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Auswertung geophysikalischer Sondierungen
mit Hilfe von Potentialfeldern

Von Fritz Gassmann, Zürich

Mitteilung Nr. 9

aus dem Institut für Geophysik der Eidg. Technischen Hochschule

Summary

The present paper deals with those methods of geophysical prospecting
which consist in the measurement and interpretation of potential fields. Its
aim is to set out briefly and coherently the fundamental principles governing
these methods.

In § 1 the methods of geophysical prospecting are divided, according
to the mathematical instruments involved, into two main groups, viz., the
potential field methods and the dynamic methods. In §§ 2 to 4 some basic
facts relating to potential fields are assembled. § 5 contains the keys and

examples relating to the most important spheres of application of the potential
theory in geophysics. § 6 gives a survey of the methods used to determine
the fields of disturbing bodies located underground. In § 7 the principles are
discussed by which measurements of potential fields are to be interpreted, i. e.,
by which the disturbing underground bodies can be determined, with all the
accuracy called for by the problem, by measurements taken at the surface of
the earth.

§ 1. Geophysikalische Sondiermethoden

Ungleichmässigkeiten im geologischen Aufbau des Untergrundes
können sich physikalisch bis an die Erdoberfläche bemerkbar

machen. Z. B. äussert sich ein Salzstock, der weniger dicht ist als
die umgebenden Gesteine, in Störungen der Schwerkraft, ein
Eisenerzkörper in Störungen des Erdmagnetismus, eine Verwerfung lenkt
Erdbebenwellen ab usw. Es ist deshalb möglich, durch physikalische
Messungen an der Erdoberfläche auf den geologischen Aufbau im
Untergrund und insbesondere auf Lage, Grösse und Beschaffenheit
von nutzbaren mineralischen Lagerstätten zu schliessen. Hinsichtlich

des erforderlichen mathematischen Apparates lassen sich dabei



336 Fritz Gassinann

die Soiidiermethoden, von unbedeutenden Ausnahmen abgesehen, in
zwei Gruppen einteilen, die man summarisch als statische und
dynamische bezeichnen kann. Die dynamischen Methoden handeln von
Schwingungen und Wellenausbreitung vornehmlich elastischer und
elektromagnetischer Natur und führen auf. partielle Differentialgleichungen

vom hyperbolischen Typus. Die statischen Methoden
handeln von zeitlich konstanten oder langsam veränderlichen
physikalischen Zuständen, die sich mit Hilfe des Potentialbegriffs
beschreiben lassen. Diese statischen Methoden bilden eine Vielfalt
von Theorien und Verfahren, in denen die leitenden und verbindenden
Gedanken oft nicht leicht zu erkennen sind. In der vorliegenden
Arbeit sollen daher die hauptsächlichsten Gesichtspunkte der statischen
Methoden im Zusammenhang kurz dargestellt werden. Insbesondere
soll gezeigt werden, wie die geophysikalischen Messungen, die sich
auf den Potentialbegriff stützen, systematisch mit jeder Genauigkeit,
die das Material überhaupt zulässt, ausgewertet werden können.

(Lit. 2 und 3 sind vorläufige Mitteilungen zur vorliegenden Arbeit.)

2. Potentialfelder

Zur nähern Orientierung über Potentialfelder und ihre
physikalischen Anwendungsgebiete mögen einschlägige Lehrbücher zu
Rate gezogen werden, wie etwa Lit. 8 und 1. Denkt man sich den
Raum oder einen Teil davon als Träger eines physikalischen Zustan-
des, so nennt man ihn ein Fei d. Ist in jedem Punkte des Feldes der
Zustand durch eine einzige Zahl H charakterisiert, wie z. B. die'

Temperatur in der Atmosphäre, so ist das Feld skalar. Ist hingegen
zur Charakterisierung neben einer Zahl noch eine Richtungsangabe
nötig, so ist das Feld vektoriell. Das Geschwindigkeitsfeld der
Atmosphäre ist z. B. ein Vektorfeld, weil zu seiner Beschreibung neben
der Windstärke auch die Windrichtung gehört.

Werden die Punkte des Raumes durch rechtwinklige Koordinaten
x, y, z festgelegt, so ist das skalare Feld durch eine skalare
Ortsfunktion H(x, y, z) gegeben. Sind cx, ev und e, die Einheitsvektoren

parallel zu den Koordinatenachsen, so ist das Vektorfeld
gegeben durch

(1) $ Kx ex + Ky ey + Kz ez,

wobei Kx, Kv und Kz, die rechtwinkligen Komponenten von drei
skalare Ortsfunktionen sind.
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Es gibt eine spezielle Klasse von Vektorfeldern $, für deren

Beschreibung ebenfalls nur eine skalare Ortsfunktion U (x, y, z)

notwendig ist, aus der sich S durch Gradientbildung herleiten lässt,
also

W
cU K — K — ^(2) Kx _ 'Ky - ~ 77 ' Kz ~ ~ dl '

oder zusammengefasst £ =— grad U.

U heisst das Potential von SU, und $ ist ein Potentialfeld. Ist
z.B. U wiederum die Temperatur, so gibt $ Richtung und Grösse
des Temperaturgefälles an.

§ 3. Quellen von Potentialfeldern

Für irgendein Vektorfeld erhält man ein anschauliches Modell,
wenn man sich S als Strömungsgeschwindigkeit einer inkompres-
sibeln Flüssigkeit vorstellt. Es ist dabei allerdings unter Umständen
nötig, an gewissen Stellen Flüssigkeit ständig entstehen, an andern
solche verschwinden zu lassen, d. h. Quellen positiver und negativer
Ergiebigkeit anzunehmen. Ist z. B. S eine punktförmige Quelle, die
gleichmässig pro Sekunde Q m3 Flüssigkeit produziert, und enthält
der Raum keine andern Quellen, so strömt die Flüssigkeit radial nach

aussen ab. Die Geschwindigkeit in einem Punkte T im Abstände r
von S beträgt

P) » 4^'
wo r der Vektor ST und Q die Ergiebigkeit der Quelle ist. Dieses
Strömungsfeld besitzt das Potential

(4) U ß-v ' 4ji r

Kompliziertere Felder lassen sich aufbauen durch Annahme von
mehreren Punktquellen oder durch stetige Verteilung von Quellen
auf gegebenen Kurven, Flächen oder in dreidimensionalen Gebieten.
Das Potential eines solchen Feldes ist einfach die Summe bzw. das

Integral der Potentiale der einzelnen Punktquellen, aus denen man
sich die ganze Quellenverteilung zusammengesetzt denkt. Ist z. B.

ein dreidimensionales Quellgebiet G gegeben und die Ergiebigkeit
0 pro Volumeneinheit Quelldichte) in jedem Punkte S (|, r;,t)
dieses Gebietes, so hat man in (4) Q durch 0dG 0 • df d/y dt zu er-

Schweiz. Min. Pelr. Mitt., Bd. XXVIII, Heft 1, 1948 22
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setzen und über G zu integrieren. Das Potential des Feldes ist dann

(5, U(x.y.Z) jffgg-^»d/d^,
* Ö*

r + V (x — i)2 + (y — rty- + (z - :y

(siehe auch Fig. 1). Für die numerische Behandlung von Potentialfeldern

ist die Tatsache wichtig, dass für jedes beliebig gegebene
Potentialfeld eine Quellenverteilung gefunden werden kann, durch
die das Feld erzeugt wird.

Das Schwerefeld der Erde ist ein Potentialfeld, dessen Quellen
im wesentlichen die anziehenden gravitierenden) Massen sind,
aus denen der Erdkörper aufgebaut ist. Die Quellen des
elektrostatischen Feldes sind die elektrischen Ladungen. Die statischen
Methoden der angewandten Geophysik beruhen auf der Ausmessung von
Potentialfeldern an der Erdoberfläche und der Berechnung der
zugehörigen Quellenverteilungen im Erdinnern. Mit statischen Methoden

auffindbare mineralische Lagerstätten sind nichts anderes als
solche Quellenverteilungen.

Magnetisierte Körper, wie z. B. Eisenerzlager, sind Quellen von
Magnetfeldern. Sie haben die Eigentümlichkeit, dass ihre totale
Ergiebigkeit stets Null ist. Als Beispiel seien zwei Punktquellen mit
entgegengesetzt gleicher Ergiebigkeit + Q und — Q im Abstände s

voneinander betrachtet. Die Verbindungsgerade der beiden Quellen
ist die Achse des Quellenpaares,

(6) h s Q

ist sein skalares Moment. Lässt man, ohne die Achse zu verändern,
s zu Null abnehmen und dafür Q so zunehmen, dass h konstant bleibt,
so entsteht die Doppelquelle, auch Dipol genannt. Ihr Moment f)
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ist ein Vektor in Richtung der Achse mit dem Betrag h. Das Feld
H des Dipols besitzt im Punkte T das Potential

(7) U
4 n r

(siehe auch Fig. 2). Beispielsweise ist ein kurzer Magnetstab
angenähert ein magnetischer Dipol.

Sind in einem dreidimensionalen Gebiet Doppelquellen stetig
verteilt, so ist dieses Gebiet polarisiert. Die Polarisation (im
magnetischen Falle Magnetisierung genannt) ist bekannt, wenn für jeden
Punkt des Gebietes die Doppelquellendichte 9Î, d.h. das Dipolmoment

der Volumeneinheit, gegeben ist. Das Potential des Feldes
erhält man durch Zerlegung des Gebietes in elementare Dipole und
Integration aus (7). Z.B. ist ein Eisenerzlager ein Gebiet mit stetig
verteilten magnetischen Dipolen.

Häufig kommen im Untergrund Quellenverteilungen vor, die
in einer bestimmten horizontalen Richtung sehr langgestreckt sind,
wie z. B. unterirdische Antiklinalen, Synklinalen, Verwerfungen usw.
Befindet man sich nicht zu nahe am einen Ende einer solchen Quellen-
verteilung, so sind die Feldvektoren ® senkrecht zum Streichen, d.h.
zur Achse der Quellenverteilung. Sie liegen also in den vertikalen
Querschnittsebenen, und in diesen (zueinander parallelen) Ebenen
sind einerseits die Vektorfelder S zueinander kongruent, anderseits
auch die Querschnitte durch die Quellenverteilung. Es ist daher
zweckmässig, die Quellenverteilung als einen in streichender Richtung

unendlich langen Zylinder zu betrachten, dessen Quelldichte auf
jeder Geraden in Richtung des Streichens konstant ist. Eine solche
zylindrische Quellenverteilung mit dem zugehörigen Feld $ ist ein-
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deutig bestimmt durch einen Querschnitt. Sie wird aus diesem Grunde
oft „zweidimensional" genannt. Wie nun das Potential (5) einer
dreidimensionalen Quellenverteilung aus einem elementaren Potential,

nämlich dem Quellpunktpotential (4), durch Integration gewonnen

wird, so lässt sich auch das Potential der zylindrischen
Quellenverteilung aus einem elementaren Potential bestimmen. Dieses
elementare Potential ist das sogenannte logarithmische Potential einer
homogenen (d.h. überall gleich dicht mit Quellen besetzten), unendlich

langen Quellengeraden mit der Ergiebigkeit l pro Längeneinheit.
Im Abstände r von der Geraden beträgt es

(8) u AlnI.
Ist ferner eine zylindrische Doppelquellenverteilung gegeben, d. h.

ist der Zylinder quer zum Streichen so polarisiert, dass die
Doppelquellendichte längs jeder Geraden in Richtung des Streichens
konstant ist, so lässt sich sein Potential durch Integration aus dem
Potential der homogenen, unendlich langen Doppelquellengeraden
bestimmen. Ist b das Dipolmoment der Geraden pro Längeneinheit,
T ein Punkt des Raumes ausserhalb der Geraden, T' der Fusspunkt
des Lotes von T auf die Gerade, TT r, |r| r, so ist das Potential

der Doppelgeraden im Punkte T

(9) U(T) ^-^.4.71 r

Es gibt demnach 4 elementare Quellgebilde, nämlich den

Quellpunkt (4), die Doppelquelle (7), die Quellgerade (8) und die
Doppelgerade (9), aus deren Potentialen das Potential irgend einer
komplizierteren Quellenverteilung durch Summation, bzw. Integration

bestimmt wird. Die vier elementaren Quellgebilde sind noch

in einem anderen Sinne fundamental. Ist nämlich z. B. eine beliebige

dreidimensionale Quellenverteilung mit dem Potential (5)
gegeben und lässt man den Punkt T immer weiter vom Quellgebiet
wegrücken, so nähert sich das Potential (5) immer mehr dem
Potential (4) eines einfachen Quellpunktes, dessen Ergiebigkeit Q

gleich der totalen Ergiebigkeit des Quellgebietes ist. Ganz entsprechend

nähert sich bei wachsender Entfernung das Potential eines

beliebig polarisierten dreidimensionalen Gebietes dem Potential (7)
eines Dipols, das Potential einer zylindrischen Quellenverteilung
dem Potential (8) der Quellengeraden und das Potential eines

querpolarisierten Zylinders dem Potential (9) der Doppelgeraden.
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In den Anwendungen sind homogene Quellgebiete, d.h.
solche mit konstanter Quelldichte, besonders häufig. Ein gegebenes
dreidimensionales oder zylindrisches Gebiet kann dabei entweder
mit einfachen Quellen von der konstanten Dichte 0 oder mit Doppelquellen

von der konstanten Dichte 9Î belegt werden. Zwischen dem
Feld der einfachen Belegung und dem Potential U2 der
Doppelbelegung besteht dabei ein einfacher, in der Praxis oft benützter
Zusammenhang. Es ist nämlich

(10) U2

Nach § 1 wird bei geophysikalischen Sondiermethoden das
Feld S in der Regel ausserhalb der Quellgebiete benützt. In
quellenfreien Gebieten ist div ® 0, was nach (2) für U die La-
place'sche Differentialgleichung

<u> JU S + p + ^=0
ergibt. U heisst in diesem Falle eine harmonische Funktion
und kann mit Hilfe der vielseitigen und weittragenden Methoden
behandelt werden, die in der Mathematik für solche Funktionen
entwickelt worden sind.

§ 4. Sekundärfelder

Es kann sein, dass der Raum, in dem ein Vektorfeld $ besteht,
von Materie erfüllt ist und dass $ in diesem Raum ein zweites
Vektorfeld g zur Folge hat. S1 sei Primär-, $ Sekundärfeld genannt.
Die Art der Abhängigkeit des Feldes $ von S ist eine Eigenschaft
der Materie und kann sehr verwickelt sein. Im Falle des Ferromagne-
tismus z. B. (Bedeutung von S und in diesem Falle siehe §, 5d))
ist g- nicht einmal eine eindeutige Funktion von $. In den meisten
in den Anwendungen vorkommenden Fällen ist es jedoch zulässig,
die rechtwinkligen Komponenten von g als lineare Funktionen der
rechtwinkligen Komponenten von $ anzunehmen, also

Fx Fxx Kx + ryx Ky + rzx Kz,
(12) Fy rxy KX + ryy Ky + Fz y KZ

Fz rxz Kx + ryz Ky + rzz Kz,
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oder in üblicher Abkürzung 5=(/')g zu schreiben. Die neun F-
Koeffizienten von (12), Tensorkomponenten genannt, können im
Räume von Punkt zu Punkt variieren. In einem homogenen Kristall
sind sie konstant. 1st die Materie isotrop, so ist rxx ryy
rzz T, währenddem die andern sechs Tensorkomponenten Null
sind. In diesem Falle ist g- r^, d. h. in jedem Punkte des Feldes
hat 5 die gleiche Richtung wie $, und die beiden Vektoren sind
zueinander proportional.

§ 5. Potentialfelder in der Geophysik

Durch die neutrale Formulierung der in den vorstehenden §§ 1

bis 4 aufgeführten Tatsachen der Potentialtheorie soll ausgedrückt
werden, dass die mathematische Behandlung der Potentialfelder
unabhängig von der Art ihrer physikalischen Verwirklichung ist. Eine
in irgendeinem physikalischen Anwendungsgebiet gefundene
potentialtheoretische Tatsache oder Methode lässt sich daher auf alle
andern Anwendungsgebiete der Potentialtheorie übertragen. Im
folgenden seien für die wichtigsten in der Geophysik vorkommenden
Anwendungsgebiete die Schlüssel zusammengestellt. Sie sollen den

Zugang zur potentialtheoretischen Behandlung und den Übergang
von einem Anwendungsgebiet auf ein anderes erleichtern. Den
Schlüsseln sind in Stichworten Anwendungen in der Geophysik
beigefügt.

a) Hydrodynamik
Q Ergiebigkeit einer Punktquelle Flüssigkeitsproduktion in

cm3
der Zeiteinheit, z. B. in —sec

$ Strömungsgeschwindigkeit bei wirbelfreier Strömung, z.B.
cm

in
sec

Grundwasserströmungen, Meeresströmungen, Luftströmungen.

b) Gravimetrik
m gravitierende anziehende) Punktmasse in g.

g
q Dichte einer dreidimensionalen, gravitierenden Maße ,n

cm3 -

cm3
k0 6,67.10"8 „ universelle Gravitationskonstante.

g sec2
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Q — 4 7i k0 m
© 4 TT ko o.
$ Qravitationsbeschleunigung.

Schwerefeld der Erde, gravimetrische Sondiermethoden.

c) Elektrostatik
14 7i bei nicht rationaler Schreibweisel

p — c \ Massystemfaktor.1

J1 bei rationaler Schreibweise J

£o Dielektrizitätskonstante des Vakuums Massystemfaktor.

§ elektrische Ladung.
P

~ elektrische Ladungsdichte.

— $ elektrische Feldstärke.
«o

i- 9Î dielektrische Polarisation
P

5 $ + 9? dielektrische Verschiebung.

r relative Dielektrizitätskonstante der Materie.

Luftelektrizität, Gewitter, Theorie der Ionisationskammern und
Zählrohre für Radioaktivitätsmessungen.

d) Magneto statik
p wie im vorstehenden Abschnitt.
Ho Permeabilität des Vakuums Massystemfaktor.

magnetische Polstärke.

Ä „ Feldstärke.
Ho

^ 9Î Magnetisierung.

g $ + 91 magnetische Induktion

r relative magnetische Permeabilität der Materie.

Magnetfeld der Erde, magnetische Sondiermethoden, Theorie
der Stabmagnete und der magnetischen Messinstrumente.
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e) Elektrisches Gleichstromfeld in homogener,
is otroper Umgebung

E Ergiebigkeit der Stromquelle Stromstärke).

S elektrische Feldstärke.

r spezifische Leitfähigkeit eines Leiters.

g Stromdichte.

Natürliche Erdströme, geoelektrische Gleichstrommethoden.

f) Wärmeströmung in homogener, isotroper
Umgebung

Kai
E Ergiebigkeil der Wärmequelle, z.B. in —.
Q r
U Temperatur, z.B. in C° (Celsiusgrad).

C°
S Temperaturgefälle, z.B. in

Kair Wärmeleitfähigkeit, z.B. in -~n.sec cm C°

$ Vektor der Wärmestörung, z.B. in i.s ec om

Temperatur und Wärme im Erdinnern, geothemische
Sondiermethoden.

g) Elastizitätslehre (man vgl. dazu z.B. Lit. 9)

Die kleinen Deformationen eines vollkommen elastischen,
homogenen, isotropen Körpers, der sich unter dem Einfluss von
Oberflächenkräften und von räumlich und zeitlich konstanten Massenkräften

im Gleichgewicht befindet, lassen sich mit Hilfe der
Potentialtheorie behandeln, weil eine ganze Reihe von mit den
Deformationen zusammenhängenden Funktionen harmonisch sind.

p xex + yey + zez.
§ sx ex + sy ey + sz ez Verschiebungsvektor.
P Spannungstensor.
Sp= Summe der hauptspannungen
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E Verzerrungstensor.
v — Poisson'sche Elastizitätskonstante.

Folgende Funktionen sind harmonisch: div §, Sp, die Komponenten
div §

der Vektoren rot », AS, § -f- ^—2~) ^ Un<^ ^ornPonen^en ^er

Tensoren JP und JE. (Die Komponenten von A§ sind Asx, Asy und
Asz, entsprechend sind die Komponenten der beiden Tensoren
definiert.)

Elastische Deformationen im Erdinnern, in der Erdkruste, im
Baugrund.

§ 6. Bestimmung der Felder von Quellenverteilungen

Eine geophysikalische Sondierung mit Hilfe eines Potentialfeldes

dient in der Regel der genauem Untersuchung einer ganz
bestimmten Lagerstätte oder tektonischen Situation, deren Vorhandensein

vom Geologen vermutet wird. Damit die Sondierung
zweckmässig angelegt werden kann, ist es nötig, das zu vermessende
physikalische Feld an der Erdoberfläche aus der vermuteten
Quellenverteilung im Untergrund wenigstens in grossen Zügen zum voraus
zu berechnen. Ist die Sondierung durchgeführt, so besteht die
Interpretation der Resultate in der genauem Ermittlung der Quellen-
verteilung im Untergrund. Auch diese Aufgabe lässt sich, wie in
§ 7 gezeigt werden soll, nur lösen durch Berechnung der Felder
von bestimmt vorgegebenen Quellenverteilungen. Solche Berechnungen

bilden daher vom Anfang bis zum Schluss die mathematische

Grundlage des Sondierverfahrens.
Hat die Quellenverteilung eine mathematisch definierte Form

und Dichte, so ist das Feld durch Integration und Gradientbildung
(man vergl. dazu die Gleichungen (5) und (2)) zu ermitteln. In
der Literatur sind für zahlreiche Quellenverteilungen, wie homogene
Strecken, Kugeln, Kreiszylinder, Ellipsoïde, Quader usw. die auf
diesem Wege gewonnenen Felder angegeben. (Man vgl. u. a. Lit. 8,

5, 11, 7.)
Die Berechnung von komplizierteren Quellengebieten lässt sich

mit Hilfe der elementaren Quellgebilde (siehe § 3) angenähert
durchführen. Man zerlegt nämlich das Quellengebiet in Teilgebiete
und ersetzt zur Berechnung des Feldes jedes Teilgebiet durch das

zugehörige elementare Quellgebilde. Auf diese Weise lässt sich

offenbar, im Hinblick auf die in § 3 erwähnte fundamentale Bedeu-
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tung der Potentiale der elementaren Quellgebilde als Grenzpotentiale,

durch entsprechend feine Einteilung des Quellengebietes jeder
gewünschte Grad von Annäherung erreichen. Die Berechnung wird
sehr erleichtert durch tabellierte Hilfsfunktionen für die Felder der
elementaren Quellgebilde. (Man vgl. dazu Lit. 10 und 7.)

Hat die Quellenverteilung eine unregelmässige, etwa graphisch
durch Höhenkurven oder Vertikalschnitte gegebene Form, so eignet
sich zur Ermittlung des Feldes ausser der eben besprochenen Zer-
ilegungsmethode auch eine mechanische oder graphische Methode.
(Siehe u. a. Lit. 5, 6, 4.)

§ 7. Interpretation geophysikalischer Messungen an Potentialfeldern

Die Interpretation besteht in der Ermittlung der unterirdischen
QuellenVerteilung auf Grund der Resultate der Vermessung des

zugehörigen Potentialfeldes an der Erdoberfläche. In der Regel wird
allerdings nicht der gesamte Feldvektor $ gemessen, sondern nur
eine oder zwei Komponenten, z. B. in der Gravimetrik die
Vertikalkomponente, in der Magnetik die Vertikalkomponente oder die
NS-Kompo.nente oder beide. Die Messung beschränkt sich ferner
auf einzelne Stationspunkte. Für dazwischen liegende Punkte der
Erdoberfläche ist, wenn nötig, die betreffende Feldkomponente durch
Interpolation angenähert zu bestimmen ; auch in den Stationspunkten

selbst sind die Resultate naturgemäss mit unvermeidlichen
Messfehlern behaftet.

Es sei aber einmal angenommen, der Feldvektor $ sei für alle
Punkte der Erdoberflache und überdies für den ganzen Raum ausserhalb

der Erdoberfläche vollständig und fehlerlos bekannt. Trotzdem
liesse sich daraus die Quellenverteilung im Untergrund nicht
eindeutig bestimmen. Die Potentialtheorie lehrt, dass es stets unendlich

viele Quellenverteilungen gibt, deren Felder an der Erdoberfläche

und im Aussenraum identisch sind. Als einfachstes Beispiel
sei eine homogene Kugel genannt. Ihr Feld ist ausserhalb der Kugel
das gleiche wie das Feld eines Quellpunktes, der sich im Mittelpunkt
der Kugel befindet und dessen Ergiebigkeit gleich der gesamten
Ergiebigkeit der Quellkugel ist. Von einer sich im Untergrund befindlichen

homogenen Kugel lässt sich daher durch Messungen an der
Erdoberfläche wohl der Mittelpunkt und die Gesamtmasse bestimmen,

nicht aber ihr Radius. Die Aufgabe hat daher unendlich viele
Lösungen entsprechend der unendlichen Anzahl der möglichen
Radien und Dichten.
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Wenn sich daher die Quellenverteilung mathematisch nicht
eindeutig bestimmen lässt, so liegt das grundsätzlich nicht an der
Tatsache, dass das Feld durch Messungen nur lückenhaft und ' mit
Fehlern behaftet ermittelt werden kann, und es ist demnach ein
aussichtsloses Unterfangen, die Eindeutigkeit der Lösung durch
Vermehrung und Verfeinerung der Messungen und durch den Ausbau des

mathematischen Apparates erzwingen zu wollen.
Die Vielfalt der Lösungsmöglichkeiten kann nur eingeschränkt

werden durch zusätzliche Hypothesen über die Quellenverteilung.
Diese Hypothesen fussen auf den Kenntnissen, die der Geologe in

jedem einzelnen Falle vom Untergrund besitzt und die ihm gestatten,
die Vielfalt der mathematisch möglichen Lösungen mehr oder
weniger einzuschränken. In günstigen Fällen kann auf diese Weise
die Quellenverteilung mit einer an Sicherheit grenzenden Wahrscheinlichkeit

ermittelt werden.
Bei der Bestimmung der Quellenverteilung sollen zwei Stufen

unterschieden werden, nämlich eine Stufe der Schätzung und eine
Stufe der genauem Berechnung. Die Schätzung einer
Quellenverteilung wird am besten anhand eines Kataloges ausgeführt, der
nach den Methoden von § 6 erstellt werden kann und für eine Reihe

von geometrisch einfachen Quellenverteilungen die zugehörigen Felder

in Form von Zahlentabellen, graphischen Darstellungen oder
Kurvenplänen enthält (Lit. 11, 5, 10, 7). Durch Vergleichung dieser
Felder mit dem gemessenen und Berücksichtigung der geologischen
Kenntnisse des Untergrundes wird ein Katalogbeispiel ausgewählt.
(Oder es wird aus mehreren Katalogbeispielen durch Interpolation
ein passendes Beispiel hergestellt.) Abgesehen von den bei einer
Schätzungsmethode unvermeidlichen Abweichungen soll die wirkliche

Quellenverteilung aus dem Katalogbeispiel hervorgehen durch
Multiplikation aller linearen Dimensionen mit einer Konstanten und
der Quelldichte mit einer zweiten Konstanten. Die Vergleichung des

Katalogfeldes mit dem gemessenen ergibt sofort die beiden
Konstanten und damit die Grösse, Tiefe, Dichte usw. der gesuchten
Quellenverteilung resp. einer Quellenverteilung, die eine geometrisch
einfache Näherung an die wirkliche Quellenverteilung darstellt. Damit

ist die Schätzung ausgeführt.
In vielen Fällen ist mit einer solchen Schätzung das praktische

Ziel der geophysikalischen Sondierung erreicht. Ist dies nicht der
Fall, so wird als zweite Stufe eine genauere Berechnung der
Quellenverteilung angeschlossen. Zuerst wird das vereinfachte
Abbild der Quellenverteilung, das auf der ersten Stufe gewonnen wurde.
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durch eine ausreichende Anzahl 11 von Parametern px, p2,..., pn
charakterisiert. Liegt z. B. ein homogenes Ellipsoid vor und
beabsichtigt man im Hinblick auf die geologische Situation und die
beschränkte Genauigkeit der Messresultate, die Quellenverteilung auch
nach genauerer Berechnung als homogenes. Ellipsoid von gegebener
Quelldichte darzustellen, so sind die rechtwinkligen Koordinaten des

Erdoberfläche E

Fig. 3a. Vertikaler Querschnitt durch eine unterirdische Antiklinale,
schematisiert

"f c

î'j
> 2b -1

Fig. 3b. Querschnitt der Quellenverteilung, die der Antiklinalen entspricht und
das Störungsfeld S verursacht

Mittelpunktes, die Achsenlängen und die Winkel der Achsen mit
den Koordinatenrichtungen die Parameter, und das Ziel der genauem
Berechnung besteht darin, für die durch Schätzung gewonnenen
Parameterwerte p^.p,,... Verbesserungen v1( v2,... zu finden, so
dass die verbesserten Parameterwerte Px + Vj, p2 + v2,... eine

Quellenverteilung ergeben, deren Feld die bestmögliche Übereinstimmung

mit dem gemessenen Feld zeigt. Dass die Wahl der
Parameter für die genauere Berechnung in weitem Masse willkürlich ist
und daher der Berücksichtigung der geologischen Situation und des

Umfanges und der Genauigkeit der vorliegenden Messresultate jeden
Spielraum lässt, der gewünscht wird, möge an einem zweiten
Beispiel gezeigt werden. Die Schätzung habe für die Quellenverteilung
eine Antiklinale ergeben, deren Querschnitt (Fig. 3) ein Kreissegment

mit der Breite 2b und der Höhe h sei. Liegen z. B. nur wenige
an der Erdoberfläche ausgeführte Messungen vor und ist die
Ausgangstiefe H, etwa durch Bohrungen, gesichert, so kann man sich
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darauf beschränken, auch den Querschnitt der genaueren Quellen-
verteilung durch ein Kreissegment mit gleicher Symmetrieachse und

Ausgangstiefe darzustellen, d. h. lediglich b px und h p2 als
Parameter einzuführen. Liegt hingegen ein dichteres Netz von
Messstationen vor und ist die Ausgangstiefe unsicher, so kann die
Voraussetzung, der Querschnitt sei ein Kreissegment von gegebener
Ausgangstiefe, verlassen und der Querschnitt z. B. durch eine grössere
Serie von äquidistanten Ordinaten als Parametern charakterisiert
werden, wie dies in Fig. 4 angedeutet ist. Nunmehr werde auf der
Erdoberfläche ein Netz von Punkten T1, T2,... betrachtet, und es
werde vorausgesetzt, dass in jedem dieser Punkte eine bestimmte
Komponente des Feldvektors $ (z. B. die Vertikalkomponente) ent-

Fig. 4. Parameter zur Charakterisierung der unterirdischen Antiklinalen

weder direkt gemessen oder aus gemessenen Werten interpoliert
worden sei. Auf alle Fälle werde der Wert der benützten Komponente

im Punkte Tj gemessener Wert (im weitern Sinne) genannt
und mit Gj bezeichnet. Wird nun eine z. B. durch Schätzung gewonnene
Quellenverteilung im Untergrund als Ursache des Feldes $ betrachtet,

so kann man nach § 6 für jeden Punkt Tj die benützte
Feldkomponente bestimmen. Sie werde mit Kj bezeichnet. (Wäre die
angenommene Quellen Verteilung im Untergrund identisch mit der
wirklich vorhandenen, so wäre in jedem Punkte T; der Erdoberfläche

Gj=Kj. In der Regel ist dies aber nicht der Fall. Die
Charakterisierung der Quellenverteilung durch Parameter p1( p2,... und
die Aufsuchung von Verbesserungen vx, v2,... für diese Parameter
hat gerade den Sinn, die noch vorhandenen Differenzen Gj—Kj.zum
Verschwinden zu bringen oder wenigstens nach Möglichkeit zu
reduzieren.) Kj hängt ab von den Werten der Parameter p1; p2,..., pn,
durch die die angenommene Quellenverteilung charakterisiert wird,
und werde in eine Taylor-Reihe entwickelt:

Ki (pi + vi, p2 + v2, • • • p„ + v„) Kj (pi, p2, • • • p„)

(13) <5Kj öKj ôKi 1 o2Kj
+ V1 + Vo 4- • • • + — V„ + ^ ---j- v* + • • •

c'Pi r P2 dp„ 2 op\
1
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Die Verbesserungen Vj, v2, müssen so bestimmt werden, dass

die linke Seite der Gleichung gleich G; wird. Vernachlässigt man
rechts die Glieder höhern als ersten Grades, so wird die Gleichung
linear in den unbekannten Verbesserungen. Die partiellen
Differentialquotienten werden ersetzt durch die entsprechenden Differenzenquotienten,

d. h.

r;K,
t?Pk

wird ersetzt durch

KiW —Ki
(14) aik

uk

wo K|(k) die Grösse ist, die aus Kj Ki (p1, p2,..., pn) entsteht, wenn
man dem Parameter pk einen willkürlichen Zuwachs uk erteilt, d.h.
ihn durch pk + uk ersetzt, währenddem die andern n—1 Parameter
unverändert bleiben. aik lässt sich deshalb nach den Methoden von
§ 6 ohne weiteres ermitteln. Die Gleichung (13) kann nun
nacheinander für die Punkte T3, T2,... aufgestellt werden, was das

Gleichungssystem

Gl — Kl SllVi -f- 3i2V2 + • • + ainvn,
(15) G2 — K2 a2ivi + a22v2 + • • + a2„vn,

ergibt. Stellt man diese Gleichungen auf für sämtliche Punkte Th
in denen die Feldkomponente Ki wirklich gemessen wurde, und
nimmt man an, ihre Anzahl sei grösser als n, so sind die plausibelsten
Werte für die Unbekannten v,, v2,..., v„ nach der Methode der kleinsten

Quadrate zu bestimmen.
Berücksichtigt man, dass auch die verbesserten Parameterwerte

eine Quellenverteilung ergeben, die nur eine mehr oder weniger
zutreffende Annäherung an die wirklichen Verhältnisse darstellt, so

wird man meistens auf die Anwendung der Methode der kleinsten
Quadrate verzichten und die Berechnung der Unbekannten bedeutend

vereinfachen können. Man wird z. B. alle Verbesserungen bis
auf eine kleine Gruppe von m Verbesserungen Null setzen und für
diese m Unbekannten mit Hilfe von m günstig gewählten Punkten
Tj genau m Gleichungen (15) aufstellen und auflösen. (In Fig. 4

z.B. wird die Vertikalkomponente des Feldes in den Punkten Tj,
Tr, und Tg in erster Linie durch die Ordinaten p j, pA und' p6 be-
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stimmt. Man erhält daher für diese Ordinate schon gute Verbesserungen,

wenn man zunächst die Verbesserungen der übrigen Ordina-
ten Null setzt.) Das Verfahren wird mit verschiedenen Gruppierungen

wiederholt, bis die sukzessiv verbesserten Parameterwerte
eine genügende Annäherung des berechneten Feldes Kj an das

gemessene Gj ergeben. Bei der Wahl der Punkte Tj braucht man sich
dabei nicht auf die wirklichen Messtationen zu beschränken,
sondern kann auch interpolierte Feldwerte benützen. Die Güte der
Konvergenz des Verfahrens hängt natürlich von der Geschicklichkeit in
der Wahl der Parametergruppen und Stationspunkte Tf ab. Die
Konvergenz ist aber jederzeit kontrollierbar, da ja in jedem Stadium
des Verfahrens das Feld Ki berechnet und mit dem gemessenen Gf

verglichen werden kann.
Während auf der Stufe der Schätzung in der Regel die Erdoberfläche

horizontal anzunehmen ist, wird auf der Stufe der genauem
Berechnung nach der eben beschriebenen Parameter-Methode die
wirkliche Topographie der Erdoberfläche automatisch mitberücksichtigt.

Die Methode lässt sich überdies in gleicher Weise
anwenden, wenn mehr als eine Komponente von St' gemessen und für
die Interpretation benützt wird, wie dies z. B. häufig in der Magne-
tik der Fall ist.

Ein Rückblick auf die in diesem Paragraphen beschriebene

Interpretationsmethode zeigt, dass ihr mathematischer Teil vor allem
auf der Bestimmung der Felder von gegebenen Quellenverteilungen
beruht. Für diese Bestimmung stehen nach § 6 gut ausgebaute
Methoden zur Verfügung, womit die praktische Durchführbarkeit der
Interpretationsmethode gesichert ist.
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