Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 16 (1936)

Heft: 1

Artikel: Magnetische Susceptibilität von zentralschweizerischen Gesteinen und

Arealsusceptibilität der alpinen Strecke von Flüelen bis Bellinzona

Autor: Koenigsberger, Joh.

DOI: https://doi.org/10.5169/seals-16101

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Magnetische Susceptibilität von zentralschweizerischen Gesteinen und Arealsusceptibilität der alpinen Strecke von Flüelen bis Bellinzona

Von Joh. Koenigsberger in Freiburg i. Br.

Zur sicheren Deutung magnetischer Profile ist Kenntnis der magnetischen Susceptibilität der Gesteine erforderlich. Die Profile können der tektonischen Analyse der Geologen nützliche Anhaltspunkte gewähren, wie das z.B. die magnetischen Detailmessungen in Bayern, im Donaubecken bei Wien getan haben.

Die Susceptibilität eines Gesteines ist durch die Menge der Paramagnetika, wie Biotit und Amphibol, und durch die Ferromagnetika, vor allem Magnetit, Pyrrhotit, Hämatit, Ilmenit, bestimmt. Für magnetitfreien Biotit ist die Volumsusceptibilität K etwa $1 \cdot 10^{-4} - 2,5 \cdot 10^{-4}$ — für magnetitfreien Amphibol etwa $3 - 8 \cdot 10^{-5}$. — Ein Aaregranit mit 10 Gewichtsprozent reinem Biotit hätte etwa $K = 0,5-1\cdot 10^{-5}$; ein solcher würde auch im stärksten magnetischen Feld keine remanente Magnetisierung J_{rn} erhalten. Doch zeigen alle bisher vom Verfasser untersuchten Eruptiva ein von Null verschiedenen Wert von J_{rn} , enthalten also auch Ferromagnetika, meist vor allem Magnetit, doch manchmal auch nur Hämatit oder Pyrrhotit. —

Dass dem Petrographen die Konzentration der Ferromagnetika, also K, einen Anhaltspunkt zur Einreihung eines Gesteines in eine bestimmte Gruppe geben kann, erscheint unwahrscheinlich; aber für die Art der Differentiation (z. B. magnetische und unmagnetische Aplite) ist die Susceptibilität charakteristisch. — Für die folgenden Messungen war nur der eingangs erwähnte Gesichtspunkt der angewandten Geophysik massgebend.

Im folgenden ist die Volumsusceptibilität K der Gesteinsproben mal 10⁵ angegeben und in Klammern die Zahl der an der betr. Stelle gemessenen Gesteinsstücke. Das Verfahren wurde früher ¹) beschrieben; die Feldstärke ist dabei so gering, dass K auf etwa 5 % dem Anfangswert und dem K im Erdfeld entspricht. Untere und obere Grenze von K bei Untersuchung mehrerer Proben wurde angegeben,

 ¹⁾ Ctrbl. f. Mineral. 1929, B. No. 4. 97. — Zs. f. Geophysik 6. 190. 1930.
— Beitr. angew. Geophys. 5. 193. 1935.

der häufigste Wert der Proben steht in der Mitte. Ausserdem wurden von anderen Orten, die hier nicht angegeben sind, Proben untersucht, die bei der Mittelwertsbildung verwertet wurden ²).

Der am Schluss für jede Zone angegebene fett gedruckte Häufigste Wert hat dieselbe Bedeutung wie die Susceptibilität K_f des Gesamtareals, die am Schluss der Arbeit angegeben ist; dies $K_f = \sum K_n \cdot f_n \colon \sum f_n$, wobei f_n die Fläche des Gesteins ist, das die Susceptibilität K_n besitzt. Ein Mittelwert von willkürlich ausgesuchten Proben, wobei unterschiedlich aussehende im Verhältnis zur Häufigkeit bevorzugt sind, würde ein falsches Bild geben, zumal einzelne Serpentine und Magnetitphyllite, sehr hohe Werte von K geben, aber ein sehr kleines Areal einnehmen. — Starke Änderungen von K auf Strecken von wenigen Metern zeigen mehrere Gneise im Tessin. Besonders hohes K haben manche aplitische Varietäten dieser, aber auch anderer Gneise und Eruptiva; man erkennt diese stark magnetischen Proben oft an eigentümlich glänzenden weissen Partien. —

Die natürliche remanente Magnetisierung J_{rn} ist meist schwach, oft fehlend, in der Richtung sehr wechselnd, wurde nur gelegentlich gemessen. Erst eine systematische Untersuchung könnte ergeben, ob J_{rn} vor den starken tektonischen Bewegungen oder nachher entstand. Überraschenderweise wurde relativ starkes J_{rn} bei einigen Paragneisen von Bellinzona festgestellt, was auf Erhitzung in geologisch junger Zeit deuten würde. Richtung und Grösse von J_{rn} wird auch sonst Aufschluss über die Zeit der letzten Erhitzung, über innere Bewegungen der Gesteine nach dieser Erhitzung, damalige und spätere Lage geben können.

AARMASSIV

A a regranit, zentraler. Normal, 50 m oberhalb Bahnhof Gurtnellen: 4; $J_{rn} = 0.4$ — ebenda 20 m südlich von erster Stelle: 4; $J_{rn} = 1.0$. — Göschenen: 2.5—3 (8). — Göschenertal: Gwüest: 2 (2) — Bratschi: 2—3—5 (6) — ebenda, sericitisch gepresst: 10. — Granitstreifen am Schyn: 10-20-100 (4) — 60 m über Hotel Dammagletscher an Wasserleitung, aplitisch: 60; $J_{rn} = 6$ — ebenda: 120; $J_{rn} = 2$. — Hintere Röthi, Moräne: 3-5-8 (10) — eine Probe ebenda: 50 — grünlich, porphyrisch, Weg nach Kehlenalp: 5. — Häufigster Wert: 4.5 (+ 2).

²) Die gelegentlich angegebenen Anisotropiewerte sind im Feld weder unter Berücksichtigung verschiedener erforderlicher Korrektionen noch an größerer Anzahl Proben gemessen; sie geben nur die Grössenordnung. Genauere Werte werden im Laboratorium festgestellt (Zs. f. Geophysik 5. 63. 1929).

Schollen im Granit und Lamprophyrgänge: 4-5 (4). -

Quarzporphyr, Kehlenalp 1,5—3 (3). — Windgällenporphyr, Rollstücke bei Golzeren 3 (2). —

Südlicher Aaregranit und Urserengneis. Dioritisch mit viel kleinem Biotit, Moräne, Acletta, Disentis: 8-12 (5) — grau aplitisch, ebenda: 4 — dicht, hornfelsähnlich: 6 — Drunbachalluvium: 6-12 (3) + — aplitisch, gewalzt, ebenda: 6. — Häufigster Wert: 9 (\pm 3).

Sericitgneise des nördlichen Aaremassivs und Einlagerungen. Maderanertal. Sericitgneis Stössi: 0,4—0,8 (5) — Granit, aplitisch; ebenda: 1, dichtes hellgrünes Gestein: 6—8 (3) — Gneis, aplitisch-porphyrisch, Geschelgrat, Golzeren: 0,5—2,5 (4) — Sericitgneis, Bristen: 2—4 (6) — derselbe in Granitkontaktnähe mit grossem dunkelgefärbtem Orthoklas: 2,5. — Granit, aplitisch, Etzlital: 4. — Tunnel, Strasse Bristen-Amsteg 2,5 (2). — Sericitgneis, Hintere Röthi, Moräne, Göscheneralp: 1,5 — ders. ebenda, rötlich: 1,5. — anstehend, ebenda: 2,5 — 100 m unter Kehlenalp S. A. C.-Hütte: 0,3 — höher bei S. A. C.-Hütte: 6. — ebenda, dunkelbraun: 4. Kontaktmetamorph mit grossem Orthoklas: 2,5—3 (4). — Häufigster Wert: 2,5 (± 1).

Amphibolitzüge und -einlagerungen des nördlichen Aarmassivs. Göschenertal: Weg nach Kehlenalp: 5— 6—8 (5). — Sericitgneis in Amphibolitinjektionskontakt: 3. — Maderanertal: Geschel, Golzeren: 5,8; $J_{rn} = 1,1$. — Wald östlich Etzliboden: 4,2; $J_{rn} = 1,4$. — Wasserfall des Seebach: 5,8; $J_{rn} = 1,7$. — Häufigster Wert: 6 (+ 2).

Erstfelder Gneis. Bachbett Evital: 3-4-8 (5) — Silenen 2-4 (4). — Häufigster Wert: 4 (± 2).

Giufsyenit: Giufbachbett :3,0-4,0 (4).

Sedimente: Flysch, feinsandig, Flüelen 2-4 (3). — Meggen 2,0. — dunkler Kalk, Seewen 0,6 (2) — Molasse, braun, feinsandig, Wauwil: 1,2-1,8 (5) — Kieselsteine aus dieser Molasse: 0,5-12 (4).

A armassiv, südliche Zone. Sericitgneis, Tschamutt, Strasse: 4-6 (3) — Glimmergneis, Moräne, Acletta: 3 (2). — Grünstein, Giuf: 6-10 (4). — Grünsteine, Moräne, Acletta 60-250-600 (8). — Diorit, Bugnei: 2,5 (2). — Gabbros, Drun bei Sedrun 7 (2). — Val Rusein: Gabbrodiorit, Brücke der Poststrasse 6-15-120. — ebenda ders. 6; $J_{rn}=5$. — ebenda 30; $J_{rn}=18$. — ebenda 140; $J_{rn}=5$. — Granit: 1,8-2,4 (2) — aplitisch: 3,0. — Ähnlich Puntaigliasgranit: 3 (3). — Syenit: 12 (2). — Häufigster Wert der südlichen Zone: 5 (\pm 2).

GOTT HARDMASSIV

Nordzone. Para,, schiefer", braun, Anfang von V. Nalps: 3,0 (2). — ders. Surrhein: 1—5 (4). — Zone von Perdatsch; V. Nalps. Sericitphyllit: 6 (2) — Dolomit, Rauhwacke, Quartenschiefer: 0—0,5 (5) — Klintonitphyllit: Feld | | 9, \(\perp 12\). — Phyllit, grau; dunkel; graugrün: 12—15 (5) — Phyllit, hellgrau: 8. — Glimmerschiefer \(\perp 6\) (3). — Zertrümmerte Carbonschiefer: 6,0—12 (2). — Lukmanierstrasse Disentis-Curaglia. Sericitphyllit: 0,6—5 (6). — Gequetschte Gabbrolinse darin: 6 (2). — V. Nalps südlich von Perdatsch. Sedimentgneis, sog. Maigelsgneis: dunkelgrau, feinkörnig: 6 (3). — ders. weisslich, stark pegmatitisch injiciert: 6 — dunkelgrau: 8—12 (4). — sehr feinkörnig: 1,5—2,5 (2). — Glimmergneis-Injektionsgneis: 5—6 (3) — Muskovitgranitgneis bis Konglomeratgneis: 2,5 (2). — Pegmatitader: 0,5—5 (3). — ders. mit Granaten, gepresst: 3. — Häufigster Wert der Nordzone Sedrun-Alp Nalps: 5 (\(\pm 2\)). (\(\pm 2\)). (\(\pm 2\)).

Serpentin. Steinbruch bei Hospental: 130; $J_{rn} = 21$. — ebenda mit Dolomitadern: 140; $J_{rn} = 75$. — Lavezstein, Calmot, Oberalp: 650; $J_{rn} = 160$. — Lavezstein, Scaleglia: 360—600 (4).

Gneis. Val Nalps: groblagig, Streifenortho: 1,2—1,8 (3), in Injektionsgneis übergehend: 2,5 (2) — normal: 2,5 (3) — Moräne, Perdatsch: Feld \bot Schieferung: 1,2—1,8. — ||: 2,4. — Gotthard. Sellasee, aplitisch: 2 (2). — Obere V. Canaria: 5. — Injektionsgneislinsen, Pusmeda: 3—4 (5). — · Häufigster Wert: 2,5 (\pm 0,5).

Gotthard granit. Gotthardhospiz, Eck der Strasse nach Sellasee am Mte. Prosa: 2-5-7 (5). — Fibbiagranit gegen Lucendrosee: 2-3-5 (6). — Riale della Fibbia: $||4-5; \pm 2|$ (2). — ebenda, quarzreich: 1,5 (2). — Quarzband: — 0,1. — Militärbaracke am Hospiz gegen V. Tremola: 4. — ebenda, starke Paralleltextur: 3-4,5 (2). — normal, nahe Hospiz: 2-5 (3). — Häufigster Wert: 4,5 (+1).

Cristallinagranit: Weg nach Alp Cristallina: 2 (3). — Moräne dort: 1,2—1,8 (4). — ebenda, aplitisch: 1,2. — Diorit, aplitisch, ebenda: 2,5. — Lamprophyr, dicht, ebenda: 12 (2). — Häufigster Wert: 2,5 (± 0,5).

Tremolaserie. Biotitglimmerschiefer, bei la Bolla am Weg: 3-6 (4). — Biotitschiefer, Militärweg ob Tremola: 6-7 (3). — dunkelgrüne, amphibolitische Schiefer, ebenda: 15. — aplitische Gänge mit Biotit in Tremolaserie: 3 (2). — Glimmerschiefer, grün, ebenda: 2-3 (4). — Biotit-Amphibolitschiefer, dunkelgrün bis

Gneis: 9—16 (4) — dasselbe Gestein, am Wegeck Fiendo, Militärbaracken: 6—30 (4) — Sattel V. Sella-V. Sorescia: 3—6 (3). — Häufigster Wert: 6 (± 2) .

Sedimentäre kristalline Schiefer: untere V. Canaria. Biotitmuskovitschiefer: 4 (2) — derselbe blaugrün: 30. — Häufigster Wert: 5 (+ 2).

PENNINISCHE DECKEN DES TICINO

V. Leventina. Rodi-Fiesso: Kalkglimmerschiefer: 0.9-1.1 (3), ebenda mit Granat(?)knoten: 0.4-0.5 (3). Ambri-Piotta. Nordseite des Ticino, brauner Glimmergneis: 10-20 (4), Amphibolit, ebenda: 20-40. — Rodi-Fiesso. Glimmergneis: 8-11 (3) — ders. aplitisch: 50. — ders. Steinbruch südl. Ticino ± 3 ; $\parallel 5$ (2). — Faido. Glimmergneis, geschiefert, N. v. Bahnhof: 7-15-20 (5). — ders. aplitisch, grobflaserig 1.5-4. — Granitgneis, 1. Kehre Strasse nach Piumogna: 70-140 (4) — etwas weiter: 5 (2). — Orthogneis biotitreich, etwas höher an Strasse: 50-70. — Gneis, stark gepresst, aplitisch: 10-140 (5). — Giornico. Gneis, nahe Burghügel: 3.5-10-12 (6) — ebenda 30 m nördlich: 2 (2). — Bodio. Gneis: 2 (3). — Granitgneis: 3.5. — ders. graublau mit kleinem Biotit: 250. — Cresciano-Osogno. Zweiglimmer-Orthogneis, Steinbruch: 1-2-3 (10). — Lavorgo. Orthogneis: 1.5-2 (3). — Steinbruch ob Gotthardstrasse: 10-13 (3); 1.5-2 — Häufigster Wert: 10 (\pm 5).

Gegend von Bellinzona. Injektionsgneis: 2,5; $J_{rn}=3$. — Eingang V. Arbedo. Gneis $| | 0,65; \pm 0,55$ (2). — Orthoamphibolit, Nordseite von V. Arbedo: 8. — Paraamphibolit, Motto St. Antonio, Gudo: 10. — Gneis, Steinbruch Carasso $| | 2,0; \pm 1,5$. — Steinbruch Orenno $| | \text{ und } \pm 2,0$. — Steinbruch Pedevilla $0,4; \pm 0,3$ (2) J_{rn} deutlich. — Häufigster Wert: 7 (+3).

Lugano. Porphyrit, Carona: 2,0 (3).

Susceptibilität des Gesamtareals der Sedimente, kristallinen Schiefer, Granite des Aarmassivs von Flüelen bis Andermatt: 4 (± 2,0), gültig bis etwa in 2—3 km Tiefe³).

Dasselbe für Gotthardmassiv von Andermatt bis Airolo: 5 $(\pm\ 2.0)$.

³⁾ Die Unruhe des magnetischen ⊿Z-Hauptprofils (Beitr. angew. Geophysik 2. 374. 1932. Fig. 1) beruht auf Änderungen in Tiefen von 5—10 km. — Dagegen stehen die Zacken der Lokalprofile (Fig. 2, 2 a, 3, 4), wie dort gezeigt, in direktem Zusammenhang mit den hier gemessenen K an der Oberfläche.

Dasselbe für die Zone der Penninischen Decken usw. von Airolo bis südlich Bellinzona (Tonalelinie, V. S. Jorio): 8 (±4).

Susceptibilität des Gesamtareals der kristallinen Schiefer, Sedimente, Granite usw. von Flüelen bis Bellinzona⁴): $K = +6 (\pm 2) \cdot 10^{-5}$ oder als Gramm-Susceptibilität: $\chi = +2,5 \cdot (\pm 0,5) \cdot 10^{-5}$.

G. Grenet 5) hat χ von 16 roches metamorphiques gemessen. Das Mittel von 14 (unter Weglassung des im Areal sehr seltenen Magnetitphyllit und Serpentin) gibt auf Volumsusceptibilität umgerechnet etwa $K = 5 \cdot 10^{-5}$.

SUMMARY

The magnetic volumsusceptibility K of about 200 metamorphic, intrusive and sedimentary rocks on a profile through the Swiss Central Alps from Flüelen to Bellinzona was measured. A part of K of each eruptive rock til $1.5 \cdot 10^{-5}$ is paramagnetic, due principally to biotite and amphibol; the remaining larger part is ferromagnetic due to different magnetites, to pyrrhotite, ilmenite, hematite. The natural residual magnetism of there rocks is weak but quite measurable, sometimes zero. — The Aare-granite has an average $K = 4.5 \cdot 10^{-5}$. The whole complex of cristalline schists etc. of the Aaremassiv, calculated in taking account of the areal extension of the different rocks, has $K = 4 \cdot 10^{-5}$, of the Gotthard 5, of the Pennin overthrust til Bellinzona $8 \cdot 10^{-5}$; the average of all is $6 \cdot 10^{-5}$, while G. Grenet has found for 14 metamorphic rocks values wich give an average $K = 5 \cdot 10^{-5}$.

مصافيها فالموقة الصاديبة

⁴) Wollte man die voralpine Kalkalpenzone miteinschliessen, also etwa von Luzern aus anfangen, so wäre der Gesamtwert von K etwa 4—5·10⁻⁵. Doch gälte dieser Wert wohl nur bis 1 km Tiefe. — Bei flachliegenden Sedimenten wäre statt des Arealmittel ein Volumenmittel zu nehmen. Den nicht oder diamagnetischen Kalken stehen stark eisenhaltige, magnetische Sedimente, z. B. Dogger, gegenüber. Es ist möglich, dass ein Mittel über eine grosse Reihe Sedimente ähnlich ausfällt wie der Regionalwert dieser Eruptiva.

⁵) G. Grenet, Ann. de physique (10). 13, p. 263. 1930.