4
N 0,500	US 2,000	550	r 2	r 4
N 0,500	US 1,850	488	0	r 2
N 0,500	US 1,750	440	0	0
N 0,500	T 2,700	3075		se Signale nommen *)
N 0,500	T 1,000	2000		,
	T 1,500	2250	0	0
	T 2,200	2700		
	T 3,200	3500		
N 0,500	K	1125	0	0

*) Die Signale in km 2,7 des Tauerntunnels wurden nur von einem meiner Mitarbeiter wahrgenommen, der früher bei der Luftwaffe diente und daher im Aufnehmen von Signalen besondere Übung hatte. Sie lagen an der Grenze der Hörbarkeit.

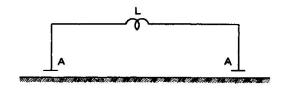
Erklärung: D = Dauerbetrieb des Senders; I = Impulsbetrieb des Senders; K = Kniebeisstollen; N = nördliches Kluftauslängen bei US 1888 m; S = südliches Kluftauslängen bei US 1888 m; T = Tauerntunnel; US = Radhausberg-Unterbaustollen.

Die neben den Buchstaben-Abkürzungen angeführten Zahlen geben den in Kilometer bezeichneten Abstand des Sende- bzw. Empfangsortes an, und zwar K ab Mundloch; N und S ab Kreuzung mit US bei dessen Stollenmeter 1888; T ab Nordportal (Böckstein); US ab Mundloch.

Die Empfangslautstärke wird durch r und die eingestellte Ziffer der 10teiligen Skala angegeben; grössere Zahl bedeutet lauteren Empfang.

²) Mitteilungen des Forschungsinstitutes Gastein (1948). [Z. f. Bäder- u. Klimaheilkunde 1 (1948), 52.]

Bei diesen Untersuchungen wurden auch Messungen mit Impulssendern vorgenommen. Die Impulsreichweite war grösser als jene bei Dauerstrich.


4. Funkmutung

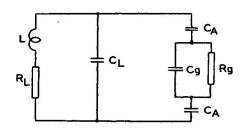

Von den Funkmutungsverfahren, die geologische Vorkommen durch hochfrequente Messungen bestimmen, wurden in den letzten Jahren sowohl die Widerstands- als auch die Ausbreitungsverfahren weiterentwickelt. Da mehrere dieser Untersuchungen bereits in der Fachliteratur besprochen wurden, so seien sie nur zusammenfassend besprochen. Die folgende Tabelle 9 gibt eine Übersicht.

Tabelle 9. Verfahren der Funkmutung

Verfahren	Gemessen wird	Anwendungsgebiete	Literatur- hinweis
Widerstands- verfahren	Ohmscher Widerstand	Baugrunduntersuchungen Minensuche Erdermesstechnik	24 25, 26 6, 27, 14, 20
	Ersatzkapazität der Messantenne	Gletschermessungen	3
		Kali	17
		Wasser und Tektonik Sonstige Bodenschätze	1, 12, 17, 23, 9 5, 7
Ausbreitungs- verfahren	Feldstärke und Feldrichtung ober und unter Tag	Wasser und Erze	1, 13, 19 21
	Reflektionsrichtung		18

Die Ersatzkapazitätsverfahren wurden auch in Gruben eingesetzt. Auch wurden Widerstandsmessungen für ganz kurze Wellen geschaffen. Das Prinzip des Ersatzkapazitätsverfahrens ist einfach: Man substituiert eine über den zu untersuchenden Untergrund ausgespannte Antenne durch eine reine Kapazität und bemisst deren Wert so, dass ein bestimmter Betriebszustand beibehalten wird, also dass z. B. die Schwingungen des Kreises gerade einsetzen oder abreissen. Man nennt diese Kapazität "Ersatzkapazität". Fig. 10 zeigt oben bei a die Messanordnung. Die Messantenne A wird an den Messkreis angeschlossen, der durch die Selbstinduktion L angedeutet ist. Bei b ist das vollständige Ersatzschema dargestellt. Im Antennenkreis liegt die reine Antennenkapazität C_A, sowie die kapazitive und Ohmsche

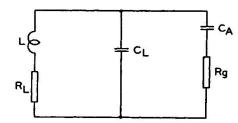


Fig. 10. Antennenersatzschema

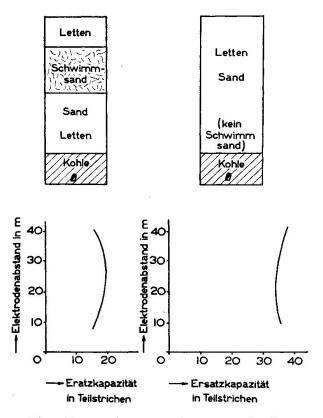


Fig. 11. Funkmutung in einem Stollen

Komponente der im Untergrund enthaltenen geologischen Leiter C_g und R_g . C_L ist die Kapazität der Zuleitungen und R ihr Ohmscher Widerstand. Enthält der Untergrund nur Ohmsche Leiter, was bei Lehm-, Ton-, Tegelschichten und stark durchfeuchteten Sanden nahezu der Fall ist, so wird das Schema, wie dies bei c dargestellt ist, einfacher. Man kann nun die Lage der beiden Messantennen zum Untergrund verschieden ändern und die Ersatzkapazität als Funktion

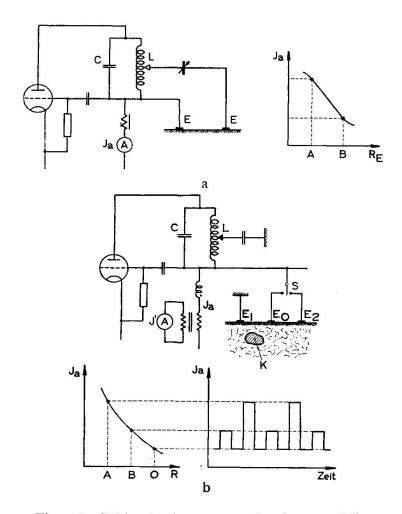


Fig. 12. Widerstandsmessgerät für kurze Wellen

dieser Änderung darstellen. Ein Beispiel zeigt Fig. 11. In einem Stollen einer Braunkohlengrube wurden die Messantennen ausgespannt und ihr gegenseitiger Abstand (Elektrodenabstand) verändert. Fig. 11 zeigt in zwei Diagrammen die Änderung der Ersatzkapazität als Funktion des Antennen-(Elektroden-)Abstandes unter einer Schwimmsandschicht und unter einem schwimmsandfreien Deckgebirge. Auch tektonische Störungen sind so zu erkennen.

Oberflächennahe Schichten kann man mit dem in Fig. 12a schematisch dargestellten Gerät untersuchen, dessen Wellenlänge nur 3...5 Meter beträgt. Die beiden Elektroden E liegen einem Teil der Schwingspule parallel. Der Anodengleichstrom ändert sich dann bekanntlich mit dem zwischen den Elektroden E liegenden Widerstand. Fig. 12a zeigt ein entsprechendes Diagramm. Innerhalb des Arbeitsbereiches A—B bedingt eine Widerstandsänderung eine Änderung des Ausschlages am Messinstrument. Mit diesem Gerät werden besonders Böden untersucht. Die Tabelle 10 zeigt einige Versuchsergebnisse.

Tab. 10. Messergebnisse mit dem HF-Baugrunduntersuchungsgerät

Nr.	Untersuchtes Objekt	Ausschlag	Abweichungen gegen- über Nr. 1 bzw. 6
1	Ziemlich homogene Betonplatte	20 Teilstriche	
2	Rasenfläche	30	+ 50 °/ ₀
3	Stoppelfeld	30	+ 50 °/ ₀
4	Pinge	40	+ 100 ^o / _o
5	Karrenweg	25	+ 25 ⁰ / ₀
6	Kleinpflaster	20	0
7	Festgewalzte Schlackenstrasse	30	+ 50 °/ ₀
8	Strasse mit Schlacke	50	+ 150 °/ ₀
9	Schlechtes Gehsteigpflaster	40	$+ 100 ^{0}/_{0}$

Für den Geologen ist z. B. der Nachweis von Pingen und Störungsgebieten, die in die Nähe der Oberfläche reichen, wichtig. Technisch ist die Untersuchung von Strassendecken mit diesen Geräten von Bedeutung.

Sowohl in Europa als auch in Amerika wurde in den letzten Jahren ein Gerät verwendet, das besonders den Geologen interessiert. Sein Grundprinzip zeigt Fig. 13. Ein kleiner Sender S und ein Empfänger E sind mit Rahmen ausgerüstet, die im Abstand d angeordnet sind. Dieser Abstand misst bei den in Deutschland üblichen Geräten 0,5—1 m, während man in Amerika die beiden Rahmen sogar ineinander baut. Stehen die beiden Rahmen zueinander senkrecht, so sind sie über unendlich gutleitenden Boden vollkommen entkoppelt. Daher zeigt auch das Messgerät V keine Spannung. Jede Änderung der Bodenleitfähigkeit bedingt aber eine Änderung der Feldrichtung und damit auch der Spannung U. Physikalisch ist die Funktion dieses Gerätes vollkommen klar. Uns interessiert aber vor allem die "Aufschlusstiefe", das ist die Entfernung, bis zu der noch irgendwelche Inhomogenitäten eine Änderung des Ausschlages bedingen.

Das Ergebnis eines Versuches im Laboratorium zeigt Fig. 14. In den Raum zwischen Sender und Empfänger, die ungefähr 2 m voneinander entfernt waren, wurde der eingezeichnete Metallwinkel gebracht und die durch ihn hervorgerufene Änderung der Indikation am Instrument V (in Teilstrichen) eingetragen. Man sieht, dass der Metall-

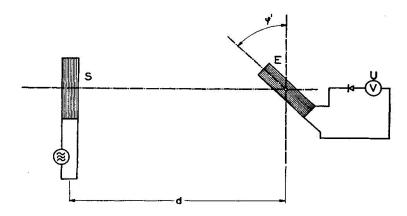


Fig. 13. Funkmutungsgerät nach dem Ausbreitungsverfahren mit nahem Sender

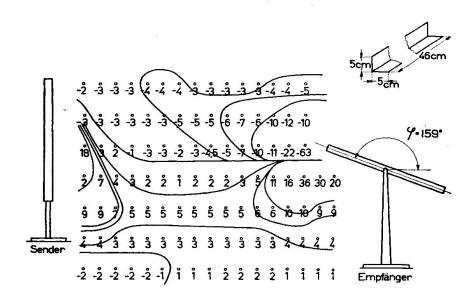


Fig. 14. Änderung der Empfangsindikation

winkel praktisch nur im Raum zwischen den beiden Spulen einen stärkeren Einfluss ausübt. Bei besonders empfindlicher Einstellung konnte ein Metallkörper in einem seitlichen Abstande bis zu 2 m nachgewiesen werden. Unter diesen Umständen wäre es verständlich, wenn Änderungen der Leitfähigkeit der Oberflächenschichten nachzuweisen wären. Die Literatur berichtet aber, dass noch sehr tief liegende Verwerfungen an der Oberfläche deutliche Indikationen bedingen. In Fig. 15 ist der Verlauf der Indikation über einem Staffelbruch dargestellt, wie ich ihn selbst in der Gegend von Giessen messen konnte. Die diluviale Überdeckung betrug 10...20 m. Trotz-

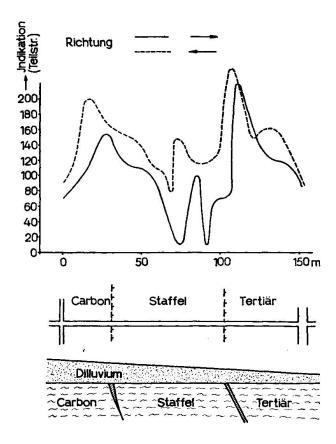


Fig. 15. Geoskopkurve

dem die Störungszone hier ausserhalb des Messbereiches lag, waren die Indikationen gut reproduzierbar. Auch Untersuchungen bei Brüx in Böhmen zeigten ein ähnliches Bild. Unter diesen Voraussetzungen gelangt man zu der Überzeugung, dass hier offenbar ein noch nicht erforschter Zusammenhang zwischen der Indikation und der tiefgelegenen Indikationsursache besteht. Dieses physikalisch noch unerklärliche Phänomen muss genauer untersucht werden. Mir ist bekannt, dass in den letzten Kriegsjahren gerade mit dieser Apparatur sehr umfangreiche Messungen ausgeführt wurden. Eine Klarstellung wäre daher nicht nur wissenschaftlich, sondern auch wirtschaftlich nötig.

Zusammenfassung

- 1. Die funkgeologischen Untersuchungen der letzten 10 Jahre zeigen, dass im trockenen Gebirge Reichweiten bis zu vielen Kilometern möglich sind. Daher sind die heute funkgeologisch erzielten Reichweiten schon mit jenen der Seismik vergleichbar.
- 2. Die Untersuchung der elektrischen Eigenschaften, besonders der grossräumigen Leiter, hat auch zu einem weiteren Ausbau der Elektrohydrographie geführt.
- 3. Die Ersatzkapazitäts- und die Ausbreitungsverfahren mit nahem Sender der Funkmutung wurden weiterentwickelt. Von anderen Geophysikern wurden auch auf dem Gebiete der Ausbreitungsverfahren mit entfernten Sendern weitere Fortschritte erzielt.

Zur Untersuchung oberflächennaher Schichten wurden Widerstandsmessgeräte für besonders hohe Betriebsfrequenzen entwickelt und eingesetzt.

Wien,

Schwachstrominstitut der Technischen Hochschule, März 1948.

Einige Veröffentlichungen des Verfassers über funkgeologische Fragen seit 1939

- 1. Geofisica pura e applicata, Milano, (1940), Nr. 2, 121; Messina: "Alcune indagini radiogeologiche esegnite nel 1939".
- 2. Geofisica pura e applicata 1 (1939), Nr. 3/4, 175; Messina: "Influenza delle condizione geoelettriche sulla caduta del fulmine".
- 3. Association Internat. d'Hydrologie Scientifique, Commission des Neiges. Kongress 1939 Washington; Washington (USA) und Paris (1939), Question 3, Rapport 3; "Über die Möglichkeit einer Gletschervermessung durch Funkmutung".
- 4. Hochfrequenztechn. u. E., Leipzig, **56** (1940), Nr. 2, 54: "Die Bestimmung von Erdwiderständen mit hochfrequenten Mesströmen".
- 5. Neues Jahrbuch f. Mineralogie, Stuttgart, 84 (1940), Abt. B, 90—116: "Die funkgeologische Untersuchung des Zinnobervorkommens von Schönbach bei Eger".
- 6. Gerlands Beitr. z. Geophys., Leipzig, 57 (1940), 65—108: "Einiges über die Untersuchung der geoelektrischen Blitzgefährdung. (Mit besonderer Berücksichtigung der Einrichtungen des Blitzversuchsfeldes in Absroth bei Eger)".
- 7. Elektrizität im Bergbau, München, 16 (1941), Nr. 3, 37—43: "Die Möglichkeit einer geoelektrischen Fehlmutung mit besonderer Berücksichtigung der bei der Funkmutung gegebenen Voraussetzungen".
- 8. Die Naturwissenschaften, Berlin, 29 (1941), Nr. 27, 398-403: "Geoelektrische Beschaffenheit des Untergrundes und Blitzschutz".

- 9. Hochfrequenztechn. u. Elektroakustik, Leipzig, **59** (1942), Nr. 2, 41—45: "Nachweis steil einfallender elektrischer Diskontinuitätsflächen im Untergrunde durch Funkmutung" (mit H. Forejt).
- 10. Glückauf, Essen, 78 (1942), 257—264: "Hydrologische Messungen im Bergbau".
- 11. Glückauf, Essen, 78 (1942), 276—279: "Hydrologische Messungen im Bergbau".
- 12. ZS. f. Geophysik, Braunschweig, 17 (1941/42), Nr. 5/6, 217—225: "Die Anwendung des Druckindikators in der Funkmutung".
- 13. Geofisica pura e applicata, Milano, 4 (1942), Nr. 1, 15—37: "La smorzamento delle onde Hertziane attraverso i conduttori geologici".
- 14. Verfahrens- u. Messkunde der Naturwissenschaften (Broschüre) (1942), Nr. 6, S. 1—83: "Die Messung von Erderwiderständen".
- 15. Rivista Geomineraria, Milano (1942), Nr. 2, S. 3—12: "Die Tiefenwirkung der Funkmutung".
- 16. Elektrizität im Bergbau, München, 17 (1942), Nr. 4, 41-49: "Neuere Messgeräte für die Funkmutung".
- 17. Buch: R. Oldenbourg, München (1943): "Messverfahren der Funkmutung".
- 18. Glückauf, Essen, 79 (1943), Nr. 27/28, S. 336—340: "Die Aussichten der Reflexionsmethode in der Funkmutung".
- 19. Hochfrequenztechnik und Elektroakustik, Leipzig, **62** (1943), Nr. 2, 50—59: "Einiges über die Ausbreitung Hertzscher Wellen in geologischen Leitern".
- 20. Gerlands Beitr. z. Geophysik, Leipzig, 59 (1943), Nr. 3/4, 306—330: "Mitteilung über die im Blitzversuchsfeld Absroth im Jahre 1941 durchgeführten Arbeiten".
- 21. Beitr. z. angew. Geophysik, Leipzig-Berlin, 11 (1944), Nr. 2, 163—199: "Beiträge zur Funkgeologie VIII. Ausbreitung Hertzscher Wellen in geologischen Leitern".
- 22. Radiowelt, Wien, 1 (1946), Nr. 3, 39-43; 1 (1946), Nr. 4, 59-64: "Die funkgeologischen Voraussetzungen für den Grubenfunk".
- 23. Österr. Ingenieur-Archiv, Wien, 1 (1946), Nr. 3, 190—203: "Die geoelektrischen Verfahren der angewandten Geophysik".
- 24. Österr. Bauzeitschrift, Wien, 2 (1947), Nr. 4/6, 65-75: "Die Untersuchung von Baugründen mit Funkmutungsgeräten".
- 25. Radiowelt, Wien, 2 (1947), Nr. 9, 125—128; 2 (1947), Nr. 10, 141—143: "Die Funkmutung im Dienste der Minensuche".
- 26. Elektrotechnik und Maschinenbau, Wien, 64 (1947), Nr. 9/10, 142—148: "Die Überprüfung von Blitzerdern mit Hochfrequenz".

Eingegangen: 30. März 1948.