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Die Verzerrungen des Oktaeders

Von Leonhard Weber, Fribourg

Verzerrt heisst eine Form, wenn infolge gewisser Zufälligkeiten,
z. B. richtungsbedingter Stoffzufuhr, die einzelnen Flächen verschieden

weit vom Keimpunkt weg nach aussen gewachsen sind. Langsam
wachsende Flächen erreichen im allgemeinen eine grössere
Ausdehnung als die rascher wachsenden; diese können sogar gänzlich
verschwinden. So erklärt es sich, dass flächenreiche Formen an den
Kristallen oft nur mit einer einzigen Facette entwickelt sind. Tetraeder

und Bisphenoid sind, wenn sie selbständig auftreten und den
Kristall ringsum begrenzen, nie verzerrt. Auch von den Oktaederverzerrungen,

die hier behandelt sind1), wird vorausgesetzt, dass sie
selbständige und geschlossene Formen seien; sie brauchen aber nicht
acht Flächen zu haben.

Unter den verzerrten Oktaedern, die nicht mit voller Flächenzahl erscheinen,

gibt es viele offene Gestalten: Einflächner (je eine einzige
Oktaederfläche); Z w e i f 1 ä c h;n e r (nicht nur zwei parallele Flächen, sondern
auch zwei kanten- oder eckenanstossende Flächen, d. h. Flächen, die am idealen
Oktaeder eine Kante oder eine Ecke gemeinsam haben) ; Dreiflächner
(jede trigyrische Flächengruppe oder eine beliebige Fläche mit zwei
kantenanliegenden Flächen oder endlich zwei parallele Flächen mit einer kanten--

[= ecken-]anliegenden Fläche); Vierflächner (vier tetragyrisch verbundene

Flächen, auch vier tautozonale Flächen oder eine beliebige Fläche und die
drei kantenanliegenden Flächen, ferner zwei parallele Flächen, von denen die
eine mit zwei andern je eine Kante oder Ecke gemeinsam hat oder schliesslich1
zwei parallele Flächen und zwei weitere, die unter sich und mit je einer der
erstem kantenanstossend sind); Fünfflächner (vier tetragyrisch zusammengehörige

Flächen mit einer beliebigen fünften Fläche oder vier tautozonale
Flächen und irgend eine andere Fläche des Oktaeders) ; Sechsflächner
(nur vier tautozonale Flächen, zusammen mit zwei andern, die am gleichen Ende
des „rhombischen Prismas" liegen).

Die flächenärmste als selbständige Kristallbegrenzung mögliche
Oktaederverzerrung ist ein reguläres Tetraeder. Es darf unbeschadet
der Allgemeingültigkeit nachstehender Ableitungen positiv gestellt
werden (Fig. 1). Doch bleibt zu beachten, dass zu jedem weiterhin
erhaltenen Polyeder auch das Spiegelbild nach 010 möglich ist.
Allgemein stehen zwei derartige Gebilde im Verhältnis enantiomorpher

') Vgl. Verhandl. der S. N.G., 1930, S. 303, und 1943, S. 106.
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Links- und Rechtsgestalten. Nur wenn die Flächengruppierung nach

einer Ebene spiegelbildlich (z. B. Fig. 2, 52, 9 usw.) oder durch das

Symmetriezentrum ausgezeichnet ist (Fig. 16), kann durch eine reelle
Bewegung das eine Polyeder in das andere übergeführt werden.

Am Ausgangstetraeder sollen nun der Reihe nach die vier Ecken

durch Oktaederflächen ersetzt werden. Sehr anschaulich lässt sich
das am Fluorit durch Spaltbarkeit durchführen. Als erste Abstumpfung

sei 111 gewählt. Läge sie zufällig an einer andern Ecke, so
kann sie immer durch entsprechende Umstellung des Polyeders in
die Lage 111 gebracht werden. Die Abstumpfung selber verändert
das Aussehen des gegebenen Tetraeders mehr oder weniger stark.
Alle Übergänge vom unversehrten Tetraeder bis zur dreiseitigen
Fläche Iii sind denkbar (Fig. 21, 22, 23). Hierbei wird die Begrenzung

von zwei gleichseitigen Dreiecken unterschiedlicher Grösse
und drei kongruenten gleichschenkligen Trapezen gebildet. Der
Flächeninhalt eines solchen Trapezes ist gleich der Grössendifferenz
der beiden Dreiecke. Die sechs Polyederecken sind alle dreikantig.

Enthält die Oktaederverzerrung mehr als fünf Flächen, so werde
als erste Abstumpfende (also 111) eine solche genommen — die Wahl
kann mehrdeutig sein —, die möglichst nahe an die gegenüberliegende

Fläche des Ausgangstetraeders herangerückt ist. Bezogen
auf das Tetragyroidenkreuz des Tetraeders, dessen von 111 bestimmte
Achsenabschnitte zur Einheit genommen sind, hat die erste
Abstumpfende, d. h. die „fünfte" Oktaederfläche, die Gleichung
— x -'r yz a5. Darin ist —l<a5<3.

Nun werde eine weitere Tetraederecke abgestumpft. Unter Wahrung

aller bisherigen Festlegungen lässt sich der Körper so stellen,
dass die neue „sechste") Fläche — u. U. verschieden wählbar! —
links oben liegt und die Gleichung x — y -j- z a6 erhält. Das
Variationsintervall von a6 ist dem von a5 gleich, nur gilt noch die Bedingung

a5^ga6. Drei Fälle sind möglich: die a5- und a6-Fläche schneiden

die obere Tetraederkante nicht ganz weg (Fig. 3 ; 2 < a5 -f- a6 < 6)
oder haben mit ihr nur noch einen einzigen Punkt gemeinsam (-=
vierkantige Ecke; Fig. 4 mit a5 + a6 2) oder treffen sich in einer
Geraden, die tiefer als die besagte Kante liegt (Fig. 5; — 2<afl-j-a6<2).
Als neue Oberflächenelemente erscheinen Parallelogramm (Fig. 4, 5)
und Fünfeck (Fig. 3). Für a5^a6 werden die Parallelogramme zw
Rhomben (Fig. 42, 52), ohne dass sich aber Kanten- und Eckenzahl
gegenüber 41 und 51 veränderten. Von derartigen metrischen Gleichheiten

ist in den spätem Figuren im allgemeinen Abstand genommen
worden, sofern sie für die Ecken- und Kantenzahl belanglos sind.
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Fig. 52 veranschaulicht übrigens einen jener Fälle, wo das Oktaeder
nach einer (morphologisch nicht in die Erscheinung tretenden) Digyre
gestreckt oder gar extrem stengelig ist. Von der ursprünglichen
Tetraedermasse ist nicht mehr viel erhalten. Um trotzdem den
Zusammenhang der herausgeschnittenen Polyeder.mit der tetraedrischen
Grundgestalt augenscheinlich zu machen, sind im „perspektivischen"
Bild wie auch in dem darunterstehenden „Kopfbild" überall die
abgetrennten Tetraederecken durch kurze Stücke der daselbst zusam-
menstossenden Tetraederkanten angedeutet. Die untere Tetraederkante

ist meistens noch vorhanden und nur in Fig. 22 und Fig. F auf
einen Punkt reduziert.

Völlig anders gestaltet sind die rhomboedrischen Sechsflächner,
die sich im Zusammenhang mit den Siebenflächnern ergeben (Fig. 16).

Welche der noch freien Tetraederecken durch die „siebente"
Fläche abgestumpft werde, ist nicht mehr so bedeutungslos wie bei
der „fünften" und „sechsten" Fläche. Denn die beiden Polyeder, die
durch die eine oder andere Abstumpfung aus den Sechsflächnern
gebildet werden, sind bei gleicher Stärke der Abstumpfung zueinander
nach 110 spiegelbildlich, lassen sich aber durch keine wirkliche
Bewegung ineinander überführen, wenn nicht wegen besonderer metrischen

Gegebenheiten (z.B. Fig. 42, 52) auch 110 Spiegelebene ist.
Diesem Umstand ist Rechnung zu tragen, wenn nunmehr der
„siebenten" Ebene die Gleichung x -j- y — z a7 zugeschrieben wird. Die
Konstante a7 gehört selbstverständlich dem bei a5 genannten Intervall

an. Überdies unterliegt sie der Bedingung a7 Sj a6 j> a5. In Fig. 6

ist der allgemeine Fall a7 > a6 > a5 (mit den Nebenbedingungen
as + ae > 2> a6 -f a7 > 2> a7 -f a5 > 2) dargestellt. Zu beachten, dass

hier erstmals ein Sechseck als Polygon mit höchstmöglicher Eckenzahl

auftritt. Die a7-Fläche kann den getroffenen Vereinbarungen
zufolge weder das a5- noch das aß-Dreieck „berühren", bevor diese
letzteren sich selber in einer vierkantigen Ecke treffen. So sind
Fig. 7, 8 sofort verständlich. Es berührt aber a7 die a6-Fläche selbst
unter diesen engern Voraussetzungen noch nicht. Dazu ist weiter
erforderlich, dass a5 a6 a7 1 (die Berührungspunkte sind auf den

Tetraederkanten gelegen; Fig. 9).
Die siebenflächigen Figuren 6, 7, 8, 9 stehen in leicht erkennbarer

Beziehung zu den Sechsflächnern 3, 41 und 42. Zu mannigfaltigeren

Siebenflächnern führt Fig. 51. Hier kann Iii bei stetig
abinehmendem a7-Wert zunächst die beiden untern Tetraederflächen
schneiden (Fig. 10), dann die a5-Fläche berühren und III noch schneiden

(Fig. 11), hernach diese und a5 zugleich schneiden (Fig. 13),
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darauf a6 berühren und a5 schneiden (Fig. 14), weiterhin a6 und a5

schneiden (Fig. 15) und schliesslich' 111 ganz zum Wegfall bringen
(Fig. 16). Dadurch ist das Oktaeder zu einem rhomboedrischen
Parallelepiped geworden. Natürlich lässt sich das alles nicht an jedem
beliebigen Oktaedersiebenflächner, etwa an Fig. 6, durchführen,
sofern die Forderung a7>a6>a5 bestehen soll. In Fig. 14, wo a6

a7 1 ist, könnte die Abstumpfende a7 dem Koordinatenanfangspunkt

nicht mehr näher rücken. Darum wurden in Fig. 15, 16 die
Konstanten a5, a6 wesentlich kleiner genommen. Die Bedingung,
unter der 111 überhaupt verschwinden kann, ist leicht aufzustellen.
Es muss der Eckpunkt 111, a5, a6 mit den Koordinaten 2x 1 —a5,
2y=l—a6, 2z a5-j-a6 auf der a7-Ebene liegen. Somit kommt
a7 1 — a5 — a6. In Fig. 16 wurde a5 — 1/2, a6 0 angenommen.
Es ist daher a7 3/2. Alle gestellten Forderungen sind erfüllt. Werden

am Parallelepiped der Fig. 16 sämtliche Flächen kongruent, so
wird es zu einem idealen Rhomboeder. Das stellt sich ein, wenn
a5 a6 a7 1/3. Alle siebenflächigen Figuren lassen sich
grundsätzlich als Rhomboeder deuten, bei denen die obere trigyrische Ecke

abgestumpft ist. Diese Rhomboeder sind aber zumeist verzerrt
(vgl. Fig. 16) und haben ihre obere Spitze, auch wenn sie ideal sind,
im Aussenraum der Fläche 111.

Der in Fig. 52 dargestellte Sonderfall eines Sechsflächners bringt
die Verschiedenheiten der Figuren 11, 13, 14 zum Verschwinden und
führt auf Fig. 12 mit zwei vierkantigen Ecken.

Damit sind alle oktaedrischen Siebenflächner erledigt.
Die achtflächigen Oktaederverzerrungen leiten sich am bequemsten

aus den siebenflächigen ab, indem die letzte freie Tetraederecke

durch 111 soweit wie möglich abgestumpft wird. Erlaubte
Grenze für diese Abstufung ist die zu 111 symmetrische Lage von
111. Gerade diese wurde der Einfachheit halber in mehreren
Figuren zur Darstellung gebracht (z.B. Fig. 24, 26, 30). Denn bei
der notgedrungenen Kleinheit der meisten Zeichnungen steht oft nur
ein geringer Spielraum für die Flächenlagen zur Verfügung, wenn
anders der ausschlaggebende Unterschied der einzelnen Figuren
irgendwie deutlich werden soll. Ein flüchtiger Blick auf die Figuren
zeigt, dass den Siebenflächnern 6—15 folgende Achtflächner
zugeordnet sind.

6 — 17 9 — 21,22 13 — 23,29,30
7 — 18 10 — 24 14 — D, 33, E, F, G
8— 19,20 11 —25,26 15 -31,32,A,B,C

12 — 27,28



Fig. 9—20



Die Verzerrungen des Oktaeders 7

Die übereinstimmende Behandlung von Fig. 16 führt sofort zum

Spiegelbild von Fig. 15. Dieser Fall scheidet also aus.
Die achtflächigen Oktaeder, die sich leicht als zweiseitig enteckte

Rhomboeder deuten lassen, unterscheiden sich von denen mit
geringerer Flächenzahl wesentlich dadurch, dass die vier Abstumpfenden

a5, a6, a7, a8 ebenfalls Tetraeder bilden. Es liegen also zwei
gleichwertige, jedoch verschiedengestellte und im allgemeinen auch

verschieden grosse Tetraeder vor. Jedes ist ebenso gut Ausgangs-
wie Abstumpfungstetraeder. So kommt es, dass bei der planmässi-
gen Abstumpfung der letzten freien Tetraederecke der gefundenen
Siebenflächner mehrmals Polyeder erhalten werden, die einander

gleichgebaut, aber nicht gleichgestellt sind. Folgende Übereinstimmungen

sind festzuhalten: 20= F, G (Fig. G passt nicht in das
Ableitungsschema herein ; sie soll als Spezialfall von Fig. 20 einfach
den extrem tafeligen Habitus veranschaulichen), 23 A, 24 C,
25 B, 29 E, 32 D.

Die Enteckung des Ausgangstetraeders wurde bewusst nur
soweit geführt, dass alle seine Flächen noch irgendwie erhalten blieben.
In Fig. 16 ist 111 auf einen Punkt reduziert. Bei Einengung aller
Tetraederflächen auf einen Punkt (a- a6 a- ag 1 /3) schält sich

aus dem Ausgangskörper ein negatives Tetraederchen heraus, dessen
Kanten gerade noch ein Drittel der in Fig. 1 dargestellten messen.

Am verzerrten Oktaeder treten drei-, vier-, fünf- und sechsseitige
Flächen auf. Alle lassen sich aus dem regelmässigen Sechseck durch
Variation der Kantenlängen unter Festhaltung der Winkel herleiten.
Die Dreiecke sind immer gleichseitig. Die Vierecke sind sowohl
Parallelogramme (die zu Rhomben werden können) wie auch, und zwar
häufiger, gleichschenklige Trapeze. Die Fünfecke sind höchstens

monosymmetrisch. Dafür kann die Ausbildung der Sechsecke, die
im allgemeinen asymmetrisch sind, mono-, di-, tri- und hexasymmetrisch

oder bloss digyrisch sein. In einer Polyederecke stossen bald
drei, bald vier — seltener! — Kanten zusammen. Über die verschiedenen

Möglichkeiten orientiert beistehende Tabelle. Aus ihr ist
sofort ersichtlich, dass die Anzahl der Flächen, Ecken und Kanten
die Oktaedergestalt, selbst wenn von den Längenverhältnissen ganz
abgesehen wird, nicht eindeutig bestimmt. Die Zahlengruppe
8—12—18 dieser Begrenzungselemente kommt z.B. fünfmal vor;
anderseits fehlen gewisse Tripel wie 5—5—8, 6—6—10 (entsprechend

einer vier- bzw. fünfseitigen Pyramide mit Grundfläche, die
als Oktaederverzerrungen unmöglich sind). Unbekannt dürfte sein,
dass die (4 n)-Flächner maximal 4 2n Ecken haben. An den



Fig. 21-32
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achteckigen Oktaederverzerrungen treten, wie am idealen Oktaeder
selber, keine Rhomben auf. Häufigstes Begrenzungselement ist das

gleichseitige Dreieck; es fehlt nur an vier der 33 verschiedenen

Verzerrungen.

Die Flächen-, Ecken- und Kantenzahl der geschlossenen Oktaeder¬

verzerrungen

Nr. der Zahl der Flächen Zahl der Ecken Zahl der
Figur 3-Eck Trap. Parall. 5-Eck 6-Eck total 3-kant. 4-kant. total Kanten

1 4 — — — — 4 4 — 4 6

2 2 3 — — — 5 6 — 6 9

3 2 2 — 2 — 6 8 — 8 12

4 2 2 2 — — 6 6 1 7 11

5 — 4 2 — — 6 8 — 8 12

16 — — 6 — — 6 8 — 8 12

6 3 — 3 I 7 10 — 10 15

7 3 1 3 — 7 8 1 9 14

8 3 / 2 1 — 7 6 2 8 13

9 4 — 3 — — 7 4 3 7 12

10 1 2 1 3 — 7 10 — 10 15

11 1 3 2 1 — 7 8 1 9 14

12 2 2 3 — — 7 6 2 8 13

13 — 3 2 2 — 7 10 — 10 15

14 1 2 3 1 — 7 8 1 9 14

15 1 — 3 3 — 7 10 — 10 15

17 4 — — — 4 8 12 — 12 18

18 4 — 2 2 8 10 1 11 17

19 4 / — 2 1 8 8 2 10 16

20, F, O 4 3 — — 1 8 6 3 9 15

21 5 — — 3 — 8 6 3 9 15

22 8 — — — 8 — 6 6 12

23, A I 3 — 3 1 8 12 — 12 18

24, C 2 2 — 2 2 8 12 — 12 18

25, B 2 3 — 2 1 8 10 1 11 17
26 2 5 — — 1 8 8 2 10 16
27 3 2 — 3 — 8 8 2 10 16
28 4 4 — — — 8 4 4 8 14

29, E 1 5 — 1 1 8 10 1 11 17
30 — 6 — — 2 8 12 — 12 18
31 2 — — 6 — 8 12 — 12 18
32, D 2 2 — 4 — 8 10 1 11 17
33 2 4 — 2 — 8 8 2 10 16

Durch Zahl und Art der entwickelten Flächen sind nicht nur
Ecken- und Kantenzahl bestimmt, sondern es ist auch der drei- oder
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vierkantige Charakter dieser Ecken festgelegt. Sei entsprechend der
vorstehenden Tabelle v, w, x, y, z die Zahl der dreieckigen,
trapezförmigen, parallelogrammatischen, fünf- und sechsseitigen
Begrenzungsflächen, so ist

F Flächenzahl v + w + x + y + z

E Eckenzahl v- + 2 w-+ 2 * + +1z + 4

U3 Zahl der dreikantigen Ecken — v + y + 2z + 8

h 7LU i ,• c 3v + 2w + 2x + y — 12
U4 Zahl der vierkantigen Ecken ~

~~2 —

K Kantenzahl 3v + 4w + 4x_+ 5y + 6z
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Der diesen Ausführungen zugrunde liegende Koordinatenanfangspunkt

fällt mit dem Zentrum des Ausgangstetraeders zusammen.
Mit dem sogen. Keimpunkt des Kristalls hat er im allgemeinen nichts
zu tun. Da er in vielen Fällen ausserhalb des verzerrten Oktaeders
liegt (z.B. Fig. 52, 15, 16, 31, 32, G), so könnte er nur unter der
Voraussetzung Keimpunkt sein, dass sich an der Gestaltung der
wachsenden Kristallform aufbauende und abtragende Kräfte beteiligen
(lokale Über- bzw. Untersättigung der Lösung). Ebenso stehen die
Konstanten aj (i — 5, 6, 7, 8) mit den Flächenwachstumsgeschwindigkeiten

in keiner unmittelbaren Beziehung. Keimpunkt und Flächeu-

wachstumsgeschwindigkeit bestimmen natürlich die Endgestalt des

Kristalls eindeutig. Einer gegebenen Kristallgestalt können aber
unendlich viele Lagen des Keimpunktes zugeschrieben werden. Es

wäre eine reizende Aufgabe, aus Keimpunkt und Wachstumsgeschwindigkeiten

die Oktaederendform rechnerisch oder zeichnerisch zu
finden. Sie würde aber nicht in den Rahmen dieser kleinen Arbeit
passen und soll an anderer Stelle behandelt werden.

Eingegangen: 9. Dezember 1947.
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