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Ein Beitrag zur „schematischen" Dreiecksprojektion
von Robert L. Parker, Zürich

I. GEEICHTE DREIECKSDIAGRAMME

Die „schematische" Dreiecksprojektion, wie sie von P. Niooli
in die Kristallographie eingeführt wurde, kann nach ihm als ein kri-
stallographisches Konzentrationsdiagramm aufgefasst werden. In
demselben kann jede Fläche entsprechend der prozentualen Beteiligung

jedes ihrer Indizes an der Indizessumme eindeutig
untergebracht werden. Als „schematisch" muss diese Darstellungsart
deswegen gelten, weil die Metrik des Minerals unberücksichtigt bleibt.
Sie dient vor allem dazu, eine Übersicht der zonalen Verhältnisse der
Mineralien zu geben.

Die vom Schreibenden angegebene „winkeltreue Dreiecksprojektion"

*) ist eine strenge gnomonische Projektion, die gleicher-
massen für alle Kristalle auf eine um 54° 55' zur horizontalen
geneigten Ebene ausgeführt wird. Sie kann mit einem allgemein gültigen
„Gradnetz" versehen werden, auf Grund welcher jeder zweikreisig
gemessene Flächenkomplex direkt in das Dreieck eingetragen werden
kann.

Es wurde von P. Niooli darauf aufmerksam gemacht2), dass die
„schematische" Projektion durch Deformation einer winkeltreuen
abgeleitet werden kann, wobei das Mass der Deformation von der
Symmetrie und dem Achsenverhältnis des Minerals abhängt. Es ist für
kubische Kristalle null, d. h. es sind die „schematische" und die
winkeltreue Dreiecksprojektion für kubische Metrik identisch.

Der Gedanke liegt nun nahe, die „schematische" Dreiecksprojektion

nicht-kubischer Kristallarten dadurch zu eichen, dass neben
dem Flächenkomplex auch das Gradnetz der winkeltreuen deformiert
und abgebildet wird. Dadurch muss nicht nur das Mass der Verzerrung

sofort sichtbar werden, sondern es müssen auch die Metrik des

') Robert L. Parker: Diese Mitteilungen 16 (1936) 202—208: Über
winkeltreue Dreiecksprojektion, sowie 18 (1938) 475—479: Ein Netz zur
winkeltreuen Dreiecksprojektion.

2) Siehe besonders P. Niooli: Lehrbuch der Mineralogie II. Band (Zweite
Auflage). Berlin 1926.
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Kristalls sowie die wahren Positionen seiner Flächen deutlich in
Erscheinung gebracht werden.

Für die praktische Durchführung dieser Aufgabe kommen
rechnerische sowie graphische Methoden in Frage, wobei folgender Weg
sich besonders einfach gestaltet: Jeder Schnittpunkt eines Breiten-
und Meridiankreises der Kugel wird gemäss den üblichen Regeln für
Kristallflächen in Bezug auf das Achsenverhältnis des Minerals
indiziert. Die resultierenden Symbole sind naturgemäss irrational, doch
können sie nach den gleichen Prinzipien und mit der gleichen Leichtigkeit

wie die üblichen Kristallflächen-Symbole in das „Konzentrationsdreieck"

eingetragen werden. Sind diese Punkte derart festgelegt, so
brauchen sie lediglich durch glatte Kurven, resp. durch gerade Linien
verbunden zu werden, um das gewünschte verzerrte Gradnetz in
Erscheinung treten zu lassen. Das Netz kann naturgemäss beliebig eng
gelegt werden. Für Übersichtszwecke genügt eine weitmaschige
Ausführung, mit Abständen von 15° zwischen den einzelnen Breiten- und
Meridianlinien.

Für Kristalle mit rechtwinkligem Achsenkreuz lassen sich die
Ergebnisse der Lagenbestimmung der einzelnen Punkte in allgemeingültiger

Weise tabellarisch zusammenfassen, was in Tabelle 1

geschehen ist. Der praktische Gebrauch dieser Tabelle gestaltet sich

folgendermassen: Laufet das Achsenverhältnis des Kristalls a : 1 : c,

so geht man zunächst in die mit dem betreffenden a-Wert überschrie-
bene Spalte ein3), entnimmt ihr die obersten 5 Werte und trägt sie
auf der Dreiecksbasis von links her ab. Die sich ergebenden Punkte
sind die Fusspunkte der Meridiane, die nun so erhalten werden, dass

man diese Fusspunkte mit dem Apex des Dreiecks verbindet. Die
Bezifferung der Meridiane erfolgt von rechts her, mit çy010) 0°
und <p(100j 90°. Man geht nun in die mit dem betreffenden c-Wert
überschriebene Spalte ein und trägt die obersten 5 Werte auf der
rechten Dreiecksseite von oben her ab. Die erhaltenen Punkte sind
die Schnitte der Breitenkurven mit dem Meridian 0 °. Um die Schnitte
der Breitenkurven mit den anderen, schon gezeichneten Meridianen
zu erhalten, trägt man die bezüglichen Werte aus der gleichen Spalte
auf der rechten Dreiecksseite ab, verbindet sie mit einem Lineal mit
der linken Dreiecksspitze (die Linien sind nicht auszuziehen) und
markiert die Schnittpunkte mit dem geeigneten Meridian. Die
Schnittpunkte der Breitenkurven mit dem Meridian 90° sind durch

3) Zwischen den in benachbarten Spalten stehenden Werten kann auch

interpoliert werden.
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c
die obersten 5 Werte der mit dem zutreffenden — -Wert überschrie-

a
benen Spalte gegeben. Auch für hexagonale Kristalle lassen sich die

notwendigen Daten der Tabelle entnehmen. Bei diesen Kristallen
entsprechen die rechte und linke Dreiecksseite den Meridianen

cp -30 0 resp. <p 90 °. Die Fusspunkte der Meridiane 45 °, 60 °, 75 0

liegen bei 14,6, 10,0 und 5,4. Für die zur Festlegung der „Kleinkreisschnitte"

benötigten Punkte gelten die in der Tabelle unter dem

zutreffenden Achsenverhältnis für <p 30 0 bis (p 75 0 angeführten
Werte.

Tabelle 1

Koordinaten der Schnittpunkte von Meridian- und Breitenlinien im

Dreieck (Länge der Dreiecksseite 20 cm)

<f~— o a c oder —
a

0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

0 15
30
45
60
75

7,0
10,8
13,2
15,6
17,6

6,2
9,8

12,4
14,8
17,2

5,7
9,1

11.8
14,2
16.9

5,1
8,4

11,1
13,6
16,5

4,6
7,9

10,5
13.1
16.2

4,2
7,4

10,0
12,6
15,8

3,9
6,9
9,5

12,2
15,4

3,7
6,5
9,1

11,8
15,1

3,5
6,2
8,7

11,4
14,8

3.2
5,9
8.3

11,1
14,5

3,0
5,6
8,0

10,7
14,3

2,9
5,3
7,7

10,4
14,0

2,7
5,1
7,4

10,1
13,7

2,6
4,9
7,1
9,8

13,5

2,5
4.7
6.8
9,5

13,2

2.4
4.5
6.6
9,3

13,0

15--15
30
45
60
75

6,8
10,6
13,2
15,4
17,6

6,0
9,6

12,4
14,7
17,2

5,4
8,9

11.7
14,1
16.8

4,8
8,2

11,0
13,5
16,4

4,4
7,7

10,4
13,0
16,0

4.1
7.2
9,8

12.5
15.6

3,8
6,8
9,4

12,0
15,3

3,5
6,3
8,9

11,6
15,0

3,3
6,0
8,6

11,2
14,7

3.1
5,7
8.2

10,9
14,4

2,9
5,4
7,9

10,5
14,2

2,8
5,2
7,6

10,2
13,9

2,6
5,0
7,3
9,9

13,6

2.5
4,8
7,0
9.6

13,3

2,4
4.6
6.7
9,3

13,1

2.3
4.4
6.5
9,1

12,9

30--15
30
45
60
75

6,3-
10,0
12,7
15,0
17,4

5,5
9,0

11.8
14,3
16.9

5,0
8,3

11,1
13,7
16,5

4.6
7.7

10,4
13,0
16,0

4.1
7.2
9,8

12.5
15.6

3,8
6,6
9,3

12,0
15,2

3,4
6,2
8,8

11,6
14,9

3,2
5,9
8,4

11,1
14,6

3,0
5,6
8,0

10,7
14,3

2,8
5,2
7,6

10,4
14,0

2,6
5,0
7,3

10,0
13,7

2,5
4,7
7,0
9,7

13,4

2.4
4.5
6,8
9,4

13,1

2,3
4,3
6,5
9,1

12,8

2,3
4,1
6,3
8,8

12,6

2,1
4.0
6.1
8,6

12,4

45--15
30
45
60
75

5,5
9,0

11,8
14,2
16,8

4,8
8,2

10,9
13,4
16,3

4,2
7,5

10,0
12.7
15.8

3,8
6,8
9,4

12,1
15,4

3,5
6,3
8,8

11,6
15,0

3.2
5,8
8.3

11,0
14,6

2,9
5,4
7,9

10,5
14,2

2,7
5,1
7,4

10,1
13,8

2,5
4,8
7,1
9,7

13,4

2.4
4.5
6,7
9,3

13,1

2,3
4.3
6.4
9,0

12,8

2,1
4,1
6,1
8,6

12,5

2,0
3,9
5,9
8,4

12,2

1,9
3,7
5,7
8,1

11,9

1,8
3,5
5,4
7,8

11,6

1,7
3,4
5,2
7,6

11,4

60 -15
30
45
60
75

4,1
7,4

10,0
12,6
15,8

3,5
6,5
9,1

11,8
15,2

3,1
5,8
8,3

11,1
14,6

2,8
5,3
7,7

10,4
14,0

2,5
4,9
7,1
9,8

13,5

2,3
4.5
6.6
9,3

13,0

2.1
4.2
6.3
8,8

12,6

1,9
3,9
5,9
8,4

12,2

1,8
3,6
5,6
8,0

11,8

1,7
3,4
5,3
7,7

11,4

1,6
3.2
4,9
7.3

11,1

1,5
3,1
4,7
7,0

10,8

1.4
2,9
4.5
6,8

10,5

1,3
2,8
4,3
6,5

10,2

1,3
2,6
4,1
6,3
9,9

1,2
2,5
4.0
6.1
9,7

75--15
30
45
60
75

2.5
4.6
6,6
9,5

13,2

1,9
4,0
6,0
8,6

12,4

1,8
3,6
5,4
7,8

11,6

1,6
3,2
4,9
7,2

11,0

1.4
2,9
4.5
6.6

10,4

1,3
2,6
4.1
6.2
9.8

1,2
2,4
3,8
5,8
9,2

1.1
2.2
3,5
5,4
8,7

1.0
2.1
3,3
5,1
8,6

0,9
1,9
3.1
4,8
8.2

0,8
1.8
2.9
2'6
7,8

0,8
1.7
2.8
4.4
7.5

0,8
1.6
2.7
4.2
7.3

0,7
1,5
2,5
4,0
7,0

0,7
1,5
2,4
3,8
6,7

0,7
1.4
2,3
3,7
6.5
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Fig. 1. Kurvenverlauf im kubischen
System (Salmiak)
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Fig. 3. Typischer Kurvenverlauf im
tetragonalen System bei grossem Achsen¬

verhältnis (Anatas)
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Fig. 2. Typischer Kurvenverlauf im
rhombischen System (Topas)
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Fig. 4. Typischer Kurvenverlauf im
tetragonalen System bei kleinem Achsen¬

verhältnis (Rutil)

Fig. 5. Typischer Kurvenverlauf im monoklinen System
(Orthoklas)



Ein Beitrag zur „schematischen" Dreiecksprojektion 285

In Figuren 1—5 sind einige geeichte Dreiecksdiagramme
wiedergegeben, die gewisse typische Merkmale der Kurvenverläufe bei
verschiedener Symmetrie und bei verschiedenen Achsenverhältnissen
erkennen lassen. In Fig. 1, die dem Fall der kubischen Metrik
entspricht, ist die Anordnung sowohl der Meridiane wie der Breitenkurven

durchaus symmetrisch. Die Kurven für cp resp. q 45 0 gehen
durch die Flächen (110) resp. (101) und (011), die Breitenkurve
q 60° liegt etwas unterhalb der Fläche (111). Auch im tetrago-
nalen System (Figuren 3, 4) ist die Kurvenverteilung symmetrisch,
doch macht sich das grössere oder kleinere Achsenverhältnis des

Minerals in einer Verlegung der Breitenkurven bemerkbar. Bei
Kristallen mit grossem Achsenverhältnis (Fig. 3, Anatas, c 1,77)
findet diese gegen oben hin statt, so dass jetzt die Breitenkurve 75 0

nahe bei der Einheitsfläche zu liegen kommt (pm ca. 68°).
Umgekehrt findet bei Kristallen mit kleinem Achsenverhältnis (Fig. 4,

Rutil, c 0,64) eine Verschiebung der Kurven nach unten statt,
demzufolge die Breitenkurve 450 bereits unterhalb der Einheitsfläche
liegt (g?lu ca. 42°). Allgemein findet natürlich eine Verdichtung
der Kurven in jenen Teilen des Dreiecks statt, die den grössten Räumen

entsprechen. Dies macht sich in Fig. 2, die der rhombischen
Mineralart Topas entspricht, deutlich bemerkbar. Das Achsenverhält-
nis a : b : c 0,53 : 1 : 0,95 bringt es mit sich, dass der Winkelabstand

von (111) zu (010) viel grösser ist als zu (100). Dem
entspricht die wesentlich dichtere Scharung der Kurven in der rechten
als in der linken Dreieckshälfte. Diese asymmetrische Kurvenverteilung

ist für das rhombische System kennzeichnend. Die enge
Nachbarschaft des Meridians 60° zu (111), sowie die aus den Kurven
leicht abzuschätzende Position von (122) (99 ca. 43°, q ca. 53°)
zeigen den bekannten pseudohexagonalen und zugleich pseudokubischen

Charakter der Topas-Metrik. In Figur 5 ist schliesslich eine
monokline Kristallart (Orthoklas) dargestellt. Hier braucht es zwei
Dreiecke, um die Formenentwicklung wiederzugeben, von denen
eines die positiven, das andere die negativen Formen umfasst. Der
c-Achsenausstichpunkt Nordpol der Kugel, Konvergenzpunkt
der Meridiane) fällt nicht mehr auf (001), sondern (in Abhängigkeit
des Winkels ß) auf einen zwischen (001) und (100) liegenden Punkt
(als leerer Kreis gezeichnet). Der resultierende Kurvenverlauf ist für
das monokline System durchaus charakteristisch. Entsprechend der
Tatsache, dass die negativen Formen in diesem System mehr Raum
einnehmen als die positiven (und dementsprechend meist zahlreicher
sind) ist die Kurvenverteilung im negativen Dreieck gedrängter als
im positiven.
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II. EINE VORLAGE ZUM ENTWURF DER DREIECKSDIAGRAMME

Zum Entwurf von „schematischen" Dreiecksprojektionen dient
das käufliche Dreieckspapier, doch können die Flächenlagen noch
schneller und einfacher mit Hilfe einer Vorlage gefunden werden, die
mit sogenannten Randkoordinaten versehen wurde (Fig. 6). Als
solche wurden a. a. O. Masstäbe bezeichnet, die längs den Dreiecksseiten

angebracht werden und ein Gegenstück bilden zu den gnomoni-
schen Koordinaten der gewöhnlichen gnomonischen Projektion. Wird
bei der Konstruktion dieser Masstäbe das kubische Achsepver-
hältnis postuliert und als Einheiten die rationalen Bruchteile und
Vielfache von 1 hervorgehoben, so können mit ihrer Hilfe die in der
„schematischen" Projektion geltenden Flächenpositionen ohne
weiteres gefunden werden. Soll z. B. die Fläche (hkl) (323) projiziert

h 1c

werden, so bildet man lediglich ihr GoLDSCHMiDT-Symbol pq y—r
2 1 2

1 sucht links den Punkt -, rechts denjenigen ^ und verfolgt die

in diesen Punkten endenden Höhenlinien des Dreiecks bis zu ihrem
Schnittpunkt, der die gesuchte Flächenlage darstellt.

Eine einfache Überlegung zeigt nun weiter, dass die Randkoordinaten

auch in nützlicher Weise der Zonenrechnung dienstbar gemacht
werden können. In der gewöhnlichen gnomonischen Projektion ist
der Zusammenhang folgender: Verläuft einen Zonenlinie derart über
die Projektion, dass sie die X-Achse im Punkte A, die Y-Achse im
Punkte B schneidet, und lauten die Koordinaten

worin p0 und q0 die Koordinaten der Einheitsfläche und p, q mit ihren
richtigen Vorzeichen eingesetzt sind, so lautet das Symbol der Zone

Diese Zusammenhänge lassen sich ohne weiteres auf die Dreiecksprojektion

übertragen, indem nun die Randkoordinaten der Endpunkte
der Zonenlinien die Werte von p und q liefern. Damit ist eine
praktische Methode angedeutet, um gegebene Zonenlinien zu indizieren
oder umgekehrt Zonen von gegebenen Indizes in die Projektion
einzutragen.

Währenddem in der gewöhnlichen gnomonischen Projektion p
und q auch mit negativen Werten auftreten können, ist das im Dreieck

nicht der Fall. Vielmehr schneiden Zonenlinien, bei denen p oder

für A: pp0
für B : qq0
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q negativ wäre, neben der rechten bezw. linken Dreiecksseite nun
auch die Basislinie des Dreiecks. Ihr Symbol wird dann mit Hilfe der
Randkoordinaten (r) bestimmt, die auch längs dieser dritten Seite
angebracht sind. Zur Übersicht seien die für die drei möglichen Fälle
geltenden Ausdrücke einander gegenübergestellt:

So gelingt es unter allen Umständen leicht, das Zonensymbol
zu bestimmen und es gestaltet sich das mit Randkoordinaten
versehene Dreieck zu einem bequemen Hilfsmittel zur Erledigung aller
mit der Flächen- und Zonenprojektion auftretenden Aufgaben.

Für Schnitte p-q lautet das Zonensymbol

r-q „ r 1 q

r~P „

Mineralogische Sammlung, Eidg. Tech. Hochschule.
Eingegangen: 22. Okt. 1940.
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