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Auswertung geophysikalischer Sondierungen
mit Hilfe von Potentialfeldern

Von Fritz Gassmann, Zirich

Mitteilung Nr. 9
aus dem Institut fiir Geophysik der Eidg. Technischen Hochschule

Summary

The present paper deals with those methods of geophysical prospecting
which consist in the measurement and interpretation of potential fields. its
aim is to set out briefly and coherently the fundamental principles governing
these methods.

In § 1 the methods of geophysical prospecting are divided, according
to the mathematical instruments involved, into two main groups, viz., the
potential field methods and the dynamic methods. In §§ 2 to 4 some basic
facts relating to potential fields are assembled. § 5 contains the keys and
examples relating to the most important spheres of application of the potential
theory in geophysics. § 6 gives a survey of the methods used to determine
the fields of disturbing bodies located underground. In § 7 the principles are
discussed by which measurements of potential fields are to be interpreted, i. e.,
by which the disturbing underground bhodies can be determined, with all the
accuracy called for by the problem, by measurements taken at the surface of
the earth.

§ 1. Geophysikalische Sondiermethoden

Ungleichmassigkeiten im geologischen Aufbau des Untergrun-
des konnen sich physikalisch bis an-die Erdoberfliche bemerkbar
machen. Z.B. dussert sich ein Salzstock, der weniger dicht ist als
die umgebenden Gesteine, in Stérungen der Schwerkraft, ein Eisen-
erzkorper in Storungen des Erdmagnetismus, eine Verwerfung lenkt
Erdbebenwellen ab usw. Es ist deshalb méglich, durch physikalische
Messungen an der Erdoberflache auf den geologischen Aufbau im
Untergrund und insbesondere auf Lage, Grosse und Beschaffenheit
von nutzbaren mineralischen Lagerstitten zu schliessen. Hinsicht-
lich des erforderlichen mathematischen Apparates lassen sich dabei
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die Sondiermethoden, von unbedeutenden Ausnahmen abgesehen, in
zwei Uruppen einteilen, die man summarisch als statische und dyna-
mische bezeichnen kann. Die dynamischen Methoden handeln von
Schwingungen und Weilenausbreitung vornehmlich elastischer und
elektromagnetischer Natur und fiihren auf partielle Differential-
gleichungen vom hyperbolischen Typus. Die statischen Methoden
handeln von zeitlich konstanten oder langsam verédnderlichen physi-
kalischen Zustinden, die sich mit Hilfe des Potentialbegriffs be-
schreiben lassen. Diese statischen Methoden bilden eine Vielfalt
von Theorien und Verfahren, in denen die leitenden und verbindenden
Gedanken oft nicht leicht zu erkenaen sind. In der vorliegenden Ar-
beit sollen daher die hauptsichlichsten Gesichtspunkte der statischen
* Methoden im Zusammenhang kurz dargestellt werden. Insbesondere
soll gezeigt werden, wie die geophysikalischen Messungen, die sich
auf den Potentialbegriff stiitzen, systematisch mit jeder Genauigkeit,
die das Material iiberhaupt zulidsst, ausgewertet werden koénnen.
(Lit. 2 und 3 sind vorlaufige Mitteilungen zur vorliegenden Arbeit.)

§ 2. Potentialfelder

Zur nihern Orientierung {iber Potentiaifelder und ihre physi-
kalischen Anwendungsgebiete mogen einschligige Lehrbiicher zu
Rate gezogen werden, wie etwa Lit.8 und 1. Denkt man sich den
Raum oder einen Teil davon als Triger eines physikalischen Zustan-
des, so nennt man ihn ein Feld. Ist in jedem Punkte des Feldes der
Zustand durch eine einzige Zahl H charakterisiert, wie z.B. die -
Temperatur in der Atmosphire, so ist das Feld skalar. Ist hingegen
zur Charakterisierung neben einer Zahl noch eine Richtungsangabe
ndtig, so ist das Feld vektoriell. Das Geschwindigkeitsfeld der At-
mosphdre ist z. B. ein Vektorfeld, weil zu seiner Beschreibung neben
der Windstirke auch die Windrichtung gehort.

Werden die Punkte des Raumes durch rechtwinklige Koordinaten
X, ¥y, z festgelegt, so ist das skalare Feld durch eine skalare Orts-
funktion H(x, y,z) gegeben. Sind e,, e, und e, die Einheitsvek-
toren parallel zu den Koordinatenachsen, so ist das Vektorfeld ge-
geben durch

(1) 8 = Kyex +Kyey + K, e,

wobei K, K, und K,, die rechtwinkligen Komponenten von &, drei
skalare Ortsfunktionen sind.
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Es gibt eine spezielle Klasse von Vektorfeldern &, fiir deren
Beschreibung ebenfalls nur eine skalare Ortsfunktion U (x,y, z)
notwendig ist, aus der sich & durch Gradientbildung herleiten lisst,
also

cU oU oU
(2) KX—_G—X’KY———W’ z—""ﬁy
oder zusammengefasst & = — grad U.

U heisst das Potential von &, und ® ist ein Potentialfeld. st
z. B. U wiederum die Temperatur, so gibt ® Richtung und Grosse
des Temperaturgefilles an.

§ 3. Quellen von Potentialfeldern

Fiir irgendein Vektorfeld erhilt man ein anschauliches Modell,
wenn man sich & als Strémungsgeschwindigkeit einer inkompres-
sibeln Fliissigkeit vorstellt. Es ist dabei allerdings unter Umstinden
notig, an gewissen Stellen Fliissigkeit stindig entstehen, an andern
solche verschwinden zu lassen, d. h. Quellen positiver und negativer
Ergiebigkeit anzunehmen. Ist z. B. S eine punktférmige Quelle, die
gleichmissig pro Sekunde Q m3 Fliissigkeit produziert, und enthilt
der Raum keine andern Quellen, so stromt die Fliissigkeit radial nach
aussen ab. Die Geschwindigkeit in einem Punkte T im Abstande r

von S betrigt

3) @:%r,

wo t der Vektor ST und Q die Ergiebigkeit der Quelle ist. Dieses
Stromungsfeld besitzt das Potential

Q

(4) U= e

Kompliziertere Felder lassen sich aufbauen durch Annahme von
mehreren Punktquellen oder durch stetige Verteilung von Quellen
auf gegebenen Kurven, Flichen oder in dreidimensionalen Gebieten.
Das Potential eines solchen Feldes ist einfach die Summe bzw. das
Integral der Potentiale der einzelnen Punktquellen, aus denen man
sich die ganze Quellenverteilung zusammengesetzt denkt. Ist z. B.
ein dreidimensionales Quellgebiet G gegeben und die Ergiebigkeit
¢ pro Volumeneinheit (= Quelldichte) in jedem Punkte S (&,#,{)
dieses Gebietes, so hat man in (4) Q durch &dG = @ déd; df zu er-

Schweiz. Min. Petr. Mitt.,, Bd. XXVIII, Heft 1, 1948 22
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setzen und iiber G zu integrieren. Das Potential des Feldes ist dann

p,0)dédyde

dar

6 Uty = ||| 260y

¥

r=+yxX— 4+ —n*+—10)*

(siehe auch Fig.1). Fiir die numerische Behandlung von Potential-
feldern ist die Tatsache wichtig, dass fiir je des beliebig gegebene
Potentialfeld eine Quellenverteilung gefunden werden kann, durch
die das Feld erzeugt wird.

o T(X,y,2)

Fig. 1. Dreidimensionales Quellengebiet G

Das Schwerefeld der Erde ist ein Potentialfeld, dessen Quellen
im wesentlichen die anziehenden (= gravitierenden) Massen sind,
aus denen der Erdkoérper aufgebaut ist. Die Quellen des elektro-
statischen Feldes sind die elektrischen Ladungen. Die statischen Me-
thoden der angewandten Geophysik beruhen auf der Ausmessung von
Potentialfeldern an der Erdoberfliche und der Berechnung der zu-
gehorigen Quellenverteilungen im Erdinnern. Mit statischen Metho-
den auffindbare mineralische Lagerstitten sind nichts anderes als
solche Quellenverteilungen.

Magnetisierte Kérper, wie z. B. Eisenerzlager, sind Quellen von
Magnetfeldern. Sie haben die Eigentiimlichkeit, dass ihre totale Er-
giebigkeit stets Null ist. Als Beispiel seien zwei Punktquellen mit
entgegengesetzt gleicher Ergiebigkeit - Q und — Q im Abstande s
voneinander betrachtet. Die Verbindungsgerade der beiden Quellen
ist die Achse des Quellenpaares, -

(6) h=s5.Q

ist sein skalares Moment. Liasst man, ohne die Achse zu verandern,
s zu Null abnehmen und dafiir Q so zunehmen, dass h konstant bleibt,
so entsteht die Doppelquelle, auch Dipol genannt. Ihr Moment §
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ist ein Vektor in Richtung der Achse mit dem Betrag h. Das Feld
st des Dipols besitzt im Punkte T das Potential

0 W 4B

T 4ars

(siehe auch Fig. 2). Beispielsweise ist ein kurzer Magnetstab ange-
nihert ein magnetischer Dipol.

Fig. 2. Dipol mit Feldlinien

Sind in einem dreidimensionalen Gebiet Doppelquellen stetig
verteilt, so ist dieses Gebiet polarisiert. Die Polarisation (im mag-
netischen Falle Magnetisierung genannt) ist bekannt, wenn fur jeden
Punkt des Gebietes die Doppelquellendichte 9, d.h. das Dipolmo-
ment der Volumeneinheit, gegeben ist. Das Potential des Feldes
erhalt man durch Zerlegung des Gebietes in elementare Dipole und
Integration aus (7). Z. B. ist ein Eisenerzlager ein Gebiet mit stetig
verteilten magnetischen Dipolen.

Haufig kommen im Untergrund Quellenverteilungen vor, die
in einer bestimmten horizontalen Richtung sehr langgestreckt sind,
wie z. B. unterirdische Antiklinalen, Synklinalen, Verwerfungen usw.
Befindet man sich nicht zu nahe am einen Ende einer solchen Quellen-
verteilung, so sind die Feldvektoren § senkrecht zum Streichen, d. h.
zur Achse der Quellenverteilung. Sie liegen also in den vertikalen
Querschnittsebenen, und in diesen (zueinander parallelen) Ebenen
sind einerseits die Vektorfelder ® zueinander kongruent, anderseits
auch die Querschnitte durch die Quellenverteilung. Es ist daher
zweckmadssig, die Quellenverteilung als einen in streichender Rich-
tung unendlich langen Zylinder zu betrachten, dessen Quelldichte auf
jeder Geraden in Richtung des Streichens konstant ist. Eine solche
zylindrische Quellenverteilung mit dem zugehoérigen Feld & ist ein-
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deutig bestimmt durch einen Querschnitt. Sie wird aus diesem Grunde
oft ,,zweidimensional‘‘ genannt. Wie nun das Potential (5) einer
dreidimensionalen Quellenverteilung aus einem elementaren Poten-
tial, nimlich dem Quellpunktpotential (4), durch Integration gewon-
nen wird, so lasst sich auch das Potential der zylindrischen Quellen-
verteilung aus einem elementaren Potential bestimmen. Dieses ele-
mentare Potential ist das sogenannte logarithmische Potential einer
homogenen (d. h. iiberall gleich dicht mit Quellen besetzten), unend-
lich langen Quellengeraden mit der Ergiebigkeit / pro Langeneinheit.
Im Abstande r von der Geraden betriagt es

/3 1
(8) U= 5. In T
Ist ferner eine zylindrische Doppelquellenverteilung gegeben, d.h.
ist der Zylinder quer zum Streichen so polarisiert, dass die Doppel-
quellendichte lings jeder Geraden in Richtung des Streichens kou-
stant ist, so lidsst sich sein Potential durch Integration aus dem Po-
tential der homogenen, unendlich langen Doppelquellengeraden be-
stimmen. Ist b das Dipolmoment der Geraden pro Lingeneinheit,
T ein Punkt des Raumes ausserhalb der Geraden, T’ der Fusspunkt
des Lotes von T auf die Gerade, T'T =1, lt|=r, so ist das Poten-
tial der Doppelgeraden im Punkte T

b br

=5-—7-

Es gibt demnach 4 elementare Quellgebilde, nimlich den
Quellpunkt (4), die Doppelquelle (7), die Quellgerade (8) und die
Doppelgerade (9), aus deren Potentialen das Potential irgend einer
komplizierteren Quellenverteilung durch Summation, bzw. Integra-
tion bestimmt wird. Die vier elementaren Quellgebilde sind noch
in einem anderen Sinne fundamental. Ist namlich z.B. eine belic-
bige dreidimensionale Quellenverteilung mit dem Potential (5) ge-
geben und lisst man den Punkt T immer weiter vom Quellgebiet
wegriicken, so nihert sich das Potential (5) immer mehr dem Po-
tential (4) eines einfachen Quellpunktes, dessen Ergiebigkeit Q
gleich der totalen Ergiebigkeit des Quellgebietes ist. Ganz entspre-
chend nihert sich bei wachsender Entfernung das Potential eines
beliebig polarisierten dreidimensionalen Gebietes dem Potential (7)
eines Dipols, das Potential einer zylindrischen Quellenverteilung
dem Potential (8) der Quellengeraden und das Potential eines quer-
polarisierten Zylinders dem Potential (9) der Doppelgeraden.

9) u(m
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In den Anwendungen sind homogene Quellgebiete, d. h.
solche mit konstanter Quelldichte, besonders hiufig. Ein gegebenes
dreidimensionales oder zylindrisches Gebiet kann dabei entweder
mit einfachen Quellen von der konstanten Dichte © oder mit Doppel-
quellen von der konstanten Dichte % belegt werden. Zwischen dem
Feld ®, der einfachen Belegung und dem Potential U, der Doppel-
belegung besteht dabei ein einfacher, in der Praxis oft beniitzter Zu-
sammenhang. Es ist namlich

N

(10) U= 5.

.
Nach § 1 wird bei geophysikalischen Sondiermethoden das
Feld ® in der Regel ausserhalb der Quellgebiete beniitzt. In

quellenfreien Gebieten ist div =0, was nach (2) fir U die La-
place’sche Differentialgleichung

1y au=244 20

*U
ax®  ay L

=0

0
+ 0z
ergibt. U heisst in diesem Falle eine harmonische Funktion
und kann mit Hilfe der vielseitigen und weittragenden Methoden
. behandelt werden, die in der Mathematik fiir solche Funktionen ent-
wickelt worden sind.

§ 4. Sekundirfelder

Es kann sein, dass der Raum, in dem ein Vektorfeld & besteht,
von Materie erfiillt ist und dass  in diesem Raum ein zweites Vek-
torfeld § zur Folge hat. & sei Primir-, § Sekundirfeld genannt.
Die Art der Abhidngigkeit des Feldes § von § ist eine Eigenschaft
der Materie und kann sehr verwickelt sein. Im Falle des Ferromagne-
tismus z. B. (Bedeutung von § und & in diesem Falle siehe §.5d))
ist I nicht einmal eine eindeutige Funktion von ®. In den meisten
in den Anwendungen vorkommenden Fillen ist es jedoch zulissig,
die rechtwinkligen Komponenten von & als lineare Funktionen der
rechtwinkligen Komponenten von & anzunehmen, also

Fx:rxxKx+rnyy+ rzsza
(12) Fy = Iy Ky + Iy Ky + Iy K,
F. = rszx+ryzKy+rzz Kz:



342 © . Fritz Gassmann

oder in iiblicher Abkiirzung = (") & zu schreiben. Die neun I'-
Koeffizienten von (12), Tensorkomponenten genannt, kénnen im
Raume von Punkt zu Punkt variieren. In einem homogenen Kristall
sind sie konstant. Ist die Materie isotrop, so ist I'yy = I'y, ==
I',,=1T, wihrenddem die andern sechs Tensorkomponenten Nuil
sind. In diesem Falle ist =1 &, d.h. in jedem Punkte des Feldes
hat ¥ die gleiche Richtung wie &, und die beiden Vektoren sind zu-
einander proportional.

§ 5. Potentialfelder in der Geophysik

Durch die neutrale Formulierung der in den vorstehenden §§ 1
bis 4 aufgefiihrten Tatsachen der PPotentialtheorie soll ausgedriickt
werden, dass die mathematische Behandlung der Potentialfelder un-
abhiangig von der Art ihrer physikalischen Verwirklichung ist. Eine
in irgendeinem physikalischen Anwendungsgebiet gefundene poten-
tialtheoretische Tatsache oder Methode ldsst sich daher auf alle
andern Anwendungsgebiete der Potentialtheorie iibertragen. Im fol-
genden seien fiir die wichtigsten in der Geophysik vorkommenden
Anwendungsgebiete die Schliissel zusammengestellt. Sie sollen den
Zugang zur potentialtheoretischen Behandlung und den Ubergang
von einem Anwendungsgebiet auf ein anderes erleichtern. Den
Schliisseln sind in Stichworten Anwendungen in der Geophysik bei-
gefiigt.

a) Hydrodynamik
Q = Ergiebigkeit einer Punktquelle — Fliissigkeitsproduktion in

3
der Zeiteinheit, z. B. in o

sec
& — Stromungsgeschwindigkeit bei wirbelfreier Strémung, z. B.
in <M
sec

Grundwasserstromungen, Meeresstromungen, Luftstromungen.

b) Gravimetrik

m = gravitierende (= anziehende) Punktmasse in g.

¢ = Dichte einer dreidimensionalen, gravitierenden Mafle in ST

.cm?

ko = 6,67.10- 8 - . = universelle Gravitationskonstante .
g sec®
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= 4ﬂfkom .
= — 4akeo.
Gravitationsbeschleunigung.

200

Schwerefeld der Erde, gravimetrische Sondiermethroden.

c) Elektrostatik

4 = bei nicht rationaler Schreibweise - Massvstemfaktor
P=1 bei rationaler Schre:bwe1se y )
& = Dielektrizititskonstante des Vakuums — Massystemfaktor .
(TQ = elektrische Ladung.

P
g = elektrische Ladungsdichte.
Elﬁ = elektrische Feldstirke.
0
1

— N — dielektrische Polarisation .

o

F = & + ¢ = dielektrische Verschiebung.
I = relative Dielektrizititskonstante der Materie.

Luftelektrizitit, Gewitter, Theorie der lonisationskammern und
Zihlrohre fiir Radioaktivititsmessungen.

d) Magnetostatik

P  wie im vorstehenden Abschnitt.

wo = Permeabilitit des Vakuums = Massystemfaktor.
% magnetische Polstirke.

1 -8 = - Feldstarke .

.uo

%9} = Magnetisierung .

F = & + N = magnetische Induktion .
I’ = relative magnetische Permeabilitit der Materie.

Magnetfeld der Erde, magnetische Sondiermethoden, Theorie
der Stabmagnete und der magnetischen Messinstrumente.
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e) Elektrisches Gleichstromfeld in homogener,
isotroper Umgebung

E —= Ergiebigkeit der Stromquelle (= Stromstirke).

E
Q:F

— elektrische Feldstirke.
I' = spezifische Leitfdhigkeit eines Leiters.
& = Stromdichte.

Natiirliche Erdstréme, geoelektrische Gleichstrommethoden.

f) Wirmestréomung in homogener, isotroper

Umgebung
E — Ergiebigkeit der Warmequelle, z.B. in l:TaCl.
g—E
= r
U = Temperatur, z.B, in C° (Celsiusgrad).
0
! = Temperaturgefille, z.B. in e
cm
I — Wirmeleitfihigkeit, z.B. in - & ___
o gRelt, 281 ecem €
. " . Kal
% = Vektor der Warmestorung, z.B. in o 8
sec cm

Temperatur und Wirme im Erdinnern, geothermische Sondier-
methoden.

g) Elastizitiatslehre (man vgl. dazu z. B. Lit. 9)

Die kleinen Deformationen eines vollkommen elastischen, homo-

genen, isotropen Korpers, der sich unter dem Einfluss von Ober-
flachenkriften und von rdumlich und zeitlich konstanten Massen-
kriaften im Gleichgewicht befindet, lassen sich mit Hilfe der Poten-
tialtheorie behandeln, weil eine ganze Reihe von mit den Defor-
mationen zusammenhingenden Funktionen harmonisch sind.

b = Xex+yey,+Ze;.

8 — syex+ Syey + S, e, = Verschiebungsvektor .
P = Spannungstensor .

Sp= Summe der Hauptspannungen .
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E = Verzerrungstensor.
» = Poisson’sche Elastizititskonstante.

Folgende Funktionen sind harmonisch: div 8, Sp, die Komponenten
der Vektoren rot 3, 43, 3 - i(le% p und die Komponenten der
Tensoren AP und 4AE. (Die Komponenten von 4% sind 4s,, 4s, und
Ads,, entsprechend sind die Komponenten der beiden Tensoren
definiert.) |
Elastische Deformationen im Erdinnern, in der Erdkruste, im

Baugrund.

§ 6. Bestimmung der Felder von Quellenverteilungen

Eine geophysikalische Sondierung mit Hilfe eines Potential-
feldes dient in der Regel der genauern Untersuchung einer ganz
bestimmten Lagerstitte oder tektonischen Situation, deren Vorhan-
densein vom Geologen vermutet wird. Damit die Sondierung zweck-
massig angelegt werden kann, ist es notig, das zu vermessende phy-
sikalische Feld an der Erdoberfliche aus der vermuteten Quellen-
verteilung im Untergrund wenigstens in grossen Ziigen zum voraus
zu berechnen. Ist die Sondierung durchgefithrt, so besteht die In-
terpretation der Resultate in der genauern Ermittlung der Quellen-
verteilung im Untergrund. Auch diese Aufgabe ldsst sich, wie in
§ 7 gezeigt werden soll, nur l6sen durch Berechnung der Felder
von bestimmt vorgegebenen Quellenverteilungen. Solche Berech-
nungen bilden daher vom Anfang bis zum Schluss die mathema-
tische Grundlage des Sondierverfahrens.

Hat die Quellenverteilung eine mathematisch definierte Form
und Dichte, so ist das Feld durch Integration und Gradientbildung
(man vergl. dazu die Gleichungen (5) und (2)) zu ermitteln. In
der Literatur sind fiir zahlreiche Quellenverteilungen, wie homogene
Strecken, Kugeln, Kreiszylinder, Ellipsoide, Quader usw. die auf
diesem Wege gewonnenen Felder angegeben. (Man vgl. u. a. Lit. 8,
5, 11, 7.)

Die Berechnung von komplizierteren Quellengebieten lidsst sich
mit Hilfe der elementaren Quellgebilde (siehe § 3) angenéhert
durchfithren. Man zerlegt nimlich das Quellengebiet in Teilgebiete
und ersetzt zur Berechnung des Feldes jedes Teilgebiet durch das
zugehorige elementare Quellgebilde. Auf diese Weise lidsst sich
offenbar, im Hinblick auf die in § 3 erwihnte fundamentale Bedeu-
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tung der Potentiale der elementaren Quellgebilde als Grenzpoten-
tiale, durch entsprechend feine Einteilung des Quellengebietes jeder
gewiinschte Grad von Anniherung erreichen. Die Berechnung wird
sehr erleichtert durch tabellierte Hilfsfunktionen fiir die Felder der
elementaren Quellgebilde. (Man vgl. dazu Lit. 10 und 7.)

~ Hat die Quellenverteilung eine unregelmissige, etwa graphisch
durch Hohenkurven oder Vertikalschnitte gegebene Form, so eignet
sich zur Ermittlung des Feldes ausser der eben besprochenen Zer-
legungsmethode auch eine mechanische oder graphische Methode.
(Siehe w. a. Lit. 5, 6, 4.)

§ 7. Interpretation geophysikalischer Messungen an Potentialfeldern

Die Interpretation besteht in der Ermittlung der unterirdischen
Quellenverteilung auf Grund der Resultate der Vermessung des zu-
gehorigen Potentialfeldes an der Erdoberfliche. In der Regel wird
allerdings nicht der gesamte Feldvektor § gemessen, sondern nur
eine oder zwei Komponenten, z. B. in der Gravimetrik die Verti-
kalkomponente, in der Magnetik die Vertikalkomponente oder die
NS-Komponente oder beide. Die Messung beschrinkt sich ferner
auf einzelne Stationspunkte. Fiir dazwischen liegende Punkte der
Erdoberfliche ist, wenn nétig, die betreffende Feldkomponente durch
Interpolation angenihert zu bestimmen; auch in den Stationspunk-
ten selbst sind die Resultate naturgemiss mit unvermeidlichen
Messfehlern behaftet.

Es sei aber einmal angenommen, der Feldvektor & sei fiir alle
Punkte der Erdoberflache und iiberdies fiir den ganzen Raum ausser-
halb der Erdoberfliche vollstindig und fehlerlos bekannt. Trotzdem
liesse sich daraus die Quellenverteilung im Untergrund nicht ein-
deutig bestimmen. Die Potentialtheorie lehrt, dass es stets unend-
lich viele Quellenverteilungen gibt, deren Felder an der Erdober-
fliche und im Aussenraum identisch sind. Als einfachstes Beispiel
sei eine homogene Kugel genannt. lhr Feld ist ausserhalb der Kugel
das gleiche wie das Feld eines Quellpunktes, der sich im Mittelpunkt
der Kugel befindet und dessen Ergiebigkeit gleich der gesamten Er-
giebigkeit der Quellkugel ist. Von einer sich im Untergrund befind-
lichen homogenen Kugel lasst sich daher durch Messungen an der
Erdoberfliche wohl der Mittelpunkt und die Gesamtmasse bestini-
men, nicht aber ihr Radius. Die Aufgabe hat daher unendlich viele
Losungen entsprechend der unendlichen Anzahl der -moglichen
Radien und Dichten.
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Wenn sich daher die Quellenverteilung mathematisch nicht ein-
deutig bestimmen liasst, so liegt das grundsitzlich nicht an der Tat-
sache, dass das Feld durch Messungen nur liickenhaft und ' mit
Fehlern behaftet ermittelt werden kann, und es ist demnach ein aus-
sichtsloses Unterfangen, die Eindeutigkeit der Losung durch Ver-
mehrung und Verfeinerung der Messungen und durch den Ausbau des
mathematischen Apparates erzwingen zu wollen.

Die Vielfalt der Losungsmoglichkeiten kann nur eingeschrinkt
werden durch zusitzliche Hypothesen iiber die Quellenverteilung.
Diese Hypothesen fussen auf den Kenntnissen, die der Geologe in
jedem einzelnen Falle vom Untergrund besitzt und die ihm gestatten,
die Vielfalt der mathematisch moglichen Loésungen mehr oder we-
niger einzuschrinken. In giinstigen Fillen kann auf diese Weise
die Quellenverteilung mit einer an Sicherheit grenzenden Wahrschein-
lichkeit ermittelt werden. '

Bei der Bestimmung der Quellenverteilung sollen zwei Stufen
unterschieden werden, nimlich eine Stufe der Schitzung und eine
Stufe der genauern Berechnung. Die Schiatzung einer Quellen-
verteilung wird am besten anhand eines Kataloges ausgefiihrt, der
nach den Methoden von § 6 erstellt werden kann und fiir eine Reihe
von geometrisch einfachen Quellenverteilungen die zugehdrigen Fel-
der in Form von Zahlentabellen, graphischen Darstellungen oder
Kurvenpldnen enthidlt (Lit. 11, 5, 10, 7). Durch Vergleichung dieser
Felder mit dem gemessenen und Beriicksichtigung der geologischen
Kenntnisse des Untergrundes wird ein Katalogbeispiel ausgewaihlt.
(Oder es wird aus mehreren Katalogbeispielen durch Interpolation
ein passendes Beispiet hergestellt.) Abgesehen von den bei einer
Schiatzungsmethode unvermeidlichen Abweichungen soll die wirk-
liche Quellenverteilung aus dem Katalogbeispiel hervorgehen durch
Multiplikation aller linearen Dimensionen mit einer Konstanten und
der Quelldichte mit einer zweiten Konstanten. Die Vergleichung decs
Katalogfeldes mit dem gemessenen ergibt sofort die beiden Kon-
stanten und damit die Groésse, Tiefe, Dichte usw. der gesuchten
Quellenverteilung resp. einer Quellenverteilung, die eine geometrisch
einfache Niherung an die wirkliche Quellenverteilung darstellt. Da-
mif ist die Schitzung ausgefiihrt.

In vielen Fallen ist mit einer solchen Schitzung das praktische
Ziel der geophysikalischen Sondierung erreicht. Ist dies nicht der
Fall, so wird als zweite Stufe eine genauere Berechnung der
Quellenverteilung angeschlossen. Zuerst wird das vereinfachte Ab-
bild der Quellenverteilung, das auf der ersten Stufe gewonnen wurde,
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durch eine ausreichende Anzahl n von Parametern py, ps,..., Pa
charakterisiert. Liegt z. B. ein homogenes Ellipsoid vor und beab-
sichtigt man im Hinblick auf die geologische Situation und die be-
schrankte Genauigkeit der Messresultate, die Quellenverteilung auch
nach genauerer Berechnung als homogenes. Ellipsoid von gegebener
Quelldichte darzustellen, so sind die rechtwinkligen Koordinaten des

i A - Erdoberflédche £
...................... " Dichte 6,

Dichte 6,

Fig. 3a. Vertikaler Querschnitt durch eine unterirdische Antiklinale,
schematisiert

f ___________________________ E
H oo Dichie O, — 6,
Lo B m,
: 2b =

Fig. 3b. Querschnitt der Quellenverteilung, die der Antiklinalen entspricht und
das Storungsfeld § verursacht

Mittelpunites, die Achsenlingen und die Winkel der Achsen mit
den Koordinatenrichtungen die Parameter, und das Ziel der genauern
Berechnung besteht darin, fiir die durch Schitzung gewonnenen
Parameterwerte p,.p.,... Verbesserungen v,, v,,... zu finden, so
dass die verbesserten Parameterwerte p; -+ v, p2+ Vs, ... eine Quel-
lenverteilung ergeben, deren Feld die bestmogliche Ubereinstim-
mung mit dem gemessenen Feld zeigt. Dass die Wahl der Para-
meter fiir die genauere Berechnung in weitem Masse willkiirlich ist
und daher der Beriicksichtigung der geologischen Situation und des
Umfanges und der Genauigkeit der vorliegenden Messresultate jeden
Spielraum ldsst, der gewiinscht wird, mdége an einem zweiten Bei-
spiel gezeigt werden. Die Schitzung habe fiir die Quellenverteilung
eine Antiklinale ergeben, deren Querschnitt (Fig. 3) ein Kreisseg-
ment mit der Breite 2b und der Héhe h sei. Liegen z. B. nur wenige
an der Erdoberfliche ausgefithrte Messungen vor und ist die Aus-
gangstiefe H, etwa durch Bohrungen, gesichert, so kann man sich
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darauf beschrinken, auch den Querschnitt der genaueren Quellen-
verteilung durch ein Kreissegment mit gleicher Symmetrieachse und
Ausgangstiefe darzustellen, d. h. lediglich b=p; und h=p, als
Parameter einzufithren. Liegt hingegen ein dichteres Netz von Mess-
stationen vor und ist die Ausgangstiefe unsicher, so kann die Voraus-
setzung, der Querschnitt sei ein Kreissegment von gegebener Aus-
gangstiefe, verlassen und der Querschnitt z. B. durch eine grossere
Serie von dquidistanten Ordinaten als Parametern charakterisiert
werden, wie dies in Fig. 4 angedeutet ist. Nunmehr werde auf der
Erdoberfliche ein Netz von Punktea T, T,,... betrachtet, und es
werde vorausgesetzt, dass in jedem dieser Punkte eine bestimmte
Komponente des Feldvektors & (z. B. die Vertikalkomponente) ent-

Fig. 4. Parameter zur Charakterisierung der unterirdischen Antiklinalen

weder direkt gemessen oder aus gemessenen Werten interpoliert
worden sei. Auf alle Fille werde der Wert der beniitzten Kompo-
nente im Punkte T; gemessener Wert (im weitern Sinne) genannt
und mit (G; bezeichnet. Wird nun eine z. B. durch Schitzung gewonnene
Quellenverteilung im Untergrund als Ursache des Feldes § betrach-
tet, so kann man nach § 6 fiir jeden Punkt T; die beniitzte Feld-
komponente bestimmen. Sie werde mit K; bezeichnet. (Wire die
angenommene Quellenverteilung im Untergrund identisch mit der
wirklich vorhandenen, so wire in jedem Punkte T; der Erdober-
fliche G;=K,. In der Regel ist dies aber nicht der Fall. Die Cha-
rakterisierung der Quellenverteilung durch Parameter p,, p,,... und
die Aufsuchung von Verbesserungen v,, v,,... fiir diese Parameter
hat gerade den Sinn, die noch vorhandenen Differenzen G,—K;,zum
Verschwinden zu bringen oder wenigstens nach Moglichkeit zu re-
duzieren.) K; hidngt ab von den Werten der Parameter py, ps, ..., P
durch die die angenommene Quellenverteilung charakterisiert wird,
und werde in eine Taylor-Reihe entwickelt:

Ki(p1+V1,p2+V2,"';pn+vn):Ki(pl:p2:"';pn)

13) | oK o ek K1 otK
+aplvl+epzv_>+ +apnv“+§ apfvl"""
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Die Verbesserungen vy, v,, ... miissen so bestimmt werden, dass
die linke Seite der Gleichung gleich G; wird. Vernachlassigt man
rechts die Glieder héhern als ersten Grades, so wird die Gleichung
linear in den unbekannten Verbesserungen. Die partiellen Differen-
tialquotienten werden ersetzt durch die entsprechenden Differenzen-
quotienten, d. h.

o Ki
¢ Pk
wird ersetzt durch
k) K.
(14) djk = . 8 ’
Uk

wo K;® die Grosse ist, die aus Ki=K; (py, ps, ..., pa) entsteht, wenn
man dem Parameter p, einen willkiirlichen Zuwachs uy erteilt, d. h.
ihn durch py; -+ u, ersetzt, wihrenddem die andern .n—1 Parameter
unverandert bleiben. ay lasst sich deshalb nach den Methoden von
§ 6 ohne weiteres ermitteln. Die Gleichung (13) kann nun nach-
einander fiir die Punkte T,, T,,... aufgestellt werden, was das
Gieichungssystem

Gy — Ki=anvitapve+ - 4 anvn,
(15) G — Ky =ayvi+agve+ -+ + azVn,

)

ergibt. Stellt man diese Gleichungen auf fiir samtliche Punkte T,
in denen die Feldkomponente K; wirklich gemessen wurde, und
nimmt man an, ihre Anzahl sei grisser als n, so sind die plausibelsten
Werte fiir die Unbekannten v, v,,..., v, nach der Methode der klein-
sten Quadrate zu bestimmen.

Beriicksichtigt man, dass auch die verbesserten Parameterwerte
eine Quellenverteilung ergeben, die nur eine mehr oder weniger zu-
treffende Anndherung an die wirklichen Verhaltnisse darstellt, so
wird man meistens auf die Anwendung der Methode der kleinsten
Quadrate verzichten und die Berechnung der Unbekannten bedeu-
tend vereinfachen konnen. Man wird z. B. alle Verbesserungen bis
auf eine kleine Gruppe von m Verbesserungen Null setzen und fiir
diese m Unbekannten mit Hilfe von m giinstig gewahlten Punkten
T; genau m Gleichungen (15) aufstellen und auflésen. (In Fig. 4
z. B. wird die Vertikalkomponente des Feldes in den Punkten T,
T, und T, in erster Linie durch die Ordinaten p,, p, und pg be-
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stimmt. Man erhilt daher fiir diese Ordinate schon gute Verbesse-
rungen, wenn man zunichst die Verbesserungen der iibrigen Ordina-
ten Null setzt.) Das Verfahren wird mit verschiedenen Gruppie-
rungen wiederholt, bis die sukzessiv verbesserten Parameterwerte
eine geniigende Anniherung des berechneten Feldes K; an das ge-
messene G; ergeben. Bei der Wahl der Punkte T; braucht man sich
dabei nicht auf die wirklichen Messtationen zu beschrianken, son-
dern kann auch interpolierte Feldwerte beniitzen. Die Giite der Kon-
vergenz des Verfahrens hangt natiirlich von der Geschicklichkeit in
der Wahl der Parametergruppen und Stationspunkte T; ab. Die
Konvergenz ist aber jederzeit kontrollierbar, da ja in jedem Stadium
des Verfahrens das Feld K; berechnet und mit dem gemessenen G;
verglichen werden kann.

Wahrend auf der Stufe der Schatzung in der Regel die Erdober-
flache horizontal anzunehmen ist, wird auf der Stufe der genauern
Berechnung nach der eben beschriebenen Parameter-Methode die
wirkliche Topographie der Erdoberfliche automatisch mitberiick-
sichtigt. Die Maethode ldsst sich iiberdies in gleicher Weise an-
wenden, wenn mehr als eine Komponente von & gemessen und fiir
die Interpretation beniitzt wird, wie dies z. B. haufig in der Magne-
tik der Fall ist.

Ein Riickblick auf die in diesem Paragraphen beschriebene In-
terpretationsmethode zeigt, dass ihr mathematischer Teil vor allem
auf der Bestimmung der Felder von gegebenen Quellenverteilungen
beruht. Fiir diese Bestimmung stehen nach § 6 gut ausgebaute Me-
thoden zur Verfiigung, womit die praktische Durchfiihrbarkeit der
Interpretationsmethode gesichert ist.

Literatur

—

. P. Frank und R. v. Mises, Die Differential- und Integralgleichungen der
Mechanik und Physik. 2 Bande. Vieweg, Braunschweig, 1930 und 1935.

2. F. Gassmann, Zur numerischen Behandlung von Potentialfeldern in det Geo-
physik. Verhandlungen der Schweiz. Naturf. Gesellschaft, Fribourg
(1945), 117,

3. — Niherungsmethode zur Bestimmung der Quellen von Potentialfeldern
in der Geophysik. Verhandlungen der Schweiz. Naturf. Gesellschaft,
Zurich (1946), 81.

4. F. GassmanN und D. Prosen, Graphische Bestimmung der Wirkung ge-
gebener dreidimensionaler Massen auf die Schwereintensitit. Eclogae
geol. Helvetiae 39 (1047), 199--210.

5. C. A. Hewano, Geophysical exploration. Prentice-Hall, Inc., New York 1940.



352 Fritz Gassmann
0. K. Jung, Diagramme zur Bestimmung der Terrainwirkung fiir Pendel und
Drehwaage und zur Bestimmung der Wirkung ,,zweidimensionaler®
Massenanordnungen. Zeitschrift fiir Geophysik II1 (1927), 201—212,
— Direkte Methoden zur Bestimmung von Stérungsmassen aus Anomalien

1.
der Schwereintensitit. Zeitschrift {iir Geophysik XIII (1937), 45—67.

8. O. D. KeLLoag, Foundations of potential theory. Springer, Berlin 1920,

9. A. E. H. Love, Lehrbuch der Elastizitat. Deutsch von A. Timpe. Teubner,
Leipzig 1907.

10. A. NirroLpT, Verwertung magnetischer Messungen zur Mutung. Springer,
Berlin 1930.

11. H. ReicH und R. v. ZwerGer, Tascheubuch der angewandten Geophysik.

Akad. Verlagsgesellschaft, Leipzig 1943.

Eingegangen: Dezember 1947,



	Auswertung geophysikalischer Sondierungen mit Hilfe von Potentialfeldern

