Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 28 (1948)

Heft: 1: Festschrift P. Niggli zu seinem 60. Geburtstag den 26. Juni 1948

Artikel: La differenziazione magmatica nei Vulcani Sabatini (Lazio)

Autor: Scherillo, Antonio

DOI: https://doi.org/10.5169/seals-23020

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La differenziazione magmatica nei Vulcani Sabatini (Lazio)

di Antonio Scherillo, Napoli

Come è noto, una delle caratteristiche del Lazio è la presenza di numerosi vulcani, ora estinti, che hanno prodotto in prevalenza lave leucitiche. Dei vulcani a nord del Tevere i Vulcani Sabatini costituiscono il gruppo più vicino a Roma, quello che è caratterizzato dal lago di Bracciano. Da molti anni studio le lave e i tufi di questo gruppo e credo ormai di aver dati sufficienti per tracciare il diagramma di differenziazione, perchè penso che gli studi ulteriori potranno modificarlo solo leggermente.

Già in un mio lavoro precedente avevo tracciato questo diagramma in base alle 13 analisi di lave eseguite fino allora; oggi però il numero di lave e di rocce piroclastiche analizzate è più che raddoppiato, quindi questo diagramma può solo esser considerato approssimativo ed è necessario costruirne uno nuovo più completo.

In questo lavoro mi propongo non solo di tracciare il diagramma, ma anche di porlo in relazione, per quanto è possibile, coi risultati delle mie osservazioni geologiche sulla zona.

Comincio col riportare i valori di Nigoli per le lave e per le rocce piroclastiche. Per costruire il diagramma ho utilizzato solo quelli relativi alle rocce più fresche (I—XXIV). Le rocce XXV—XXXI non sono sufficientemente fresche, ma servono tuttavia a completare il quadro delle analisi. Non ho riportato invece i valori di Nigoli di alcune altre pomici e rocce piroclastiche troppo alterate.

Prescindendo dai tufi e dalle pomici, la leucite è presente in tutti i campioni, salvo il XXIII. Ciò è in accordo col fatto che il grado di silicizzazione è sempre < 1, e col valore di k. E' noto infatti che le lave della provincia petrografica romana sono tipicamente potassiche.

Il diagramma di differenziazione è mostrato dalla figura. Per costruirlo ho preso la media dei valori di si, al, fm, c, alk per gruppi di tre analisi ciascuno, altrimenti le curve rappresentative avrebbero avuto un andamento troppo irregolare, specialmente nel campo dei più bassi valori di si. E' da osservare che nei valori di si esiste una discontinuità tra si = 152 e si = 174. Non credo che tale lacuna potrà venir colmata nel futuro, perchè le lave della Regione Sabazia che rimangono da studiare appartengono quasi tutte alle leucititi.

L'isofalia si ha per si = 132, al = fm = 28, c = 24, alk = 20. Per la provincia vulcanica romana settentrionale Nigoli ha trovato alla isofalia si = 140, al = fm = $29\frac{1}{2}$, c = 21, alk = 20, e per la meridionale (che si estende fino al Vesuvio) si = 130, al = fm = 29, c = $21\frac{1}{2}$, alk = $20\frac{1}{2}$ (I⁰ tipo). Nei Vulcani Vulsini, a nord dei Sabatini, appartenenti anch'essi alla provincia settentrionale si ha si = 140, al = fm = 30, c = 21, alk = 19.

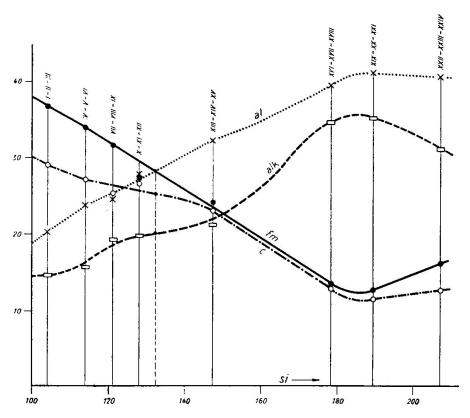


Diagramma di differenziazione magmatica nei Vulcani Sabatini

Le caratteristiche del diagramma sono le seguenti:

- 1. k è sempre superiore a 0,5 (salvo che si tratti di rocce alterate). Non risulta una variazione regolare di k col variare di si.
 - 2. mg tende a diminuire coll'aumentare di si.
 - 3. c raggiunge alk per si = 150.

4. Per si = 185 si ha il massimo per alk (35) e per al (41), e il minimo per fm (12,5) e per c (11,5). Dopo questo punto l'andamento delle curve si inverte.

Vediamo ora le relazioni tra il diagramma di differenziazione e i dati geologici.

La più antica delle lave conosciute, appartenente con certezza alla Regione Sabazia è la vulsinite XXIII, la quale ricopre direttamente i sedimenti pliocenici. Questa è una constatazione importante perchè fa pensare che nei Vulcani Sabatini l'evoluzione magmatica sia stata analoga a quella del Vesuvio. Ma con questo tipo di evoluzione si dovrebbero avere i seguenti passaggi:

vulsiniti → leucotefriti → leucititi

con una progressiva diminuzione di al e alk e un aumento contemporaneo di c e fm. Invece nei Vulcani Sabatini tra le vulsiniti e le leucotefriti si interpongono le leucofonoliti o, per essere più esatti, i magmi di tipo kalifoyaitico, ciò che altera l'andamento del diagramma. E' quindi specialmente interessante vedere quali sono i rapporti tra queste lave e le altre.

Non è stato possibile stabilire l'età relativa per tutte le lave, ad ogni modo, da quanto ho potuto osservare, posso escludere che le lave si siano succedute, nel tempo, per valori di si progressivamente decrescenti, e neppure che il grado di silicizzazione sia andato regolarmente diminuendo. Non è il caso di entrare in particolari sull' argomento, che ho già trattato in lavori precedenti. Basta ricordare che alla vulsinite XXIII segue una potente formazione di tufi, le cui pomici sono di tipo leucosienitico, cioè vulsiniti (XXII), leucofonoliti (XXVII), leucotefriti (XXVI). Non si è però ancora potuto stabilire in quale ordine si siano susseguiti questi tufi. Seguono altri tufi con pomici vulsinitiche (XXIV, XXVIII, XXX, XXXI) e quindi rocce più basiche tra cui leucotefriti (XIV, XI, V) e leucititi (VII, I) le quali, tra le lave superficiali, sono senza dubbio le più abbondanti. In linea generale possiamo dunque affermare che i magmi più acidi sono più antichi dei magmi più basici, così come si è verificato al Vesuvio. Ma ci sono importanti eccezioni ed una di queste è rappresentata appunto dai magmi kalifoyaitici (XVII, XVIII, XIX) che sono tra i più recenti e posteriori p. es. alla leucitite VI.

Basandoci anche sull'analogia tra i proietti vulcanici del Somma-Vesuvio e dei Vulcani Sabatini possiamo pure ammettere, come ha fatto RITTMANN per il Vesuvio, che la causa di questa evoluzione

Analisi di lave e di rocce piroclastiche dei Vulcani Sabatini

		si	al	fm	C	alk k	mg g	grado (di sil	tipo di	magma	analista	letteratura	
I	Leucitite (M. Aguzzo)	103	16	$39^{1}/_{2}$	32	$12^{1}/_{2}$ 0,80	0,66	0,69	Misso	ouritico	normale	SCHERILLO	10	į
II	Leucitite (Vigna di Valle)	103	$21^{1/2}$	$37^{1}/_{2}$	28	13 0,63	0,43	0,69	Som	naitico	normale	Scherillo	11	
111	Leucitite (Manziana)	105	$22^{1}/_{2}$	33	26	$18^{1}/_{2} 0,53$	0,41	0,60	Somn	naitico	normale	CUMIN	` 3	ė.
IV	Leucitite (S. Celso)	110	$19^{1}/_{2}$	$39^{1}/_{2}$	28	13 0,65	0,53	0,73	Shon	kinitico	missouritico	SCHERILLO	11	
	Leucotefrite (La Torraccia)	112	26	32	26	16 0,61	0,50	0,68	Som	naitico	ossipitico	SCHERILLO	11	
			$24^{1}/_{2}$	$30^{1}/_{2}$	$27^{1}/_{2}$	$17^{1}/_{2} 0,65$	0,31	0,70	Somn	naitico	normale,	Borzoni	2	į
	Leucitite (Crocicchie)	120				$19^{1}/_{2} 0,67$	0,45				normale	Washington	15	ĺ
	Leucotefrite (Monterano Diruto)				24			0,65	Monz	onitico	normale	Scherillo	9	
	Leucotefrite (Castelnuovo di Porto)	121	22	36		$14^{1}/_{2} 0,64$					monzonitico	Scherillo	10	ĺ
	Leucitite (Bassano)	123				$18^{1}/_{2} 0,76$		•		lanitico		Amatucci	1	
	Leucotefrite (Gli Scamogli)	125	29	29		$18^{1}/_{2} 0,60$					normale	Scherillo	11	
	Leucotefrite (Madonna del Riposo)		28			$21^{1}/_{2}$ 0,76					normale	Washington		
	Leucotefrite (Poggio Cotognola)					$23^{1}/_{2}$ 0,70				osomm	aitico	Washington		
		146		18	29	21 0,84		,		anitico		Scherillo	10	
	, –	152		30		$19^{1}/_{2}$ 0,58					normale	Scherillo	11	
	Leucotefrite, vicoite (M. di Rocca Romana)					$29^{1}/_{2}$ 0,71				osieniti		SCHERILLO	9	
	Leucotefrite fonolitoide (II Colle)		$38^{1}/_{2}$			36 0,62	0,28			oyaitico		Scherillo	9	
	Leucofonolite (Poggio Muratella)		$40^{1}/_{2}$			$37^{1}/_{2}$ 0,59	0,21			oyaitico		Washington		
	Leucofonolite (Vicarello)	185			$11^{1}/_{2}$					oyaitico		SCHERILLO	9	
XX		187	43			$35^{1}/_{2} 0,72$		10000 00 0000		osieniti		Scherillo	9	Į
XXI	Leucofonolite (Poggio il Sassetto)	195			$12^{1/2}$		0,17			osieniti		Scherillo	9	
	Pomice vulsinitica (M. Maggiore)				400000000000000000000000000000000000000	$29^{1}/_{2}$ 0,65	0,15	1000 mm 1000 mm		osieniti		Giammarino	4	
	Vulsinite (Morlupo)	207			$11^{1}/_{2}$			100001 100000		osieniti		Scherillo	10	
	Pomice vulsinitica (Galeria)				$11^{1/2}$		0,22		Leuc	osieniti	со	Scherillo	12	
		115				$12^{1}/_{2}$ 0,66	0,39	0,77				Scherillo	13	
	Pomice leucotefritica (Morlupo)					$24^{1}/_{2}$ 0,37	0,34					Scherillo	13	
	Pomice leucofonolitica (Due Case)					$24^{1}/_{2}$ 0,32	0,32	0,91				Scherillo	13	
VVIV	Pomice vulsinitica (Isola Farnese)	204				$29^{1}/_{2}$ 0,52	0,32	0,94				Scherillo	12	
	Pozzolana vulsinitica (M.Maggiore)		41	18		$25^{1}/_{2}$ 0,65	0,30	1,02				GIAMMARINO	4	
	Pomice vulsinities (Via Tiberia)		$43^{1}/_{2}$	THE PERSON NAMED IN		30 0,52	0,29	0,96				Scherillo	12	
ΛΛΛΙ	Pomice vulsinitica (Via Tiberina)	223	43	12/2	$13^{1}/_{2}$	31 0,54	0,20	1,00				SCHERILLO	12	į

dalle vulsiniti alle leucititi sia stata l'assimilazione da parte del magma vulsinitico originario di rocce calcaree e dolomitiche, ma per spiegare l'origine dei magmi kalifoyaitici bisogna ricorrere, per rendere ragione dell'aumento di alk, a qualche altra causa. Penso che queste lave siano dovute a differenziazione pneumatolitica. Che le sostanze volatili abbiano gran parte nella formazione di tali tipi di lave è mostrato dalla presenza in queste di minerali del gruppo della sodalite. In questo caso le lave kalifoyaitiche potrebbero derivare da un magma che era già arrivato a una notevole basicità, quindi potrebbero essere, come sono infatti, tra le lave più recenti.

Minore significato ha forse la presenza del tufo a pomici vulsinitiche (XXIV ecc.), che non solo è superiore alla grande formazione dei tufi vulsinitici-leucofonolitici-leucotefritici che abbiamo ricordato, ma è pure superiore ad alcune colate di leucitite, mentre è sicuramente inferiore ad altre (VII). Se tali tufi fossero un prodotto del Vulcani Sabatini sarebbe dimostrato che nel periodo in cui venivano emesse le lave leucititiche si sono avute eruzioni esplosive di pomici vulsinitiche e questa sarebbe un'altra irregolarità nel corso dell'evoluzione magmatica, ma il tufo in questione potrebbe anche essere stato emesso dal Vulcano di Vico. In tal caso ciò indicherebbe che l'attività del Vulcano di Vico e dei Vulcani Sabatini è stata contemporanea.

Il tufo XXV è indubbiamente leucititico ed è sottostante a tutti gli altri tufi. Ha però un'estensione limitatissima trovandosi solo nei pressi di Ponte Milvio, alla periferia di Roma, abbastanza lontano dai centri eruttivi dei Sabatini. Penso quindi che sia stato prodotto da una bocca in relazione con un focolare vulcanico locale, distinto.

In conclusione possiamo dunque ammettere che la causa determinante il tipo generale di evoluzione magmatica sia stata l'assimilazione di rocce carbonate, ma con questa devono aver concorso anche altre cause (gravità, cristallizzazione, e, come si è visto, le sostanze volatili). L'irregolarità con cui si sono succedute le lave dipende quindi dalla diversa risultante di questi fattori.

E' innegabile che le lave per l'ordine con cui si seguono e per la variazione non molto regolare dei valori di Nigoli, specialmente per i tipi più basici, mostrano tra loro una certa autonomia. Anche ammettendo che tutte derivino da uno stesso serbatoio magmatico e non da serbatoi satelliti semi indipendenti, bisogna supporre che provengano da punti diversi di questo serbatoio, il cui magma, in seguito a una complessa differenziazione, presentava nei punti diversi composizione differente. Questo è in accordo col fatto che

nella regione Sabazia, invece di un unico grande edificio vulcanico si hanno numerose bocche eruttive, nessuna delle quali ha potuto formare un edificio notevole, avendo avuto un condotto distinto e un periodo di attività limitato.

Letteratura

- 1. AMATUCCI, O., Sulla leucitite di Bassano di Sutri. Boll. Ufficio Geologico 56 (1931).
- 2. Borzoni, G., Le rocce leucitiche di Trevignano (Lago di Bracciano). Periodico Mineralogia 5 (1934).
- 3. Cumin, G., Di due colate laviche dei dintorni di Manziana (Lazio). Rend. Acc. Lincei, Serie V, 34 (1922).
- 4. Ducci, A., Il centro eruttivo del M. Maggiore ed alcune sue particolari facies laviche e piroclastiche. Boll. Ufficio Geologico 69 (1944).
- 5. MILLOSEVICH, F., Leucotefriti e leucofonoliti nel Vulcano Sabazio. Periodico Mineralogia 1 (1930).
- 6. Moderni, P., Le bocche eruttive dei vulcani Sabatini. Boll. Comitato Geologico 27 (1896).
- 7. Niggli, P., Der Taveyannazsandstein und die Eruptivgesteine der jungmediterranen Kettengebirge. Schweiz. Min. Petr. Mitt. 2 (1922).
- 8. Gesteins- und Mineralprovinzen. Berlin (1923).
- 9. Die Magmentypen. Schweiz. Min. Petr. Mitt. 16 (1936).
- 10. RITTMANN, A., Die geologisch bedingte Evolution und Differentiation des Somma-Vesuvmagmas. Zeitschr. für Vulk. 15 (1933).
- 11. Scherillo, A., Studi petrografici sulla regione Sabazia (I). Periodico Mineralogia 4 (1933).
- 12. Studi petrografici sulla regione Sabazia (II). Ibidem 8 (1937).
- 13. Studi petrografici sulla regione Sabazia (III). Ibidem 14 (1943).
- 14. I tufi litoidi a scorie nere della regione Sabazia e Cimina. Ibidem 11 (1940).
- 15. Studi su alcuni tufi gialli della regione Sabazia orientale. Ibidem 12 (1941).
- 16. I Vulcani Sabatini. Boll. Soc. dei Naturalisti in Napoli 55 (1944—1946).
- 17. Washington, H. S., The roman comagnatic region. Washington (1906).

Ricevuto il 16 settembre 1947.