Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 16 (1936)

Heft: 2

Artikel: Die Magmentypen

Autor: Niggli, Paul

DOI: https://doi.org/10.5169/seals-16109

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Magmentypen

Von Paul Niggli (Zürich)
(Unter Mitwirkung von A. Stutz)

Zum Vergleich der chemischen Verhältnisse magmatischer Gesteine hat der Verfasser eine Reihe von Magmentypen aufgestellt, charakterisiert durch ihre Molekularwerte. In dem 1935 erschienenen Werk: "Spezielle Petrographie der Eruptivgesteine" hat W. E. Tröger die Aufstellung durch einige seltenere Typen ergänzt, sowie einige Umbenennungen vorgenommen.

In dem Werke "Gesteins- und Mineralprovinzen I", Berlin 1923, wurde durch tabellarische Zusammenstellungen in grossen Zügen die Variationsbreite der zuerst aufgestellten Magmentypen umrissen. Indessen ist es, besonders bei mangelndem Überblick über die Gesamtheit, nicht leicht, darnach einen gegebenen Chemismus einigermassen eindeutig einem Magmentypus zuzuordnen, so dass in der Literatur sich dann und wann Fehlbestimmungen vorfinden. Ausserdem erwiesen sich bei dieser ersten Klassifikation manche Typen als zu umfangreich und deshalb ihrem chemischen Verhalten nach als zu unbestimmt. Sieben Variable sind an und für sich zu berücksichtigen: si, al, fm, c, alk, k und mg. Auch wenn man mg eine untergeordnete Rolle zuschreibt und starke Abweichungen von einem typenzugehörigen Mittelwert lediglich durch (mg hoch!) bezw. (mg niedrig!) vermerkt, bleiben noch sechs typenbestimmende Grössen übrig. Unzweckmässig ist eine schematische Felderteilung, da das gegenseitige Verhalten aller Werte zu berücksichtigen ist und gewisse häufige Typen mehr oder weniger im Zentrum der Felder stehen müssen. Trotz möglichster Bestimmtheit darf eine absolute Starrheit nicht Platz greifen, weil dadurch sehr leicht Vergleichsmöglichkeiten unbeachtet bleiben.

Nach eingehender Prüfung des neuen Analysenmateriales erwies es sich zunächst als notwendig, die Zahl der individuell aufgeführten Magmentypen ungefähr zu verdoppeln. Eine strengere und logischere Zusammenfassung zu nur 40 Magmengruppen mit bestimmten eigenen Oberbezeichnungen soll ein Unübersichtlichwerden verhindern.

a) Leukogranitische Magmen (4 Typen)

b) Granitische Magmen

c) Granodioritische Magmen (4

Es zerfallen zur Zeit die Magmen der Kalkalkalireihe in 13 Magmengruppen mit 64 wichtigeren Einzeltypen

h) Gabbroide Magmen

i) Leukogabbroide Magmen (5

k) Plagioklasitische Magmen (6

(6 Typen)

```
d) Trondhjemitische Magmen (8
                                   )
                                        1) Hornblenditische Magmen (5
e) Quarzdioritische Magmen (4
                                       m) Pyroxenitische Magmen
                                   )
f) Dioritische Magmen
                                        n) Orthaugitisch-peridotitische
g) Gabbrodioritische Magmen (3
                                             Magmen
                                   )
                                                                   (3
                                                                           )
der Natronreihe in 15 Magmengruppen mit 65 Einzeltypen
a) Alkaligranitische Magmen (5 Typen)
                                        k) Theralithische Magmen
                                                                   (2 Typen)
b) Evisitische Magmen
                                        1) Natrongabbroide Magmen (5
c) Foyaitische Magmen
                            (5
                                       m) Theralithgabbroide Magm. (4
d) Lujavritische Magmen
                           (6
                                        n) Gabbrotheralithische
e) Subplagifoyaitische Magm. (4
                                             Magmen
                                                                   (2
f) Essexitdioritische Magmen (3
                                       o) Melanatrongabbroide
g) Natronsyenitische Magmen (5
                                             Magmen
                                                                   (6
                                       p) Alkalipyrobolische Magm. (6
h) liolithische Magmen
                           (6
i) Essexitische Magmen
                           (2
                                   )
der Kalireihe in 12 Magmengruppen mit 45 Einzeltypen
a) Leukosyenitgranitische
                                        g) Sommaitische Magmen
                                                                   (3 Typen)
                           (2 Typen)
     Magmen
                                        h) Kalidioritische Magmen
                                                                   (4
b) Juvitische Magmen
                                                                   (6
                           (5
                                        i) Lamproitische Magmen
c) Arkitische Magmen
                           (5
                                        k) Shonkinitische Magmen
                                                                   (2
d) Syenitgranitische Magmen (3
                                        1) Melashonkinitische Magm. (2
                                                                           )
e) Syenitische Magmen
                           (3
                                       m) Missouritisch-alnöitische
f) Monzonitische Magmen
                           (4
                                             Magmen
```

Dazu kommen anhangsweise noch besondere Magmentypen wie peralische (z. Z. 4 Typen), karbonatische (z. Z. 4 Typen) und peraziditische. Dadurch, dass man sich in bestimmten Fällen mit der Obereinteilung begnügen kann, wird trotz der Vermehrung der Spezialtypen die Übersicht eher erleichtert.

Wie bereits erwähnt, kann kaum je der Wert einer einzigen Grösse die Zuordnung zu dem einen oder anderen Typus endgültig bestimmen. Wie z. B. die Berechnung der Quarzzahl qz zeigt, ist die klassifikatorische Bedeutung der si-Zahl stark von al und alk abhängig. Die Bezeichnung "Isofalie" veranschaulicht, wie die Grösse von fm an al zu messen ist. Der Wert t = al — alk muss besonders bei höheren alk-Werten eine grosse Rolle spielen, usw. Trotzdem ist versucht worden, eine einigermassen brauchbare Bestimmungstabelle der wesentlichen, bis heute gesonderten Magmentypen aufzustellen und sie im nachfolgenden zugänglich zu machen. Dabei lässt sich naturgemäss die Angabe bestimmter Einzelzahlenwerte nicht umgehen, sie figurieren mit möglichst kleinen Überlappungen als Grenzwerte.

Die Haupteinteilung dieser rein praktisch zu bewertenden Tabelle erfolgt nach alk, nämlich:

alk > 32,5, 27,5—33 (d. h. um 30), 22,5—27,5 (d. h. um 25), 17,5—22,5 (d. h. um 20), 12,5—17,5 (d. h. um 15), 7,5—12,5 (d. h. um 10) und 0—8 (d. h. sehr klein). Dabei sind Magmentypen mit wesentlichem Überschuss von alk über al als peralkalische Magmen, solche mit wesentlichem al-Überschusse über (c+alk) als peralische, solche mit viel primärem Karbonat als karbonatische, solche mit si > 8—900 als peraziditische bereits ausgesondert.

Innerhalb der einzelnen alk-Abteilungen ist fast durchgehend (abgesehen sehr hohes alk der alkaligranitischen Magmen und sehr kleines alk der Gruppe mit alk um 5) zwischen kali- und natronreichen Typen unterschieden (k und na). Erfahrungsgemäss ist es zweckmässig, Magmen mit $k \le 0.33$ zu den relativ natronreichen (na), Magmen mit k≥0,40 zu den relativ kalireichen (k) zu zählen. Bei Werten von k zwischen 0,33 und 0,40 sind die übrigen Grössen (weitergehende Analogic mit den in Frage stehenden Typenwerten) mitzuberücksichtigen, in Zweifelsfällen wird stets mit $k \ge 0.36$ Zuordnung zu den k-Magmen besser sein. Ist alk > 22,5, so wird relativ kleine oder grosse Differenz (al — alk) erstes Bestimmungskriterium. Zur Gruppe mit kleiner Differenz (al — alk) gehören Molekularwerte mit | (al — alk) | etwa $\leq +4$ oder -4 bezw. 5. Bei alk < 22,5 ist fm in seiner Beziehung zu al und c klassifikatorisch von grösserer Bedeutung. Als is of ale Magmen werden im allgemeinen solche bezeichnet, bei denen al und fm einander ähnlich sind und zwischen 26 und 36 liegen. Deshalb sind fm-Werte von 26/28 Grenzwerte der Bestimmungstabelle. Ausgehend von der wichtigen Isofalie, hat man folgende Bezeichnungen für die Magmen:

```
al fm

+ — salische Magmen (schwach, stark)

- + femische Magmen (schwach, stark)

\sim — subfemische Magmen

- \sim subalische Magmen

- — subalfemische Magmen

- + semifemische Magmen

Eventuell

+ \sim semisalische Magmen

Dabei beziehen sich \sim, +, — auf die genannten

Normalwerte der Isofalie 26—36.
```

Noch weitergehend könnte man einen Magmentypus folgendermassen mit Worten charakterisieren:

```
alk deutlich > al = peralkalisch alk \sim al bis alk noch deutlich > ^2/_3 al = relativ alkalireich alk \sim ^2/_3 al (wie in den isofalen Mittelwerten der exogeosphären Magmen) = intermediär al deutlich < ^2/_3 al = relativ alkaliarm Mittelwerte von c liegen etwa zwischen c = 16 und 25 c > 26 ist relativ kalkreich, c < 16 ist relativ kalkarm.
```

Im allgemeinen werden diese Bezeichnungen im folgenden nicht explizite verwendet, doch haben sie bei der Abgrenzung oft eine gewisse Rolle gespielt.

Wenn nun in den Bestimmungstabellen z. B. für si ganz bestimmte Grenzwerte angegeben werden, so gilt dies für den Normalfall, unter Umständen (al, alk relativ extrem) können kleinere Abweichungen sinngemäss gestattet werden. Die Bestimmungstabelle dient zur Orientierung, rein mechanisch darf sie schon deshalb nicht benützt werden, weil sie nur den zur Zeit ausgesonderten Magmentypen angepasst ist. So wird in der Haupttabelle A vorausgesetzt, dass alk nicht wesentlich grösser als al ist und dass andererseits kein grösserer Tonerdeüberschuss über (alk + c) auftritt. Unfrische Granite z. B. können mit alk um 25-30 sehr hohes al und c < 10 aufweisen, bei al - alk ganz erheblich > 10. Man könnte sie als rapakiwitsch bestimmen, doch sagt dies über den ursprünglichen Chemismus (Auslaugung von CaO und Alkalien!) wenig aus. Bei al, wesentlich > alk + c liegen Sondertypen oder chemisch veränderte Gesteine vor, sie sind durch die Tabelle nicht erfasst worden. Bei noch nicht zu grosser Veränderung kann man übrigens durch die Vorsilbe al eine Pseudozuordnung versuchen, z. B. al — rapakiwitisch.

Ausserdem ist es nicht so, dass — selbst abgesehen von den offensichtlich nicht normalmagmatischen Zusammensetzungen — alle Wertekombinationen eines "Feldes" der Bestimmungstabelle in den natürlichen Variationsbereich des angeführten Magmentypus gehören. Es kann sein, dass einseitige Abweichungen vom Normalfall so gross werden, dass es zweckmässiger ist, dafür einen neuen Typus zu schaffen. Es stützt sich somit die Bestimmungstabelle auf das sehr umfangreiche, derzeitig bearbeitete Zahlenmaterial; sie soll jedoch in keiner Weise absolut notwendiger weiterer, jedoch sinngemässer Gliederung entgegenwirken. Die Magmentypenbildung ist mit anderen Worten soweit als möglich dem gegenwärtigen Stand unserer Kenntnis angepasst worden. Etwas Endgültiges kann sie nicht sein, solange die Forschung weitergeht.

Um einigermassen zu veranschaulichen, was als normale Variationsbreite der Werte der einzelnen Magmentypen angesehen wird, sind in

der auf die Bestimmungstabelle folgenden Zusammenstellung der Magmengruppen und Magmentypen nach den drei Reihen kurze orientierende Bemerkungen angebracht. Auch sie können natürlich nicht erschöpfend sein, da die Beziehungen der Grössen zueinander kaum richtig in Worten darzustellen sind. Hat man eine Bestimmung durchgeführt, so soll man indessen in dieser Tabelle weiter nachschauen, ob ein Normalfall vorliegt. Erhält man Werte, die mit den Grenzwerten der Bestimmungstabelle irgendwie in Widerspruch stehen, so ist nachzuprüfen, ob es sich um kleine Abweichungen handelt, bei sehr grosser Analogie zu gegebenen Magmentypen; dann wäre der Wert laut Bestimmungstabelle zu verbessern bezw. abzuändern. Bei grösseren Abweichungen handelt es sich um einen neuen Magmentypus, der jedoch nur dann zu schaffen ist, wenn offensichtliche Einschmelzungen oder spätere Veränderungen fehlen. Denn es wäre zwecklos, für alle in einem letzten Stadium deutlich veränderten, chemisch beeinflussten Eruptivgesteine Magmentypen aufzustellen.

Die vom Mineralbestand unabhängige Klassifikation der Magmentypen wurde seinerzeit geschaffen, um Vergleiche zu ermöglichen und Heteromorphiebeziehungen zu erkennen 1). Jeder Benützer der Tabellen möchte daher im Besitz von Vergleichsmaterial sein. Die Druckkosten gestatten jedoch keine Beigabe von umfangreichen, expliziten Vergleichstabellen. Um trotzdem Vergleiche zu ermöglichen, wurde die neue Einteilung auf die Tabellen der beiden leicht zugänglichen, eingangs erwähnten Werke angewandt. In der Vergleichstabelle S. 377 ff. bedeutet:

N. III, 3. Nr. 6 das Gestein "Biotitgranit" Tuolumne River, Californien, mit den Molekularwerten von Nr. 6 der Haupttabelle III₃ Seite 112 des Werkes P. Niggli, "Gesteins- und Mineralprovinzen", Bd. I, Berlin 1923. Tröger Nr. 108 bedeutet das Gestein Opdalit Nr. 108 Seite 57 bezw. 60 des Werkes W. E. Tröger, "Spezielle Petrographie der Eruptivgesteine", Berlin 1935. Die in den genannten Werken verwendeten Gesteinsbezeichnungen sind mitangeführt, damit bereits die Durchsicht dieser Vergleichstabelle mögliche Ausbildungsweisen erkennen lässt; in bezug auf alle Einzelheiten muss jedoch auf die beiden Bücher verwiesen werden. Bei Tröger findet man durchwegs den Mineralbestand angegeben, bei Niggli in Einzelfällen oder mehr generell für ganze Gruppen.

¹) Dazu dienen auch die Übersichtsfiguren und die Figuren der beigegebenen Tabellen, beide mit (al—alk) und c als Variablen. Der alk-Gehalt kommt durch die verschiedene Dreieckzuordnung zur Geltung.

Ein Studium der Bestimmungstabelle und dieser Vergleichstabelle kann für die vergleichende Eruptivgesteinskunde wegleitend sein. Unterschiede und Analogien von Magmen verschiedener Differentiationsverläufe sind leicht überblickbar. Die gewonnenen Erkenntnisse werden nachhaltig die Theorien der magmatischen Differentiation beeinflussen müssen. Anderseits wird die Heteromorphie in übersichtlicher Weise veranschaulicht. Es sei vorbehalten, an Hand der Tabellen in einem anderen Zusammenhang auf diese fundamentalen Erscheinungen einzugehen.

1. Bestimmungstabelle der Magmentypen.¹)

A. NORMALE MAGMEN.

al \ge alk oder nur wenig kleiner, al meist \le alk + c oder nur wenig grösser, si < 800/900, kein erheblicher Karbonatgehalt.

I. alk > 32,5

- 1. al-alk schwach negativ oder 0 und bis +4 bezw. +5
- a) sowohl c wie fm < 10 si > 300 (alk > 37,5)

si > 300

alkaligranitaplitisch: 450 46 6 3 45 variabel 0,15 si 300—250 (alk > 37,5)

alkalisyenitaplitisch: 280 43 8 7 42 variabel 0,2 si < 250 siehe nächste Gruppen; nicht abgetrennt von fm oder c > 10

 β) bei si reich fm (oder seltener c) \geq 10 oder beide größer 10. fm < 26

normalalkaligranitisch: 400 41 15 3 41 variabel 0,2 si < 300na (normalerweise c < 17/18) si 300-240 fm ≤ 18 nordmarkitisch: 280 41 15 5 39 0,3 0,15 fm > 18 bis 26 gibelitisch: 260 35 21 9 35 0,3 0,15 si 245-200 (qz nicht zu stark negativ) umptekitisch: 220 37 9 18 36 0,3 0,25 si 220-150 $c \le 10$ (qz negativ) normalfoyaitisch: 180 40 15 5 40 0,3 0,2 c ≥ 10 lardalitisch: 170 35 20 13 32 0,3 0,4 si 150-90 urtitisch: 115 41 12 6 41 0,2 0,2

¹⁾ Die Zahlenfolge ist immer si, al, fm, c, alk, k, mg. Die Angaben für k und mg besitzen lediglich orientierende Bedeutung. In dem Bestimmungsschlüssel bedeutet k einen k-Wert $\geq 0,4$, eventuell auch nur > 0,33, na einen k-Wert $\leq 0,33$, eventuell auch nur < 0,4.

I, alk > 32,5 (Forts.)

1, alk > 32,3 (FORS.)									
k (normalerwei si 300-230	ise c < 17/18)								
fm ≤ 18	kalinordmarkitisch:	270	40	15	5	40	0,4	0,25	
fm > 18 bi si 230—140	kaligibelitisch:	260	35	21	9	35	0,4	0,2	
SI 230140	kalifoyaitisch :	170	39	14	11	36	0,5	0,25	
	, nur im Grenzfall (alk	um 33	3) hie	rherg	ehöri	g, da	nn e l	klein	
<i>na</i> si > 220									
si 220—120	si-natronsyenitisch:	300	35	28	5	32	0,25	0,2	
k .	normalnatronsyenitisch:	160	32	28	12	28	0,25	0,3	
si > 300									
a: 200 200	si-syenitgranitisch:	330	30	28	16	26	0,4	0,2	
si 300200 si 220130	normalsyenitgranitisch:	250	30	29	13	28	0,5	0,4	
	normalsyenitisch:	180	30	30	12,5	27,5	0,5	0,4	
2. al-alk > 4 oder 5									
	a) sowohl fm wie $c < 10$, si > 300 , bei alk um 33 auch nur > 270								
na (normal al-alk	< 15 meist < 10)	450	47	7 -	2 "	40	0.0	0.0	
k (normal al-alk	natrongranitaplitisch	450	47	7,5	3,5	42	0,2	0,2	
n (normal arain	aplitgranitisch:	46 0	47	8	5	40	0,45	0,25	
β) fm < 10, c > 10,	, si > 300 bezw. 270								
na									
al-alk 5—10 al-alk 10—20	trondhjemitaplitisch:	400	44	5	13	38	0,2	0,3	
k, al-alk normaler	quarzdioritaplitisch:	420	46,5	4	15	34,5	0,2	0,3	
	yosemitaplitisch: iges si (si < 300 bezw. 27	350 (0) siel		6 zende	13 Grup	36 ne	0,4	0,3	
•						, ,			
na	beide > 10 oder dann	si < 2	70 be	ezw. 3	100				
si > 280									
	ischen 75 und 15								
	ischen 7,5 und 15 normaltrondhjemitisch: c, c < 10, fm bis 26	370	42	12	11	35	0,25	0,3	

I. alk > 32,5 (Forts.)

si 280—190, alk-alk normalerweise 5—13, fm unter 25									
alk > 36									
	bostonitisch:	230	46	12,5	2	39,5	0,3	0,3	
alk < 36									
	pulaskitisch.	210	40	18	10	. 32	0,3	0,3	
si 200—150, al-	alk normalerweise 5-13,	fm un	ter 25						
	essexitfoyaitisch:	175		18	12	31	0,3	0,3	
si 150—90, al-alk normalerweise 5—13, fm unter 25									
	monmouthitisch:	100	36	17	17	30	0,2	0,25	
k (al-alk und c n	ormalerweise unter 15)								
si > 320									
	engadinitgranitisch:	380	43	13	8	36	0,5	0,25	
si 320—220							1853	•	
	granosyenitisch:	260	39	18	11	32	0,45	0,3	
si 220—140									
	leukosyenitisch:	190	39	18	11	32	0,5	0,3	

II. alk 27,5 - 33

1. al-alk schwach negativ, 0 und bis +4 bezw. +5

$\alpha)$ fm <26/27 und erheblich kleiner al, c bis um 20

- 1	9								
no	7								
	si > 220	?							
	si 220—160								
		lardalitisch:	170	35	20	13	32	0,3	0,4
	si 160120							,	
		tahitisch:	150	32	22	18	28	0,25	0,3
k									•
	si 300-220								
		k-gibelitisch:	260	35	21	9	35	0,4	0,2
	si 220-120, al	\geq 30, al-alk meist > 4						,	,
		leukosommaitisch:	160	32,5	21	19	27,5	0,5	0,4
	si 220-150, al	≤ 30, fm z. T. bereits äh	nlich,	meist	jedo	ch unt	er 26		
		sviatonossitisch:	190	30	20	24	26	0,4	0,3
	si 150—80								
		normalarkitisch:	100	28	23	22	27	0,4	0,3
β) fn	\sim al um 30	1							
		,							
na									
	si > 220	oi makananan iki-ta	200	35	00	_	20	0.05	
	si 220—120	si-natronsyenitisch:	300	35	28	5	32	0,25	0,2
	31 220—120	normalnatronsyenitisch:	160	32	28	12	20	0.05	0.2
k		normamationsyemusen:	100	34	20	12	28	0,25	0,3
	si > 300								
	ai / 300	si-syenitgranitisch:	220	20	-00	16	06	0.4	0.0
		or-oyemigiaminoem.	330	30	28	16	26	0,4	0,2

II. alk $27.5 - 33$ (Fo	orts.)
-------------------------	--------

			'		,			ii.	
	si 300—220	normalsyenitgranitisch:	250	30	29	13	28	0,5	0,4
	si 220—130	* ***	100	00	20	10 5	07.5	0.5	0.4
		normalsyenitisch:	180	30	30	12,5	27,5	0,5	0,4
2. a	al-alk $>$ 4 bez	zw. 5							
	fm < 26/27								
350	na								
	si > 250								
	c < 10, fm >	10							
		natronrapakiwitisch:	340	42	20	8	30	0,25	0,3
	c > 10, fm >	10, al-alk meist > 10							
		leukoquarzdioritisch:	300	42	17,5	13	27,5	0,25	0,4
	c > 10, fm <	10, al-alk meist > 13				•		0.45	0.4
		si-oligoklasitisch:	380	44	8	20	28	0,15	0,4
	si < 250	i- 12							
	al-alk < 10 b si 250—190								
	51 250190	pulaskitisch:	210	40	18	10	32	0,3	0,3
	si 200—150	A 100-000 0 1000 0	210					-,-	-,-
	0. 200 100	essexitfoyaitisch:	175	39	18	12	31	0,3	0,3
	si 15090	•							
		monmouthitisch:	100	36	17	17	30	0,2	0,25
	al-alk > 13, o	e > 10, si 230—180							
		oligoklasitisch:	190	43	11	22	24	0,2	0,3
1	k								
	si > 240		I. × F						
	c < 10, 1m n	neist $14-26$, si > 320, al-al	к > э 350		18	9	32	0,45	0,3
	c + 10 si /	rapakiwitisch: 320 , al-alk ≤ 8 oder 7	330	41	10	9	32	0,43	0,5
	C <u>1</u> 10, 31 \	granosyenitisch:	260	39	18	11	32	0,45	0,3
	c > 10. fm <	20, al-alk meist 10-20		•					,
		yosemitgranitisch:	350	43	14	13	30	0,45	0,3
	c > 10, fm 2	0-27, al-alk > 7							
		adamellitisch:	300	37,5	22,5	13,5	26,5	0,45	0,3
	si 240—220, al-	alk auch über 8							
		granosyenitisch:	260	39	18	11	32	0,45	0,3
	si 220—140/12		" 0	_					
	$c \leq 15$, al-al	lk kaum über 15, jedoch g			10	11	20	0.5	0.3
	0 > 15	leukosyenitisch:	190	39	18	11	32	0,5	0,3
	c ≧ 15	leukosommaitisch:	160	32,5	21	19	27,5	0,5	0,4
		rearosommanisen.	100	32,3			,0	٠,٠	-, -
β)	fm \sim al, um 30) jedoch al $>$ 32,5, fm \ge	25/	26, al	-alk l	kaum	größ	er 12	
	na								
	si > 280	y energy	_						
		si-maenaitisch:	?						

II. alk 27.5 - 33 (Forts.)

si 280—180								
si 180—130	maenaitisch:	210	33	28	14	25	0,3	0,4
	nosykombitisch:	150	33	28	14	25	0,3	0,4
\boldsymbol{k}					e.			
si 400-220								
	tasnagranitisch:	300	36	28	9	27	0,45	0.35
si 220—130								,
	normalsyenitisch:	180	30	30	12,5	27,5	0,5	0,4
	hier al-alk meist klei	iner 8				-		

III. alk 22,5 - 27,5

1.	al-alk schwach negativ, 0 und bis $+6$								
a)	na								
	c ≤ 18								
	fm 26—32								
	si 400220								
	tine dedications Parados to	si-natronsyenitisch:	300	35	28	5	32	0,25	0,2
	si 220—120		(N) (N) (N) (N) (N)	D993333500		0. 902	20000000		
		normalnatronsyenitisch:	160	32	28	12	28	0,25	0,3
	fm > 32,5, si 2			25.2	•		20	0.05	0.0
	~ 10	melanatronsyenitisch:	140	26,5	39	11,5	23	0,25	0,3
	c <u>≥</u> 18								
	si > 170	annuit ii alithia ah e	2						
	si 170 70	syenit-ijolithisch:	?						
	si 170—70	normalijolithisch:	100	25	25	25	25	0,25	0,4
a \		iormanjontinsen:	100	23	23	23	25	0,23	0,4
β)	k								
	$fm \leq 27$								
	c ≤ 27								
	si 220—150	sviatonossitisch:	190	30	20	24	26	0,4	0,3
	si 150—80	sviatonossitisch:	190	30	20	24	20	0,4	0,5
		normalarkitisch:	100	28	23	22	27	0,4	0,3
		90—90, al-alk auch etwa hö			23	22	21	0,1	0,3
	C 21—33, 31 13	borolanitisch:	120		22	31	20	0,6	0,35
	c > 35 si 100-	–80, al-alk auch etwa höhe					20	0,0	0,00
	c > 55, 51 190	vesbitisch:	100		18	39,5	19,5	0,8	0,8
	fm 27—35, c < 2			- 5		,-		•	,
	si > 300								
		si-syenitgranitisch :	330	30	28	16	26	0,4	0,2
	si 300-220	3						2002	51
		normalsyenitgranitisch:	250	30	29	13	28	0,5	0,4
	si < 220								
	c < 17,5, si	220—140							Ģ
		normalsyenitisch:	180	30	30	12,5	27,5	0,5	0,4

III. alk 22,5 - 27,5 (Forts.)

		III. aik 22,5 —	21,5	(ro	rts.)				,
	c > 17,5	melarkitisch :	150	22	34	22	22	0,6	0,4
	fm ≥ 35							2000 * 200	
	c < 16								
	si 250—200	kammaraniticah .	225	26	39	12	23	0,6	0,6
	si 200—165	kammgranitisch:	223	20	39	12	23	0,0	0,0
	si 165—140	si-kamperitisch:	185	28	37	12,5	22,5	0,5	0,4
	\$1 105140	kamp eri tisch :	150	29	37	11,5	22,5	0,6	0,5
	c > 16, si 165-			7922722	201.0		-		
		melarkitisch:	150	22	34	22	'22	0,6	0,4
2.	al-alk > 6		2						
a)	па				1.0				
•	$fm \leq 26$								
	si > 220								
	fm < 10	si-oligoklasitisch:	380	44	8	20	28	0,15	0,4
	fm > 10 inda	1075/N	300	77	O	20	20	0,13	0,4
	$fm > 10 \ jedo$ $c < 10$	icn < 20							
	C < 10	natronrapakiwitisch:	340	42	20	8	30	0,25	0,3
	c > 10	•							- -
	$alk \leq 2$	5, al-alk > 14							
		farsunditisch:	300	42	20	15	23	0,25	0,4
	$alk \ge 25$	the second secon	200			40	A	~ ~~	
		leukoquarzdioritisch:	300	42	17,5	13	27,5	0,25	0,4
	si 220—180, fm	< 13, al-alk > 14	400						~ ~
		oligoklasitisch:	190	43	11	22	24	0,2	0,3
	si 220—130, fm al 30—35	1 > 10 bis 26							
		kassaitisch:	170	33	23	19	25	0,25	0,35
	ai > 35, $al-ai$								
		larvikitisch:	170		21	17	25	0,3	0,35
	si 150—70, fm	20-32, al $20-32$, c > 18,			05	05	~~	0.05	0.4
٠	£ > 06 *!!!al.	normalijolithisch:	100	25	25	25	25	0,25	0,4
		al, fm nicht höher als 33							
	si 280180, al	meist 30—37, c < 18 maenaitisch:	210	33	28	14	25	0,3	0,4
	si 180—130. c :	\leq 20, al \geq 28 bis 35			,			-1-	
		nosykombitisch:	150	33	28	14	25	0,3	0,4
	si 150—70, c >	18, al 20-32, fm nicht üt	er 33	, al-al	k < 8				
	×	ijolithisch:	100	25	25	25	2 5	0,25	0,4
	fm > 32,5								
	si 220—120					2002			
		melanatronsyenitisch:	140	26,5	39	11,5	23	0,25	0,3

Paul Niggli

β) k	III. alk 22,5 —	27,5	(For	rts.)							
$fm \leq 26/27$											
si > 230, c > 1	10										
	der fm < 20 (sonst jedoch	fm me	eist ≥	20)							
$alk \ge 25, fr$	normalgranodioritisch:	280		22	17	22	0,45	0,4			
	adamellitisch:	300	37,5	22,5	13,5	26,5	0,45	0,3			
$\hat{s}_i > 220, c < 1$	10, fm ≥ 24 tasnagranitisch:	300	36	28	9	27	0,45	0,35			
si 230—140	3							·			
c < 20 oder	al-alk ≧ 9										
c > 20 oder	monzonitsyenitisch: $al-alk < 9$	180	36	23	15	26	0,45	0,35			
	leukosommaitisch:	160	32,5	21	19	27,5	0,5	0,4			
	(bei höherem c siehe auch borolanitisch, vesbitisch)										
1 06 05	fm o al 26_35										
fm \sim al, 26 -35											
si > 220											
c ≤ 10											
	tasnagranitisch:	300	36	28	9	27	0,45	0,35			
c ≥ 10			100 NS	2121							
	normalgranitisch:	270	34	29	13	24	0,45	0,35			
si 220—140											
c < 17,5							-	-			
	normalsyenitisch:	180	30	30	12,5	27,5	0,5	0,4			
c > 17,5											
	melarkitisch:	150	22	34	22	22	0,6	0,4			
	m über 33, al-alk kaum übe	er 10,	meist	kleine	er						
si 250—200	kammaranitisah.	225	26	39	12	23	0.6	0.4			
si 200—165	kammgranitisch:	225	20	39	12	23	0,6	0,4			
\$1 200-105	si-kamperitisch:	185	28	37	12,5	22,5	0,5	0,4			
si 165—140	si-kampentisch.	103	20	31	12,3	22,3	U,J	0,4			
c < 16											
	kamperitisch:	150	29	37	115	22,5	0,6	0,5			
c > 16	kampenusen.	130	49	31	11,5	22,5	0,0	0,3			
C > 10	melarkitisch:	150	22	34	22	22	0,6	0,4			
		4						8			
	IV. alk 17.5	– 2 :	2.5			183					

IV. alk 17,5 - 22,5

1. na

a) fm < 26 oder 28 bei al > 32,5 bezw. 35

fm < 12,5, al meist über 40, si meist 230—150 c < 25

c > 24, fm	5		43	11	22	24	0,2	0,3
c > 24,	fm < 10							
	andesinitisch:	190	46,5	5	28	20,5	0,2	0,3

IV. alk 17,5— 22,5 (Forts.)

		IV. aik 17,5— 2	2,5	(LOL	s. <i>)</i>				
	fm > 12,5								
	si 440—230, au	f alle Fälle > 220 farsunditisch:	300	42	20	15	23	0,25	0,4
	si 230—180	leukopeléeitisch:	200	38	21	24	17	0,2	0,4
	si 180—130	rouvillitisch:	140	37	20	23	20	0,25	0,4
Q\	fm a al 11m 20 /	(26–36), auch im ganzen		alk a	1-014	im a11	deme	inan '	75
ρ).		20—30), auch im ganzen		ain, a	ii-ain	iiii aii	geme	incii ,	,,,,
	si 300—175 si 180—160	normalquarzdioritisch:	225	32	31	19	18	0,25	0,45
	si 160—110	essexitakeritisch:	175	30	30	20	20	0,3	0,4
	Si 100—110	normalessexitisch:	130	30	30	20	20	0,3	0,4
γ)	fm um 25 bis 3	6, c > 26, al < 26, si 150	90	ľ	CV				
8.4	c < 35, jedoch >	26		1					
	c≥ 35	melteigitisch:	100	20 .	32,5	30	17,5	0,25	0,4
		c-melteigitisch:	120	17	27	37,5	18,5	0,25	0,3
δ)	δ) fm \geq 32,5, c < 26, al stets wesentlich kleiner als fm								
	si 300—160, fm >	36, al um 30							
	si 160—120	melaquarzdioritisch:	200	30	40	10	20	0,3	0,5
	alk \leq 20, al-alk	meist 5—12,5, al \leq 30 mugearitisch:	135	24	42	18	16	0,25	0,6
	alk > 20 al-alk	kaum über 12,5, al \leq 30	133	44	44	10	10	0,23	0,0
	$aik \leq 20, ai-aik$ si 120—70	melanatronsyenitisch:	140	26,5	39	11,5	23	0,25	0,3
		al ≦ 22,5, al-alk klein							
	111 52,5 42,5,	normaltheralithisch:	110	- 21	38	23	18	0,25	0,45
	fm 42,5 bis üb	er 50, al ≤ 22,5, al-alk klei							-,
		melatheralithisch:		17,5	47	21	14,5	0,2	0,55
2.	k								#()
		4/35, c < 25 meist < 22							
a)		4/33, C < 23 meist < 22							
	si > 200	normalgranodioritisch:	280	39	22	17	22	0,45	0.4
	si 200—150	normaigranoulormsen.	200	39	22	11	22	0,43	0,4
		leukomonzonitisch:	180	37,5	25	17	20,5	0,45	0,4
β)	$fm \leq 26$, al me	ist \leq 30, c \geq 25							
3 (5)	c 25-35, si 190-	-90						10	
	c > 35, si 190—8	borolanitisch:	120	27	22	31	20	0,6	0,35
	- , os, or 170 o	vesbitisch:	100	23	18	39,5	19,5	0,8	0,8

IV. alk 17,5 - 22,5 (Forts.)

		1v. alk 11,5	22,3	(1 01	13./				
γ)	fm 26—36, ähnl si > 280	lich al (26–36), $c \le 25$							
		moyitisch:	380	33	32	15	20	0,45	0,3
	si 280-190	,					10-mark		
	5. 200 170	opdalitisch:	225	32	32	18	.18	0,45	0,45
	si 190—160	opum			-	1.71.7		-,	
	31 170 100	si-monzonitisch:	170	30	30	20	20	0,45	0,45
	si 160—120	31 monzommoen.		-	-			٠, -٠	-,
	31 100 120	normalmonzonitisch:	140	29	31	21	19	0,5	0,45
				-/	•••		• •	0,0	0, 10
δ)	fm 30-36, ev. 3								
	alk \leq 20, c 22,5	bis 30, si 160—90	0.70790	2010 000				-	
		normalsommaitisch:	115	24,5	34	24,5	1 7	0,55	0,5
	alk \geq 20, c > 17,		2	_ 2	2.4	2.2			
		melarkitisch:	150	22	34	22	22	0,6	0,4
ε)	fm <u>≥</u> 35								
,		das ganze Intervall							62
		17 meist < 24 , al > 19 , al-	alk 0	oder	+, si	215-	-100		
	, , , , , , , , , , , , , , , , , , , ,	yogoitisch:	145		40	20	18	0,5	0,55
	fm um 40, c ui	n 20, al um 20, al-alk neg	ativ,	si 170	-120			-	150
		yogoitlamproitisch:	140		41	19	21	0,8	0,7
	fm > 41, $c \le 1$								
		16, al-alk negativ, 0 oder	+, si	170—	120				
		murcialamproitisch:	140		52	13	18	0,6	0,75
	al $>$ 19. c \leq	17, al-alk 0 oder +, si 21!	5—100)					
		lamprosyenitisch:	150		46	13	18	0,6	0,6
	al 25-32,5, alk n								
	si > 200, meist								
	,	kammgranitisch:	225	26	39	12	23	0,6	0,6
	si 200165							2001 - 4000	
		si-kamperitisch	185	28	37	12,5	22,5	0,5	0,4
	si 165—140					•	•		å
	,	kamperitisch:	150	29	37	11,5	22,5	0,6	0,5
		•					5.53		
		V. alk 12,5	-17	,5					
1.	na								
a)	al \leq 25, c \geq 25								
,	$fm \leq 36$								
	$c \le 35$, si 150-	-85							
	v <u>= v</u> ,	melteigitisch:	100	20	32,5	30	17,5	0,25	0,4
	c > 35	B			5.800 Y			•	****
	si 150-85, al	k meist > 15							
	J. 100 00, W.	c-melteigitisch:	120	17	27	37.5	18,5	0,25	0,3
	si 100-60, al			733000	49 N	, , -	,	,	
	,	turjaitisch:	70	15	33	41	11	0,25	0,5
	fm ≥ 36, si 130-		- (-)	0.000	5.65	200	41	n • T 15	
	= 50, 51 100	normalgabbrotheralithisch:	100	17	43	27.5	12,5	0,2	0,45
				A:55		,,-	,-	-,-	-,

V. alk 12,5 - 17,5 (Forts.)

β) al \leq 26 (ev. bis 28 dann fm > 36), fm > 36 (ev. > 32,5 dann al < 26), c \leq 25 al < 20 oder, sofern al-alk < 5, bloss < 22,5, si \leq 130 bis 65										
	fm 32,5—42,5	normaltheralithisch:	110	21	38	23	18	0,25	0,45	
	fm > 42,5 al \geq 20, doch nur	melatheralithisch: r dann kleiner 22,5 wenn a		17,5 > 5	47	21	14,5	0,2	0,55	
	c < 20, si kaum fm 36—47	i über 160 und ≥ 100					•1			
	al-alk > 12,		150	05	40	01.5	10 5	٥٥٢	0.5	
	al-alk / 19	lamprodioritisch: oder c < 18, si meist 160-	150 -100	25	40	21,5	13,5	0,25	0,5	
	fm 47—57	mugearitisch:	135	24	42	18	16	0,25	0,6	
		natronlamprosyenitisch:	135	22	50	13,5	14,5	0,25	0,6	
	c > 20 bis 25 si > 120 bis	etwa 180								
	$al-alk \leq 10$									
		beringitisch:	125	23,5	39	22,5	15	0,25	0,45	
	a l-alk > 10	1	150	OF	40	01.5	10 5	0.05	0.5	
	si < 120, fm	lamprodioritisch:	150	25	40	21,5	13,5	0,25	0,5	
	31 \ 120, 1m	normaltheralithgabbroid:	105	24	38	25	13	0,25	0,5	
γ)		,5)								
	$c \leq 25$	> 12 (comet molégitions I)								
		: ≥ 13 (sonst peléeitisch!) normalquarzdioritisch:	225	32	31	19	18	0,25	0,45	
	si 180—125	normaldioritisch:	155	30	35	21	14	0,3	0,5	
	c > 25 si > 125									
	si < 125	cumbraitisch:	200	27	31	27	15	0,3	0,3	
	31 < 123	gabbromeIteigitisch:	110	27	31	27	15	0,25	0,4	
δ)	al sehr hoch, fr		312 21						(a	
		r 40, c hoch, si meist 180– labradorfelsitisch:	-120 150	46	4	35	15	0,1	0.45	
	fm 12,5—26, al ü c < 26, si meis									
	c > 26, $si > 140$	leukopeléeitisch : O	200	38	21	24	17	0,2	0,4	
	and 20 vs ₹ 5 1000 3	si-melaplagioklasitisch:	220	35	15	35	15	0,1	0,6	
2.	k									
a)	$fm \leq 26$, al gro	ss, eventuell fm bis 28	wenn	al >	36, a	n si i	übers	ättigt		
8		leukotonalitisch:	220		24	21	16	0,5	0,4	

V. alk 12,5 - 17,5 (Forts.)

β)	fm \sim al (z. B, 2	6-36), c < 25	-,- (. 0110	••/				9
	alk <u>≤</u> 15 si 250—160								20
	si 250—100	tonalitisch:	180	33	33	22	12	0,4	0,4
	si 160—120		4.40					15.8	
	alk <u>≥</u> 15	sommaitmonzonitisch:	140	28	33,5	24,5	14	0,6	0,55
	si > 280		-					×	
	si 280—190	moyitisch:	380	33	32	15	20	0,45	0,3
		opdalitisch:	225	32	32	18	18	0,45	0,45
	si 190—160	si-monzonitisch:	170	30	30	20	20	0.45	0.45
	si 160—120	or monzonitiscii.	170	30	30	20	20	0,45	0,45
		monzonitisch:	140	29	31	21	19	0,5	0,45
γ)	fm \gtrsim al, (al me	ist 20—27, fm 30—38),			> 26,	si 160) 90		
		sommaitossipitisch:	125	26	33	27	14	0,55	0,5
δ)	fm > al, al \ge 19 si > 180	oder 20							
		vredefortitisch:	250	28	42	17,5	12,5	0,5	0,4
	$si \le 180$ oder bis al-alk $\le 7,5$	215, wenn al-alk < 10							
	c < 17, si 200)—120							
	17 00 5	lamprosyenitisch:	150	23	46	13	18	0,6	0,6
	c 17—22,5, si	yogoitisch:	145	22	40	20	18	0,5	0,55
	$c \ge 22,5$, si 1	80—90			10	20	10	0,5	0,33
	al-alk > 7,5 mei	normalsommaitisch:	115	24,5	34	24,5	17	0,55	0,5
		23, si 180-90, Grenzfall							v
		normalsommaitisch:	115	24,5	34	24,5	17	0,55	0,5
		1, c 17—26, si 180—110 monzonitdioritisch:	135	27	38	21,5	135	0,4	0,5
	fm 41—54				00	21,0	10,5	0,1	0,5
		10—20, si 180—110	405	۰. ۲					
		lamprosommaitisch: < 17, al-alk nicht grösser		22,5 200—		18	13	0,5	0,6
		lamprosyenitisch:	150		46	13	18	0,6	0,6
100	$fm > al, al \leq 20$								
	c < 10, fm > 65, s	si 100—60 biotitisch:	70	1.4	74			0.0	0.0
		< 65, si 120—100	70	14	74	1	11	0,8	0,9
		jumillitisch:	110	13	60	14	13	0,7	0,8
	$c < 17,5, fm \le 54,$	si 170—120 murcialamproitisch:	140	17	52	13	18	0,6	0,75
	c 17,5—27,5, fm <	54, si 130—75						J,U	0,10
		normalshonkinitisch:	100	17,5	47,5	23	12	0,55	0,65

	V. alk 12,5 - 17,5 (Forts.)									
	c 28-40 al 10-17,5, si	120—70						*		
		normalmissouritisch:	95	14,5	44	31,5	10	0,6	0,6	
	al 17,5—20, si	130—80 shonkinitmissouritisch:	110	18	34	34	14	0,6	0,55	
		VI. alk 7,5	— 12	.5						
1.	na			,-						
a)	fm < 26, al hoc	h								
,-0	fm < 12,5, al > 40	0, c > 30, si meist 150—100		d						
		anorthositisch:	120	43	10	40	7	0,1	0,45	
	fm 12,5—26, al > si > 140	→ 30, c > 28								
	si < 140	si-melaplagioklasitisch:	220	35	15	35	15	0,1	0,6	
	51 < 110	anorthositgabbroid:	130	37	22	33	8	0,1	0,55	
β)	fm 26-35/36,	ähnlich al (26–36)								
	$c \le 26$, si 250—:									
	> ac 1.mo .	peléeitisch :	180	33	32	23	12	0,2	0,45	
	$c \ge 26$, si 170—1	belugitisch:	130	29	32	29	10	0,15	0,5	
415	fm / 30 al / 26	5, c hoch, si 70–40						,	,	
1)	iii \ 50, ai \ 20	okaitisch:	55	14	30	49	7	0,15	0,5	
δ)		doch al < 26/27,5				:•				
	c 20—28									
	si 160—120	leukomiharaitisch:	140	26,5	38	26,5	9	0,25	0,45	
	si 120-85, alk		110	20,5	50	20,5		0,23	0,13	
		normaltheralithgabbroid:	105	24	38	25	13	0,25	0,5	
	c 28—35, si 125-		200							
	- 25 46 oi 100	turjaitgabbroid:	100	24	33	32	11	0,25	0,5	
	c 35-46, si 100-	-50 turjaitisch:	70	15	33	41	11	0,25	0,5	
	$c \ge 46$, si 70—46							0,20	0,0	
		okaitisch:	55	14	30	49	7	0,15	0,5	
$\varepsilon)$	fm > 37,5 bezw	. > 36, fm ≫ al								
	c < 29/30									
	fm 35—40					,				
	si 180—110	al alle > 10 °								
	$c \leq 25/20$, al-alk ≥ 12,5 orbitisch:	135	27	42	21,5	9,5	0,25	0,5	
	c ≥ 25/26	O. Dittochi.	100	~ 1	12	-1,0	9,0	0,20	0,0	
	22 - 24	leukomiharaitisch:	140	26,5	38	26,5	9	0,25	0,45	
	si 120—85, a	al 20-27,5, al-alk < 17	10"	04	20	25	10	0.05	0 =	
		normaltheralithgabbroid:	105	24	38	25	13	0,25	0.5	

VI. alk 7.5 - 12.5 (Forts.)

```
fm \ge 39/40
    al > 16
      si \ge 110 bezw. 115
        al 16-26
           c 10—17,5, fm 47—57, si 160—110, alk > 10
                                                                13,5 14,5 0,25 0,6
                  natronlamprosyenitisch:
                                              135 22
                                                         50
          c > 16 bezw. 17,5 bis 26
             fm 40-49, al > 18
               si 170—145, c > 17.5
                  si-gabbrodioritisch:
                                                                22
                                              150 25
                                                          43
                                                                      10
                                                                            0,2
                                                                                  0,5
               si 145-110, c > 16
                  normalgabbrodioritisch:
                                              130 23
                                                          44
                                                                22,5
                                                                      10,5
                                                                                  0,5
             fm > 49 oder nur > 47, wenn al 16-18, si 170-110
                  melagabbrodioritisch:
                                              130 19
                                                                21
                                                                       9
                                                                            0,25
                                                          51
                                                                                  0,5
           c \ge 26
             al < 19.5, si < 130
                  normalgabbrotheralithisch: 100 17
                                                          43
                                                                27,5
                                                                     12,5
                                                                            0,2
                                                                                  0,45
             al > 19.5, si 150—110
                  miharaitisch:
                                              130
                                                   23
                                                          42
                                                                27,5
                                                                       7,5
                                                                            0,2
                                                                                  0,5
        al > 25/26, fm \leq 46, al-alk \geq 12,5
                  orbitisch:
                                              135
                                                   27
                                                          42
                                                                21,5
                                                                       9,5
                                                                            0,25
                                                                                  0,5
      si \leq 115 bezw. 110
          al < 19 bei fm meist < 49, c > 24,5, si 115-65
                  normalgabbrotheralithisch: 100 17
                                                                27,5
                                                                      12,5
                                                                                  0,45
          al < 20 bei fm 42,5—52,5, c < 25, alk > 10, si 110—70
                  melatheralithisch:
                                               85 17,5 47
                                                                21
                                                                      14,5
                                                                            0,2
                                                                                  0,55
          al 17—25, fm 45—52,5, selten höher, c < 24,5 bei al < 20,
                       alk \leq 10, si 115-80
                  essexitgabbroid:
                                               95
                                                   20
                                                          49
                                                                21,5
                                                                       9,5
                                                                            0,25
                                                                                  0,5
          al 20-27, fm 40-45, si 115-90
                  essexitgabbrodioritisch:
                                              105 23
                                                          43
                                                                24
                                                                      10
                                                                            0,25 0,45
    al < 16
      si 130-70, fm nicht über 60
        c < 24,5
                  kaulaitisch:
                                              100 13
                                                          55
                                                                22
                                                                      10
                                                                            0,15 0,6
        c > 24,5
                  ankaratritisch:
                                               75
                                                   13
                                                          52
                                                                27
                                                                       8
                                                                            0,25 0,6
      si 70-40
        fm < 60
                  modlibovit-polzenitisch:
                                               50
                                                   13
                                                          56
                                                                23
                                                                       8
                                                                            0,2
                                                                                  0,6
        fm > 60
                  alkalihornblendeperidotit.: 65
                                                    8
                                                         68,5
                                                               16
                                                                       7,5
                                                                            0,3
                                                                                  0,8
c \ge 29/30
  fm \le 45, si 130-80
    al-alk \leq 9
                  c-gabbrotheralithisch:
                                              100
                                                   15
                                                          40
                                                                35
                                                                      10
                                                                            0,25 0,5
    al-alk \ge 9
                  berondritisch:
                                               90
                                                  20
                                                          40
                                                                32
                                                                       8
                                                                            0,25 0,5
```

VI. alk 7.5-12.5 (Forts.)

	VI. alk 7,5—12,5 (Forts.)								
	fm ≥ 45	0 1 00 50							
	al-alk um 4-	-8, si 90—70	75	12	ro	27	0	0.25	0.6
	-1 -111- 12-	ankaratritisch:	15	13	52	27	8	0,25	0,6
	al-alk sehr kle	ein							
	si 110—60	alkalijacupirangitisch:	95	8.5	52	32,5	7	0,3	0,4
	si ≤ 60		7.7	-,-		- ,-		- , -	55 %
		vesecit-polzenitisch:	50	9	54	30	7	0,3	0,7
2.	k								
		(beide 27–38), $c \le 27.5$	jedo	ch ≥	18, a	lk me	ist ≥	9	
,	si 250 – 150								
		tonalitisch:	180	33	33	22	12	0,4	0,4
	si 150—100								
		sommaittonalitisch:							
β)		20 und grösser							
	c < 27,5, al noch	—							
	si > 180, c 15-		050	00	40	175	10.5	0.5	0.45
	a: 100 110	vredefortitisch:	250	28	42	17,5	12,5	0,5	0,45
	si 180—110 c ≦ 20								
	€ ≥ 20	lamprosommaitisch:	135	22,5	46,5	18	13	0,5	0,6
	c > 20 bis 27,	•		1.50				-	*
		sommaitdioritisch:	135	23,5	42	23,5	11	0,45	0,55
	c > 27,5 bis 35, al	um 20, al-alk $> 7,5$, si 125							
		antrohitisch:	105	19	42	30	9	0,6	0,55
γ)	fm 28—54, al \leq								
	c 17,5—28, al 15-	5	**		W222 WY	121121		2 0 100000	
		normalshonkinitisch:	100	17,5	47,5	23	12	0,55	0,65
	c 28—39	115 70							
	al 10—17,5, si	normalmissouritisch:	OE.	145	4.4	21.5	10	0.6	0.6
	al 17,5—20, si		95	14,5	77	31,5	10	0,6	0,6
	ai 11,5—20, 5i	shonkinitmissouritisch:	110	18	34	34	14	0,6	0,55
	c > 38, al meist <				•	•		0,0	0,00
	si 110-60								
		pyroxenolithisch:	80	13	43	40	4	0,6	0,6
	si < 60	almäitiaah	EΛ	10	42	40	7	0.6	0.6
	6 . 50 1 - 15	alnöitisch :	50	10	43	40	7	0,6	0,6
	fm > 50, al \leq 17	,5							
8	$fm < 65$ $alk \leq 10$								
	fm 50-58, si	120—80							
	1111 00 00, 01	kajanitisch:	90	13	55	23	9	0,6	0,7
2	fm um 60	,	15.50		107 20	3-3- 3-3 -3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	1.5%	-,-	٠,٠
5		kalihornblenditisch:	100	14	60	17	9	0,4	0,8
	alk \geq 10, si 120	0—90, fm um 60							
		jumillitisch:	110	13	60	14	13	0,7	0,8
	fm > 65, si 9060				74		1		0.5
(*)		biotitisch:	70	14	74	1	11	0,8	0,9

VII. alk 0-8

	vii. aik $0-8$								
1.	al hoch, fm <	26							
	$fm \leq 15$, si 140								
,	== 10, 0. 110	anorthositisch:	120	43	10	40	7	0,1	0,5
BY	fm > 15, si 150-		120	43	10	40	•	0,1	0,5
PJ	1111 / 13, 31 130		130	37	22	33	8	0.1	0 55
		anorthositgabbroid:	130	31	22	33	0	0,1	0,55
2.	al \sim fm \sim c (26_38), si 125_90		÷	le .				
	`	ossipitisch:	110	30	35	30	5	0,15	0,6
				00	00	00	<u> </u>	0,10	0,0
3.	al und c um 3	30, fm um 40, si 125—	90						
		achnahaitisch:	100	29	40	27	4	0,2	0,5
4	al 20—26								
		10.0							
a)	c < 26, jedoch >								
	c < 18, si $120 - 70$								
		fm-gabbroid:	80	24	54	17	5	0,2 V	ariab ei
	c 1823, al 202	23, si 120—90, alk 5—8							
		normalgabbroid:	108	21	51	2 2	6	0,2	0,5
	c 23-26, al 22-	26, si 130—80	100						
		c-gabbroid:	100	25	46	25	4	0,1	0,7
β)	c > 26								
	c 26-30, si 150-	-75							
	•	miharaitisch:	130	23	42	27,5	7,5	0,2	0,5
	$c \ge 30$, si $130-7$	' 5					a k a	-,-	-,-
	- ==,	pyroxengabbroid:	100	23,5	40.5	31,5	4,5	0,2	0,7
		h)	-00	-0,0	-0,0	01,0	-,0	٠,-	٠,٠
5.	al um 20 (17.5	522), siehe mit al 18 a	auch	6. b	esoni	lers b	ei ho	hem	С
		5—22), siehe mit al 18 a	auch	6, b	esono	ders b	ei ho	hem	c
	al um 20 (17,5 c < 23, si 135—7	0							
a)	c < 23, si 135—7	'0 al-hornblenditisch:		6, b	esono	lers b	ei ho	ohem ?	c 0,7
a)	c < 23, si 135—7 c 23—26, si 120	'0 al-hornblenditisch:							
a)	c < 23, si 135—7	al-hornblenditisch: —90	120	19	61	15	5	?	0,7
a)	c < 23, si 135—7 c 23—26, si 120 alk < 5	'0 al-hornblenditisch:							
a)	c < 23, si 135—7 c 23—26, si 120	al-hornblenditisch: -90 eukritisch:	120 100	19 18	61 55	15 24	3	?	0,7
α)β)	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5	al-hornblenditisch: —90	120	19	61	15	5	?	0,7
α)β)	c < 23, si 135-7 c 23-26, si 120 alk < 5 alk > 5 c > 26	al-hornblenditisch: -90 eukritisch:	120 100	19 18	61 55	15 24	3	?	0,7
α)β)	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5	al-hornblenditisch: -90 eukritisch: normalgabbroid:	120 100 108	19 18 21	615551	15 24 22	5 3 6	? 0,1 0,2	0,7 0,7 0,5
α)β)	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70	al-hornblenditisch: -90 eukritisch:	120 100 108	19 18	61 55	15 24	3	?	0,7
α)β)	c < 23, si 135-7 c 23-26, si 120 alk < 5 alk > 5 c > 26	al-hornblenditisch: -90 eukritisch: normalgabbroid: arriégitisch:	120 100 108 80	19 18 21 19	61555149	15 24 22 31	5 3 6	? 0,1 0,2	0,7 0,7 0,5
α)β)	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70	al-hornblenditisch: -90 eukritisch: normalgabbroid:	120 100 108	19 18 21 19	615551	15 24 22	5 3 6	? 0,1 0,2	0,7 0,7 0,5
α)β)γ)	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70 si 70—50	al-hornblenditisch: -90 eukritisch: normalgabbroid: arriégitisch:	120 100 108 80	19 18 21 19	61555149	15 24 22 31	5 3 6	? 0,1 0,2	0,7 0,7 0,5
 α) β) γ) 6. 	c < 23, si 135-7 c 23-26, si 120 alk < 5 alk > 5 c > 26 si 120-70 si 70-50 al \leq 18,5	al-hornblenditisch: -90 eukritisch: normalgabbroid: arriégitisch:	120 100 108 80	19 18 21 19	61555149	15 24 22 31	5 3 6	? 0,1 0,2	0,7 0,7 0,5
 α) β) γ) 6. 	c < 23, si 135-7 c 23-26, si 120 alk < 5 alk > 5 c > 26 si 120-70 si 70-50 $al \leq 18,5$ c < 26	al-hornblenditisch: -90 eukritisch: normalgabbroid: arriégitisch:	120 100 108 80	19 18 21 19	61555149	15 24 22 31	5 3 6	? 0,1 0,2	0,7 0,7 0,5
 α) β) γ) 6. 	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70 si 70—50 al \leq 18,5 c < 26 fm < 70/72	al-hornblenditisch: -90 eukritisch: normalgabbroid: arriégitisch: ostraitisch:	120 100 108 80 60	19 18 21 19	61555149	15 24 22 31	5 3 6	? 0,1 0,2	0,7 0,7 0,5
 α) β) γ) 6. 	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70 si 70—50 al \leq 18,5 c < 26 fm < 70/72	al-hornblenditisch: —90 eukritisch: normalgabbroid: arriégitisch: ostraitisch:	120 100 108 80 60	19 18 21 19 18	6155514953	15 24 22 31 27	5 3 6 1 2	? 0,1 0,2 0,1 0,3	0,7 0,5 0,8 0,6
 α) β) γ) 6. 	c < 23, si 135-7 c 23-26, si 120 alk < 5 alk > 5 c > 26 si 120-70 si 70-50 al \leq 18,5 c < 26 fm < 70/72 al < 10, c \geq 20	al-hornblenditisch: —90 eukritisch: normalgabbroid: arriégitisch: ostraitisch:	120 100 108 80 60	19 18 21 19	61555149	15 24 22 31	5 3 6	? 0,1 0,2	0,7 0,7 0,5
 α) β) γ) 6. 	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70 si 70—50 al \leq 18,5 c < 26 fm < 70/72 al < 10, c \geq 20 al \sim alk merklic	al-hornblenditisch: —90 eukritisch: normalgabbroid: arriégitisch: ostraitisch:	120 100 108 80 60	19 18 21 19 18	6155514953	15 24 22 31 27	5 3 6 1 2	? 0,1 0,2 0,1 0,3	0,7 0,5 0,8 0,6
 α) β) γ) 6. 	c < 23, si 135-7 c 23-26, si 120 alk < 5 alk > 5 c > 26 si 120-70 si 70-50 al \leq 18,5 c < 26 fm < 70/72 al < 10, c \geq 20	al-hornblenditisch: -90 eukritisch: normalgabbroid: arriégitisch: ostraitisch: diallagitisch: ch, c > 12	120 100 108 80 60	19 18 21 19 18	615551495368	15 24 22 31 27	5 3 6 1 2	? 0,1 0,2 0,1 0,3	0,7 0,5 0,8 0,6
 α) β) γ) 6. 	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70 si 70—50 al \leq 18,5 c < 26 fm < 70/72 al < 10, c \geq 20 al \approx alk merklic si 100—50	al-hornblenditisch: —90 eukritisch: normalgabbroid: arriégitisch: ostraitisch:	120 100 108 80 60	19 18 21 19 18	6155514953	15 24 22 31 27	5 3 6 1 2	? 0,1 0,2 0,1 0,3	0,7 0,5 0,8 0,6
 α) β) γ) 6. 	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70 si 70—50 al \leq 18,5 c < 26 fm < 70/72 al < 10, c \geq 20 al \sim alk merklic	al-hornblenditisch: —90 eukritisch: normalgabbroid: arriégitisch: ostraitisch: diallagitisch: ch, c > 12 alk-hornblendeperidotitisch	120 100 108 80 60 65 90	19 18 21 19 18	61555149536868,5	15 24 22 31 27 23	5 3 6 1 2 7,5	? 0,1 0,2 0,1 0,3	0,7 0,5 0,8 0,6
 α) β) γ) 6. 	c < 23, si 135—7 c 23—26, si 120 alk < 5 alk > 5 c > 26 si 120—70 si 70—50 al \leq 18,5 c < 26 fm < 70/72 al < 10, c \geq 20 al \approx alk merklic si 100—50	al-hornblenditisch: -90 eukritisch: normalgabbroid: arriégitisch: ostraitisch: diallagitisch: ch, c > 12	120 100 108 80 60	19 18 21 19 18	615551495368	15 24 22 31 27	5 3 6 1 2	? 0,1 0,2 0,1 0,3	0,7 0,5 0,8 0,6

VII. alk 0-8 (Forts.)

. 7 11. 611		01 63.7					
$al \ge 10, c 15-26$							
si 13565							
hornblenditisch.	80	15	60	20	5	0,3	0,6
si < 65	00	15	00	20	9	0,0	0,0
		10	26	00		0.0	0.65
modlibovit-polzeni	tisch: 50	13	56	23	8	0,2	0,65
$fm \ge 70/69$							
al < 7,5							
c < 9							
si 120—70							
orthaugitisch:	95	4	90	5	1	2 m	eist hoch
_	93	-	30	3	4 3	. 101	ווטטוו זטנט
si 70—40		-	00			5	alas baab
peridotitisch:	60	5	90	4	1	3 W	eist hoch
si 40—0							
erzperidotitisch:	15	6	91	2	1	?	variabel
c 9—22, si 120—65							
websteritisch:	95	1	80	18	1	?	0,8
al > 7,5	,,,	-	-		-	•	0,0
and the same and t							
c 9—20, si 120—50		40			~	_	. =
hornblendeperidoti	tisch: 80	10	74	14	2	?	0,7
c < 9, al < 12 , si $40-0$							
erzperidotitisch:	15	6	91	2	1 .	5	variabel
β) c um 30 (26-33)							
si 140—100							
si-pyroxenitisch	125	13	50	30	7	?	0,7
$si \leq 100$	125	13	30	30	•	•	٠,٠
200							
al < 12							
al relativ gross							
si 100—75							
pyroxenitisch:	90	9	5 9	28	4	?	0,7
si 78-40, alk merklich							-
vesecit-polzenitisch	: 50	9	54,5	30	6,5	?	0,7
				30	0,0	1.0	. 0,1
si < 75 und alk klein, pyroxer	nusch-pendo	unsen	i,				
al klein							
alk fast null, si 100-50							
koswitisch:	63	3	66	30,5	0,5	3	0,7
alk merklich \sim al, si 100—75 (bei alk \geq 6 v	ergl.	auch al	kalijad	cupiran	gitis	ch)
batukitisch:	80	5	60	30	5	ິ?	0,6
al > 12, si $100-50$	00	•	00	•			0,0
	45	1.4	F.0	20	2 "	oiat na	. 05
issitisch:	65	14	53	30	3 m	igist iig	0,5
y) c ≥ 33							
fm ≤ 50							
	•				. 8		
si 100-65, fm \sim c um 40, fm $<$ c		10	40	40	7	males I	. 0.5
pyroxenolithisch:	80	13	40	43	4	meist-k	0,6
si 90—50, fm $>$ c, alk merklich							
(kali)polzenitisch:	80	12,5	47	34	6,5	meist k	0,6
si 70-40, fm \sim c, alk merklich				0 0			
alnöitisch:	50	10	43	40	7	meist I	(0,6
	30	- 0			5"		,-

 $fm > 26 \sim al, c klein$

evisitisch-groruditisch:

300 30

VII. alk 0-8 (Forts.)

VII. alk 0-8 (Forts.)									
si 70—40	, fm < c, alk merklich								
21 .0 .0	okaitisch:	55	14	30	49	7 r	neist na	0.5	
fm <u>≥</u> 50, si		-		-				-,-	
III <u>≤</u> 50, 31	jacupirangitisch:	70	7	56	35	2	neist na (0.5-0.9	
	jacuphangmsen.	70	•	30	33	- 1	noist na	0,0 0,0	
						•			
	B. PERALKALISCHE MAGMEN								
	alk deutlich	> al							
1. al \leq 26,	1. al \leq 26, mittleres k oder na, relativ kleines mg								
a) al \leq 12,5				_					
c niedrig, s	: 190110								
alk < 20	31 180—110								
aik < 20		120	2	78	5	1 5	0.15	0.15	
-11- > 00	natronhornblenditisch:	120	2	10	3	15	0,15	0,15	
alk > 20	91 1° C'1° 1	1.40	-	60	0	20	0.1	0.1	
	alkalimafitisch :	140	5	60	3	32	0,1	0,1	
c hoch, si		400		-00		10	0.05	0.6	
	salitritisch:	100	2	38	50	10	0,25	0,6	
β) al 12-18									
c niedrig, s	si 320-200								
	rockallitisch:	250	13	50	3	34	0,1	0,1	
c relativ ho	och, si 220—110							,	
	pienaaritisch:	130	16	29	35	20	0,2	0,2	
0 100 00000 000	premaritisen.	100	10		33	-0	٠,=	٠,-	
γ) al 18—26									
fm < 40									
si > 230									
	evisitisch-pantelleritisch:	320	23	35	2	40	0,3	0,1	
si < 230									
	tavitisch:	130	20	32	8	40	0,1	0,2	
fm > 40									
si > 230									
	normalevisitisch:	320	22,5	42	3	32,5	0,4	0,1	
si < 230									
	lusitanitisch:	160	19	52	3	26	0,2	0,1	
2. al < 26 .	c mittlere Werte (um 8-18),	sehr	hohe	es k	und n	ng, si	180-	-140	
2. u. ⊆ 20,									
	wyominglamproitisch:	165	18	41	14	27	0,85	0,75	
3 al ~ fm 1	ım 25/26, c um 20, si 130–90	า							
J. ai (ai iii t	•		25	25	20	30	0,25	0,25	
	muritisch :	120	25	23	20	30	0,23	0,23	
4. al > 26	c klein, na oder mittleres k,	mg r	elativ	nie	edrig				
	z,	Ο.			o				
α) si > 250	4.4.5								
fm < 26, c		000	20	00	P7	40	0.2	0.2	
	leukoevisitisch:	300	30	20	7	43	0,3	0,2	

0,35 0,1

2

38

30

β)	si < 250 fm < 26, c klein fm < 20								,
	si 250—150								
		tinguaitisch:	170	36	15	7	42	0,2	0,15
	si < 150	_							
		urtit-tinguaitisch:	100	36	15	7	42	0,2	0,15
	fm > 20	J						-	
	si 250—150								
		melatinguaitisch.	160	30	23	7	40	0,15	0,15
	si < 150	3							
		grönlanditisch:	135	29	23	6	42	0,1	0,1
	$fm \ge 26$, si 250-		1000 T. (1000)	WW.50					171.815
•		normallujavritisch :	160	29	28	5	38	0.2	0.2

Bei den seltenen Fällen mit hohem k gleiche Bezeichnung mit der Vorsilbe "kali-".

C. PERALISCHE MAGMEN

$al \gg c + alk$									
Beispiele:									
raglanitisch	180	5 0	5	12	33	0,1	0,2		
plumasitisch	13 5	62	8	15	15	0,15	0,4		
korunditisch	40	71	12	14	3	0,15	0,6		
chromitisch	15	40*	58	2	0	_	0,4		
* darin um 20	Cr_2O_8 .								

D. KARBONATREICHE MAGMEN MIT RELATIV HOHEM CO2

	co ₂ -Za	hl betr	ächtlic	h			
Beispiele.	3.4				e .™		
fenitisch	225	37	7	19	37	0,4	0,2
calcitsyenitisch	160	25	16	34	25	0,7	0,5
calcitkarbonatitisch	20	2	16	80	2	?	0,3
dolomitkarbonatitisch	20	4	45	47	4	?	0,7

E. SEHR si-REICH

Beispiel. peraziditisch

(nach Tröger) 2300 46 14 5 35 0,68 0,38

II. Tabelle der Hauptmagmentypen

I. Magmen der Kalkalkalireihe

a) Leukogranitische Magmen (ausgesprochen salisch)

	si	al	fm	c	alk	k	mg
1. aplitgranitisch	460	47	8	5	40	0,45	0,25
2. yosemitaplitisch	350	45	. 6	13	36	0,4	0,3
3. engadinitgranitisch	380	43	13	8	36	0,5	0,25
4. yosemitgranitisch	350	43	14	13	30	0,45	0,3

Allgemeines: al-alk ≥ 4 oder 5, k > 0,33, meist > 0,36 bezw. 0,4, si meist > 270 (ausnahmsweise 240), al um 40 oder mehr, fm meist < 20.

- 1. al—alk meist 4—15, alk \geq 32,5, sowohl fm wie c kleiner 10.
- 2. al—alk meist 4—16, alk \ge 32,5, fm < 10, c > 10.
- 3. si meist > 320, al—alk 4—16, alk \ge 32,5, fm 10—20, c 0—13.
- 4. si geht herunter bis 240, al—alk meist 10—20, alk 27,5—32,5, al \geq 37, fm < 20, c meist \geq 10.
- b) Granitische Magmen (isofal bis schwach salisch oder subfemisch)

	si	al	fm	C	alk	k	mg
1. adamellitisch	300	37,5	22,5	13,5	26,5	0,45	0,3
2. tasnagranitisch	300	36	28	9	27	0,45	0,35
3. moyitisch	380	33	32	15	20	0,45	0,3
4. normalgranitisch	270	34	29	13	24	0,45	0,35
5. opdalitisch	225	32	32	18	18	0,45	0,45

Allgemeines: An si übersättigt, al-alk ≥ 5 , alk ≥ 15 , jedoch $\leq 32,5$, $k \geq 0,35$, fm ≥ 20 , oft ähnlich al.

- 1. si \geq 230 bezw. 240, alk \geq 25 und \leq 32,5, fm \geq 20 und \leq 26, c \geq 10, al-alk meist > 7.
- 2. si \geq 220, alk meist 23-31, c < 10 höchstens etwas über 10, wenn alk > 27,5, fm 24-35, al-alk meist 5-15.
- 3. si \geq 280, fm > 26, al kaum über 35, al—alk meist 10—20, alk 15—22,5, c \leq 25.
- $\widehat{4}$. si > 220, alk 22,5—25, fm 26—35, c \leq 25.
- 5. si 280—190, al \sim fm 26—36, c \leq 25, alk 15—22,5, al—alk meist 8—21.
- c) Granodioritische Magmen (salisch, alkaliärmer als leukogranitisch)

	si	al	fm	¢	alk	k	mg
1. normalgranodioritisch	280	39	22	17	22	0,45	0,4
2. leukotonalitisch	220	39	24	21	16	0,5	0,3
3. farsunditisch	300	42	20	15	23	0,25	0,4
4. leukopeléeitisch	200	38	21	24	17	0,2	0,4

Allgemeines: An si gesättigt und übersättigt, al > 32,5 deutlich > fm, fm < 26, eventuell (hohes al) 28, al—alk meist deutlich > 10, c < 26, jedoch meist deutlich > 10.

- 1. si > 230 oder bei niedrigem alk > 200, alk 25-17,5, k > 0,33.
- 2. alk 12,5—17,5, al—alk oft 20 und mehr, k > 0,33.
- 3. alk 25-17,5, si meist > 220/230, $k \le 0.33$.
- 4. si 230-180, alk 22,5-12,5, al-alk oft 20 und mehr, $k \le 0,33$.
- d) Trondhjemitische Magmen (salisch)

	si	al	fm	c	alk	k	mg
1. natrongranitaplitisch	450	47	7,5	3,5	42	0,2	0,2
2. trondhjemitaplitisch	400	44	5	13	38	0,2	0,3
3. quarzdioritaplitisch	420	46,5	4	15	34,5	0,2	0,3
4. natronengadinitisch	400	43.5	15	3.5	38	0,25	0,25

	si	al	fm	c	alk	k	mg
5. normaltrondhjemitisch	370	42	12	11	35	0,25	0,3
6. natronrapakiwitisch	340	42	20	8	30	0,25	0,3
7. leukoquarzdioritisch	300	42	17,5	13	27,5	0,25	0,4
8. si-oligoklasitisch	380	44	8	20	28	0,15	0,4

Allgemeines: si > 280 oder bei alk um 27 > 220, al > 32,5, fm \leq 26, oft noch wesentlich kleiner, alk \geq 25, z. T. > 32,5, al—alk \geq 4.

- 1. alk \geq 32,5, sowohl c wie fm \leq 10.
- 2. $alk \ge 32.5$, c > 10, fm < 10, $al-alk \le 10$.
- 3. $alk \ge 32.5$, c > 10, fm < 10, al-alk > 10.
- 4. $alk \ge 32,5$, c < 10, fm > 10, al-alk meist 5-12,5.
- 5. alk \geq 32, fm und c zwischen 7,5 und 15, einander ähnlich.
- 6. alk 25-33, $c \le 10$, fm > 10.
- 7. alk 25-33, $c \ge 10$, fm ≥ 10 , al—alk meist 9-20.
- 8. alk 25-33, c > 10 und bis 26, $fm \le 10$, al-alk meist 10-23.

e) Quarzdioritische Magmen (isofal bis schwach femisch)

	si	al	fm	C	alk	k	mg
1. normalquarzdioritisch	225	32	31	19	18	0,25	0,45
2. melaquarzdioritisch	200	30	40	10	20	0,3	0,5
3. peléeitisch	180	33	32	23	12	0,2	0,45
4. tonalitisch	180	33	33	22	12	0,4	0,4

Allgemeines: An si gesättigt und übersättigt, alk \leq 22,5, al meist \sim fm zwischen 26 und 38, fm etwa bis über 40, c \leq 26 oder 27 stets merklich, al—alk > 7,5.

- 1. si meist 175-300, isofal, c meist 15-25, al-alk meist 10-20, alk 13-22,5.
- 2. al noch um 30, fm > 36, c < 26, alk 17,5-22,5.
- 3. si meist 130-250, isofal, alk 7,5-12,5, c oft 20-25, al-alk oft 18-27.
- 4. si > 150, ähnlich 3, jedoch $k \ge 0.34$, alk meist 9-15, c 18-27,5 (mit si < 150 sommaittonalitisch genannt).

f) Dioritische Magmen (isofal bis schwach femisch)

	si	al	fm	C	alk	k	mg
1. normaldioritisch	155	30	35	21	14	0,3	0,5
2. lamprodioritisch	150	25	40	21,5	13,5	0,25	0,5
3. orbitisch	135	27	42	21.5	9.5	0.25	0.5

Allgemeines: $si \le 180$, jedoch > 110 oder 125, al meist > 26, fm meist 27-46, al-alk durchwegs ≥ 10 , alk < 17.5, k < 0.36.

- 1. si meist 125–180, fm \sim al 26–37,5, c \leq 25, alk 12,5–17,5.
- 2. si meist 120-180, fm > 36 oder al zwischen 20 und 26, alk 12,5-17,5, al-alk > 10, c 20-25.
- 3. si \geq 110, fm 36-46, al meist 25-31, c 18-27, alk 7,5-12,5, al-alk \geq 12,5.

g) Gabbrodioritische Magmen (femisch)

	si	al	fm	c	alk	k	mg
1. si-gabbrodioritisch	150	25	43	22	10	0,2	0,5
2. normalgabbrodioritisch	130	23	44	22,5	10,5	0,2	0,5
3. melagabbrodioritisch	130	19	51	21	9	0.25	0.5

Allgemeines: si \ge 115, al 16 oder 20 bis 26, fm \ge 39/40, c > 16 bezw. 17,5, alk 7,5-12,5, al-alk \ge 7, k < 0,36.

- 1. si 145—170, fm 40—49, c 17,5—26, al \geq 18.
- 2. si 145—115, fm 40—49, c 16—26, al \geq 18.
- 3. si 170-110, fm > 49 oder (bei al 16-18) > 47.

h) Gabbroide Magmen (femisch)

	si	al	fm	С	alk	k	mg
1. normalgabbroid	108	21	51	22	6	0,2	0,5
2. fm-gabbroid	80	24	54	17	5	0,2	stark variabel
3. eukritisch	100	18	55	24	3	0,1	0,7
4. c-gabbroid	100	25	46	25	4	0,1	0,7
5. miharaitisch	130	23	42	27,5	7,5	0,2	0,5
6. pyroxengabbroid	100	23,5	40,5	31,5	4,5	0,2	0,7

Allgemeines: alk meist < 8 nur bei miharaitisch bis 12,5, al um 20-26, fm > 38 meist < 58 (pyroxengabbroid fm > 33), al-alk meist beträchtlich.

- 1. si meist 120-90, al 17,5-23, c 18-26, alk ≥ 5 und ≤ 8 .
- 2. si meist 120-70, al 19-26, fm > 50, c < 18.
- 3. si meist 120-90, al 17,5-22, c 23-26, alk < 5, fm meist > 50.
- 4. si meist 130-80, al und c zwischen 23 und 26, alk \leq 7,5.
- 5. si meist 150—110 oder bei niedrigem alk bis 80/75, al 19,5—26, fm meist 39—46, $c \ge 26$, jedoch bei alk < 8 ist $c \le 30$, alk < 12,5.
- 6. si meist 130-75, al 19-26, $c \ge 30$, alk < 8.

i) Leukogabbroide Magmen (isofal bis schwach femisch oder subalisch)

	si	al	fm	c	alk	k	mg
1. leukomiharaitisch	140	26,5	38	26,5	9	0,25	0,45
2. achnahaitisch	100	29	40	27	4	0,2	0,5
3. cumbraitisch	200	27	31	27	15	0,3	0,3
4. belugitisch	130	29	32	29	10	0,15	0,5
5. ossipitisch	110	30	35	30	5	0,15	0,6

Allgemeines: c \sim al meist um 30 herum, fm gleich oder wenig höher, k meist deutlich < 0.37.

- 1. si meist 160-110, fm meist 34-40, al 23-28, c meist 25-30, alk 7,5-12,5.
- 2. si 125-90, al \sim c meist 26-38, fm um 40, alk < 8.
- 3. si > 125, fm \sim al 26-37,5, c > 25, alk 12,5-17,5.
- 4. si meist 170–100, fm \sim al \sim c 26–36, alk 7,5–12,5.
- 5. si meist 125-90, fm \sim al \sim c 26-38, alk < 7,5.

k) Plagioklasitische Magmen (salisch)

	si	al	fm	c	alk	k	mg
1. oligoklasitisch	190	43	11	22	24	0,2	0,3
2. andesinitisch	190	46,5	5	28	20,5	0,2	0,3
3. labradorfelsitisch	150	46	4	35	15	0,1	0,45
4. anorthositisch	120	43	10	40	7	0,1	0,45
5. si-melaplagioklasitisch	220	35	15	35	15	0,1	0,6
6. anorthositgabbroid	130	37	22	33	8	0,1	0,55

Allgemeines: Hohes al, hohes al—alk, relativ hohes c, k normalerweise niedrig, fm < 26, meist recht niedrig.

- 1. si meist 230—180, al meist um 40 oder mehr, alk 30—18, al—alk meist > 13, c < 25, fm meist < 13.
- 2. si meist 230-150, al meist \geq 40, alk 22,5-17,5, c > 24, fm oft < 10.
- 3. si meist 180–120, al \geq 40, alk 12,5–17,5, c meist \geq 30, fm < 12,5.
- 4. si meist 150-90, al meist ≥ 40 , alk $\le 12,5$, c ≥ 30 , fm < 15.
- 5. si > 140, al \ge 30, alk 17,5-8, c > 26, fm 12,5-26.
- 6. si < 140, al ≥ 30 , alk < 12,5, c > 28, fm 12,5 oder 15 bis 26.

1) Hornblenditische Magmen (stark femisch)

2	si	al	fm	C	alk	k	mg
1. al-hornblenditisch	120	19	61	15	5		0,7
2. hornblenditisch	80	15	60	20	5		0,6
3. hornblendeperidotitisch	80	10	74	14	2		0,7
4. diallagitisch	90	7	68	23	2		0,7
5. websteritisch	95	1	80	18	1		0,8

Allgemeines: alk ≤ 8 , al $\leq 18,5$, fm > 50, c 9-26.

- 1. si meist 135-70, al um 20, c < 23.
- 2. si meist 135-65, al \geq 10, c 15-26, fm < 70.
- 3. si meist 120-50, al noch grösser 7,5, c 9-20, fm $\ge 70/69$.
- 4. si meist 120-65, al < 10, c \ge 20, fm \sim 70, alk sehr klein.
- 5. si 120-55, al < 7.5, c 9-22, fm ≥ 70 , alk sehr klein.

m) Pyroxenitische Magmen (femisch bis stark femisch)

	si	al	fm	c	alk	k	mg
1. si-pyroxenitisch	125	13	50	30	7		0,7
2. ariégitisch	80	19	49	31	1		0,8
3. ostraitisch	60	18	53	27	2		0,6
4. issitisch	65	14	5 3	30	3		0,5
5. jacupirangitisch	70	7	56	35	2		0,6
6. pyroxenitisch	90	9	5 9	28	4		0,7
7. batukitisch	80	5	60	30	5		0,6
8. koswitisch	63	3	66	30,5	0,5		0,7

Allgemeines: alk \leq 8, nur bei si-pyroxenitisch ev. bis 10, c um 30 herum, fm um 45-70.

- 1. si meist 140–100, al \leq 18, c 26–33.
- 2. si meist 120-70, al 17,5-22, c > 26, alk sehr klein.
- 3. si 70—50, sonst ähnlich 2.
- 4. si meist 100-50, al \leq 18,5, jedoch > 10, c 26-33.
- 5. si meist 90-60, al \leq 18,5 meist < 10, fm \geq 50, c \geq 33.
- 6. si meist 100-78, al < 12, c 26-33, fm oft um 60, al-alk noch merklich,
- 7. si meist 100-75, al \sim alk und kleiner 8 jedoch merklich, c 26-33.
- 8. si 100-50, al sehr niedrig, alk um 0, c 26-33, fm 64-70.

n) Orthaugitisch-peridotitische Magmen (sehr stark femisch)

	si	al	fm	С	alk	k	mg
1. orthaugitisch	95	4	90	5	1		meist hoch
2. peridotitisch	60	5	90	4	1		meist hoch
3. erzperidotitisch	15	6	91	2	1		meist klein

Allgemeines: al, c und alk klein, fm um 90 und mehr.

- 1. si 120-70.
- 2. si 70-40.
- 3. si 40-0, al bis 12.

II. Magmen der Natronreihe

a) Alkaligranitische Magmen (salisch)

		si	al	fm	C	alk	k	mg
1.	alkaligranitaplitisch	450	46	6	3	45	0,35	0,15
2.	normalalkaligranitisch	400	41	15	3	41	0,35	0,2
3.	alkalisyenitaplitisch							
1	(albititisch)	280	43	8	7	42	0,33	0,2
4.	nordmarkitisch	280	41	15	5	39	0,3	0,15
5.	gibelitisch	260	35	21	9	35	0,3	0,15

Allgemeines: An si gesättigt oder übersättigt, alk $\ge 32,5$, al—alk ≤ 4 oder 5 oder schwach negativ, fm niedrig bis höchstens 26, c meist niedrig.

- 1. $si \ge 300$, al und alk > 40, sowohl fm wie c < 10.
- 2. si ≥ 300 , fm ≥ 10 oder ausnahmsweise c oder beide > 10, al und alk oft um 40.
- 3. si \leq 300 bis etwa 250, sonst wie 1.
- 4. si \leq 300 bis etwa 240, fm \leq 18, jedoch \geq 10 oder dann c > 10.
- 5. si ≤ 300 bis etwa 240, fm 18-26, c oft um 10 oder kleiner, al und alk meistens unter 40.
- b) Evisitische Magmen (peralkalisch, subfemisch, isofal bis schwach femisch)

	si	al	fm	c	alk	k	mg
1. leuko-evisitisch	300	30	20	7	43	0,3	0,2
2. evisitisch-groruditisch	300	30	30	2	38	0,35	0,1
3. evisitisch-pantelleritisch	320	23	35	2	40	0,3	0,1
4. normalevisitisch	320	22,5	42	3	32,5	0,4	0,1

Allgemeines: An si gesättigt oder übersättigt, alk deutlich > al, c klein, k klein oder mittlere Werte.

- 1. al \geq 26, fm \leq 26, si meist > 250, alk oft um 40.
- 2. isofal fm \sim al um 26-36, si meist > 250.
- 3. al 18-26, fm < 40, alk oft um 40, si meist > 230.
- 4. al 18-26, fm > 40, alk unter 40, si meist > 230.

c) Foyaitische Magmen (salisch bis subfemisch)

	si	al	fm	c	alk	k	mg
1. umptekitisch	220	37	18	9	36	0,3	0,25
2. normalfoyaitisch	180	40	15	5	40	0,3	0,2
3. lardalitisch	170	35	20	13	32	0,3	0,4
4. tahitisch	150	32	22	18	- 28	0,25	0,3
5. urtitisch	115	41	12	6	41	0,2	0,2

Allgemeines: An si untersättigt bis höchstens gesättigt, alk > 27,5 meist > 32,5, al—alk \leq 5, fm < 26, k < 0,36.

- 1. si meist 245-200, fm \leq 26, c oft um 10 oder kleiner.
- 2. si meist 220-150, fm \leq 26, c \leq 10.
- 3. wie 2, jedoch c > 10, auch kann alk < 32,5 werden.
- 4. si meist 160-120, alk 33-27, c>10, oft um 20 und dann ähnlich fm.
- 5. si meist 150-90, alk > 32,5, meist alk und al um 40, fm und c dann niedriger als bei 4.
- d) Lujavritische Magmen (peralkalisch, subfemisch, isofal bis subalisch)

	si	al	fm	c ·	alk	k	mg
1. tinguaitisch	170	36	15	7	42	0,2	0,15
2. urtittinguaitisch	100	36	15	7	42	0,2	0,15
3. melatinguaitisch	160	30	23	7	40	0,15	0,15
4. grönlanditisch	135	29	23	6	42	0,1	0,1
5. normallujavritisch	160	29	28	5	38	0,2	0,2
6. tavitisch	130	20	32	8	40	0,1	0,2

Allgemeines: Peralkalisch, an si untersättigt bis gesättigt, fm < 40, c niedrig.

- 1. si meist 250-150, nicht sehr stark peralkalisch, fm < 20, al und alk meist 30-48.
- 2. wie 1, jedoch si < 150.
- 3. si 250—150, fm 20—26.
- 4. wie 3, jedoch si < 150.
- 5. si meist 250-130, fm \geq 26, ungefähr isofal mit alk > 30.
- 6. si < 230, fm bis 40, al 17-26, alk oft um 40.
- e) Subplagifoyaitische Magmen (salisch)

		si	al	fm	C	alk	k	mg
1.	bostonitisch	230	46	12,5	2	39,5	0,3	0,3
2.	pulaskitisch	210	40	18	10	32	0,3	0,3
3.	essexitfoyaitisch							
	(früher monzonitfoyaitisch)	175	39	18	12	31	0,3	0,3
4.	monmouthitisch	100	36	17	17	30	0,2	0,25

Allgemeines: si meist < 280, an si gerade gesättigt oder untersättigt, alk ≥ 27.5 , al—alk meist < 10 oder 13 jedoch > 4 oder 5, fm < 26/27.

- 1. si meist 280—190, alk > 36, al > 40.
- 2. si meist 280-190, alk 36-27,5.
- 3. si meist 200-150, alk meist 36-27,5, c oft um 10.
- 4. si < 150, alk 36-27,5, oft c und fm einander ähnlich um 15.

f) Essexitdioritische Magmen (salisch bis subfemisch)

		si	al	fm	С	alk	k	mg
1.	larvikitisch							
	(früher essexitdioritisch)	170	37	21	17	25	0,3	0,35
2.	kassaitisch	170	33	23	19	25	0,25	0,35
3.	rouvillitisch	140	37	20	2 3	20	. 0,25	0,4

Allgemeines: An si untersättigt bis kaum gesättigt, alk \leq 27,5, al \geq 30, al—alk deutlich > 4, fm \leq 26/27.

- 1. si meist 220—130, al 35 bis etwa 42, fm meist 10—26, c meist 10—24, alk 22,5-27,5, al—alk meist < 16.
- 2. si meist 220—130, al 30—35, fm meist über 18, c meist 15—23, alk 22,5—27,5, al—alk kaum über 12.
- 3. si meist 180—130, al meist 33—40, fm meist 17—26, ähnlich c, alk 17,5—22,5, al—alk meist über 10 bis 20.

g) Natronsyenitische Magmen (meist isofal bis schwach femisch)

	si	al	fm	c	alk	k	mg
1. si-natronsyenitisch	300	35	28	5	32	0,25	0,2
2. normalnatronsyenitisch	160	32	28	12	28	0,25	0,3
3. maenaitisch	210	33	28	14	25	0,3	0,4
4. nosykombitisch	150	33	28	14	25	0,3	0,4
5. melanatronsyenitisch	140	26,5	39	11,5	23	0,25	0,3

Allgemeines: alk > 20, meist > 25, al \sim fm 26-36 oder fm etwas grösser, al-alk meist klein oder mittelgross.

- 1. si > 220, al zumeist 30-40, fm 26-36, c 0-16, alk 25-38, al-alk 0-6 oder ganz schwach negativ.
- 2. si meist 220—120, al zumeist 26—36, fm 25—32,5, c 0—18, alk 24—35, al—alk kaum über 7.
- 3. si zumeist 280—180, fm $\ge 25/26$, al meist ≥ 30 bis 37, c < 20, al—alk 5—12.
- 4. si zumeist 180-130, fm $\geq 25/26$, al ≥ 28 bis 37, c < 20, al—alk meist 5—12.
- 5. si häufig 280—120, al oft < 30 bis 22,5, fm > 32,5 bis um 50, alk > 20, al—alk meist < 10.

h) Ijolithische Magmen (subalisch bis subalfemisch)

SÍ	al	fm	C	alk	k	mg
100	25	25	25	25	0,25	0,4
100	20	32,5	30	17,5	0,25	0,4
120	17	27	37,5	18,5	0,25	0,3
70	15	33	41	11	0,25	0,5
55	14	30	49	7	0,15	0,5
120	25	25	20	30	0,25	0,25
	100 100 120 70 55	100 25 100 20 120 17 70 15 55 14	100 25 25 100 20 32,5 120 17 27 70 15 33 55 14 30	100 25 25 25 100 20 32,5 30 120 17 27 37,5 70 15 33 41 55 14 30 49	100 25 25 25 25 100 20 32,5 30 17,5 120 17 27 37,5 18,5 70 15 33 41 11 55 14 30 49 7	100 25 25 25 25 0,25 100 20 32,5 30 17,5 0,25 120 17 27 37,5 18,5 0,25 70 15 33 41 11 0,25 55 14 30 49 7 0,15

Allgemeines: si meist < 150, ausnahmsweise bis 170, al—alk 0 oder nicht sehr gross, im allgemeinen c ähnlich oder ausgesprochen grösser als al und alk.

1. si meist 170-70, al \sim fm meist 20-32, alk 22,5-27,5, al-alk < 8, c meist \ge 18.

- 2. si meist 150-85, al etwa 17,5-25, fm 25-36, c 26-35, alk 13-22,5, al-alk selten > 8, meist kleiner.
- 3. ähnlich 2, jedoch $c \ge 35$, alk meist > 15.
- 4. si meist 100-60, alk 15-7.5, al < 25, c 35-46, fm meist 30-37.5.
- 5. si meist 70-40, al < 20, fm um 30, c \ge 46, alk 5-12,5.
- 6. ähnlich ijolithisch, jedoch alk auf Kosten von c grösser mit alk > al.

i) Essexitische Magmen (isofal)

	si	al	fm	c	alk	k	mg
1. essexitakeritisch	175	30	30	20	20	0,3	0,4
2. normalessexitisch	130	30	30	20	20	0,3	0,4

Allgemeines: Isofal, al und fm 26-36, oft c \sim alk um 20.

- 1. si 180-160, alk 22,5-17,5.
- 2. si 160-110, alk 22,5-17,5.

k) Theralithische Magmen (femisch bis subalisch)

	si	al	fm	c	alk	k	mg
1. normaltheralithisch	110	21	38	23	18	0,25	0,45
2. melatheralithisch	85	17,5	47	21	14,5	0,2	0,55

Allgemeines: si kaum über 120, alk 22,5—12,5 oder 10, al meist 15—22,5, al—alk < 10, oft auch < 5, fm auf alle Fälle > 32,5, c meist \ge 17,5 und < 26/25.

- 1. si meist 120-70, fm 32,5-42,5, alk > 12,5, al-alk meist 0-5.
- si meist 120-70, fm 42,5 bis über 50, alk 22,5-10, al meist ≤ 20, al-alk vorwiegend 0-9.

1) Natrongabbroide Magmen (schwach femisch bis femisch)

	si	al	fm	c	alk	k	mg
1. beringitisch	125	23,5	39	22,5	15	0,25	0,45
2. mugearitisch	135	24	42	18	16	0,25	0,6
3. natronlamprosyenitisch	135	22	50	13,5	14,5	0,25	0,6
4. essexitgabbrodioritisch							
(früher essexitgabbroid)	105	23	43	24	10	0,25	0,45
5. essexitgabbroid	95	20	49	21,5	9,5	0,25	0,5

Allgemeines: si sicherlich < 160, oft < 115, al > 16 oder 20, alk < 20, meist < 17,5 jedoch stets > 8, fm > 34, al—alk merklich.

- 1. si meist 150—120, selten höher, al meist 20—26, fm vorwiegend 34—46 und c 20—25, alk 17,5—12,5, al—alk vorwiegend 4—10.
- 2. si meist 160—100, al meist 20—28, fm meist 36—47, $c \le 20$, jedoch nicht sehr niedrig, alk 20—12,5, al—alk meist 5—13.
- 3. si ähnlich 2, al meist 20-25, fm 47-57, c < 20, meist noch > 10, alk 17,5-10, al-alk zumeist 5-15.
- 4. si meist 115—90, al 16—27, fm 40—45, c meist 19—27, alk 8—12,5, al—alk vorwiegend 10—17,5.
- 5. si 115-80, al 16-26, fm 45 bis über 52, c meist 17-26, alk 8-12,5, al-alk meist 7,5-16.

m) Theralithgabbroide Magmen

	si	al	fm	c	alk	k	mg
1. gabbromelteigitisch	110	27	31	27	15	0,25	0,4
2. normaltheralithgabbroid	105	24	38	25	13	0,25	0,5
3. berondritisch	90	20	40	32	8	0,25	0,5
4. turjaitgabbroid	100	24	33	32	11	0,25	0,5

Allgemeines: si ungefähr 130-80, al noch ziemlich hoch, fm um 30 und deutlich < 50, c relativ hoch, auf alle Fälle > 20, meist > 25, alk 7,5-17,5, al-alk oft um 10.

- 1. si meist 125-90, al \sim fm 26-37,5, auch c > 25, alk 12,5-17,5, al -alk oft 10-15.
- 2. si meist 120-85, al meist 20-27,5, fm meist 34-43, c > 20 bis 27,5, alk 17,5-10, al-alk zumeist 7-17.
- 3. si meist 130-80, al 15-26, fm 37,5-46, $c \ge 29$, jedoch kaum über 35, alk um 10, al-alk meist ≥ 9 .
- 4. si meist 125-80, al meist 20-26, fm 30-37,5, c 28-35, alk 8-12,5, al-alk meist 8-13.

n) Gabbrotheralithische Magmen (femisch)

	si	al	fm	C	alk	k	mg
1. normalgabbrotheralithisch	100	17	43	27,5	12,5	0,2	0,45
2. c-gabbrotheralithisch	100	15	40	35	10	0,25	0,5

Allgemeines: si etwa 130-65, al \leq 20, fm um 40, c > 25, alk < 17,5, al-alk ziemlich klein.

- 1. si meist 130-65, al \leq 20, jedoch > 15, fm \geq 37,5, jedoch < 50, c \geq 25, jedoch nicht über 29/30, alk 17,5-8, al-alk meist 3-13.
- 2. ähnlich 1, jedoch c \geq 29/30, al daher eher niedriger, al—alk selten > 9, alk kaum über 12,5.

o) Melanatrongabbroide Magmen (femisch bis stark femisch)

	si	al	fm	c	alk	k	mg
1. alkalijacupirangitisch	95	8,5	52	32,5	7	0,3	0,4
2. ankaratritisch	75	13	52	27	8	0,25	0,6
3. vesecit-polzenitisch	50	9	54,5	30	6,5	0,3	0,7
4. kaulaitisch	100	13	55	22	10	0,15	0,6
5. modlibovit-polzenitisch	50	13	56	23	8	0,2	0,65
6. alkalihornblendeperidotiti	sch 65	8	68,5	16	7,5	0,3	0,8

Allgemeines: si niedrig, al niedrig, alk niedrig, 12,5 bis ausnahmsweise 5, fm um 50 oder darüber.

- 1. si meist 110-60, al \sim alk, alk > 6, fm \ge 45, c um 30.
- 2. si meist 90-70, al \geq 10 bis etwa 16, alk \geq 7, al-alk meist 4-8, c meist 24,5-31, fm um 50.
- 3. analog 1, jedoch si \leq 60, alk auch niedriger als bei 1, jedoch stets merklich, bei alk < 6 si bis 78.
- 4. si meist 130-70, al < 16, jedoch meist \ge 10, c < 24,5, alk 7,5-12,5, fm um 55.

- 5. si meist 70-40, sonst ähnlich 4, alk geht jedoch bis um 5 herunter.
- 6. si meist 100-40, c niedriger als bei 5, dafür fm \geq 60.

p) Alkalipyrobolische Magmen (peralkalisch femisch)

	si	al	fm	c	alk	k	mg
ch	160	19	52	3	26	0,2	0,1
ch	250	13	50	3	34	0,1	0,1
tisch	140	5	60	3	32	0,1	0,1
nblenditisch	120	2	78	5	15	0,15	0,10
sch	130	16	29	35	20	0,2	0,25
7	100	2	38	50	10	0,25	0,6
	ch ch tisch mblenditisch sch	ch 160 ch 250 tisch 140 mblenditisch 120 sch 130	ch 160 19 ch 250 13 tisch 140 5 mblenditisch 120 2 sch 130 16	ch 160 19 52 ch 250 13 50 tisch 140 5 60 mblenditisch 120 2 78 sch 130 16 29	ch 160 19 52 3 ch 250 13 50 3 tisch 140 5 60 3 mblenditisch 120 2 78 5 sch 130 16 29 35	ch 160 19 52 3 26 ch 250 13 50 3 34 tisch 140 5 60 3 32 mblenditisch 120 2 78 5 15 sch 130 16 29 35 20	ch 160 19 52 3 26 0,2 ch 250 13 50 3 34 0,1 tisch 140 5 60 3 32 0,1 mblenditisch 120 2 78 5 15 0,15 sch 130 16 29 35 20 0,2

Allgemeines: Peralkalisch, fm + c > 50, al < 26, meist < 20.

- 1. al um 20, fm um 50, c klein, si < 230.
- 2. al meist 18-12, fm um 50, c klein, si meist 320-200.
- 3. al < 12,5, fm um 60, c niedrig, alk > 20.
- 4. al < 12,5, fm meist über 70, c niedrig, alk \le 20.
- 5. al 20–12,5, fm \sim c, deutlich alk > al, si meist 200–110.
- 6. al < 12,5, c > fm, deutlich alk > al, si oft um 100.

III. Magmen der Kalireihe

a) Leukosyenitgranitische Magmen (salisch)

	S1	aı	tm	C	alk	K	mg
1. rapakiwitisch	350	41	18	9	32	0,45	0,3
2. granosyenitisch	260	39	18	11	32	0,45	0,3

Allgemeines: si > 220, al hoch, fm < 26, alk \ge 27,5, al—alk meist 5—15.

- 1. si meist > 320, fm meist 14-26, c \leq 10, alk 27,5-33, al-alk meist 5-15.
- 2. si meist 320-220, fm etwa 10-25, c häufig 7-15, alk 27,5-37, al-alk meist 5-12, Werte über 8 nur bei relativ niedrigem si.

b) Iuvitische Magmen (salisch)

	si	al	fm	С	alk	k	mg
1. kalinordmarkitisch	270	40	15	5	40	0,4	0,25
2. leukosyenitisch	190	39	18	11	32	0,5	0,3
3. k-gibelitisch	260	35	21	9	35	0,4	0,2
4. kalifoyaitisch	170	39	14	11	36	0,5	0,25
5. monzonitsyenitisch	180	36	23	15	26	0,45	0,35

Allgemeines: An si wenig gesättigt bis untersättigt, al > 30, fm < 26/27, c nicht sehr hoch, alk > 22,5 oder > 27,5.

- 1. si mëist 300-230, al und alk hoch, al-alk < 5, alk > 32,5, fm ≤ 18 .
- 2. si meist 220-140, al meist \geq 35, al-alk 5-15, alk \geq 27,5.
- 3. ähnlich 1, jedoch fm 18-26, daher al und alk etwas niedriger.
- 4. si meist 230 bis etwa 140, alk \geq 32,5, al-alk \leq 5.
- 5. si meist 230—140, alk 22,5—27,5, c meist 10—20, al—alk meist < 15, jedoch > 5, bei c wenig über 20 muss al—alk \ge 9 sein.

c) Arkitische Magmen

	si	al	fm	C .	alk	k	mg
1. sviatonossitisch	190	30	20	24	26	0,4	0,3
2. leukosommaitisch	160	32,5	21	19	27,5	0,5	0,4
3. normalarkitisch	100	28	23	22	27	0,4	0,3
4. borolanitisch	120	27	22	31	20	0,6	0,35
5. vesbitisch	100	23	18	39,5	19,5	0,8	0,8

Allgemeines: si mittel, al \sim alk, fm \leq 26/27, alk < 32,5.

- 1. si meist 220-150, al \leq 30, fm \leq 27, c \leq 27, jedoch relativ hoch, al-alk 0-6.
- 2. si meist 220-120, al \geq 30, fm und c ähnlich wie bei 1, alk > 22,5, al-alk \leq 9.
- 3. si meist 150-80, al meist 22,5-30, fm meist $\ge 20 \sim c$, alk 32,5-22,5, al-alk < 7,5.
- 4. si meist 190-90, al-alk < 10 oder 8, c 27-35, alk meist 17,5-25, fm < c.
- 5. ähnlich 4, jedoch c > 35.

d) Syenitgranitische Magmen (isofal bis schwach femisch)

	si	al	fm	C-	alk	k	mg
1. si-syenitgranitisch	330	30	28	16	26	0,4	0,2
2. normalsyenitgranitisch	250	30	29	13	28	0,5	0,4
3. kammoarnitisch	225	26	30	12	23	0.6	0.6

Allgemeines: An si gesättigt bis übersättigt, al—alk klein, al \sim fm oder fm grösser, c relativ klein.

- 1. si \geq 300, al \sim fm 27-35, alk etwa 25-35, c meist 8-20, selten bis 25, al-alk meist 0-5.
- 2. si < 300 bis etwa 220, sonst ähnlich 1.
- 3. si meist 250-200: fm \ge 35, bei al um 25/30, c meist \le 16, alk 17,5-27,5.

e) Syenitische Magmen (isofal bis schwach femisch)

	si	al	fm	c	alk	k	mg
1. normalsyenitisch	180	30	30	12,5	27,5	0,5	0,4
2. si-kamperitisch	185	28	37	12,5	22,5	0,5	0,4
3. kamperitisch	150	29	37	11,5	22,5	0,6	0,5

Allgemeines: An si gerade gesättigt bis untersättigt, al meist noch um 30, alk \geq 17,5, oft > 20, c meist < 16 oder 18.

- 1. si meist 220–140/130, fm \sim al, al—alk selten > 8, $c \le 17.5$, alk ≥ 22.5 .
- 2. si meist 200-165, fm > al und \geq 35, jedoch meist \leq 45, al meist 25-32,5, c relativ niedrig, alk meist 27,5-20.
- 3. si < 165, selten unter 140, sonst ähnlich 2. **

f) Monzonitische Magmen (isofal bis subfemisch oder schwach femisch)

	si	al	fm	С	alk	k	mg
1. leukomonzonitisch	180	37,5	25	17	20,5	0,45	0,4
2. si-monzonitisch	170	30	30	20	20	0,45	0,45
3. normalmonzonitisch	140	29	31	21	19	0,5	0,45
4. sommaitmonzonitisch	140	28	33.5	24.5	14	0.6	0.55

Allgemeines: An si gerade gesättigt bis untersättigt, fm \sim al 26-36 oder fm schon deutlich < al, c oft um 15, alk 15-22,5, seltener 12,5-15.

- 1. si meist 200—150, al 34—40, bei alk 17,5—22,5, c selten über 20, fm selten unter 20.
- 2. fm \sim al 26-36, si 190-160, c \leq 25, meist > 15, alk 15-22,5.
- 3. wie 2, jedoch si < 160, selten < 120.
- 4. si meist 160-120, al 26-36, fm eher über 30, c meist > 20, alk 12,5-15.

g) Sommaitische Magmen (subalisch)

	si	al	fm	c	alk	k	mg
1. melarkitisch	150	22	34	22	22	0,6	0,4
2. normalsommaitisch	115	24,5	34	24,5	17	0,55	0,5
3. sommaitossipitisch	125	26	33	27	14	0,55	0,5

Allgemeines: An si untersättigt bis kaum gesättigt, fm 30–38, al < 32,5, oft < 27.

- 1. si meist 165—125, al und alk einander ähnlich 27,5—20, c > 16, meist auch ähnlich al und alk, fm meist wenig über 30.
- 2. si meist 90-180, alk 20-12,5, $c \ge 22,5$, al meist 20-27, fm meist 30-38.
- 3. Sonderfall von 2 mit al \sim fm \sim c 26-35, alk 12,5-17,5.

h) Kalidioritische Magmen (schwach femisch bis femisch)

si	al	fm	c	alk	k	mg
250	28	42	17,5	12,5	0,5	0,4
135	23,5	42	23,5	11	0,45	0,55
135	27	38	21,5	13,5	0,4	0,5
135	22,5	46,5	18	13	0,5	0,6
	250 135 135	250 28 135 23,5 135 27	250 28 42 135 23,5 42 135 27 38	250 28 42 17,5 135 23,5 42 23,5 135 27 38 21,5	250 28 42 17,5 12,5 135 23,5 42 23,5 11 135 27 38 21,5 13,5	250 28 42 17,5 12,5 0,5 135 23,5 42 23,5 11 0,45 135 27 38 21,5 13,5 0,4

Allgemeines: alk < 17,5, fm meist > 35, c oft um 20, al—alk oft um 10.

- 1. si > 180, al > 20, jedoch fm > al, alk 10-17,5, c 15-25.
- 2. si meist 180—110, al 19—29, fm 35—50, c meist 20—27,5, alk 7,5—12,5, al—alk meist 10—20.
- 3. si meist 180—110, fm meist 35—41, al meist 22—29, c > 18, oft > 20, alk meist 12,5—15, al—alk meist < 15.
- 4. si ähnlich wie bei 3, jedoch fm \ge 41 bis gegen 55, alk < 15, jedoch > 7,5, c oft 10-20.

i) Lamproitische Magmen (femisch bis stark femisch)

	si	al	fm	c	alk	k	mg
1. lamprosyenitisch	150	23	46	13	18	0,6	0,6
2. wyominglamproitisch	165	18	41	14	27	0,85	0,75
3. murcialamproitisch	140	17	52	13	18	0,6	0,75
4. yogoitlamproitisch	140	19	41	19	21	0,8	0,7
5. jumillitisch	110	13	60	14	13	0,7	0,8
6. biotitisch	70	14	74	1	11	0,8	0,9

- 1. si meist 200–120, al \ge 19, fm meist 41–51, c \le 17, alk 15–22,5, al—alk kaum > 10.
- 2. peralkalisch, kalireich, fm um 40, al < 26, c meist 8-18.
- 3. si meist 170-120, al meist 15-20, fm 40-54, c 8-17,5, alk 10-22,5, al-alk meist ≤ 5 .

- 4. si meist 170—120, al um 20, ähnlich c, fm um 40, al—alk schwach negativ oder sehr klein positiv.
- 5. si meist 120-100, al und c 10-20, fm 54-65, alk 10-15, al-alk klein.
- 6. si meist 100-60, al um 10-15, fm > 65, c < 10, alk um 10.
- k) Shonkinitische Magmen (femisch)

-1	si	al	fm	C	alk	k	mg
1. yogoitisch	145	22	40	20	18	0,5	0,55
2. normalshonkinitisch	100	17.5	47,5	23	12	0,55	0,65

Allgemeines: fm > 35, si relativ niedrig, c > 17 und < 27,5, al—alk meist < 10.

- 1. si meist 215—100, al 19—26, fm meist 35—43, c meist 17—24, alk 12,5—22,5, meist > 15, al—alk meist \leq 7,5.
- 2. si meist 130-75, al \leq 20, meist > 15, fm 42-54, c 17,5-27,5, alk 17,5-7,5, jedoch selten über 15.
- 1) Melashonkinitische Magmen (stark femisch)

	si.	al	fm	С	alk	k	mg
1. kajanitisch	90	13	55	23	9	0,6	0,7
2. kalihornblenditisch	100	14	6 0	17	9	0,4	0,8

Allgemeines: al \leq 17,5, fm \geq 50, c mittel, alk 10-7.

- 1. si meist 120-80, fm 50-58.
- 2. si meist 120-80, fm um 60.
- m) Missouritisch-alnöitische Magmen (schwach femisch, kalkreich)

	si	al	fm	c	alk	k	mg
1. shonkinitmissouritisch	110	18	34	34	14	0,6	0,55
2. normalmissouritisch	95	14,5	44	31,5	10	0,6	0,6
3. antsohitisch	105	19	42	30	9	0,6	0,55
4. kalipolzenitisch	80	12,5	47	34	6,5	0,6	0,6
5. pyroxenolithisch	80	13	40	43	4	0,6	0,6
6. alnöitisch	50	10	43	40	7	0,6	0,6

Allgemeines: Niedriges si und relativ niedriges al, fm 30-52, $c \ge 27.5$, alk < 17.5, meist < 12.5.

- 1. si meist 90—130, al \leq 20, jedoch meist > 17, fm 30—38, c 28—39, alk 10—17,5, al—alk meist < 7,5.
- 2. si meist 120-70, al meist 10-17,5, c 28-39, fm meist 38-50, alk meist 15-7,5, al-alk meist 0-7,5.
- 3. si meist 125-80, al um 20, c 27,5-30, fm > 35, al-alk > 7,5, alk \geq 7,5.
- 4. si meist 90-50, al \leq 15, alk \leq 8, jedoch meist > 5, fm > 40, c < 40 und > 30.
- 5. si meist 100-70, al < 18,5, fm und c ähnlich um 40, alk meist 10-3.
- 6. si meist 70-40, al \leq 15, fm und c ähnlich um 40, alk meist 12,5-5.

III. Tabelle zur Erläuterung der Figuren

Sowohl für die Textfiguren als auch für die Figuren der Beilagen gilt: Abszissenwert = c, Ordinate = \pm (al-alk). Für verschiedene absolute alk-Werte sind, jeweilen ein Intervall umfassend, verschiedene Figuren konstruiert. In der Regel umfaßt das alk-Intervall einer Figur 5 alk-Einheiten. Schnitt 25 bedeutet z. B. alk 22,5-27,5. Mit höherem alk werden die Dreiecke kleiner, da dann (al-alk), c und fm nicht gross sein können. Bei positivem (al-alk) gilt: (al-alk) + c + fm = 100-2 alk. Nähe eines Projektionspunktes zum Koordinatenanfangspunkt bedeutet maximalen fm-Gehalt bei dem betreffenden alk-Wert. (Es ist al-alk und c um Null.)

Auf der 45 ° Linie durch den Nüllpunkt nach rechts oben ist al = alk + c; t = 0. Auf der Linie von links oben nach rechts unten ist fm = al (Isofalie).

na

alk, Schnitt 42,5, 37,5 und 32,5

1 trondhjemitaplitisch, quarzdioritaplitisch, 2 natrongranitaplitisch, 3 alkaligranitaplitisch, alkalisyenitaplitisch, 4 normalakaligranitisch, nordmarkitisch, normalfoyaitisch, urtitisch, umptekitisch, gibelitisch, lardalitisch, 5 leukoevisitisch, tinguaitisch, urtit-tinguaitisch, melatinguaitisch, grönlanditisch, 6 evisitisch-pantelleritisch, tavitisch, 7 natronengadinitisch, normaltrondhjemitisch, bostonitisch, pulaskitisch, essexitfoyaitisch, monmouthitisch, 8 evisitisch-groruditisch, normallujavritisch, 9 si-natronsyenitisch, natronsyenitisch, 10 normalevisitisch, 11 alkalimafitisch, rockallitisch.

alk, Schnitt 30

1 si-oligoklasitisch, oligoklasitisch, 2 natronrapakiwitisch, leukoquarzdioritisch, pulaskitisch, essexitfoyaitisch, monmouthitisch, 3 maenaitisch, nosykombitisch, 4 lardalitisch (Grenze), tahitisch, 5 muritisch, 6 lusitanitisch, 9 si-natronsyenitisch, natronsyenitisch.

alk, Schnitt 25

1 si-oligoklasitisch, oligoklasitisch, 2 leukoquarzdioritisch, farsunditisch, larvikitisch, kassaitisch, 3 natronrapakiwitisch, 4 maenaitisch, nosykombitisch, 5 ijolithisch, 6 si-natronsyenitisch, natronsyenitisch, 7 melanatronsyenitisch, 8 lusitanitisch.

alk, Schnitt 20

1 andesinitisch, oligoklasitisch, 2 farsunditisch, leukopeléeitisch, rouvillitisch, 3 quarzdioritisch, essexitakeritisch, normalessexitisch, 4 melteigitisch, c-melteigitisch, 5 mugearitisch, 6 melaquarzdioritisch, 7 melanatronsyenitisch, 8 theralithisch, melatheralithisch, 9 pienaaritisch.

alk, Schnitt 15

1 labradorfelsitisch, 2 si-melaplagioklasitisch, 3 leukopeléeitisch, 4 quarzdioritisch, dioritisch, 5 cumbraitisch, gabbromelteigitisch, 6 beringitisch, theralithgabbroid, 7 lamprodioritisch, 8 melteigitisch, c-melteigitisch, turjaitisch, 9 gabbrotheralithisch, 10 mugearitisch, 11 theralithisch, melatheralithisch.

alk, Schnitt 10

1 natronlamprosyenitisch, melatheralithisch, kaulaitisch, modlibovitpolzenitisch, alkalijacupirangitisch, vesecit-polzenitisch, ankaratritisch, 2 normal-

gabbrotheralithisch, 3 belugitisch, 4 peléeitisch, 5 leukomiharaitisch, theralithgabbroid, 6 berondritisch, turjaitgabbroid, 7 miharaitisch, 8 turjaitisch, okaitisch, 9 c-gabbrotheralithisch, 10 orbitisch, 11 si-melaplagioklasitisch, 12 alkalihornblenditisch, 13 anorthositisch, 14 si-gabbrodioritisch, gabbrodioritisch, melagabbrodioritisch, essexitgabbrodioritisch, essexitgabbroid, 15 salitritisch.

k

alk, Schnitt 42,5, 37,5 und 32,5

1 yosemitaplitisch, 2 aplitgranitisch, 3 alkaligranitaplitisch, alkalisyenitaplitisch, 4 normalalkaligranitisch, kalinordmarkitisch, kalifoyaitisch, kaligibelitisch, 7 engadinitgranitisch, granosyenitisch, leukosyenitisch, rapakiwitisch, 9 si-syenitgranitisch, syenitgranitisch, syenitisch.

alk, Schnitt 30

2 yosemitgranitisch, adamellitisch, rapakiwitisch, granosyenitisch, leukosyenitisch, leukosommaitisch, 3 adamellitisch, tasnagranitisch, syenitisch, 4 sviatonossitisch, leukosommaitisch, arkitisch, 9 si-syenitgranitisch, syenitgranitisch, syenitisch.

alk, Schnitt 25

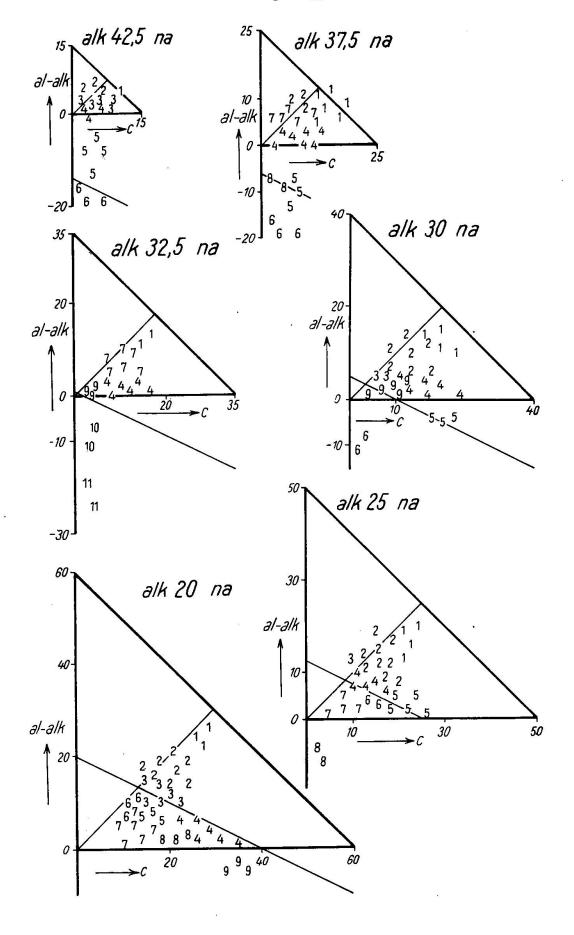
1 borolanitisch, vesbitisch, 2 granodioritisch, adamellitisch, monzonitsyenitisch, 3 leukosommaitisch, monzonitsyenitisch, 4 tasnagranitisch, normalsyenitisch, melarkitisch, 5 sviatonossitisch, arkitisch, 6 si-syenitgranitisch, syenitgranitisch, syenitisch, melarkitisch, 7 kammgranitisch, si-kamperitisch, kamperitisch, melarkitisch, 8 wyominglamproitisch.

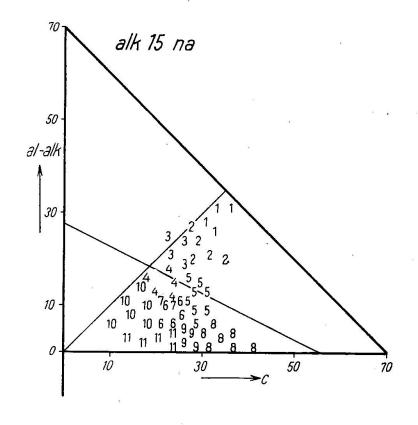
alk, Schnitt 20

1 quarzdioritisch, leukomonzonitisch, 2 moyitisch, opdalitisch, si-monzonitisch, monzonitisch, 3 borolanitisch, vesbitisch, 4 sommaitisch, melarkitisch, 5 yogoitisch, 6 kammgranitisch, si-kamperitisch, kamperitisch, 7 lamprosyenitisch, murcialamproitisch, 8 yogoitlamproitisch.

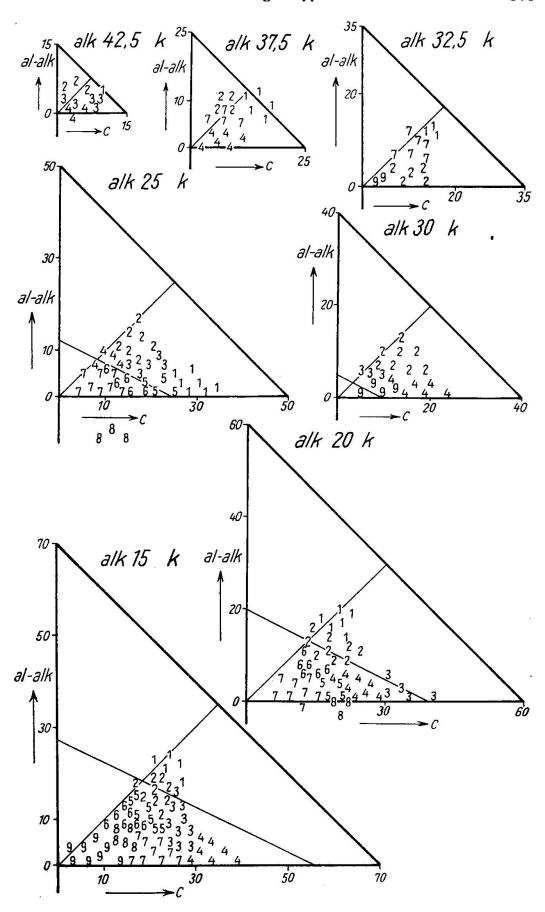
alk, Schnitt 15

1 leukotonalitisch, 2 monzonitisch, opdalitisch, si-monzonitisch, monzonitisch, tonalitisch, sommaitmonzonitisch, monzonitdioritisch, 3 sommaitisch, sommaitossipitisch, 4 shonkinit-missouritisch, missouritisch, 5 vredefortitisch, kalidioritisch, 6 lamprosommaitisch, 7 yogoitisch, shonkinitisch, 8 lamprosyenitisch, 9 jumillitisch, murcialamproitisch, biotitisch.

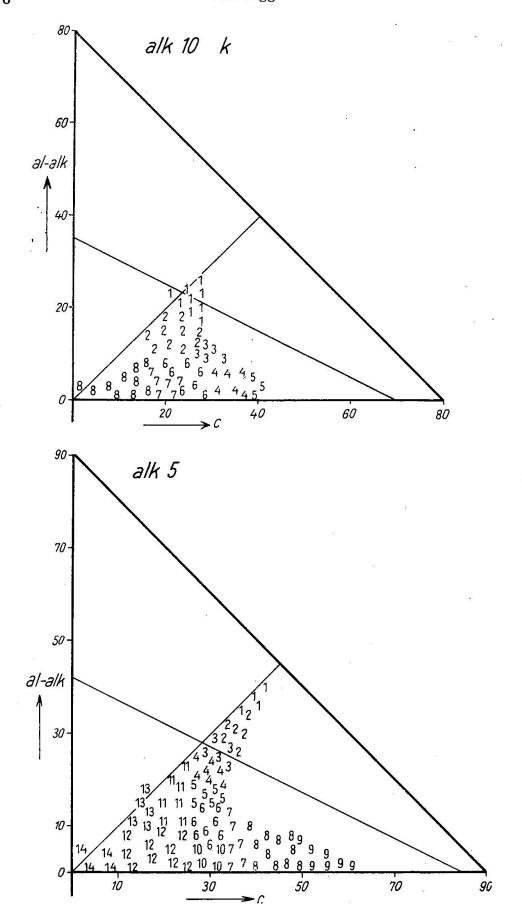

alk, Schnitt 10


1 tonalitisch, 2 vredefortitisch, sommaitdioritisch, lamprosommaitisch, 3 antsohitisch, 4 shonkinit-missouritisch, missouritisch, 5 pyroxenolithisch, alnöitisch, 6 shonkinitisch, 7 kajanitisch, kalihornblenditisch, 8 jumillitisch, murcialamproitisch, biotitisch.


ka und na


alk, Schnitt 5

1 anorthositisch, 2 anorthositgabbroid, 3 ossipitisch, 4 achnahaitisch, pyroxengabbroid, 5 ostraitisch, ariégitisch, miharaitisch, 6 si-pyroxenitisch, pyroxenitisch, issitisch, 7 kali-polzenitisch, jacupirangitisch, 8 pyroxenitisch, al-



Schweiz, Min. Petr. Mitt., Bd. XVI, Heft 2, 1936

nöitisch, 9 okaitisch, 10 pyroxenitisch, vesecit-polzenitisch, koswitisch, batukitisch, 11 normalgabbroid, c-gabbroid, eukritisch, hornblenditisch, al-hornblenditisch, 12 hornblendeperidotitisch, hornblenditisch, websteritisch, alk-hornblendeperidotitisch, modlivobit-polzenitisch, diallagitisch, 13 fm-gabbroid, modlibovit-polzenitisch, hornblenditisch, websteritisch, diallagitisch, hornblendeperidotitisch, 14 orthaugitisch, peridotitisch, erzperidotitisch.

IV. Vergleichstabelle

Kalkalkalireihe

- a) Leukogranitische Magmen
- 1. aplitgranitisch
- N. III, 1. Nr.: 1 Biotitaplitgranit, 2 Biotitaplitgranit, 3 Stolpener Biotitgranit,
 4 Aplitischer Granit, 5 Aplitgranit, 6 Augitführender aplitischer Granit,
 8 Biotitaplitgranit, 9 Roter Granit, 10 "Protogin", 11 Königshainer Biotitgranit, 12 Liergranit aplitisch.
- N. III, 2. Nr.: 6 Granitgneis.
- Tröger, Nr.: 12 Aplitgranit, 14 Alaskit, 22 Granitaplit, 42 Nevadit, 43 Plagioliparit, 44 Tordrillit, 53 Kaligranit, 65 Pegmatit, 102 Pechstein.

Nach Daly Mittel von Granitapliten, Alaskiten.

- 2. yosemitaplitisch
- N. III, 2. Nr.: 17 Mill-Creekgranit, 18 Porphyrartiger Granit.

TRÖGER, Nr. 24: Quarzmonzonitaplit.

- 3. engadinitgranitisch
- N. III, 2. Nr.: 3 Granit, 4 Karlshamngranit, 5 Körniger Ilsesteingranit, 7 Randfacies des Aaregranit, 9 Mont Blanc-Granit, 10 Granit-Rhyolithmittel,
 11 Kerngranit, 13 Granit, 14 Plattamalagranit, 15 Protogingranit,
 16 Biotitgranit.
- N. III, 3. Nr.: 12 Protogin.
- N. III, 43. Nr.: 3 Rapakiwigranit.
- TRÖGER, Nr.: 23 Rapakiwiaplit, 46 Albitfelsitporphyr, 52 Sancyit, 60 Llanit, 79 Pyterlit, 95 Beschtauit.

Nach Daly Mittel von Rhyolithen und Rhyolithen des Yellowstone Parkes.

- 4. yosemitgranitisch
- N. III, 3. Nr.: 1 Gneisartiger Granit, 3 Fibbiagranit porphyrartig, 4 Biotitgranit, 6 Biotitgranit, 7 Mont Blanc-Protogin, 8 Biotitgranit, 9 Granit, 13 Medelsergranit.
- TRÖGER, Nr.: 80 Wiborgit, 84 Yosemitit, 97 Greenhalghit.
- Nach Dalv Mittel von Graniten aller geologischen Zeiten, der praekambrischen Granite, der subalkalischen Granite (z. T. besonders Gesamtgranitmittel gegen adamellitisch).
- b) Granitische Magmen
- 1. adamellitisch
- N. III, 4. Nr.: 6 Biotitgranit, 8 Biotitgranit.
- N. III, 5. Nr.: 6 Granodiorit, 7 Granodiorit-Adamellit.

N. III, 42. Nr.: 3 Riesengebirgsgranit, 4 Rhyolith, 5 Riesengebirgsgranit, 8 Olivinrhyolith, 10 Albulagranit, 11 Adamellit.

N. III, 43. Nr.: 1 Alögranit, 14 Augit-Granit.

TRÖGER, Nr.: 85 Normalgranit, 96 Dellenit, 101 Toscanit, 104 Wennebergit.
Nach Daly Mittel der subalkalischen Granite, der praekambrischen Granite
Schwedens, des Gesamtgranitmittels, der subalkalischen Trachyte.

2. tasnagranitisch

N. III, 42. Nr.: 12 Rapakiwigranit, 13 Quarzmonzonit, 14 Tasnagranit, 15 Tödigranit, 16 Gasterngranit, 18 Hornblendegranit, 19 Granit.

N. III, 45. Nr.: 7 Syenit.

TRÖGER, Nr.: 312 Dioritaplit.

3. moyitisch

Tröger, Nr.: 55 Moyit.

4. normalgranitisch

N. III, 4. Nr.: 1 Filipstadgranit, 3 Banatitgranit, 10 Granit (Granodiorit), 15 Hornblendegranit.

N. III, 6. Nr.: 1 Quarz-Augitglimmersyenit.

N. III, 42. Nr.: 9 Dellenit.

TRÖGER, Nr.: 86 Quarzmonzonit, 98 Craignurit.

5. opdalitisch

N. III, 4. Nr.: 9 Augitgranit, 14 Biotitgranit.

N. III, 5. Nr.: 14 Granodiorit, 15 Dacit.

N. III, 6. Nr.: 2 Quarzmonzonit, 3 Quarz-Augitglimmersyenit, 4 Quarzmonzonit,
 5 Quarzmonzonit, 6 Bedengranit, 7 Augengranit (titanreich), 8 Quarzmonzonit,
 10 Basische Randfacies,
 11 Opdalit,
 12 Quarz-Hornblendemonzonit,
 13 Augitsyenit,
 14 Quarz-Hornblendemonzonit,
 15 Opdalit,
 16 Quarzhaltiger Glimmersyenit,
 17 Kersantit,
 18 Lamprophyr.

N. III, 48. Nr.: 9 Lamprophyr.

TRÖGER, Nr.: 92 Hurumit, 99 Coloradoit, 108 Opdalit.

Nach Daly Mittel aller subalkalischen Syenite.

c) Granodioritische Magmen

1. normal granodioritisch

N. III, 4. Nr.: 2 Tonalitgranit, 4 Amphibolbiotitgranit, 5 Biotitgranit, 11 Glimmergranit-Quarzdiorit, 12 Hornblende-Biotitgranit.

N. III, 5. Nr.: 1 Refsundgranit, 2 Granodiorit, 3 Banatit, 4 Glimmergranodiorit, 5 Bugneigranodiorit, 9 Granodiorit-Banatit, 10 Granodiorit, 11 Banatit, 12 Dacitvitrophyr, 16 Granodiorit.

TRÖGER, Nr.: 67 Kersantitpegmatit, 100 Quarzlatit, 107 Granodiorit, 118 Rhyodacit, 149 Quarzporphyrit.

Nach Daly Mittel von Quarzmonzoniten, postkambrischen Graniten, Quarzlatiten, Granodioriten der Sierra Nevada.

2. leukotonalitisch

N. III, 10. Nr.: 1 Tonalit.

3. farsunditisch

N. III, 5. Nr.: 13 Banatit.

N. III, 8. Nr.: 1 Plagioklasgranit.

N. III, 9. Nr.: 1 Quarzdiorit (Granodiorit), 2 Quarzdiorit, 3 Quarzglimmerdiorit, 5 Quarzglimmerdiorit, 6 Quarzdiorit (Granodiorit).

N. III, 36. Nr.: 2 Essexitdiorit, 3 Trachyandesit (Cantalit).

TRÖGER, Nr.: 83 Calcigranit, 106 Farsundit, 139 Kersantitaplit.

Nach Daly Mittel der Dacite.

4. leukopeléeitisch

N. III, 9. Nr.: 9 Hypersthenandesit, 21 Gladkaït.

Tröger, Nr.: 140 Gladkaït, 143 Esterellit, 156 Shastait.

d) Trondhjemitische Magmen

1. natrongranitaplitisch

N. III, 7. Nr.: 5 Aplit (mikropegmatitisch), 11 Trondhjemit.

TRÖGER, Nr.: 15 Birkremit, 25 Quarzalbitit, 31 Aegirin-Aplit, 122 Ungait, 313 Kragerit

2. trondhjemitaplitisch

N. III, 7. Nr.: 8 Trondhjemit.

3. quarzdioritaplitisch

4. natronengadinitisch

N. III, 7. Nr.: 9 Albitgranit.

N. III, 23. Nr.: 25 Dahamit.

N. III, 24. Nr.: 5 Biotitdomit.

N. III, 25. Nr.: 1 Lahnporphyr.

N. III, 44. Nr.: 6 Biotitdomit.

Tröger, Nr.: 30 Dahamit.

Nach Daly Mittel von Quarzkeratophyren (gegen normaltrondhjemitisch).

5. normaltrondhjemitisch

N. III, 7. Nr.: 6 Albitgranit, 15 Protogin.

6. natronrapakiwitisch

N. III, 7. Nr.: 4 Alsbachit, 10 Albitgranit (Aplit).

TRÖGER, Nr.: 10 Albitgranophyr, 111 Alsbachit, 120 Plagiophyr.

7. leukoquarzdioritisch

N. III, 3. Nr.: 10 Biotitgranit, 11 Biotitgranit.

N. III, 7. Nr.: 16 Trondhjemit, 17 Protogin.

N. III, 8. Nr.: 2 Plagioklasgranit, 4 Quarzmonzonit, 5 Andesit, 6 Oligoklasit.

N. III, 36. Nr.: 1 Essexitdiorit.

N. III, 42. Nr.: 2 Riesengebirgsgranit.

N. III, 49. Nr.: 2 Syenit, monzonitisch.

TRÖGER, Nr.: 81 Tirilit, 129 Trondhjemit, 130 Plagioklasgranit, 154 Santorinit, 292 Oligoklasit.

8. si-oligoklasitisch

N. III, 7. Nr.: 19 Tonalitaplit, Yukonit.

Tröger, Nr.: 135 Oligoklasgranitpegmatit, 136 Yukonit, 137 Quarzdioritaplit, 294 Amherstit.

- e) Quarzdioritische Magmen
- 1. normalquarzdioritisch
- N. III, 4. Nr.: 13 Biotitgranit.
- N. III, 9. Nr.: 4 Quarzdiorit, 7 Quarzdiorit (Granodiorit), 8 Quarzpyroxen-glimmerdiorit, 10 Quarzhypersthendiorit, 11 Quarzglimmerdiorit, 12 Pyroxenglimmerdiorit, 13 (Quarz-) Diorit, 14 Quarzdiorit, 15 Quarzdiorit-Quarzmonzonit, 16 Quarzdiorit, 17 Quarzdiorit, 18 Quarzdiorit, 19 Quarzbiotitaugitdiorit, 20 Malchit, 22 Spessartit, 23 "Camptonit".
- TRÖGER, Nr.: 123 Sanukit, 124 Leidleit, 126 Inninmorit, 131 Quarzdiorit, 148 Dacit, 150 porfido rosso antico, 155 Weis elbergit, 307 Mikrotinit.
- Nach Daly Mittel der Quarzdiorite, Tonalite, Gesamtdiorite, Diorite von Electric Peak, der Augitandesite, der Glimmerandesite, aller Andesite, der Hornblendeandesite.
- 2. melaquarzdioritisch
- N. III, 26. Nr.: 1 Kersantit.
- 3. peléeitisch
- N. III, 10. Nr.: 1 Dacit, 2 Andesit, 3 Andesit, 4 Andesit, 6 "Andesitlabradorit", 7 "Andesitlabradorit", 9 Andesitlabradorit.

TRÖGER, Nr.: 157 Peléeit, 340 Labradoritandesit, 342 Aleutit.

Nach Daly Mittel der Hypersthenandesite.

- 4. tonalitisch
- N. III, 10. Nr.: 2 Normaltonalit, 4 Quarzaugitbiotit, 5 Tonalit, 6 Quarzpyroxendiorit.
- N. III, 57. Nr.: 2 Glasiger Shoshonit, 7 Augitlamprophyr (sommaittonalitisch). Tröger, Nr.: 115 Töllit, 116 Markfieldit, 117 Suldenit, 132 Tonalit.
- f) Dioritische Magmen
- 1. normaldioritisch
- N. III, 11. Nr.: 1 Pyroxenglimmerdiorit, 2 Diorit, 3 Diorit, 4 Diorit-Andesit-mittel, 6 Dioritporphyrit (bis mugearitisch), 7 Diorit, 11 (Quarz-)-Diorit, 13 Diorit, 14 Diorit, 15 Malchit.
- N. III, 37. Nr.: 7 Albitdiorit, 8 Essexit, 10 Essexit, 12 Basalt.
- N. III, 54. Nr.: 13 Orthoklasgabbro, 17 monzonitischer Syenit.
- Tröger, Nr.: 110 Granogabbro, 277 Gröbait, 288 Kullait, 308 Diorit (bis orbitisch), 316 Nadeldiorit, 324 Andesit, 325 Porphyrit, 334 Malchit, 558 Topsailit.
- Nach Daly Mittel einzelner subalkalischer Augitsyenite (und gegen theralithgabbroid bis lamprodioritisch hin der Essexite!).
- 2. lamprodioritisch
- N. III, 11. Nr.: 5 Hypersthen-Glimmerdiorit, 16 Vogesit, 17 Cuselit.
- N. III, 12. Nr.: 3 Orthoklasgabbro.
- 3. orbitisch
- N. III, 10. Nr.: 8 Labradorandesit.
- N. III, 12. Nr.: 6 Gabbrodiorit, 7 Gabbrodiorit.

TRÖGER, Nr.: 151 Quarzbasalt, 158 Bandait, 278 Mangerit, 336 Orbit, 338 Klausenit, 345 Nonesit.

Nach Daly Mittel der Quarzgabbro, der Melaphyre, der Quarzbasalte.

g) Gabbrodioritische Magmen

1. si-gabbrodioritisch

N III, 12. Nr.: 1 Pyroxenglimmerdiorit, 2 Gabbrodiorit.

Tröger, Nr.: 121 Kongadiabas.

2. normalgabbrodioritisch

N. III, 12. Nr.: 5 Biotitaugitgabbrodiorit, 10 Gabbrodiorit, 12 Jotunnorit, 14 Dioritgabbro, 15 Gabbrodiorit, 16 Gabbrodiorit, 17 Quarz-Biotit-Norit, 18 Noritdiorit, 19 Gabbrodiorit, 20 Gabbrodiorit, 21 Gabbrodiorit, 25 Odinit, 26 Spessartit, 27 Bronzit-Kersantit.

Tröger, Nr.: 273 Anorthoklasbasalt, 320 Diabasspessartit (bis normalgabbroid), 323 Bronzitkersantit, 329 Spilit, 331 Gabbrodiorit.

Nach Daly Mittel der Gabbro ohne Olivin, der Basalte, Diabase, Dolerite, Quarzdiabase.

3. melagabbrodioritisch

N. III, 12. Nr.: 4 Biotitaugitgabbrodiorit, 8 Gabbrodiorit.

N. III, 13. Nr.: 4 Olivin-Norit.

TRÖGER, Nr.: 328 Dorgalit.

Nach Kennedy Mittel von 56 Analysen von Hawaii, jedoch bereits gegen essexitgabbroid hin.

h) Gabbroide Magmen

1. normalgabbroid

N. III, 13. Nr.: 8 Glimmernorit, 9 Olivingabbro.

TRÖGER, Nr.: 354 Hyperit, 379 Olivinbasalt, 382 Essexitbasalt, 390 Diabas. Nach Dalv Mittel der Plateaubasalte, der Olivindiabase, der Olivinnorite, der Norite.

2. fm-gabbroid

TROOER, Nr.: 356 Magnetit-Norit.

3. eukritisch

N. III, 13. Nr.: 14 Olivinnorit.

TRÖGER, Nr.: 358 Eukrit.

4. c-gabbroid

N. III, 12. Nr.: 23 Dichter Gangdiorit.

N. III, 13. Nr.: 1 Gabbro.

5. miharaitisch

N. III, 13. Nr.: 2 Norit.

TRÖGER, Nr.: 127 Alboranit, 159 Sakalavit, 162 Miharait, 367 Beerbachit, 499 Damkjernit.

6. pyroxengabbroid

N. III, 14. Nr.: 1 Augitnorit, 2 Norit, 4 Olivingabbro, 5 Gabbro, 6 Olivingabbro, 8 Amphibolmonchiquit, 9 Heptorit.

Tröger, Nr.: 348 Gabbro, 359 Ricolettait (k!), 360 Rougemontit, 368 Ouenit, 553 Mareugit.

- i) Leukogabbroide Magmen
- 1. leukomiharaitisch

N. III, 15. Nr.: 16 Luciit.

TRÖGER, Nr.: 335 Luciit, 344 Tholeiit, 346 Navit, 395 Epidiorit.

2. achnahaitisch

TRÖGER, Nr.: 362 Biotit-Eukrit, 386 Anorthitbasalt.

3. cumbraitisch

TRÖGER, Nr.: 125 Cumbrait, 343 Palatinit.

4. belugitisch

N. III, 10. Nr.: 7 Tonalit.

N. III, 15. Nr.: 1 Quarz-Enstatitgabbro, 2 Augitbelugit, 3 Biotitossipitgabbro, 4 Hornblende-Biotitgabbro, 5 Olivin-Dolerit, 6 Ossipitgabbro, 7 Labradorfels, 8 Ossipitgabbro, 16 Augit-Kersantit.

TRÖGER, Nr.: 161 Mijakit, 330 Belugit, 333 Pawdit, 352 Ossipit.

5. ossipitisch

N. III, 15. Nr.: 9 Gabbro, 11 Gabbro, 12 Ossipitgabbro, 13 Forellenstein Troktolith, 14 Olivinossipit, 17 Camptonit.

Tröger, Nr.: 349 Hornblende-Gabbro.

- k) Plagioklasitische Magmen
- 1. oligoklasitisch

N. III, 22. Nr.: 15 Plagiaplit, 16 "Pegmatit".

Tröger, Nr.: 199 Helsinkit, 306 Esboit.

2. andesinitisch

N. III, 22. Nr.: 2 Andesinfels, 4 Anorthosit, 17 Albitit.

TRÖGER, Nr.: 293 Andesinit, 303 Plagiaplit.

- 3. labradorfelsitisch
- N. III, 22. Nr.: 3 Anorthosit, 5 Anorthosit, 6 Anorthosit, 7 Labradorfels, 11 Anorthosit.

TRÖGER, Nr.: 296 Labradit, 297 Routivarit, 310 Zoisit-Oligoklaspegmatit.

4. anorthositisch

N. III, 22. Nr.: 8 Labradorfels, 12 Anorthosit, 13 Anorthosit, 14 "Troktolith". TRÖGER, Nr.: 298 Modumit, 299 Bytownitit, 366 Gabbroaplit.

Nach Daly Mittel der Anorthosite.

- 5. melaplagioklasitisch
- N. III, 21. Nr.: 1 Pyroxenanorthosit, 2 Pyroxenanorthosit, 3 Anorthositgabbro (+ Quarz).
- N. III, 22. Nr.: 1 Quarzaugitdiorit, 10 Labradornorit.

6. anorthositgabbroid

N. III, 21. Nr.: 4 Gabbro, 5 Labradorfels, 6 Olivingabbro, 8 Nephelingabbro, 9 Pyroxengabbro, 10 Anorthosit-Essexit, 11 Olivingabbro, 12 Anorthositischer Olivingabbro.

N. III, 40. Nr.: 1 Nephelingabbro Übergang zu Anorthositgabbro.

TRÖGER, Nr.: 350 Sesseralith, 361 Corsit.

1) Hornblenditische Magmen

1. al-hornblenditisch

N. III, 13. Nr.: 12 Gabbro.

N. III, 18. Nr.: 4 Ariégit.

TRÖGER, Nr.: 160 Boninit, 353 Troktolith, 355 Norit, 364 Allivalit.

2. hornblenditisch

N. III, 12. Nr.: 13 Quarzführender Diorit.

N. III, 13. Nr.: 5 Biotit-Norit, 10 Gabbronorit, 11 Gabbro, 13 Olivingabbro, 18 Analcimbasalt.

N. III, 18. Nr.: 1 Cortlandit, 2 Hornblendepikrit, 3 Essexitdiabas, 5 Hornblendit, 8 Kylit, 9 Olivingabbro, 10 Hornblendit, 11 Hornblendit, 12 Ariégit, 13 Hornblendit, 16 Camptonit, 17 Amphibolaugitmonchiquit.

N. III, 58. Nr.: 13 Shonkinitischer Missourit (k!).

TRÖGER, Nr.: 286 Sörkedalit, 309 Bojit (bis si-pyroxenitisch), 351 Olivingabbro, 383 Hawaiit, 495 Tjosit 554 Kylit, 566 Crinanit, 568 Olivinteschenit, 701 Hornblendit (bis diallagitisch), 704 Lherzit, 708 Cortlandtit.

Nach Daly Mittel der Hornblendite.

3. hornblendeperidotitisch

N. III, 19. Nr.: 1 Pyroxenit, 2 Hornblendit biotitführend, 3 Hypersthenit, 5 Feldspatpikrit, 7 Hornblendeperidotit, 8 Amphibolpikrit, 11 Alnöit.

TRÖGER, Nr.: 401 Harrisit, 409 Ozeanit, 626 Ankaratritpikrit, 680 Anabohitsit, 698 Pikrit, 705 Grönlandit.

Nach Daly Mittel der Oceanite, Glimmerperidotite, Pikrite.

4. diallagitisch

N. III, 17. Nr.: Diallagit.

Tröger, Nr.: 681 Diallagit.

5. websteritisch

N. III, 19. Nr.: 6 Amphibolperidotit, 9 Hornblendepirikrit (bis hornblendeperidotitisch), 10 Kimberlit, 12 Garewaït, 13 Monchiquit.

N. III, 20. Nr.: 2 Websterit, 5 Bahiaït, 7 Harrisit.

TRÖGER, Nr.: 678 Websterit, 709 Schriesheimit, 713 Stavrit, 734 Wehrlit, 741 Garéwait, 742 Kimberlit.

Nach Daly Mittel der Websterite, Cortlandite, Wehrlite, Kimberlite.

m) Pyroxenitische Magmen

1. si-pyroxenitisch

N. III, 16. Nr.: 8 Biotitaugitgabbro.

N. III, 41. Nr.: 1 Glasiger Basalt.

Tröger, Nr.: 281 Hooibergit, 378 Basalt, 392 Hypersthen-Diabas, 513 Leuzitkentallenit. 2. ariégitisch

N. III, 14. Nr.: 7 Hornblendegabbro.

N. III, 16. Nr.: 1 Ariégit.

TRÖGER, Nr.: 403 Anorthitissit.

3. ostraitisch

N. III, 16. Nr.: 6 Ostrait. TRÖGER, Nr.: 685 Ostrait.

4. issitisch

N. III, 16. Nr.: 2 Gabbroessexit, 4 Plagioklas-Issit, 7 Issit, 10 Monchiquit, 11 Melilithmonchiquit.

N. III, 17. Nr.: 6 Basalt.

N. III, 41. Nr.: 2 Yamaskit-Essexit.

N. III, 58. Nr.: 20 Monchiquit.

TRÖGER, Nr.: 376 Fourchit, 393 Sudburit, 394 Proterobas, 405 Ouachitit (k!), 710 Hauynhornblendit, 712 Issit.

5. jacupirangitisch

N. III, 16. Nr.: 6 Avezacit.

N. III, 41. Nr.: 4 Jacupirangit, 6 Jacupirangit, 7 Jacupirangit, 8 Biotit-pyroxenolith, 9 Olivinpyroxenolith (bis batukitisch).

TRÖGER, Nr.: 407 Tokéit, 625 Kaliankaratrit, 687 Jacupirangit, 688 Feldspatjacupirangit, 689 Apatitjacupirangit, 691 Olivinyamaskit, 692 Bebedourit (bis batukitisch), 714 Avezacit.

6. pyroxenitisch

N. III, 17. Nr.: 1 Amphibol-Pyroxenit, 3 Olivingabbro, 4 Cortlandit, 5 Montrealit, 8 Ankaramit, 9 Olivinpyroxenit, 10 Pyroxenitischer Essexitdiabas, 15 Camptonit.

N. III, 58. Nr.: 14 Shonkinitischer Missourit.

TROGER, Nr.: 397 Montrealit, 399 Tilait, 404 Madeirit, 406 Florinit (bis peridotitisch), 408 Ankaramit, 684 Ariégit, 690 Yamaskit.

Nach Daly Mittel der Ankaramite, Ankaratrite, Diallagite.

7. batukitisch

TRÖGER, Nr.: 647 Batukit.

8. koswitisch

N. III, 17. Nr.: 2 Pyroxenit, 7 Pyroxenit, 11 Koswit.

Tröger, Nr.: 683 Koswit.

n) Orthaugitisch-peridotitische Magmen

1. orthaugitisch

N. III, 20. Nr.: 1 Hypersthenit, 3 Bronzitfels, 4 Bahiaït.

TRÖGER, Nr.: 400 Noritbronzitit, 675 Bronzitit, 677 Sagvandit, 679 Bahiaït.

Nach Daly Mittel der Bronzitite.

2. peridotitisch

N. III, 20. Nr.: 8 Peridotit, 9 Granatolivinfels, 11 Wehrlit, 12 Pikrit (feld-spatführend), 13 Dunit, 14 Diallagperidotit.

TRÖGER, Nr.: 402 Kazanskit, 686 Marchit, 706 Scyelith, 721 Olivinglimmerit, 724 Dunit, 725 Hortonolith-Dunit, 726 Eulysit, 731 Saxonit, 735 Lherzolith, 737 Gordunit, 738 Amphibolperidotit, 739 Pyrrhotinperidotit (sulfidfrei berechnet), 743 Pikrit.

Nach Daly Mittel der Dunite, Harzburgite, Lherzolithe, Amphibolperidotite.

3. erzperidotitisch

Tröger, Nr.: 728 Ilmenitdunit, 761 Magnetitit, 762 Magnetitspinellit, 763 Magnetitkorundit, 764 Magnetithögbomitit, 766 Cumberlandit, 767 Magnetitsyenit, 768 Ilmenitit, 769 Urbainit, 775 Alexoit (S nicht berücksichtigt).

Natronreihe

a) Alkaligranitische Magmen

1. alkaligranitaplitisch

N. III, 7. Nr.: 2 Quarzporphyrit, 3 Natronrhyolith (Dacit).

N. III, 23. Nr.: 1 Alkalirhyolith, 2 Hornblendealkaligranit, 11 Aegiringranitporphyr, 17 Riebeckitgranulit.

TRÖGER, Nr.: 19 Natronalaskit, 20 Albitgranit, 26 Nordmarkitaplit, 38 Runit, 40a Rhyolith, 40b Liparit, 47 Natronrhyolith, 50 Quarztrachyt, 175 Kalikeratophyr.

2. normalalkaligranitisch

N. III, 2. Nr.: 1 Granit-Randfacies, 2 Tunagranit, 12 Elk-Peak-Granit.

N. III, 3. Nr.: 2 Perthitquarzgranit.

N. III, 7. Nr.: 2 a Albit-Pegmatit, 7 Granitfacies, 12 Albitaplit.

N. III, 23. Nr.: 3 Quarzkeratophyr, 4 Natronrhyolith, 5 Quarzporphyr, 6 Alkaligranit, 7 Quarzkeratophyr, 8 Natrongranulit, 9 Glimmergranit, 10 Comendit, 12 Paisanit, 13 Paisanit, 14 Riebeckitgranitporphyr, 15 Alkali-Liparit, 18 Bostonit, 19 Riebeckitgranulit, 20 Natrongranit, 21 Paisanit, 22 Quarzlindöit, 24 Arfvedsonitgrorudit.

N. III, 43. Nr.: 10 Quarzporphyr, 17 Quarzsyenit.

TRÖGER, Nr.: 11 Lenneporphyr, 13 Engadinit, 17 Alkaliaplitgranit, 18 Ekerit, 21 Quarz-Nordmarkit, 27 Brandbergit, 28 Aegirin-Felsit, 29 Paisanit, 32 Ailsyt, 33 Lindöit, 34 Quarzbostonit, 41 Quarzporphyr, 45 Pyromerid, 48 Comendit, 49 Cantalit, 61 Riebeckit-Granophyr, 75 Lundyit.

Nach Daly Mittel von Alkaligraniten, Paisaniten, Comenditen.

3. alkalisyenitaplitisch (albitisch)

N. III, 7. Nr.: 18 Hypersthengranit.

N. III, 24. Nr.: 6 Lestiwarit, 7 Trachyt.

Tröger, Nr.: 164 Perthosit, 169 Albitit, 170 Lestiwarit.

4. nordmarkitisch

N. III, 24. Nr.: 1 Saure Ausscheidung in Phonolith (fm Grenzwert), 2 Solvsbergit (al-alk Grenzwert), 9 Keratophyr.

TRÖGER, Nr.: 77 Hakutoit, 173 Antifenitpegmatit, 192 Sölvsbergit, 205 Björnsjöit, 207 Aegirin-Trachyt.

5. gibelitisch

TRÖGER, Nr.: 76 Quarzkeratophyr, 211 Gibelit.

Nach Daly Mittel von Alkalitrachyten (z. T. k-gibelitisch).

- b) Evisitische Magmen
- 1. leukoevisitisch
- N. III, 23. Nr.: 23 Grorudit.
- N. III, 27. Nr.: 11 Arfvedsonitgranit, 21 Arfvedsonittrachyt.
- Tröger, Nr.: 56, Alkaligranit.
- 2. evisitisch-groruditisch
- N. III, 27. Nr.: 1 Grorudit, 2 Comendit, 3 Aplit, 12 Grorudit, 14 Aegirin-pantellerit, 15 Riebeckitgranit, 18 Pantellerit, 19 Pantelleritobsidian.

TRÖGER, Nr.: 62 Grorudit, 72 Pantellerit, 73 Khagiarit.

Nach Daly Mittel von Groruditen und Pantelleriten.

- 3. evisitisch-pantelleritisch
- N. III, 27. Nr.: 9 Aegirin-Pantellerit, 10 Hyalopantellerit, 13 Hyalopantellerit, 22 Aegiringranit.

TRÖGER, Nr.: 63 Karit, 64 Fasibitikit.

- 4. normalevisitisch
- N. III, 27. Nr.: 6 Aegiringranit, 7 Arfvedsonitgranit, 8 Aegirinriebeckitgranit, 16 Aegiringranit, 17 Riebeckitgranit, 23 Riebeckitquarzsyenit.
- c) Foyaitische Magmen
- . 1. umptekitisch
- N. III, 24. Nr.: 16 Pulaskit, 17 Noseantrachyt, 19 Katoforittrachyt, 20 Nordmarkit, 21 Umptekit, 25 Alkalisyenit, 28 Umptekit, 29 Hedrumit.
- N. III, 25. Nr.: 5 Albitsyenit.
- N. III, 30. Nr.: 1 Mariupolit, 2 Phonolith, 3 Nephelinsyenit.
- Tröger, Nr.: 181 Umptekit, 182 Hatherlit, 190 Hedrumit, 191 Nephelinhedrumit, 195 Bowralit, 208 Katophorit-Trachyt, 416 Mariupolit, 440 Nephelinsyenitpegmatit, 526 (tephritischer) Natrolithphonolith.
- Nach Daly Mittel von Sölvsbergiten und gegen normalfoyaitisch hin von Umptekiten.
- 2. normalfoyaitisch
- N. III, 24. Nr.: 26 Pulaskit.
- N. III, 30. Nr.: 5 Phonolith, 6 Foyait, 7 Foyait, 8 Foyait, 9 Ditroit, 10 Nephelinsyenit, 11 Nephelinsyenit, 12 Sodalithtrachyt, 13 Aegirinfoyait, 15 Cancrinitsyenit, 17 Aegirin-Nephelinsyenit, 19 Canadit (fluidal), 20 Nephelinporphyr, 21 Lardalitvarietät, 22 Noseansanidinit, 23 Nephelinsyenit, 24 Tinguait, 25 Foyait, 26 Foyait, 27 Arfvedsonit-Sodalitinfoyait, 29 Chibinit, 30 Chibinit.
- Tröger, Nr.: 414 Foyait, 418 Chibinit, 431 Cancrinitsyenit, 433 Sodalith-sanidinit, 441 Nephelinaplit, 447 Sodalithtinguait, 465 Phonolith, 466 Apachit, 467 Kenyit, 468 Nephelinitoider Phonolith, 476 "Leucit"-Rhombenporphyr, 516 Heronit.
- Nach Daly Mittel von Phonolithen, Nephelinsyeniten, Foyaiten, Tinguaiten und gegen lardalitisch hin Mittel von Lardaliten, Rhombenporphyren.
- 3. lardalitisch
- N. III, 29. Nr.: 9 Latit-Phonolith, 13 Lardalit, 17 Salband. Heumit.
- TROGER, Nr.: 179 Natronsyenit, 419 Lardalit, 479 Hauyntrachyt, 525 tephritischer Phonolith, 534 Latitphonolith, 570 Dancalit.

4. tahitisch

N. III, 33. Nr.: 4 Nephelinsyenit, 5 Lava.

N. III, 34. Nr.: 1 Hauynporphyr.

TRÖGER, Nr.: 430 Sodalithsyenit, 537 Tahitit.

5. urtitisch

N. III, 31. Nr.: 4 Urtit, 8 Mittel von Urtitanalysen, 9 Congressit.

N. III, 32. Nr.: 4 "Urtit".

TRÖGER, Nr.: 462 Sussexit, 548 Craigmontit (bis monmouthitisch), 604 Urtit, 605 Congressit.

Nach Daly Mittel von Urtiten.

d) Lujavritische Magmen

1. tinguaitisch

N. III, 30. Nr.: 14 Eudialytsyenit, 18 Hauynsyenit.

TRÖGER, Nr.: 426 Särnait, 428 Hauynsyenit, 445 Tinguait, 451 Natrolithtinguait, 456 Muniongit.

2. urtittinguaitisch

N. III, 31. Nr.: 2 Naujait, 3 Sodalithsyenit, 6 Urtit, 7 Naujait, 10 Nephelinreicher Ijolith.

TRÖGER, Nr.: 425 Sodalithnephelinsyenit, 463 Natronsussexit, 506 Beloeilit, 635 Naujait (alk!).

3. melatinguaitisch

N. III, 28. Nr.: 2 Nephelinsyenit, 4 Lujavrit, 5 Aegirin-Lujavrit, 9 Eudialyt-Lujavrit.

TRÖGER, Nr.: 422 Lakarpit, 454 Kalitinguait (k-melatinguaitisch).

4. grönlanditisch

N. III, 28. Nr.: 13 Sodalithfoyait.

TRÖGER, Nr.: 450 Cancrinittinguait (bis tavitisch).

5. normallujavritisch

N. III, 28. Nr.: 1 Eudialyt-Lujavrit, 3 Aegirin-Lujavrit, 7 Aegirin-Lujavrit, 8 Eudialyt-Lamprophyllit, 10 Arfvedsonit-Lujavrit, 11 Kakortokit.

TRÖGER, Nr.: 421 Lujavrit.

Nach Daly Mittel von Lujavriten.

6. tavitisch

N. III, 28. Nr.: 12 Kakortokit, 15 Tavit.

TRÖGER, Nr.: 636 Tavit.

e) Subplagifoyaitische Magmen

1. bostonitisch

N. III, 24. Nr.: 10 Umptekitrandfacies.

TRÖGER, Nr.: 171 Bostonit, 166 Natronsanidinit, 168 Ornöitaplit, 415 Litchfieldit.

2. pulaskitisch

N. III, 24. Nr.: 30 Pulaskit.

N. III, 49. Nr.: 4 Augitsyenit.

TRÖGER, Nr.: 103 Domit, 302 Plagiopegmatit (c niedrig), 524 Tephritischer Trachyt.

Nach Daly ein Mittel von Alkalisyeniten (25).

3. essexitfoyaitisch

N. III, 29. Nr.: 1 Larvikit, 2 Phonolith, 3 Phonolith, 4 Phonolith, 5 Ditroit, 6 Kenyit-Bimsstein, 10 Foyait, 12 Trachyphonolith, 14 Nephelinrhomben-porphyr, 15 Amphibol-Augitfoyait, 16 Sodalith-Tephrit.

N. III, 36. Nr.: 6 Tephritischer Trachyt.

Tröger, Nr.: 183 Larvikit, 427 Diorit, 460 Nephelinrhombenporphyr, 484 Canadit, 508 Husebyit, 569 Phonolithoider Sodalithtephrit.

4. monmouthitisch

N. III, 32. Nr.: 1 Mesokrater Nephelin-Syenit, 2 Pyroxen-Urtit, 5 Monmouthit.
 TRÖGER, Nr.: 423 Toryhillit, 518 Allochetit, 562 Bjerezit, 606 Monmouthit, 638 Schorenbergit.

f) Essexitdioritische Magmen

1. larvikitisch

N. III, 29. Nr.: 8 Natron-Glimmersyenit, 11 "Mikromonzonit".

N. III, 36. Nr.: 4 Tönsbergit, 5 Essexitdiorit, 9 Essexitdiorit, 11 Larvikit, 12 Shackanit.

N. III, 49. Nr.: 3 Augitsyenit.

TRÖGER, Nr.: 184 Tönsbergit, 305 Ornöit, 482 Shackanit, 533 Leucittautirit.

Nach Daly Mittel der Larvikite, der Akerite (k!), der Trachyandesite.

2. kassaitisch

N. III, 36. Nr.: 7 Leeuwfonteinit (Akerit), 14 Essexitdiorit.

TRÖGER, Nr.: 238 Leeuwfonteinit, 267 Andesittephrit, 517 Sodalithgauteit, 519 Kassait.

Nach Daly Mittel der Canadite.

3. rouvillitisch

N. III, 36. Nr.: 13 Essexitdiorit, 15 "Mikromonzonit", 16 Rouvillit.

TRÖGER, Nr.: 543 Hauynessexit, 551 Rouvillit.

g) Natronsyenitische Magmen

1. si-natronsyenitisch

N. III, 25. Nr.: 2 Natrontrachyt, 3 Keratophyr.

TRÖGER, Nr.: 57 Imandrit, 74 Taurit.

2. normalnatronsyenitisch

N. III, 25. Nr.: 7 Natronsyenit, 10 Natronsyenit.

N. III, 33. Nr.: 3 Bostonit, 8 Canadit.

TRÖGER, Nr.: 213 Keratophyr, 221 Albitdiabas, 432 Analcimsyenit, 446 Katzenbuckelit, 564 Lugarit.

3. maenaitisch

N. III, 25. Nr.: 4 Glimmer-Hornblende "Andesit", 14 Cuselit.

N. III, 36. Nr.: 8 Akerit.

TRÖGER, Nr.: 193 Maenait, 237 Larvikitakerit (maenaitisch-larvikitisch).

4. nosykombitisch

N. III, 33. Nr.: 1 "Ditroit", 2 "Essexit", 7 "Nephelincovit", 9 Natronminette.

N. III, 37. Nr.: 6 Essexit.

TRÖGER, Nr.: 507 Nosykombit.

5. melanatronsyenitisch

N. III, 25. Nr.: 11 Ulrichit, 12 Natronsyenit, 13 Olivinlaurdalit, 15 Camptonit, 16 Kersantit.

N. III, 37. Nr.: 4 Essexit.

Tröger, Nr.: 227 Natronminette, 257 Plagioklasführender Keratophyr, 455 Ulrichit, 483 Olivinlardalit.

h) Ijolithische Magmen

1. normalijolithisch

N. III, 34. Nr.: 2 Covit, 3 Amphibolmalignit, 5 Ijolith, 6 Ijolith, 7 Ijolith, 9 Ijolith, 10 Biotit-Ijolith, 11 Mikromalignit, 13 Monchiquit.

TRÖGER, Nr.: 216 Kaiwekit, 485 Covit, 607 Ijolith, 649 Hauynporphyr.

Nach Daly Mittel der Ijolithe.

2. melteigitisch

N. III, 34. Nr.: 8 Mittel von 18 Analysen von Ijolithen, Urtiten und Melteigiten.

N. III, 35. Nr.: 2 Leucitführender "Tephrit", 3 Melteigit, 4 Melilithnephelinit, 7 Melanit-Mikromelteigit, 9 Mittel von 10 Melteigit-Analysen, 10 Melanit-Melteigit, 16 Monchiquit.

Tröger, Nr. 615 Nephelinit, 619 Etindit, 637 Riedenit, 650 Hauynit, 655 Analcimbasalt, 662 Bergalith.

Nach Daly Mittel der Nephelintephrite (gegen beringitisch hin).

3. c-melteigitisch

N. III, 34. Nr.: 12 Melanit-Ijolith.

N. III, 35. Nr.: 1 Pyroxenapatitsyenit, 8 Ijolith-Melteigit.

4. turjaitisch

N. III, 35. Nr.: 11 Mittel von 9 Melteigit-Analysen, 13 Melteigit, 14 Melanit-Melteigit.

TRÖGER, Nr.: 609 Melteigit, 659 Turjait.

5. okaitisch

TRÖGER, Nr.: 660 Nephelinokait, 661 Okait, 745 Uncompangrit.

6. muritisch

TRÖGER, Nr.: 501 Murit, 641 Leucitophyr, 608 Glimmer-Ijolith.

i) Essexitische Magmen

1. essexitakeritisch

N. III, 37. Nr.: 1 Essexit (Diorit), 2 "Mikromonzonit".

N. III, 54. Nr.: 2 "Andesitporphyrit", 3 Orthoklasgabbro, 4 Monzonitischer Diorit.

TRÖGER, Nr.: 198 Värnsingit, 275 Kjelsåsit, 276 Essexitakerit (essexitakeritischdioritisch).

2. normalessexitisch

N. III, 37. Nr.: 3 Essexit, 5 Essexit, 9 Essexit, 11 Essexit, 13 Essexit, 16 Sodalith - Augitsyenit (essexitisch - mugearitisch), 17 Essexit, 18 Olivin-Essexit, 19 Essexitdiabas, 20 Nephelinmonzonit, 21 Essexit, 22 Nephelinmonzonit, 23 Essexit, 25 Malchit, 26 Monchiquit, 27 Camptonit.

N. III, 54. Nr.: 16 Monzonit.

TRÖGER, Nr.: 282 Rongstockit, 510 Nephelinmonzonit, 542 Essexit, 556 Dumalit, 571 Nephelinoligoklasandesit, 572 Ordanchit, 578 Kulait, 601 Essexit-diabas (essexitisch-nosykombitisch).

Nach Daly Mittel der Hauynophyre (gegen melanatronsyenitisch).

k) Theralithische Magmen

1. normaltheralithisch

N. III, 37. Nr.: 24 "Theralithischer Canadit" (bis normalessexitisch).

N. III, 38. Nr.: 12 Theralith, 13 Theralith.

Tröger, Nr.: 497 Heumit, 522 Farrisit, 523 Tamarait, 580 Augitit.

Nach Daly Mittel der Theralithe.

2. melatheralithisch

N. III, 38. Nr.: 9 Theralith, 10 "Shonkinit", 14 "shonkinitischer Theralith", 15 shonkinitischer Theralith, 16 Nephelinbasalt, 20 Analcimbasalt, 21 Monchiquit.

N. III, 39. Nr.: 5 Luscladit, 12 Melilith-Nephelinbasalt.

TRÖGER, Nr.: 235 Minverit, 374 Monchiquit, 381 Alkalibasalt, 492 Natronshonkinit, 602 Sanidinnephelinit, 514 Theralith, 594 Palagonit, 600 Scanoit, 610 Algarvit, 618 Onkilonit.

1) Natrongabbroide Magmen

1. beringitisch

N. III, 12. Nr.: 11 Noritdiorit, 24 Lamprophyr (beringitisch-mugearitisch).

N. III, 26. Nr.: 4 Beringit.

N. III, 39. Nr.: 1 Theralithgabbro.

TRÖGER, Nr.: 231 Beringit, 594 Analcimbasanit.

2. mugearitisch

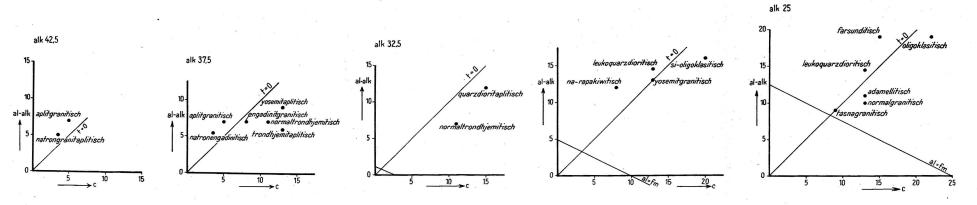
N. III, 26. Nr.: 5 Heumit (Gangmitte).

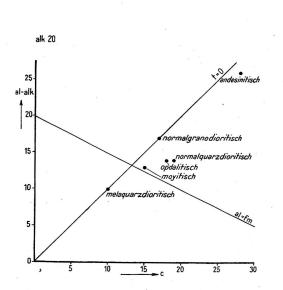
N. III, 37. Nr.: 15 Essexit.

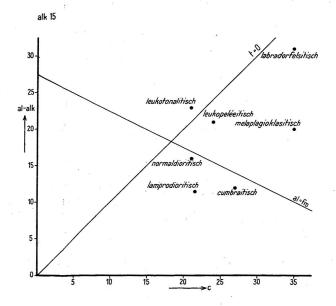
N. III, 38. Nr.: 1 Basalt, 2 Teschenit, 3 Basanit, 5 Einschluss Trachyt, 18 Camptonit.

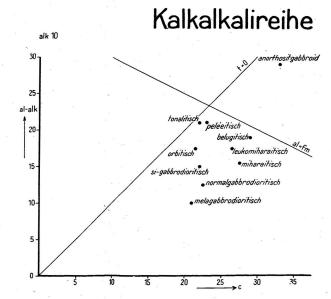
TRÖGER, Nr.: 214 Marloesit, 289 Kohalait, 290 Mugearit, 339 Volhynit, 602 Analcimdiabas.

Nach Daly Mittel der Spessartite, der Mugearite (bereits gegen theralithgabbroid hin).


3. natronlamprosyenitisch


N. III, 26. Nr.: 2 Spessartit.


N. III, 38. Nr.: 19 Kersantit.


4. essexitgabbrodioritisch

N. III, 12. Nr.: 22 Hornblendedioritgabbro, 28 Analcimbasalt.

Leere Seite Blank page Page vide

- N. III, 40. Nr.: 3 Essexitgabbro, 4 Glimmergabbro, 5 Mangerit, 11 Essexithornblendegabbro, 12 Essexitgabbro, 15 Essexitdiabas.
- TRÖGER, Nr.: 285 Mafrait, 373 Camptonit, 377 Giumarrit (al!), 565 Teschenit, 624 Wesselit.
- Nach Daly Mittel der Essexitgabbro, der Camptonite, der Monchiquite, der Augitite.
- 5. essexitgabbroid
- N. III, 13. Nr.: 3 Norit, 6 Gabbro-Basaltmittel nach H. H. Robinson (essexit-gabbroid-normalgabbroid), 15 Kersantit, 16 Olivinkersantit, 17 Camptonit.
- N. III, 18. Nr.: 15 Monchiquit.
- N. III, 40. Nr.: 6 essexitischer Gabbro, 7 Gabbro, 17 Kersantit, 18 Camptonit, 19 Analcimbasalt, 20 Camptonit.
- TRÖGER, Nr.: 322 Camptospessartit, 391 Olivindiabas, 396 Theralithdiabas, 544 Luscladit, 552 Nephelingabbro.
- Nach Daly Mittel der Nephelinbasanite, der Crinanite, der Analcimbasalte, aller Basanite.
- m) Theralithgabbroide Magmen
- 1. gabbromelteigitisch

TRÖGER, Nr.: 563 Nephelinteschenit, 576 Nephelintephrit.

- 2. normaltheralithgabbroid
- N. III, 37. Nr.: 28 Kersantit.
- N. III, 38. Nr.: 4 Theralith, 6 Teschenit.
- N. III, 39. Nr.: 2 Theralithgabbro, 4 Amphibolnephelinit, 6 Theralithgabbro ("Essexit"), 7 Fasinit, 15 Camptonit, 16 Odinit.
- N. III, 40. Nr.: 2 essexitischer Hornblende-Biotit-Gabbro, 13 Nephelingabbro, 14 Teschenit.
- Tröger, Nr.: 283 Essexitgabbro, 319 Odinit, 327 Andesinbasalt, 384 Pazifikit, 579 Buchonit, 585 basaltoider Sodalithtephrit, 592 Mandschurit.

Nach Daly Mittel der Nephelinite, der Trachydolerite, der Teschenite.

- 3. berondritisch
- N. III, 40. Nr.: 8 ossipitischer Essexitdiabas.

TRÖGER, Nr.: 545 Berondrit, 561 Heptorit, 658 Melilithfasinit.

- 4. turjaitgabbroid
- N. III, 35. Nr.: 15 Kersantit, 17 Camptonit.
- N. III, 40. Nr.: 9 Nephelingabbro.
- n) Gabbrotheralithische Magmen
- 1. normalgabbrotheralithisch
- N. III, 35. Nr.: 6 Mittel von 13 Nephelinitanalysen.
- N. III, 38. Nr.: 7 Theralith, 8 Theralith.
- N. III, 39. Nr.: 3 Kauaiit, 9 Bekinkinit, 10 Theralithgabbro ("Essexit"), 11 Melilith-Nephelinbasalt.
- TRÖGER, Nr.: 284 Kauaiit, 515 Bekinkinit, 577 Atlantit, 591 Nephelinbasanit, 611 Fasinit.

2. c-gabbrotheralithisch

N. III, 35. Nr.: 12 Melteigit.

TRÖGER, Nr.: 616 Nephelindolerit (bis normaltheralithisch), 622 Monticellitnephelinbasalt (bis normalgabbrotheralithisch).

o) Melanatrongabbroide Magmen

1. alkalijacupirangitisch

TRÖGER, Nr.: 567 Ijussit, 750 Olivinmelilithit (bis vesecitpolzenitisch).

2. ankaratritisch

N. III, 38. Nr.: 11 Nephelinbasanit.

N. III, 39. Nr.: 13 Mittel von 38 Analysen von Nephelinbasalten, 17 Camptonit, 18 Ouachitit.

TRÖGER, Nr.: 623 Ankaratrit.

Nach Daly Mittel der Nephelinbasalte, der Limburgite.

3. vesecit-polzenitisch

N. III, 39. Nr.: 20 Polzenit.

N. III, 41. Nr.: 3 Yamaskit.

N. III, 60. Nr.: 15 Alnöit.

TRÖGER, Nr.: 406 Florinit, 663 Vesecit, 670 Melilithankaratrit.

4. kaulaitisch

N. III, 18. Nr.: 14 Hornblendit.

TRÖGER, Nr.: 260 Kentallenit, 385 Olivinpazifikit, 589 Ghizit.

5. modlibovit-polzenitisch

N. III, 39. Nr.: 14 Melilithnephelinbasalt, 19 Polzenit.

N. III, 60. Nr.: 14 Alnöit.

TRÖGER, Nr.: 664 Modlibovit, 715 Kvellit (fm!).

Nach Daly Mittel der Melilith-Nephelinbasalte, der Melilithbasalte, der Alnöite.

6. alkalihornblendperidotitisch

N. III, 18. Nr.: 6 Davainit.

TRÖGER, Nr. 667 Nephelinhauynalnöit, 702 Davaïnit.

p) Alkalipyrobolische Magmen

1. lusitanitisch

N. III, 27. Nr.: 26 Lusitanit.

TRÖGER, Nr.: 222 Lusitanit.

2. rockallitisch

N. III, 27. Nr.: 25 Riebeckit-Aegirin-Quarzsyenit, 27 Rockallit.

TRÖGER, Nr.: 58 Rockallit, 223 Ordosit.

3. alkalimafitisch

N. III, 27. Nr.: 28 Aegirinschliere.

N. III, 28. Nr.: 14 Schwarzer Kakortokit, 16 Aegirinschliere in Evisit.

TRÖGER, Nr.: 59 Lindinosit (si!).

4. natronhornblenditisch

N. III, 27. Nr.: 29 Osannithornblendit.

N. III, 28. Nr.: 17 Osannithornblendit.

5. pienaaritisch

Tröger, Nr.: 488 Pienaarit.

6. salitritisch

Tröger, Nr.: 695 Salitrit.

Kalireihe

a) Leukosyenitgranitische Magmen

1. rapakiwitisch

N. III, 43. Nr.: 2 Charnockit, 4 Granitgneis, 5 Aaregranit, 6 Rapakiwigranit,
 7 Stockholmgranit, 8 Zweiglimmergranit, 11 Zweiglimmergranit,
 12 Orthoklasporphyr, 13 Wirbogranit.

TRÖGER, Nr.: 6 Greisen, 16 Charnockit, 89 Masanit.

Nach Daly Mittel von Quarzporphyren, Lipariten und Rhyolithen inklusive 24 Lipariten.

2. granosyenitisch

N. III, 24. Nr.: 23 Akeritporphyr, 24 Foyait-Pulaskit.

N. III, 43. Nr.: 15 Trachyt, 16 Rapakiwigranit, 18 Rapakiwigranit, 19 Quarz-porphyr.

N. III, 44. Nr.: 1 Refsundgranit, 2 Quarzsyenit, 3 Kali-Nordmarkit, 4 Granit-porphyr, 7 Granitporphyr, 9 Akerit, 10 Augitsyenit, 12 Syenit, 13 Trachyt, 15 Kali-Pulaskit, 16 Trachyt, 17 Syenit-Trachytmittel von H. H. Robinson, 18 Hypersthensyenit, 19 Syenit.

N. III, 45. Nr.: 2 Trachyt.

N. III, 49. Nr.: 1 Quarzbanakit.

TROGER, Nr.: 51 Quarzorthophyr, 82 Rapakiwisyenit, 91 Windsorit, 93 Trachyliparit, 94 Trachydacit, 180 Perthit-Syenit, 209 Anorthoklastrachyt, 251 Trachyt, 256 Orthophyr, 266 Quarzbanakit.

Nach Daly Mittel von Keratophyren, Mittel von Trachyten gegen leukosyenitisch.

b) Juvitische Magmen

1. kalinordmarkitisch

N. III, 24. Nr.: 3 Aenigmatittrachyt, 4 Aegiringranit, 8 Nordmarkit, 11 Pyroxensyenit, 12 Pulaskit, 13 Nordmarkit, 15 Pulaskit.

N. III, 44. Nr.: 8 Trachyt, 14 Gangsyenit.

N. III, 46. Nr.: 1 Augittrachyt.

Tröger, Nr.: 174 Ponzit, 177 Orthoklas-Syenit, 178 Finandranit, 185 Nord-markit, 194 Alkalisyenitpegmatit.

Nach Daly Mittel von Pulaskiten und Nordmarkiten.

2. leukosyenitisch

N. III, 24. Nr.: 27 Pulaskit.

N. III, 25. Nr.: 8 Trachyphonolith.

N. III, 46. Nr.: 6 Vulsinit, 8 Sodalithsyenit, 9 Leucittrachyt, 10 Leucittrachyt, 14 Orthoklas-Nephelinsyenit.

N. III, 47. Nr.: 3 Syenit, 6 Biotitaugitnephelinsyenit.

TRÖOER, Nr.: 186 Pulaskit, 438 Sodalith-Syenit, 469 Trachytoider Phonolith, 509 Miaskit, 528 Viterbit, 529 Trachyvicoit, 532 Tautirit, 538 Vulsinitvicoit, 653 Blairmorit.

Nach Daly Mittel von Leucitphonolithen.

3. kaligibelitisch

N. III, 24. Nr.: 18 Aegirintrachyt, 22 Umptekit.

N. III, 44. Nr.: 5 Biotitgranit.

4. kalifoyaitisch.

N. III, 30. Nr.: 4 Foyait, 28 Nephelinsyenit.

N. III, 31. Nr.: 1 Arkit.

N. III, 46. Nr.: 2 Arfvedsonitsyenit, 3 Phonolithtrachyt, 4 Phonolithtrachyt, 5 Kali-Diorit, 7 Kali-Nephelinsyenit, 12 Kalireicher Nephelinsyenit, 13 Orthoklas-Nephelinsyenit, 15 Campanit, 16 Leucitsyenit, 17 Juvit, 18 Juvit (Mittel nach Brögger), 19 Juvit, 20 Juvit, 21 Leucitsanidinit, 22 Tavolatit.

TRÖGER, Nr.: 212 Phonolithischer Trachyt, 413 Juvit, 417 Itsindrit, 424 Leucitsyenit (kalifoyaitisch bis leukosyenitisch), 435 Leucitsanidinit, 452 Leucittinguait (bis tinguaitisch), 471 Leucitphonolith, 472 Noseanphonolith, 475 Analcimphonolith, 481 Sodalithtrachyt (bis leukosyenitisch), 530 Tavolatit, 627 Italit.

5. monzonitsyenitisch

N. III, 47. Nr.: 5 Leucittrachyt.

N. III, 48. Nr.: 2 Syenit.

N. III, 49. Nr.: 7 Ponzait (Trachyt), 8 Leucittephrit, 9 Monzonitsyenit, 10 Leucittephrit, 11 Leucittephrit, 12 Odinit (bis normalsyenitisch).

TRÖGER, Nr.: 240 Syenit (bis normalsyenitisch), 245 Gauteit, 477 Leucittrachyt, 531 Guardiait.

Nach Daly Mittel von Alkalisyeniten und subalkalischen Hornblendesyeniten.

c) Arkitische Magmen

1. sviatonossitisch

TRÖGER, Nr.: 188 Sviatonossit.

2. leukosommaitisch

N. III, 47. Nr.: 1 Augitsyenit, 2 "Syenit", 4 Arsotrachyt, 8 Mikrosyenit, 9 Melanitnephelinsyenit, 10 Vicoit, 11 Leucittephrit, 12 Leucittephrit, 12 Campanit, 17 Leucitsyenit.

TRÖGER, Nr.: 252 Arsoit, 253 Vulsinit, 453 Selbergit, 470 Pollenit, 573 Cam-

Nach Daly Mittel von Leucitporphyren.

3. normalarkitisch

N. III, 47. Nr.: 15 Leucitsyenit, 16 Hauyn-Melanitsyenit (al!), 18 Leucitsyenit, Arkit.

TRÖGER, Nr.: 629 Arkit.

4. borolanitisch

N. III, 53. Nr.: 1 "Missourit", 2 Borolanit, 4 "Missourit", 5 Leucit-Borolanit.

TRÖGER, Nr.: 657 Nephelin-Melilithgestein.

5. vesbitisch

N. III, 53. Nr.: 6 Vesbit. TRÖGER, Nr.: 656 Vesbit.

d) Syenitgranitische Magmen

1. si-syenitgranitisch

N. III, 27. Nr.: 4 Paisanit (bis evisitisch-groruditisch), 5 Pantellerit.

N. III, 42. Nr.: 7 Adamellit.

TRÖGER, Nr.: 562 Alkaligranit (Laneit-Granit).

2. normalsyenitgranitisch

N. III, 45. Nr.: 1 Pontegliassyenitgranit, 4 Trachyliparit, 5 Trachyliparit, 6 Alkalisyenitgranit, 8 Lamprophyr.

3. kammgranitisch

N. III, 50. Nr.: 1 Amphibolbiotitgranit.

TRÖGER, Nr.: 54 Kammgranit.

e) Syenitische Magmen

1. normalsyenitisch

N. III, 25. Nr.: 9 Akerit.

N. III, 48. Nr.: 1 Syenit, 3 Augitsyenit, 4 Kalisyenit, 6 Syenit, 7 Basischer Syenit, 10 Malchit.

TRÖGER, Nr.: 258 Atatschit (zersetzt).

2. si-kamperitisch

N. III, 50. Nr.: 9 Cuselit.

Nach Daly Mittel von subalkalischen Glimmersyeniten.

3. kamperitisch

N. III, 50. Nr.: 4 Kamperit.

TRÖGER, Nr.: 220 Keratophyrspilit, 248 Kamperit, 527 Banakit.

f) Monzonitische Magmen

1. leukomonzonitisch

N. III, 49. Nr.: 6 Shoshonit.

2. si-monzonitisch

N. III, 54. Nr.: 1 Hypersthenmonzonit, 5 Shoshonit, 6 Biotit-Vulsinit, 7 Monzonit, 8 Monzonit (bis normalmonzonitisch), 26 Mondhaldeit, 27 Spessartit-Kersantit.

TRÖGER, Nr.: 210 Rhombenporphyr, 264 Mondhaldeit, 268 Doréit, 270 Latit, 439 Assyntit.

Nach Daly Mittel von Monzoniten und Latiten.

3. normalmonzonitisch

N. III, 54. Nr.: 10 Leucit-Banakit, 11 Monzonitischer Syenit, 12 Shoshonit, 15 Leucittephrit, 18 Leucittephrit, 19 Monzonit, 20 Leucittephrit, 21 Orthoklas - Leucittephrit, 22 Nephelinmonzonit, 23 Leucittephrit (Mittel), 24 Ledmorit (Melanitsyenit), 25 Fergusit, 28 Luciit, 29 Vogesit.

TRÖGER, Nr.: 217 Macedonit, 486 Ledmorit, 540 Orvietit, 541 Leucitbanakit, 560 Leucitmonchiquit.

Nach Daly Mittel von Shoshoniten und Banakiten.

4. sommaitmonzonitisch

N. III, 56. Nr.: 2 Shoshonit, 3 Sommait "Mittel", 4 Sommait, 16 Kersantit-Spessartit.

TRÖGER, Nr.: 341 Labradoritporphyrit.

g) Sommaitische Magmen

1. melarkitisch

N. III, 47. Nr.: 13 Leucitsyenit.

N. III, 48. Nr.: 8 Syenitporphyr.

Tröger, Nr.: 436 Nosean-Syenit.

Nach Daly Mittel von Maligniten.

2. normalsommaitisch

N. III, 56. Nr.: 1 "Monzonit" (sommaitisch), 5 "Monzonit", 6 Sommait, 10 Biotit-Vicoit, 11 Leucittephrit, 13 Leucittephrit, 14 Melilith-Leucitit (Cecilit), 15 Leucittephrit (Vicoit), 17 Kersantit, 19 Monchiquit.

Tröger, Nr.: 259 Monzonit, 512 Plagifoyaitarkit, 582 Vesuvit, 583 Braccianit, 671 Cecilit.

Nach Daly Mittel von Leucititen und Fergusiten.

3. sommaitossipitisch

N. III, 56. Nr.: 7 Vicoit.

Tröger, Nr.: 511 Sommait.

- h) Kalidioritische Magmen
- 1. vredefortitisch
- 2. sommaitdioritisch
- N. III, 51. Nr.: 6 Gabbrodiorit.
- N. III, 56. Nr.: 8 Sommait Einschluss, 12 Leucitphonolith.
- N. III, 57. Nr.: 1 Quarzbiotitaugitdiorit, 3 Biotit-Augitgabbro, 5 Diabas, 6 Olivinmonzonit, 8 Camptonit, 9 Augitvogesit.

Tröger, Nr.: 315 Devonit, 321 Hysterobas.

Nach Daly Mittel von Leucittephriten und Alkalitephriten.

- 3. monzonitdioritisch
- N. III, 11. Nr.: 8 Biotitorthoklasgabbro, 10 Mangerit, 12 Orthoklasbasalt, 18 Lamprophyr.
- N. III, 54. Nr.: 9 Gabbrodiorit.

N. III, 56. Nr.: 18 Camptonit.

TRÖGER, Nr.: 146 Hamrongit, 269 Shoshonit.

- 4. lamprosommaitisch
- N. III, 50. Nr.: 7 Glimmergabbro, 8 Vaugnerit, 12 Augitminette.
- N. III, 51. Nr.: 1 Augitminette, 4 Spessartit, 5 Vaugnerit, 7 Kersantit.

TRÖGER, Nr.: 109 Vaugnerit, 249 Vogesit, 254 Ciminit, 255 Quarzciminit, 287 Ortlerit, 317 Kersantit.

Nach Daly Mittel von Kersantiten, Vogesiten und von Minetten gegen yogoitisch.

i) Lamproitische Magmen

1. lamprosyenitisch

N. III, 50. Nr.: 2 Glimmersyenit, 5 Olivinaugitleucitit, 6 Durbachit, 10 Lamprophyr, 11 Minette.

TRÖGER, Nr.: 66 Magnetit-Pegmatit, 232 Selagit, 243 Durbachit, 247 Minette, 504 Gaussbergit.

2. wyominglamproitisch

N. III, 52. Nr.: 1 Orendit, 2 Orendit.

TRÖGER, Nr.: 478 Orendit.

3. murcialamproitisch

N. III, 52. Nr.: 2 Fortunit, 4 Orendit. TRÖGER, Nr.: 233 Fortunit, 234 Verit.

4. yogoitlamproitisch

TRÖGER, Nr.: 503 Wyomingit.

5. jumillitisch

N. III, 52. Nr.: 5 Jumillit, 6 Minette, 7 Lamprophyr.

N. III, 58. Nr.: 5 Shonkinit, 7 Absarokit (bis kajanitisch).

TRÖGER, Nr.: 500 Cocit, 505 Jumillit.

6. biotitisch

TRÖGER, Nr.: 720 Biotitit.

k) Shonkinitische Magmen

1. yogoitisch

N. III, 51. Nr.: 3 Augitminette.

N. III, 55. Nr.: 1 Quarz - Augit - Glimmersyenit, 2 Trachyandesit, 3 Yogoit, 4 "Syenit", 5 Yogoit, 6 Ciminit, 8 Yogoit, 9 Yogoit, 10 Fergusit, 11 "Basischer Syenit", 12 "Monzonitischer Shonkinit", 13 Minette, 14 Spessartit, metamorph, 15 Kersantit.

N. III, 58. Nr.: 2 Leucitshonkinit, 17 Monchiquit.

TRÖGER, Nr.: 242 Olivinsyenit, 279 Yogoit, 491 Leucitshonkinit, 628 Fergusit.

2. normalshonkinitisch

N. III, 58. Nr.: 1 Absarokit, 3 Shonkinit, 4 Shonkinit, 6 Shonkinit, 12 Marosit, 15 Shonkinitischer Missourit, 16 Olivin-Augitminette, 18 Ouachitit.

TRÖGER, Nr.: 228 Prowersit, 229 Cascadit, 262 Marosit, 271 Absarokit (bis kajanitisch fm!), 272 Woodendit, 375 Rizzonit, 490 Shonkinit, 521 Eustratit, 584 Kivit, 593 Limburgit, 613 Nephelinouachitit.

Nach Daly Mittel von Shonkiniten, Leucitbasalten, Leucitbasaniten, Absarokiten, Missouriten.

1) Melashonkinitische Magmen

1. kajanitisch

N. III, 58. Nr.: 19 Leucitbasanit.

Tröger, Nr. 631 Missourit, 648 Kajanit.

2. kalihornblenditisch

N. III, 58. Nr.: 11 Leucit-Absarokit.

Nach Daly Mittel der Leucitabsarokite.

m) Missouritisch-alnöitische Magmen

1. shonkinitmissouritisch

N. III, 59. Nr.: 1 Shonkinitisch-missouritische Facies des Monzonites, 2 Shonkinit, 3 Missourit, 4 Nephelin-Pyroxenmalignit, 5 Leucitit.

Tröger, Nr.: 487 Malignit, 643 Leucitit.

2. normalmissouritisch

N. III, 58. Nr.: 10 Shonkinit.

N. III, 59. Nr.: 6 Missourit, 8 Missourit, 15 Monchiquit, 16 Augitminette.

Tröger, Nr.: 489 Shonkinit, 498 Sannait, 620 Kalinephelinit, 644 Olivinleucitit, 645 Madupit, 672 Venanzit, 722 Melanit-Ouachitit (bis k-polyenitisch), 751 Coppaelit.

3. antsohitisch

N. III, 58. Nr.: 9 Biotitkentallenit.

N. III, 59. Nr.: 12 Ottajanit, 13 Ottajanit.

TRÖGER, Nr.: 147 Antsohit, 581 Leucittephrit, 595 Leucitbasanit.

74. (kali-) polzenitisch

N. III, 16. Nr.: 9 Camptonit.

N. III, 40. Nr.: 16 Nephelinit (bis issitisch).

N. III, 59. Nr.: 10 Melanokrater Missourit, 11 Leucitshonkinit, 17 Monchiquit.

N. III, 60. Nr.: 13 Alnöit (bis alnöitisch).

Tröger, Nr.: 693 Pyroxenolith, 746 Alnöit (gegen alnöitisch).

5. pyroxenolithisch

N. III, 59. Nr.: 7 Missourit, 14 Leucitophyr (gegen okaitisch si!).

N. III, 60. Nr.: 1 "Melteigit-Jacupirangit", 2 "Melteigit-Jacupirangit", 3 Biotit-Pyroxenolith, 4 Pyroxenolith, 5 Sebastianit, 6 Puglianit, 8 Jacupirangit, 9 Cromalit, 12 Ouachitit (bis missouritisch).

TRÖGER, Nr.: 363 Sebastianit (al!), 546 Puglianit (al!), 694 Cromalit.

6. alnöitisch

N. III, 60. Nr.: 10 Cromalit, 11 Vibetoït.

Tröger, Nr.: 711 Vibetoït, 747 Biotitalnöit.

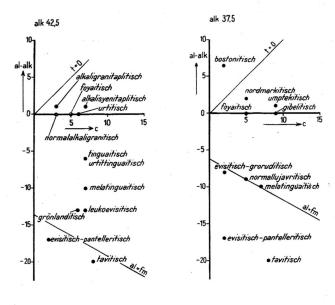
Peralische Magmen

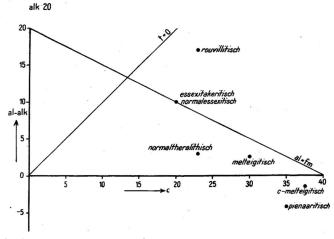
1. raglanitisch

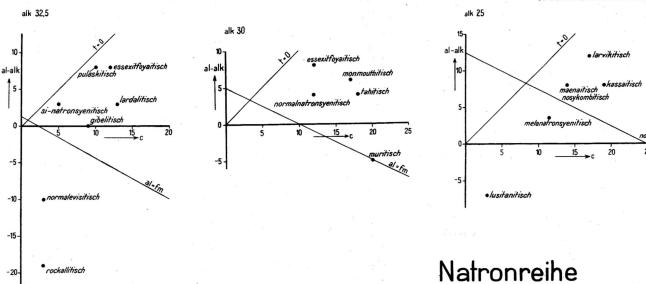
Tröger, Nr.: 549 Raglanit.

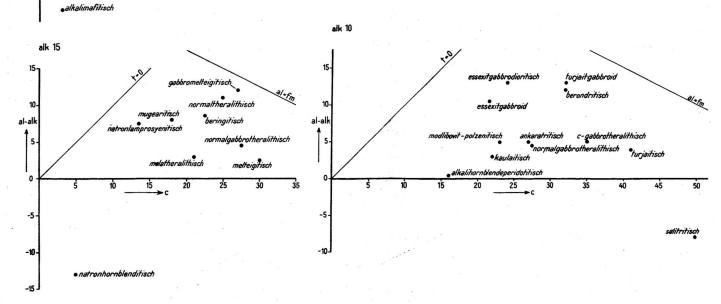
2. plumasitisch

TRÖGER, Nr.: 311 Plumasit, 550 Dungannonit.

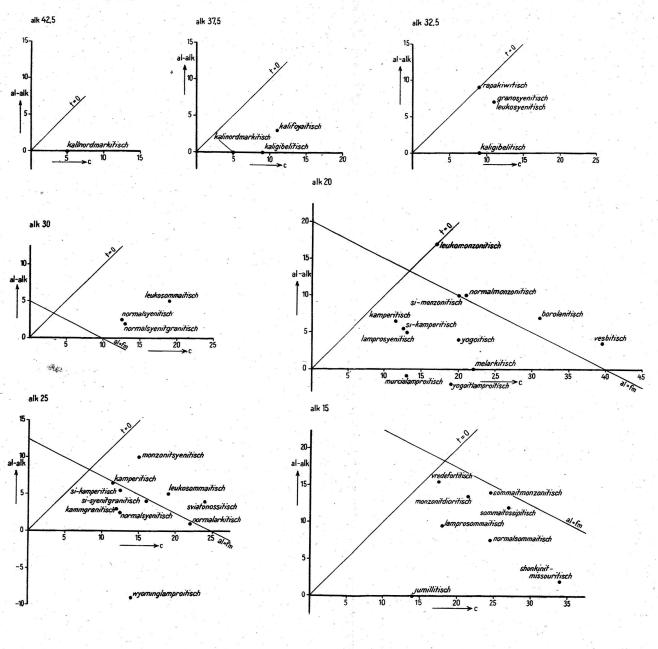

rockallitisch

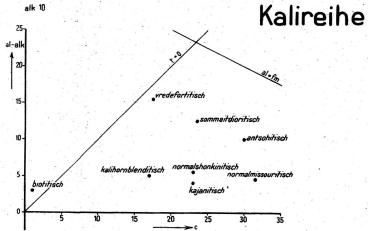

-20-


-25-


· larvikitisch

normalijolithisch





Leere Seite Blank page Page vide

Leere Seite Blank page Page vide

3. korunditisch

TRÖGER, Nr.: 301 Kyschtymit, 776 Marundit.

4. chromitisch

TRÖGER, Nr.: 771 Chromitit.

Karbonatreiche Magmen

1. fenitisch

TRÖGER, Nr.: 187 Fenit.

2. calcitsyenitisch

TRÖGER, Nr.: 189 Calcitsyenit, 197 Holyokit.

3. calcitkarbonatitisch

TRÖGER, Nr.: 753 Sövit, 754 Ringit, 755 Calcitpegmatit.

4. dolomitkarbonatitisch

TRÖGER, Nr.: 757 Karbonatitalnöit, 758 Rauhaugit, 759 Beforsit.

Si-reiche Magmen

peraziditisch

N. III, 7. Nr.: 1 Beresit (bis raglanitisch).

N. III, 42. Nr.: 1 Northfieldit.

TRÖGER, Nr.: 2 Silexit, 3 Pyritosalit, 4 Northfieldit, 7 Arizonit, 9 Beresit (bis raglanitisch).

Eingegangen: 20. November 1936.