Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 7 (1927)

Heft: 1

Artikel: Die jungen Eruptivgesteine der pannonischen Senke und ihrer

Umrandung

Autor: Quervain, F. de

DOI: https://doi.org/10.5169/seals-9024

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die jungen Eruptivgesteine der pannonischen Senke und ihrer Umrandung.

Von F. de Quervain.

Die vorliegende Notiz ist ein Auszug einer Diplomarbeit über die jungen Ergußgesteine der Alpen und Karpathen. Es werden an dieser Stelle die kretazisch-tertiären Eruptivgesteine der pannonischen Senke und seiner Umrandung kurz besprochen, wobei, neben den chemischen, besonders die geologischen Verhältnisse diskutiert werden sollen. Die Arbeit schließt sich eng an Niggli's Publikation über die Gesteine der mediterranen Kettengebirge an (Lit. 43). Sie dient als deren Ergänzung, da viele neue Analysen über das Gebiet erschienen oder neu bekannt geworden sind. Außerdem ist es ihr Ziel, das zeitliche Moment der Magmenförderung mehr in den Vordergrund zu rücken.

Das Untersuchungsgebiet besteht aus folgenden tektonischen Elementen:

- 1. Den Karpathen,
- 2. Den Dinariden,
- 3. Der pannonischen Innensenke, umschlossen von 1 und 2.

I. Geologischer Überblick.

1. Die Karpathen. Die Karpathen sind als direkte östliche Fortsetzung der Alpen ein Faltengebirge des gleichen orogenetischen Zyklus. Die erste große Faltung längs des ganzen Karpathenbogens erfolgte in der mittleren bis oberen Kreide. Sie erzeugte eine erste große Deckenbildung. Die zweite tertiäre Faltung, die Hauptfaltung der Alpen, bewirkte auch in den Karpathen große Faltungen und Überschiebungen.

Die karpathischen Decken sind im allgemeinen wesentlich anders gebaut als die der Alpen. Es sind flache Überschiebungen oder Unterschiebungen, die dachziegelartig aufeinander liegen. Eine eigentliche Wurzelzone ist nicht aufgefunden worden. Die flachen Decken lösen sich nach Süden in einzelne schollenartige Partien auf (ungar. Mittelgebirge), die von den Tertiärabsätzen der Senke umsäumt werden.

- 2. Die Dinariden. Die südliche Begrenzung des Gebietes stellt einen Abschnitt des Dinariden genannten Gebirgszuges dar, der südlich der alpinen Wurzelzone in den Westalpen beginnt, sich im Karst von den Alpen scheinbar ablöst und als selbständiges Gebirge über die Balkanhalbinsel und den griechischen Archipel nach Kleinasien streicht. Auch die Dinariden wurden in Kreide und Tertiär gefaltet. Ist die Bewegungsrichtung der Faltung in Alpen und Karpathen eindeutig nördlich, so wird über diese bei den Dinariden noch gestritten. Kober (Lit. 24) hält sie für süd-, Staub (Lit. 86) als Ganzes für nordbewegt. Diese zwei Auffassungen ergeben wichtige Folgen für die Stellung des dritten in Frage stehenden Elementes, der
- 3. Pannonischen Senke. Die panonnische Senke ist eine scheinbar ungefaltete Depressionszone innerhalb jung gefalteten Gebietes, eine Innensenke. Nach der Kober'schen Darstellung ist die Innensenke ein Einbruchsfeld im Innern eines zweiseitigen Orogens. Von der Innensenke bewegten sich die Falten gegenläufig: Nordwärts die Karpathen, südwärts die Dinariden. Kober nennt solche Gebilde "Zwischengebirge". Nach der Staub'schen Auffassung ist dagegen die pannonische Innensenke eine Depressionszone zwischen Faltenwellen, die auch mit in den Deckenbau einbezogen sein kann. Gerade die Frage, wieweit die flachen Decken der Karpathen sich auf das Gebiet der Senke erstrecken, ist eine der strittigsten. Möglicherweise sind die, besonders im westlichen Gebiet aus dem Tertiär hervorragenden inselartigen Schollengebirge paläozoischer und mesozoischer Schichten Teile eines gewaltigen zerstückelten Deckenrückens.

Das Gebiet der Senke ist in Kreide und Tertiär von starker Bruchbildung betroffen worden, insbesondere randlich gegen das sichtbar gefaltete Karpathengebiet.

II. Die kretazisch-tertiären Eruptivgesteine.

Während in Lit. 43 die Eruptivbildungen wesentlich nach tektonischen Einheiten besprochen wurden, will ich hier in erster Linie eine zeitliche Entwicklung der Magmen zu geben versuchen. Erst in zweiter Linie sind die eingangs besprochenen tektonischen Elemente bei der Einteilung berücksichtigt worden. Ich gliedere folgendermaßen:

1. Alt-mittelkretazische Eruptiva, d. h. Gesteine, die vor allgemeinen, stärkeren Faltungen ausbrachen.

Betrifft im Gebiet der Senke:

Mecsek-Gebirge, Fruska-Gora.

2. Jungkretazische Eruptivgesteine, d. h. Eruptiva, die mit der ersten Hauptfaltungsphase verbunden sind.

Betrifft, nur im Karpathengebiet:

Banat,

Bihargebirge.

3. Eruptivbildungen des mittleren Tertiärs, d. h. solche, die zeitlich mit der zweiten Hauptfaltungsphase des Gebirges zusammenfallen.

Betrifft im Karpathengebiet mit Ausläufern in die Senke:

Jungkarpathische Provinz. (Unterteilung siehe Seite 7.)

In den Dinariden:

Savefalten-Kroatien.

In der Senke:

Gleichenberg,

Mecsek-Gebirge und Fruska-Gora.

4. Jungpliozäne Eruptivgesteine, d. h. Bildungen, die nach Abschluß der faltenden Bewegungen durchbrachen.

Betrifft in der Senke die Vorkommen von:

Oststeiermark,

Nordwestungarn,

Bakony-Wald,

Villanyer-Gebirge,

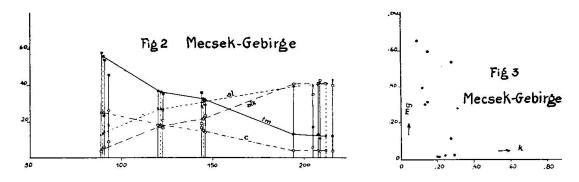
Tapolvecs im ehem. Komitat Temes.

Im Karpathengebiet:

Schemnitz,

Matra,

Persanyer-Gebirge,


Banat.

Die Analysen sind durchwegs in der von Niggli angegebenen Weise berechnet und dargestellt worden (Lit. 42 und 43). In den Diagrammen habe ich oft neben den die Kurven bestimmenden Typenwerten auch die Einzelwerte der Analysen eingetragen. Es lassen sich so deren Abweichungen von den Kurven ständig verfolgen.

1. Die alt- bis mittelkretazischen Eruptivgesteine.

Mecsek-Gebirge (Lit. 39, 107, 108*). Das Mecsek-Gebirge liegt im südwestlichen Teil der pannonischen Senke (Nr. 1 der Übersichtskarte), nördlich der Stadt Fünfkirchen. Gesteine von paläozoischem und mesozoischem Alter nehmen an seinem Aufbau teil; rings ist es von Tertiärbildungen umgeben.

Hier befindet sich eine kleine Vergesellschaftung von Eruptivgesteinen. Mauritz stellt folgende Typen auf: Phonolithe mit Albit, Perthit, Sanidin, Nephelin, Aegirin, Diopsid, Sodalith, Barkevikit als Hauptgemengteilen. Sie haben, wie die Analysen Tabelle 1* Nr. 1—5 zeigen, normalfoyaitischen Chemismus; Trachydolerite, teils neben den dunklen Gemengteilen (Titanaugit und Olivin), Feldspat und Nephelin führend (Analysen 6—9), teils ohne salische Bestandteile (Analysen 10—12). Chemisch sind die Gesteine essexitisch, alkaligabbroid bis ultrafemisch.

Die Analysen ergeben die Diagramme (Fig. 2 und 3), die besonders am sauren Ende alle Charakteristika eines atlantischen aufweisen. Die Isofalie liegt bei si=148, wobei al und fm=31, c=15, alk=22, mg ist bis zu si=120 selten über 0,30. Das Mecsek-Gebirge beherbergt also eine typische Natronserie.

Das Mecsek-Gebirge ist eines der Inselgebirge der pannonischen Senke. Es ist oberflächlich ein Schollengebirge. Die erste Bruchbildung erfolgte in der untern Kreide. Mit ihr im Zusammenhang bildeten sich die Natrongesteine.

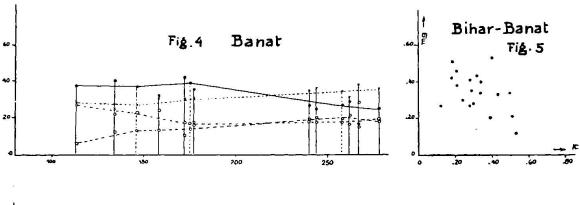
Fruska-Gora (Lit. 28, 30, 49*). Eingelagert in die Kreideschichten der Fruska-Gora, eines Gebirges im westlichen Slovenien, finden sich trachytische Gesteine. Sie sind von *Mauritz* analysiert worden (Nr. 13, 14). Auf ihre Ähnlichkeit mit Gesteinen der romanischen Provinz ist in Lit. 43 hingewiesen worden. Auch die Fruska-Gora ist ein älteres Inselgebirge der Senke.

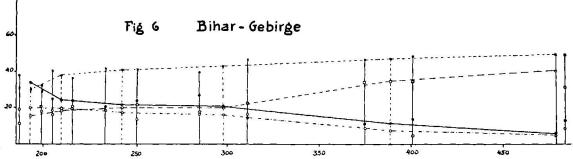
^{*)} Analysentabellen folgen am Schluß.

2. Jungkretazische Eruptivgesteine.

Während oder bald nach der ersten großen Faltung des Gebietes drangen Eruptivmassen in den Südkarpathen (Banat) und im westlichen Siebenbürgen (Bihargebirge) empor.

Banat (Lit. 74—78, 38*). Die Umbiegungsstelle der transsylvanischen Alpen von westlichem zu südlichem Streichen vom Sebestal bis zur Donau ist bekannt durch quarzdioritische Gesteine. Die Vorkommen treten in Stöcken, oder überaus häufig in Gängen auf; Ergußformen sind selten. Die Hauptvertreter sind: Quarzdiorite (Banatite), Diorite und Gabbrodiorite neben ihren Gangformen. Die Analysen finden sich in Tabelle 3.

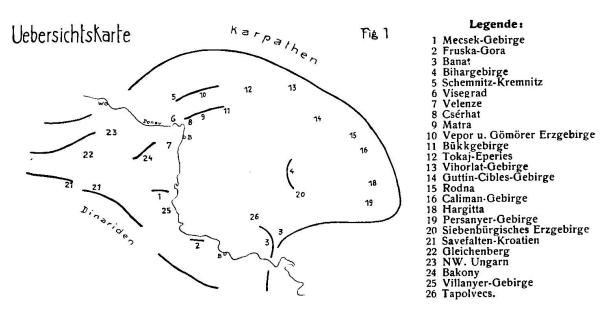

Die geologische Stellung dieser Gesteine ist ziemlich abgeklärt. In der oberen Kreide erfolgte in den transsylvanischen Alpen die Hauptfaltung. Sie äußerte sich in großer Deckenbildung, die sich etwa mit der, der penninischen Zone in den Alpen vergleichen läßt. Die Schubrichtung ist hier, entsprechend der Streichrichtung des Gebirges, südlich bis östlich. In diese Faltenregion erfolgte die Intrusion der Quarzdiorite mit Ganggefolge in der obersten Kreide (Danien). Charakteristisch ist, daß die Vorkommen dort liegen, wo das Gebirge einer scharfen Drehung des Streichens ausgesetzt war.


Bihargebirge (Lit. 13, 53, 71, 98, 39*). Im Bihargebirge, dem westlichen Abschluß des siebenbürgischen Beckens, befinden sich, besonders im nördlichen Teil, dem Vlegyaszastock, große Eruptivmassen. Die Hauptgesteine dieses Stockes sind Rhyolithe, Dazite, sowie deren Tiefenformen, Granite und Quarzdiorite. Die Analysen dieser Gesteine sind in Tabelle 4 verzeichnet. Der große Tonerdeüberschuß der Ergußgesteine ließ mich im Diagramm nur die Tiefengesteine verwenden. Unabhängig von diesem Rhyolithstock liegt im südlichen Bihargebirge eine größere Andesitdecke. Ihre Gesteine haben wohl meist quarzdioritischen Chemismus (Analysen 36—38, Tabelle 4). Ähnliche Gesteine in Stöcken und Gängen werden auch aus dem nördlich anschließenden Rezgebirge (Lit. 35*) und dem östlichen Gyaluergebirge (Lit. 48, 49) beschrieben.

Die geologischen Verhältnisse des Bihargebirges sind nur andeutungsweise bekannt. Es ist ein Deckengebirge mit östlicher bis südöstlicher Schubrichtung. Die Faltungen fanden in der oberen Kreide statt. Im Zusammenhang damit erfolgte die Eruption der Rhyolithe und Andesite. Diese sind also oberkretazisch. Vereinzelte Gänge mögen tertiär sein.

Die chemischen Verhältnisse der jungkretazischen Gesteine.

Das Differentiationsdiagramm der Banatergesteine (Fig. 4) ist schon in Lit. 43 besprochen worden; das des Bihargebirges weist folgende Züge auf: Die si-Variationsbreite geht von über 500 bis 180, es sind also nur sauere Gesteine vorhanden. Sehr groß ist durchwegs die Differenz al — alk, fm ist dementsprechend bei normalem c niedrig. Von si = 300 bis 210 sind alle Kurven fast parallel; al um 40, fm etwas über 20, c = 17, alk = 20. Gesteine in diesem Bereich sind somit granodioritisch. Die Isofalie liegt bei si = 196. k ist besonders in den sauren Gliedern höher als im Banat.


Vergleicht man die Diagramme des Bihargebirges und des Banats mit dem Westalpendiagramm in Lit. 43, so wird man allerlei ähnliche Züge finden, doch fehlt in den Karpathen der dort ausgeprägte syenitische Einschlag.

 Eruptivbildungen des mittleren Tertiärs. Jungkarpathische Provinz.

(Eruptiva des karpathischen Innenrandes.)

Das große Gebiet der mitteltertiären karpathischen Eruptionen teilen wir in folgende Unterbezirke ein:

a) Das Gebiet von Schemnitz-Kremnitz (5 der Karte). — b) Die Gegend von Visegrad (6). — c) Die Gegend von Velenze (7). — d) Das Csérhat (8). — e) Die Matra (9). — f) Das Vepor- und Gömörer Erzgebirge (10). — g) Das Bükkgebirge (11). — h) Das Gebiet zwischen Tokaj und Eperies (12). — i) Das Vihorlat-Gebirge (13). — k) Das Guttin-Cibles-Gebirge (14). — l) Die Gegend von Rodna (15). — m) Das Caliman-Gebirge (16). — n) Die Hargittagruppe (18). — o) Das siebenbürgische Erzgebirge mit seinen Ausläufern (20). — p) Dinariden (21). — q) Gebiet der Senke.

a) Das Gebiet von Schemnitz-Kremnitz (Lit. 1, 5, 62). Große Eruptivmassen liegen um Schemnitz und Kremnitz. Sie sind eingehender schon in den 60er Jahren des vorigen Jahrhunderts untersucht worden; doch sind die vielen Analysen der älteren Autoren unbrauchbar. Das Hauptgestein ist ein Pyroxenandesit mit Hypersthen, Augit und Plagioklas als wesentlichen Gemengteilen. Größere Verbreitung haben auch Biotit-Amphibolandesite, Dazite und Rhyolithe. Obsidian und Pechstein sind besonders vom Hliniktal bei Schemnitz bekannt. Nr. 40 und 41, Tabelle 5, geben Analysen von sauren Ergußtypen. Im Zentrum des Eruptivstockes sind auch Tiefenformen bekannt geworden. Ein Diorit von gleichem Mineralbestand wie der Pyroxenandesit ist neuestens analysiert worden (Nr. 42). Der Magmentyp ist gabbrodioritisch.

Die Hauptförderung fand in der Miozänzeit statt, jünger sind Durchbrüche von Basalten; sie werden im nächsten Abschnitt besprochen. Die Eruptivgesteine durchbrechen die flach gelagerten Schichten der Innenzone auf einem Bruchsystem.

- b) Die Gegend um Visegrad (Lit. 29). Beidseitig der Donau um Visegrad lagern größere Andesitmassen auf dem Tertiär. Sie sind wenig bearbeitet; besser untersucht sind die Andesite der
- c) Gegend von Velenze östlich von Budapest (Lit. 108). Es werden beschrieben: Hypersthenandesite und Biotitamphibolandesite. Beide führen als Hauptgemengteile basische Plagioklase. Die Analysen Nr. 43—47 geben Auskunft über den Chemismus. Sie gehören meist dem peléeitischen Magmentyp an. Die Andesite von Velenze durchbrechen ein von Brüchen durchsetztes Rumpfgebirge (Inselgebirge) im pannonischen Tertiär. Sie werden als miocän betrachtet.
- d) Das Csérhat (Lit. 73, 31*). Überaus zahlreich sind die Eruptionspunkte im Gebiet zwischen dem Donauknie bei Vac und dem Matragebirge, dem Csérhat. Fast ausschließlich wurden Pyroxenandesite gefördert. Die Analysen aus Lit. 73 sind unzuverlässig, doch werden die Gesteine einen ähnlichen Chemismus wie die von Velenze haben. Die Vulkane erheben sich auf einem Spaltensystem der tertiären Unterlage und waren im mittleren Miozän tätig.
- e) Die Matra (Lit. 38, 40, 44—47). Die mannigfaltigen Eruptivbildungen der Matra sind neuestens von *Mauritz* analysiert worden.*) Es ergeben sich Orthoklas- und Plagioklasrhyolithe (Nr. 48—51). Sie zeigen chemisch durchaus Übereinstimmung mit den Rhyolithen von Schemnitz. Verbreiteter sind die Andesite (Hypersthen und Amphibolandesite). Der häufigste Magmentyp dieser Gesteine scheint der tonalisch bis peléeitische zu sein, seltener ist der ossipitdioritische. Auch hier fällt die Haupteruption ins Miozän. Den Untergrund bilden flache Tertiärschichten.
- f) Das Vepor- und Gömörer Erzgebirge (Lit. 53*). Nur vereinzelt sind junge Durchbrüche im Vepor- und Gömörer Erzgebirge. Von Tiszolz werden Biotit-Amphibol- und Hypersthenandesite angegeben, letztere sind auch in der Tiefenform als Diorit bekannt (Analyse Nr. 64). Das Magma ist gabbrodioritisch. Das

^{*)} Die Analysen und Beschreibungen der Gesteine werden von Herrn Prof. B. Mauritz erst später publiziert werden. Ich bin Herrn Prof. Mauritz zu großem Dank verpflichtet für die Erlaubnis der Publikation der berechneten Werte seiner Analysen.

Erzgebirge wird für den Rückenschild einer flachen Decke gehalten. Die Andesite durchbrechen diese anscheinend wenig gefaltete Tafel auf einem Bruchsystem, sie sind wahrscheinlich miozän.

- g) Das Bükkgebirge (Lit. 79—82). Im Bükkgebirge sind wie in der Matra Rhyolithe, Dazite und Andesite verbreitet. *Mauritz* analysierte zwei Rhyolithproben (Nr. 65 und 66). Ihr Magma ist yosemititisch. Die Gesteine sind also bedeutend kalkreicher als die Rhyolithe der Matra. Das Bükkgebirge ist oberflächlich ein inselartiges Schollengebirge. Die Eruptionen fanden im Miozän statt.
- h) Das Gebiet zwischen Tokaj und Eperies (Lit. 7, 54, 69, 89, 92, 96). Das Hügelland zwischen Tokaj und Eperies ist fast ausschließlich eruptiv. Die Gesteine sind mannigfaltig, doch wenig bekannt. Neben Rhyolithen und Pechsteinen finden sich besonders in der Umgebung von Tokaj reichlich trachytische Gesteine. Sie führen als Hauptgemengteile Biotit und Sanidin. Über die chemischen Verhältnisse sind wir trotz der vielen Analysen Hauers, Sommarugas und Roths nur andeutungsweise orientiert. Des weitern finden sich Dazite und Andesite in großen Massen (Analysen Nr. 67—72). Die miozänen Vulkane durchbrachen flache Tertiärschichten.
- i) Das Vihorlatgebirge (Lit. 93). Ähnliche Verhältnisse wie im Tokaj-Eperjeser Gebiet herrschen im Vihorlatgebirge.
- k) Das Guttin-Ciblesgebirge (Lit. 55, 56, 67). Die meisten Gesteine des Guttin-Cibles-Gebirges sind junge Ergußgesteine. An sie sind auch die Erzvorkommen von Nagybanya, Felsöbanya und Kapnik gebunden. Analysiert wurden besonders Pyroxenandesite (Nr. 74 und 75). Das Magma ist peléeitisch. Sehr groß ist die Differenz al alk. Die Gesteine sind also identisch mit denen von Velenze. Eine weitere Analyse betrifft ein Gestein, das fast nur aus Quarz und Sanidin besteht (Nr. 73). Extrem hoch ist hier der k-Wert. Der größere Tonerdeüberschuß läßt die Frische etwas fraglich erscheinen. Das Gestein ist dem granosyenitischen Magmentyp als Grenzform zuzurechnen. Weitere Eruptivbildungen sind Rhyolithe und Dazite. Das Alter ist miozän bis altpliozän.
- l) Die Gegend von Rodna (Lit. 27, 72). Um den Bergort Rodna finden sich größere Dazit- und Andesitdurchbrüche. Kontakte sind mit Tertiär und dem Kristallin der karpathischen Zentralkette vorhanden.
- m) Das Calimangebirge (Lit. 2). Im Calimangebirge befindet sich das größte Vulkangebiet der Karpathen. Nur Andesite

wurden gefördert. Meist handelt es sich um Pyroxenandesite, z. T. mit Olivinführung. Durchbrochen werden die Gneise der ost-karpathischen Decken.

n) Die Hargittagruppe (Lit. 3, 18, 19, 29, 50, 66, 84, 54*, 56*). Hargittagruppe nenne ich den Nord-Süd verlaufenden Bergzug zwischen Maros- und Altdurchbruch. Er ist rein vulkanisch, insbesondere aus Biotit-Amphiboldaziten und Andesiten aufgebaut. Neuere Analysen sind mir weder von hier, noch vom Calimangebirge bekannt geworden. Die vulkanische Tätigkeit ist in der südlichen Hargitta erst im jüngeren Pliozän abgeschlossen worden. Noch jetzt sind im Pokoltal Solfataren und Moffetten vorhanden. Über die Beziehungen des Hargittazuges zum tektonischen Aufbau des Untergrundes fehlen genauere Anhaltspunkte, da fast überall nur Tertiär durchbrochen wird. Noch völlig strittig ist die regionale Tektonik. Wahrscheinlich ist ein komplizierter Deckenbau vorhanden (Ansicht *Uhligs* und der rumänischen Geologen).

Die südlichen Gneisdecken der transsylvanischen Alpen enthalten keine tertiären Eruptivgesteine, umso wichtiger sind sie im südlichen Teil des Bihargebirges, dem siebenbürgischen Erzgebirge und seinen westlichen Ausläufern.

o) Das siebenbürgische Erzgebirge (Lit. 8, 12, 29, 35, 51, 52, 61, 83, 85, 94, 99, 100, 36*, 40*, 41*, 45*, 46*). Das Zentrum der westsiebenbürgischen Vulkantätigkeit ist das siebenbürgische Erzgebirge. Auch hier finden sich Rhyolithe, Dazite, Pyroxen- und Amphibolandesite. Chemisch untersucht sind nur wenig Gesteine (Nr. 78—80). Sehr verbreitet sind die propylitischen Fazien. Abweichend von den Hauptgesteinen verhalten sich die Trachyte von Verespatak (Analysen Nr. 76 und 77). Ihr Mineralbestand ist Sanidin, Albit, Anorthoklas, Quarz, Biotit und Amphibol. Hohes alk bei tiefem c-Wert und hohes k zeichnen diese Gesteine hauptsächlich aus. Sie sind ähnlich dem Trachyt von Nagybanya.

Die Eruptivgesteine durchbrachen im Miozän längs großen Bruchfeldern das in der oberen Kreide gefaltete Gebiet. Kontakte sind hauptsächlich mit den mächtigen Tertiärabsätzen der Senkungsfelder vorhanden. Die ältesten Gesteine des Gebietes sind triassische bis jurassische Porphyrite, Melaphyre und Diabase.

Weitere große Gebiete vulkanischer Gesteine der Miozänzeit finden sich östlich des Erzgebirges in der Turoczoer Gegend und besonders westlich beiderseits des Tales des Feher Körös im Kodrugebirge (Lit. 64) und im Gebiet zwischen Körös und Maros (Lit.

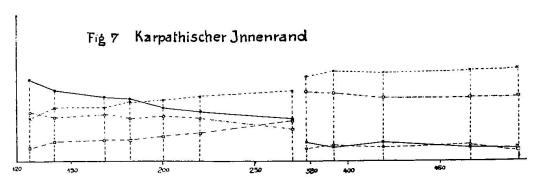
57—60, 37*). Auch südlich des Maros gegen das Banat (Lit. 16, 17, 37, 65) sind Andesite und Dazite weit verbreitet. Vereinzelt werden auch Trachyte und Basalte beschrieben. Geologisch sind sie in ähnlicher Stellung wie die des Erzgebirges.

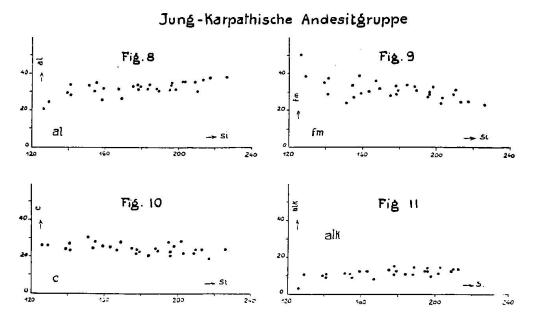
p) Eruptivbildungen der Dinariden.

Savefalten-Kroatien (Lit. 15, 31, 113, 30*). Von Kärnten bis nach Kroatien finden sich eine Menge junger Eruptivpunkte Meist wurden Andesite (Amphibol- und pyroxenführende Formen) gefördert. In Tabelle 6 sind einige Analysen dieser Gesteine verzeichnet. Es handelt sich um quarzdioritische Magmen. Die westlichen Vorkommen liegen auf der alpin-dinarischen Grenze noch im Alpengebiet, die östlichen am Rande der Dinariden gegen die Senke auf Brüchen. Das Alter der Eruption ist untermiozän.

q) Gebiet der Senke.

Gleichenberg (Lit. 111, 109*). Im Westen der Senke, nahe dem Alpenabbruch, liegt der kleine Gleichenberger Eruptivstock. Es besteht aus Liparit, Trachyt, Andesit und mannigfachen Zwischenformen der beiden letztern. Neue Analysen sind nicht vorhanden, die alten sind ungenau. Auf alle Fälle ist hier deutlich ein mediterraner Einschlag vorhanden. Der Stock ist von miozänem Alter. Durchbrochen wird Tertiär.


Mecsek-Gebirge (Lit. 39). Das Mecsek-Gebirge enthält im Gebiet der kretazischen Natrongesteine Gänge von miozänen Andesiten. Eine Probe ist von *Mauritz* analysiert worden (Nr. 83). Der Magmentyp ist der quarzdioritische.


Fruska-Gora (Lit. 23). In der Fruska-Gora wurden Gänge von pazifischen Daziten bis Rhyolithen gefunden. Sie sind deutlich jünger als die schon angeführten Trachyte und gehören der Miozänzeit an. Die Analyse in Lit. 23 ist ungenau.

Die Differentiation der jungkarpathischen Provinz.

Die Gesteine des karpathischen Innenrandes lassen sich leicht in ein Diagramm einordnen. Sie verhalten sich bis auf die noch wenig bekannten syenitischen Formen überaus einheitlich. Die Rhyolithe sind durchwegs sehr sauer, haben einen hohen al-Wert, was bei den relativ tiefen alk- und c-Werten einen kleinen al-Überschuß ergibt. Sonderbarerweise finden sich fast keine analysierten Gesteine im si-Bereich 350—230, trotzdem Dazite häufig beschrieben werden. Dagegen sind die intermediären Andesite gut

untersucht. Sie gehören ganz deutlich zur peléeitischen Zweigreihe der Kalk-Alkali-Reihe (siehe Fig. 8-11). Von si =210 bis 140 bleiben fast alle Werte gleich hoch. Es sind al = fm =30, c um 24, alk um 10. Die Differenz al - alk ist weit größer als alk, oft doppelt so groß. Isofale Gesteine finden sich dementsprechend von si =200 bis si =140. Das k- mg-Diagramm, Fig. 13, zeigt, daß k meist zwischen 0,2 und 0,4, mg sich zwischen 0,30 und 0,45 bewegt.

Eine in den intermediären Gliedern ähnliche Provinz ist die des griechischen Archipels (Lit. 43). Sie liegt im dinarischen Faltenland. Zum weiteren Vergleich sei noch auf das Westalpendiagramm II aus Lit. 43 verwiesen.

4. Jung pliozäne Eruptivgesteine.

In der pannonischen Senke und im Karpathengebiet fanden im jüngern Pliozän eine Menge basaltischer Eruptionen statt. Die wichtigsten Vorkommen sind:

a) Gebiet der Senke.

Die größten Vorkommen liegen im westlichen Teil der Senke. Spezielle Gebiete sind:

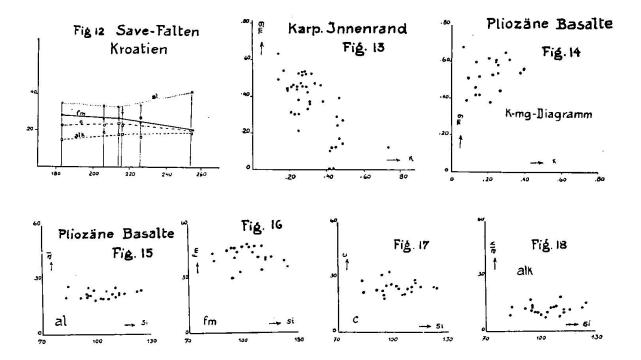
Die Gegend von Gleichenberg in der Oststeiermark (Lit. 34, 110—113, 108*).

Das nordwestliche Ungarn (Lit. 21, 22, 112).

Der Bakony-Wald (Gebiet nördlich des Plattensees (Balaton) (Lit. 6, 20, 51*, 105*, 106*). Charakteristisch ist für alle diese Gebiete die große Zahl relativ kleiner Durchbrüche durchwegs basischer Gesteine. Es werden beschrieben: Nephelinite (speziell in Gleichenberg), Nephelinbasanite, Nephelinbasalte, Feldspatbasalte, Limburgite. Als Pyroxen führen diese Gesteine durchwegs Titanaugite. Chemisch sind die Basalte mit Ausnahme der Gleichenberger ziemlich gut untersucht (Nr. 89—110, Tabelle 7). Die Analysen zeigen, wie auch die Beschreibungen ergeben, deutlich den im allgemeinen alkalischen Charakter der Gesteine.

Die Basalte von Gleichenberg und Nordwestungarn sitzen weit vorwiegend auf den Tertiärabsätzen der pannonischen Ebene. Vereinzelte Vorkommen (Landsee) sitzen aber noch auf dem Kristallin der absinkenden Alpen. Im Pliozän war das ganze Gebiet reines Schollenland. Die Eruptionen fallen ins Oberpliozän. Etwas anders sind die Verhältnisse im Bakony-Wald. Dieser ist ein inselartiges Schollengebirge paläozoischer und mesozoischer Schichten. Diese werden von den Basalten durchbrochen.

Im südlichen Teil der pannonischen Senke sind die Eruptionspunkte spärlich. Erwähnt werden Basaltdurchbrüche bei Ban im Villanyergebirge (25) (Lit. 43*) und eine größere Basaltdecke bei Tapolvecs im ehemaligen Komitat Temes (26). Es handelt sich bei beiden Vorkommnissen um Olivinbasalte, also eher um pazifische Formen, doch sind mir Analysen nicht bekannt.


b) Karpathengebiet.

Westliche Karpathen (Lit. 107*).

In der Pliozänzeit sind bei Schemnitz und nördlich der Matra bei Salgotarjan Basalte ausgeflossen. Das letztere Vorkommen ist neuestens untersucht worden. Die Analysen von Nephelinbasaniten haben essexit- bis theralithgabbroiden Chemismus. Diese Gesteine treten mitten im Gebiet der jungkarpathischen Andesite auf.

Von den Ostkarpathen sind aus dem Gebiet südlich der Hargittagruppe (Persanyergebirge) (Lit. 18, 29) jungpliozäne

Olivinbasalte bekannt. Neuere Analysen fehlen. Diese Vorkommen liegen mitten im Faltengebiet. Das Gleiche gilt für die Basalte des Banats (Lit. 109, 47*). Sie durchbrechen das in der oberen Kreide gefaltete Gebirge. Hier handelt es sich deutlich um alkalischen Vertreter. Nephelinbasalte, Nephelinbasanite und Limburgite werden beschrieben (Analysen Nr. 117—119). Diese Durchbrüche stehen mit den oberkretazischen Banatiten in Kontakt. Auf jungpliozänes Alter deutet allerdings nur ihre Sippenverwandtschaft mit der übrigen Basaltgruppe, diese jedoch sehr bestimmt.

Der Chemismus der jungen Basalte.

Aus den Diagrammen Fig. 15—18 ergibt sich: Die si-Breite ist gering, die Hauptmenge der Werte fallen zwischen 90 und 115. Eine eigentliche Häufungsstelle ist innerhalb dieses Intervalles nicht vorhanden. Die al-Werte sind sehr geschlossen, meist um 22. Eine deutliche Verschiebung der al-Werte mit der si-Zahl ist nicht zu bemerken. Bedeutend zerstreuter sind die fm-Werte. Ihre Hauptverbreitung haben sie zwischen 40 und 50. Auch hier fehlt eine zunehmende Tendenz mit fallendem si. Innerhalb 20 und 30 bewegt sich c. Alk ist meistens etwas über 10, selten über 15, Minimum ist 7. Auch diese beiden Kurven zeigen wenig Abhängigkeit vom si. Die Diagramme zeigen deutlich das einheitliche Verhalten der Basalte. Vergleichen lassen sie sich chemisch mit den Gesteinen des Ätna, von Linosa und Kataloniens (siehe Lit. 43).

Tabelle 1. Mescek-Gebirge.

Nr.	si	al	fm	c	alk	k	mg	c/fm	Magma	Gestein	Analytiker
1	216	43,5	12,5	4	40	0,25	0,02	0,32	normalfoyaitisch	Foyait	Emszt
2	209	42	11	4	43	0,22	0,01	0,36	«	«	Mauritz
3	208	40,5	13,5	4,5	41,5	0,28	0,11	0,33	«	«	Gremse
4	205	40,5	17,5	6,5	35,5	0,30	0,02	0,37	pulaskitisch	Phonolith	Emszt
5	194	40,5	13,5	4,5	41,5	0,21	0,01	0,33	normalfoyaitisch	«	Mauritz
6	146	32,5	29,5	14,5	23,5	0,20	0,30	0,49	essexitisch	Trachydolerit	«
7	144	27	37	17	19	0,15	0,31	0,46	«	«	«
8	123	26,5	35,5	21	17	0,14	0,30	0,59	essexitisch-theralitisch	«	«
9	120	27,5	37,5	16,5	18,5	0,12	0,39	0,45	« «	«	«
10	94	18,5	46	26,5	9	0,28	0,53	0,57	theralith-gabbroid	Limburgit	«
11	90,5	14,5	53,5	23,5	6,5	0,15	0,59	0,44	hornblenditisch	«	«
12	89	13	58	25	4	0,09	0,65	0,43	issitisch	« .	•

Typenwerte

	si	al	fm	с	alk	k	mg	c/fm	
	212	41,5	12,5	4,5	41,5	0,25	0,05	0,36	
	194	40,5	13,5	4,5	41,5	0,21	0,01	0,33	J
	145	30,5	33,5	15,5	21,5	0,17	0,30	0,46	
	121	27	36,5	19	17,5	0,13	0,35	0,53	
2	94	18,5	46	26,5	9	0,28	0,53	0,57	}
	90	13,5	56	24,5	5	0,12	0,62	0,44	J
						574			

Typen foyaitische Phonolithe

Typus essexitische Trachydolerite Typus essexitisch-theralitische Trachydolerite

Typen Limburgite

Tabelle 2. Fruska-Gora.

Nr.	si	al	fm	С	alk	k	mg	c/fm	Magma	Gestein, Fundort	Analytiker
13	174	29,5	28	21	21,5	0,43	0,43	0,78		Trachyt, Verdnik	Mauritz
14	170	29,5	28	21	21	0,44	0,45	0,76	monzonitisch-vesuvitisch	Trachyt, Lednicze	«

Tabelle 3. Banat.

Nr.	si	al	fm	c	alk	k	mg	c/fm	Magma	Gestein, Fundort	Analytiker
15	278	36	25	20	19	0,40	0,53	0,80	opdalitisch	Banatit, Oraviczabanya	Scherrer
16	267	38,5	17	15,5	29	0,39	0,20	0,90	monzonitisch-syenitisch	Dioritaplit, Oraviczabanya	Emszt
17	262	32	29	17	2 2	0,21	0,38	0,58	quarzdioritisch	Qz-Dioritporphyrit, Ujmoldova	«
18	244	36,5	25	18	20,5	0,32	0,43	0,73	«	Banatit, Vaskö	«
19	240	35	27	18,5	19,5	0,18	0,42	0,69	«	Banatit, Romanszaszka	«
20	177	31	35,5	16,5	17	0,28	0,41	0,46	«	Syenit-Diorit, Cziklovabanya	«
21	172	30	42	17,5	10,5	0,29	0,35	0,41	normaldioritisch	Banatit, Osopot	«
22	158	31	32	24	13	0,28	0,27	0,73	«	Quarz-Diorit, propylitisiert	«
23	134	25	40,5	22	12,5	0,21	0,46	0,55	gabbrodioritisch	Gabbrodiorit, Oraviczabanya	«
24	113	28,5	37,5	28	6	0,12	0,27	0,74	ossipitisch	Gabbrodiorit, Oraviczabanya	«

Typenwerte

si	al	fm	c	alk	k	mg	c/fm	
278	36	25	20	19	0,40	0,53	0,80	Typen Banatite Typus Quarzdiorit bis Diorit Typus Diorit-Gabbrodiorit Typus Gabbro
258	35	17	18	20	0,28	0,41	0,67	
175	30	39	17	14	0,28	0,38	0,44	
146	27	37	23	13	0,24	0,36	0,62	
113	28,5	37,5	28	6	0,12	0,27	0,74	

Tabelle 4. Bihargebirge.

Nr.	si	al	fm	c	alk	k	mg	c/fm	Magma	Gestein, Fundort	Analytiker
25	504	55	11	7	27	0,43	0,21	0,64	engadinitisch)	
26	484	48	13,5	8	30,5	0,41	0,17	0,59	~ «	Discoulting Vile	
27	414	55	14,5	5	25,5	0,54	0,42	0,34	«	Rhyolithe, Vlegyasza	Lunzer
28	406	54	10	8,5	29,5	0,45	0,35	0,85	>)	
29	479	49	6,5	5	39,5	0,51	0,22	0,72	aplitgranitisch	Granit, Lunztal, Vlegyasza	Lunzer
30	401	48	14	4,5	33,5	0,53	0,12	0,33	engadinitisch	Rhyolith, Vlegyasza	«
31	375	46,5	11,5	8,5	33,5	0,43	0,33	0,76	«	Granit, Karacsonyvölgy	Ruzitska
32	311	46,5	15	16	22,5	0,34	0,40	1,07	granodioritisch	Dakogranit, Zernatal	Lunzer
33	285	39	27	16,5	17,5	0,50	0,34	0,60	opdalitisch	Quarzdiorit, Dragantal	«
34	251	41	24	13,5	21,5	0,36	0,20	0,55	granodioritisch	Dakogranit, Petrosz, Vleg.	Ruzitzka
35	234	41,5	20,5	19,5	18,5	0,24	0,30	0,98	quarzdioritisch	Andesit, Tolvajkö	Lunzer
36	216	36	24	19	21	0,30	0,28	0,80	«	Amphibolandesit, Szaska	
37	205	40	25	18,5	16,5	0,30	0,35	0,74	«	Diorit, Vlegyasza	Lunzer
38	199	29	32	20,5	18,5	0,34	0,34	0,65	«	Quarzdiorit, Felvacza	Emszt
39	186	21	38	19	12	0,19	0,51	0,50	peléeitisch	Andesit, Arsura	Lunzer

Typenwerte

si	al	fm	С	alk	k	mg	c/fm	
479	49	6,5	5	39,5	0,51	0,22	0,72	Typus aplitgranitische Granite und Rhyolithe
389	47	12,5	7	33,5	0,48	0,22	0,56	Typus engadinitische « « «
298	43	31	16	20	0,42	0,37	0,76	Typus granodioritische Granite
243	41	22	17	20	0,30	0,25	0,77	Typus quarzdioritische Granite
210	38,5	23,5	19	19	0,30	0,31	0,81	Typus « Andesite
193	30	34	20	16	0,26	0,42	0.59	Typus Quarzdiorit

Tabelle 5. Karpathischer Innenrand.

1 400	-110 5.	T(ar j	zutilise	ner m	incin an	· · · · · ·					
Nr.	si	al	fm	c	alk	k	mg	c/fm	Magma	Gestein, Fundort	Analytiker
40	421	47	10	7,5	35,5	0,46	0,24	0,75	aplitgranitisch	Obsidian, Hlinik, Schemnitz	Lagorio
41	386	39,5	15	13,5	32	0,47	0,39	0,90	engadinitgranitisch	Rhyolith, Apate, Schemnitz	»
42	158	25,5	39,5	25,5	9,5	0,35	0,57	0,65	gabbrodioritisch	Diorit, Schemnitz	Harwood
43	203	35,5	27,5	22	15	0,38	0,37	0,80	tonalitisch	Andesit, Nadap, Velenze	Merse
44	198	31	33,5	25,5	10	0,19	0,43	0,76	peléeitisch	« , Velenze	Vendl
45	195	35	30	20,5	14,5	0,27	0,45	0,67	«	« , Nadap, Velenze	Emszt
46	188	31,5	33,5	24	11	0,22	0,46	0,72	«	« , Meleghegy, Velenze	Vendl
47	178	31,5	34	23,5	`11	0,29	0,52	0,85	«	« , Sukoro, Velenze	Merse
48	427	48,5	8,5	9	34	0,47	0,17	1,05	aplitgranitisch	Rhyolith, Solymos, Matra	Mauritz
49	423	48	10	7,5	34,5	0,49	0,14	0,75	«	« , « , «	«
50	396	48,5	7	8	36,5	0,45	0,12	1,17	«	« , Lörinczi, «	· «
51	381	46	10	6,5	37,5	0,43	0,12	0,68	engadinitisch	« , « , «	· «
52	209	35,5	29,5	22	13	0,36	0,36	0,75	tonalitisch	Pyroxen-Andesit, Lörinczi, Matra	«
53	196	34	30,5	22,5	13	0,30	0,33	0,74	«	« « , Bonahalom, «	«
54	179	33	31,5	22,5	13	0,29	0,45	0,71	peléeitisch	« « , Lörinczi, «	«
55	178	33,5	29,5	21,5	15,5	0,21	0,13	0,72	quarzdioritisch	« « , Yobbagyi, «	«
56	175	33	29	24,5	13,5	0,27	0,52	0,85	peléeitisch	AmphAndesit, Kamászvar, «	«
57	163	31,5	31	25	12,5	0,31	0,36	0,81	«	Pyroxen-Andesit, Szurduk, «	«
58	159	32	30	25,5	12,5	0,14	0,49	0,84	«	AmphAndesit, Lahotza, «	«
59	155	35	27,5	28	9,5	0,30	0,42	1,01	« มเฉียง	Pyroxen-Andesit, Remetefa, «	«
60	154	30,5	34	24,5	11	0,24	0,45	0,72	, , , , , , , , , , , , , , , , , , ,	« « , Gyöngyöspata, «	«
61	151	33,5	24,5	30,5	11,5	0,25	0,38	1,24	ossipit-dioritisch	« « , Nagybatony, «	«
		1							1 At (31	T C C C C C C C C C C C C C C C C C C C	

Tabelle 5. Karpathischer Innenrand. Forts.

Nr.	si	al	fm	c	alk _.	k	mg	c/fm	Magma	Gestein, Fundort	Analytiker
62	141	34	29,5	27	9,5	0,24	0,44	0,91	ossipitisch	Pyroxen-Andesit, Kis-Yobbagyi. Matra « , Nagysatoni, «	Mauritz
63	139	29,5	36,5	28	10	0,30	0,44	0,67	gabbrodioritisch		«
64	141	28,5	38	23,5	10	0,27	0,52	0,62	gabbrodioritisch	Pyroxen-Andesit, Tiszolz	Dittrich
65	386	45	13,5	13	28,5	0,49	0,27	0,94	yosemititisch	Rhyolith, Kis Györ, Bükk-Geb. «, Demend, « «	Mauritz
66	378	47,5	11,5	13,5	27,5	0,46	0,27	0,94	«		«
67 68 69	496 471 470	50,5 49 49,5	7 8 7,5	6 8 8	36,5 35 35	0,44 0,42 0,42	0,00 0,00 0,10	0,85 1,00 1,07	aplitgranitisch « «	Rhyolith, Palhaza, Tokaj-Eperies « « « Perlit, « « «	Emszt
70	270	38	23	17	22 13	0,74	0,12	0,74	opdalitisch	Trachyt, Bogdani, « »	
71 72	195 184	31 34	28 34,5	28 20,5	11	0,25 0,27	0,21 0,53	1,00 0,60	peléeitisch «	Pyroxen-Andesit, « « « « « « « « « « « « « « « « « « «	Doelter Emszt
73	318	44	21,5	1,5	33	0,95	0,17	0,07	granosyenitisch	Sanidin-Trachyt, Nagybanya Pyroxen-Andesit, « « « «	Emszt
74	202	35,5	24,5	28,5	11,5	0,23	0,39	1,14	peléeitisch		«
75	167	31,5	36,5	23,5	8,5	0,25	0,52	0,64	«		«
76	363	47	7,5	3	42,5	0,88	0,08	0,40	aplitgranitisch	Rhyolith, Verespatak, Sieb. Erzgeb. "Dazit" » « « Pyroxen-Andesit, Pietrosa, Sieb. Erzgeb.	Szadeczky
77	236	40,5	22,5	5	32	0,46	0,31	0,22	granosyenitisch		«
78	210	30	32	24	14	0,31	0,37	0,75	tonalitisch		Dittrich
79	226	28	23,5	24	14,5	0,34	0,47	1,04	«	« « Brad, « « « Sieb. Erzgeb.	«
80	176	32,5	28,5	24,5	14,5	0,19	0,48	0,86	peléeitisch		Doelter
81	129	24,5	39	26	10,5	0,32	0,52	0,67	gabbrodioritisch	Olivin-Andesit, Kapolnás	Roka
82	126	20,5	50,5	26	3	0,14	0,63	0,51	gabbroid	« « , Godinyesd	Emszt
83	217	37	25,5	19	18,5	0,26	0,47	0,74	quarzdioritisch	Andesit, Mecsek-Gebirge	Mauritz

Tabelle 5. Forts. Typenwerte.

_									_
	si	al	fm	С	alh	k	mg	c/fm	
	496	50,5	7	6,5	36	0,44	0,00	0,85	1
	470	49,5	7,5	8	35	0,42	0,05	1,07	H
	423	48	10	8	34	0,47	0,12	0,80	
	384	46	12,5	13,5	27	0,47	0,28	1,06	
	280	38	23	17	22	0,74	0,12	0,74	
	220	35	27	23	15	0,25	0,49	0,85	1
	200	33,5	29,5	24	13	0,30	0,38	0,82	l
	182	32	34	23	11	0,26	0,50	0,68	}
	168	29	35	25	11	0,25	0,40	0,72	ı
	141	28,5	39	26	10,5	0,32	0,52	0,67	IJ
	127	23	40	26	7	0,23	0,57	0,59	Š

Typen aplitgranitische Rhyolithe

Typus engadinitische Rhyolithe

Typus yosemitische Rhyolithe

Typus Glimmertrachyt

Typen tonalitisch-peléeitischen Andesite

Typus Olivinandesit

Tabelle 6. Savefalten-Kroatien.

Nr.	si	al	fm	С	aik	k	mg	c/fm	Magma	Ges	tein, Fund	ort	Analytiker
84	254	41	20	20	19	0,17	0,20	1,00	quarzdioritisch	Hypersthen	-Andesit,	St. Rochus	Kispatič
85	226	33,5	24	26,5	16	0,12	0,25	1,10	«	«	«	Lepoglava	«
86	216	31	29,5	22	17,5	0,19	0,34	0,75	«	«	«	Rohitsch	«
87	206	33	26	22,5	18,5	0,07	0,37	0,87	«	«	«	Lepoglava	«
88	183	34,5	28,5	22,5	14,5	0,05	0,50	0,78	«	«	«	Kamenika	«

Typenwerte.

									_
2	si	al	fm	с	alk	k	mg	c/fm	
	254	41	20		19	0,17			1
	218	32,5	26,5	23,5	17,5	0,12	0,32	0,90	
	183	34,5	28,5	22,5	14,5	0,05	0,50	0,78	\parallel

Typen Hypersthenandesite

Tabelle 7. Pliozaene Basalte.

Nr.	si	al	fm	c	alk	k	mg	c/fm	Magma	Gestein, Fundort	Analytiker
89	105	23,5	44	20	12,5	0,39	0,56	0,45	theralith-gabbroid	Basanit, Fürstenfeld, Steiermark	Zeynek
90	94	22	30	31	17	0,21	0,38	1,03	melteigitisch	Hauynophyr, Hochstraden, Steiermark	Jäger
100	103	19,5	47	23,5	10	0,31	0,61	0,50	essexit-gabbroid	Feldspat-Basalt, Saghegy, NW.Ungarn	Horvàth
101	99	18,5	47	26	8,5	0,24	0,61	0,55	« «	Nephelin-Basanit, Felsö-Pulya, « «	«
102	91	20	45	23	12	0,25	0,58	0,51	theralith-gabbroid	« « , Somlo, « «	•
103	124	24	36	24	15	0,15	0,43	0,66	essexit-gabbroid	Feldspat-Basalt, Balaton	Tomasowsky
104	110	20,5	47,5	24,5	7,5	0,09	0,52	0,51	gabbroid	« « , Totihegy, Balaton	Emszt
105	110	25,5	34,5	22	18	0,26	0,44	0,63	theralithisch	Nephelin-Basanit, «	Tomasowsky
106	106	19,5	47,5	20,5	12,5	0,15	0,52	0,42	theralith-gabbroid	Basalt, Mencshegy, «	Emszt
107	102	19,5	48,5	25	7	0,13	0,60	0,52	gabbroid	Limburgitoid, Rekettyes, «	«
108	95	21	46,5	18,5	14	0,08	0,39	0,39	theralith-gabbroid	Basalt, Gynes-Pias, «	Preiss
109	95	26	41	20	13	0,12	0,27	0,49	« «	« , Badacsony, «	«
110	84	26	39,5	21,5	13	0,13	0,42	0,54	« «	Basanit, Sümeg, «	«
111	122	23,5	39,5	24,5	12,5	0,24	0,60	0,61	essexit-gabbroid	Basanitoid, Salgotarjan, Matra	Harwood
112	115	22,5	41,5	24,5	11,5	0,21	0,62	0,59	« «	« « «	«
113	112	22	40,5	27,5	10	0,37	0,54	0,68	« «	« « «	Endrédy
114	112	21,5	40	27	11,5	0,29	0,55	0,68	« «	« « «	Harwood
115	108	22	41,5	23,5	13	0,25	0,54	0,57	theralith-gabbroid	« « «	«
116	94,5	20	43,5	22,5	11	0,22	0,53	0,48	« «	Nephelin-Basanit, Medves, Salgotarjan	Emszt
117	98	24	33,5	32,5	10	0,13	0,46	0,97	essexit-gabbroid	Limburgit, Anina, Banat	Vendl
118	96	21	44	25	10	0,06	0,68	0,57	« «	Nephelin-Basanit, Steierdorf, Banat	«
119	93	20	43,5	28	8,5	0,29	0,65	0,64	theralith-gabbroid	« « , Ujmoldova, Banat	Emszt

Zusammenfassung.

Die zeitliche Magmenentwicklung läßt sich zusammenfassend etwa folgendermaßen darstellen:

1. Magmen, die vor der Faltung ausbrachen (untere Kreide).

Im Gebiet der späteren Senke.

Atlantisch, intermediär bis basisch: Mecsek-Gebirge.

Mediterran, intermediär: Fruska-Gora.

(Vielleicht wäre der atlantische Nephelinsyenitstock von Ditrö im ostkarpathischen Faltengebiet auch hier einzureihen. Seine geologischen Verhältnisse sind wenig bekannt. Über den Chemismus der Gesteine siehe Lit. 43.)

2. Magmen der ersten Faltungsphase (obere Kreide). Nur im Karpathengebiet.

Normalpazifisch, sauer bis basisch: Banat, Bihargebirge.

- 3. Magmen, die zeitlich mit der tertiären Faltung zusammenfallen:
 - a) Im Karpathengebiet und im Norden der Senke.

Weit vorwiegend pazifisch (peléeitisch). Untergeordnet mediterraner Einschlag sauer bis intermediär: Jungkarpathische Provinz.

b) In den Dinariden.

Normalpazifisch, intermediär: Savefalten-Kroatien.

c) Im Süden der Senke.

Normalpazifisch, sauer bis intermediär: Mecsek, Fruska-Gora. Pazifisch-mediterran, sauer-intermediär: Gleichenberg.

- 4. Magmen, jünger als die faltenden Bewegungen.
 - a) Im Karpathengebiet (inkl. nördl. Senke).

Schwach atlantisch, nur basisch: Schemnitz, Matra, Persanyergeb., Banat.

b) In der Senke.

Meist atlantisch, selten pazifisch, nur basisch: Steiermark, NW. Ungarn, Bakony, Villanyergeb., Tapolvecs.

Es verhalten sich also deutlich die Magmen der verschiedenen tektonischen Elemente innerhalb des Gesamtorogens zu gleicher Zeit chemisch ähnlich. Wohl brachen im Karpathengebiet und in der Grenzregion der Senke im Miozän weit mehr Vulkane aus, als in der mittleren oder südlichen Senke, aber die Magmen waren in beiden Gebieten die gleichen. Umgekehrt wiegt im Pliozän die Tätigkeit in der Senke vor, die Magmen der Karpathen sind aber

mit denen der Senke identisch. Die kretazischen Eruptiva sind indessen jeweilen nur auf ein Element beschränkt, so daß sich ein solcher Vergleich hier nicht ziehen läßt.

Diese Arbeit wurde auf Anregung von Herrn Prof. Niggli am mineralogisch-petrographischen Institut der E. T. H. in Zürich ausgeführt. Es sei ihm an dieser Stelle für die stete Anteilnahme bestens gedankt.

Manuskript eingegangen: 26. Februar 1927.

Literaturverzeichnis.

Es wurde hier nur die Literatur verzeichnet, die nicht schon im Literaturverzeichnis von Nr. 43 steht. Die Lit.-Nr. im Text mit einem * beziehen sich auf Lit. 43.

Abkürzungen:

F. K. = Földtani Közlöni (Mitt. der ungarischen geol. Ges.)

Ib. k. k. R. A. = Jahrbuch der k. k. geol. Reichsanstalt, Wien.

Jb. ung. g. A. = Jahresbericht der ung. geol. Anstalt, Budapest.

Mitt. ung. g. A. = Mitt. aus dem Jahrbuch der ung. geol. Anstalt.

Sitz. Ak. Wien = Sitzungsbericht der Akademie der Wissenschaften, Wien.

Schw. m. p. Mitt. = Schweizerische mineral. petr. Mitt.

T. M. = Tschermaksche Mitteilungen.

Verh. k. k. R. A. = Verhandlungen der k. k. geol. Reichsanstalt.

- 1. v. Adrian Ferd., Das südwestliche Ende des Schemnitz-Kremnitzer Trachytstockes. Jb. k. k. R. A., 1866, S. 355-417.
- 2. Athanasiu Sava, Geologische Studien in den moldauischen Karpathen. Jb. k. k. R. A., Bd. 49, 1899, S. 429-492.
- 3. Baumgartner K., Über vulkanische Auswürflinge von Bad Tusnad in Siebenbürgen. T. M., Bd. 21, 1902, S. 31—64.
- 4. Böckh Hugo, Die geologischen Verhältnisse der Umgebung von Nagy-Maros. Mitt. ung. g. A., Bd. 13, S. 1–62.
- 5. Vorläufiger Bericht über das Altersverhältnis der in der Umgebung von Selmeczbanya vorkommenden Eruptivgesteine. F. K., Bd. 21, 1901, S. 365—408.
- 6. Böckh Johann, Die geologischen Verhältnisse des südlichen Teiles der Bakony. Mitt. ung. g. A., Bd. 3., 1874.
- 7. Dælter C., Über einige Trachyte des Tokay-Eperieser Gebirges. T. M., 1874, S. 199—222.
- 8. Die Trachyte des Siebenbürgischen Erzgebirges. T. M., 1874, S. 13-30.
- 9. Emszt K., Bericht aus dem chemischen Laboratorium der k. ung. geolog. Reichsanstalt. Jb. ung. g. A., 1912, S. 302—316.
- 10. do. Jb. ung. g. A., 1914, S. 523—543.
- 11. do. Jb. ung. g. A., 1916.
- 12. Ferenczi St., Das Tertiärbecken von Zalatna-Nagyalmas. F. K. 1915, S. 57-68.
- 13. Fisch Walter, Beiträge zur Geologie des Bihargebirges. Diss. Bern 1924.
- 14. Gsell Alexander, Geologische Verhältnisse des Kremnitzer Bergbaues. Mitt. ung. g. A., Bd. 11, S. 199-257.

- 15. Hatle Ed., Zur Kenntnis der petr. Beschaffenheit der süd-steirischen Eruptivgesteine. Mitt. des naturwissenschaftlichen Vereins Steiermark. 1880. S. 22-50.
- 16. Havalats J., Der geologische Bau der Umgebung von Deva. Jb. ung. g. A., 1903, S. 113—123.
- 17. Der geologische Bau der Umgebung von Kudsir-Csora-Felsöpian. Jb. ung. g. A., 1904, S. 127—140.
- 18. Herbich Fr., Das Szeklerland. Mitt. ung. g. A., Bd. 5.
- 19. Die geologischen Verhältnisse des nordöstlichen Siebenbürgen. Mitt. ung. g. A., Bd. 6, S. 293-350.
- 20. Hofmann K., Die Basaltgesteine der südlichen Bakony. Mitt. ung. g. A., Bd. 4, S. 1-233.
- 21. v. Horvath B., Bericht aus dem chem. Laboratorium der k. ung. geol. A. vom Jahre 1916. Jb. ung. g. A., 1916, S. 574—592.
- 22. Jugavics L., Über die am östlichen Rande der Alpen aufbrechenden Basalte. F. K., Bd. 47, 1917, S. 370-372.
- 23. Kispatic M., Der Dacit von Modsenjenec. Schrift. der süd-slavischen Ak. Bd. 177, S. 63—67.
- 24. Kober L., Der Bau der Erde. Berlin 1921.
- 25. Koch Anton, Geologische Beschreibung des St. Andrä-Vissegrader und Piliser Gebirges. Mitt. u. g. A., Bd. 1, S. 271.
- 26. Mineral. petr. Notizen aus Siebenbürgen. T. M., 1877, S. 317-336.
- Petrogr. Untersuchungen der trachytischen Gesteine der Gegend von Rodna. F. K., 1880, S. 219-229.
- 28. Geologische Mitteilungen über das Fruska-Gora-Gebirge. F. K., 1882, S. 270—288.
- Die Tertiärbildungen des Beckens der siebenbürgischen Landesteile. Budapest 1900.
- Skizze des geologischen Baues der Fruska-Gora. F. K., Bd. 33, 1903,
 S. 397-402.
- 31. Kreutz F., Augitandesit des Smrekouz-Gebirges (Südsteiermark). T. M. 1877 S. 205—213.
- 32. Lagorio A., Über die Natur der Glasbasis usw. T. M., Bd. 8, 1887, S. 421
- 33. Lazarevic M., Die Propylitisierung, Kaolinisierung und Verkieselung und ihre Beziehung zu den Lagerstätten der jungen Gold-Silbergruppe. Zeitschrift für pr. Geologie, Bd. 21, 1913, S. 345—361.
- 34. Leitmeier, H., Der Basalt von Weitendorf und die Mineralien seiner Hohlräume. J. N. B. B. 27, 1909.
- 35. v. Loczy L., Direktionsbericht. Jb. ung. g. A., 1912, S. 9-31.
- 36. Lugeon M., Les nappes de recouvrement de la Tatre et l'origine des Clippes des Carpathes. Bull. de la soc. vaudoise d. sc. naturelles. 1903, Lausanne.
- 37. Mauritz Bela, Einige Bemerkungen zu: Pinkert, Beiträge zur Kenntnis der Eruptivgesteine der Umgebung von Bulza. F. K., Bd. 38, 1908, S. 650-657.
- 38. A Matra Hegyseg Eruptiv Közetei. Mathematische naturwissenschaftliche Berichte aus Ungarn. 1909, Bd. 30.
- 39. Die Eruptivgesteine des Mecsek-Gebirges. Mitt. ung. g. A., Bd. 21, S. 171-213.

- 40. Mauritz Bela, Petrochemische Untersuchung ungarischer Eruptivgesteine Vortrag XI, Jahresversammlung der Deutschen Min. Gesellschaft in Zürich, Ref. Centralblatt für Mineralogie, 1925, S. 371.
- 41. Murgoci G., The geological Synthesis of the South Carpathians. Compte R. 9. Congress Int.
- 42. Niggli P., Gesteins- und Mineralprovinzen. Bd. 1, Berlin 1923.
- 43. Der Taveyannazsandstein und die Eruptivgesteine der jungromanischen Kettengebirge, Schw. m. p. Mitt., Bd. 2, S. 169—275.
- 44. Noszki E., Beiträge zur Geologie des südlichen Matragebirges. Jb. ung. g. A., 1912, S. 163-170.
- 45. Die geologischen Verhältnisse des zentralen Teiles des Csérhat. Jb. ung. g. A., 1913, S. 344—368.
- 46. Die geologischen Verhältnisse der Umgebung von Szirak. Jb. ung. g. A., 1914, S. 383-386.
- 47. Die geologischen Verhältnisse des Hügellandes südlich der Matra. Ib. ung. g. A., 1915, S. 400—413.
- 48. v. Palfy M., Die geologischen Verhältnisse des westlichen Teiles des Gyaluer Hochgebirges. Jb. ung. g. A., 1897, S. 55—66.
- 49. Geologische Notizen über das Kalkgebiet von Szkenisora und über die südlichen und östlichen Teile des Gyaluer Gebirges. Jb. ung. g. A., 1898, S. 64—80.
- 50. Beiträge zu den geologischen und hydrologischen Verhältnissen von Szekély-Udvardely. F. K., Bd. 29, S. 99–196.
- 51. Vorläufiger Bericht über das Altersverhältnis der Andesite im sieb. Erzgebirge. F. K., Bd. 33, S. 505-517.
- 52. Über den geologischen Bau der rechten Seite des Marostales in der Umgebung von Algyogy. F. K., Bd. 37, S. 537.
- 53. Geologische Notizen aus dem Bihargebirge. Jb. ung. g. A., 1913 S. 231—246.
- 54. Das Rhyolithgebiet der Gegend von Palhaza im Komitate Abauj-Torna. Jb. ung. g. A., 1915, S. 356—369.
- 55. Die geologischen Verhältnisse des Nagybanyer Bergreviers. Jb. ung. g. A., 1914, S. 144.
- 56. Dis montangeologischen Verhältnisse von Felsöbanya, Borpatak und Kisbanya. Jb. ung. g. A., 1914, S. 432-456.
 57. v. Papp K., Die geologischen Verhältnisse der Umgebung von Petris. Jb.
- 57. v. Papp K., Die geologischen Verhältnisse der Umgebung von Petris. Jb. ung. g. A., 1901, S. 81—102.
- 59. Die Umgebung von Alvacza und Kazanesd im Komitat Huniad. Jb. ung. g. A., 1903, S. 70—109.
- 60. Über die geologischen Verhältnisse der Umgebung von Menyhaza. Jb. ung. g. A., 1904, S. 62—100.
- 61. Die Umgebung von Bucsony im Komitat Alsoféhér. Jb. ung. g. A., 1913, S. 266-327.
- 62. Paul K. M., Der östliche Teil des Schemnitzer Trachytgebirges. Jb. k. k. geol. R. A., 1866, S. 171-181.
- 63. Die Karpathensandsteine des mährisch-ungarischen Grenzgebietes. Jb. k. k. geol. R. A., 1890, S. 447—513.
- 64. *Pethö J.*, Die geologischen Verhältnisse der Umgebung von Nagy-Halmagy. Jb. ung. g. A., 1894, S. 49-85.

- 65. Pinkert E., Beiträge zur Kenntnis der Eruptivgesteine der Umgebung von Bulza. F. K., Bd. 37, 1907, S. 273-300.
- 66. Primics G., Petrographische Untersuchungen der Gesteine des nördlichen Hargittazuges. F. K., 1879, S. 455—467.
- 67. Die trachytischen Gesteine des Laposer Gebirges. F. K., 1880, S. 190 206.
- 68. v. Richthofen F., Studien aus dem ungarisch-siebenbirgischen Trachytgebirge. Jb. k. k. R. A., 1860, S. 155—276.
- 69. Roth S., Beschreibung der Trachyte aus dem nördlichen Teil des Eperjeser Gebirges. F. K., 1884, S. 523-564.
- 70. Roth v. Telegd K., Die Nordost- und Südseite des Rezgebirges. Jb. ung. g. A., 1912, S. 133-143.
- 71. Rozlozsnik P., Beiträge zur Geologie der Umgebung von Nagy-Bihar. Jb. ung. g. A., 1905, S. 122—143.
- 72. Die geologischen Verhältnisse der Umgebung des Bergreviers O-Radna. Jb. ung. g. A., 1907, S. 113—140.
- 73. Schafarzik F., Die Pyroxen-Andesite des Csérhat. Mitt. ung. g. A., Bd. 9.
- 74. Die geologischen Verhältnisse der westlichen Ausläufer der Pojana Ruska. Jb. ung. g. A., 1900, S. 101—131.
- 75. Die geologischen Verhältnisse von Ruskabanya. Jb. ung. g. A., 1906, S. 111 ff.
- 76. Die geologischen Verhältnisse der Umgebung Gyalar. Jb. ung. g. A.,
 1908, S. 63-71.
- 77. Reambulation in den südlichen Karpathen und im Krasso-Szörenyer Mittelgebirge. Jb. ung. g. A., 1909, S. 69—85.
- 78. Revision der krist. Schiefer des Krasso-Szörenyer Grundgebirges in petrographischer und tektonischer Beziehung. Jb. ung. g. A., 1913, S. 195—221.
- 79. Schréter Z., Die geologischen Verhältnisse der Umgebung von Eger. Jb. ung. g. A., 1912.
- 80. Der nordwestliche Teil des Bükkgebirges. Jb. ung. g. A., 1913, S. 329—343.
- 81. Geologische Aufnahmen im Borsoder Bükkgebirge. Jb. ung. g. A., 1914, S. 370—382.
- 82. Der östliche Teil des Borsod-Heveser Bükkgebirges. Jb. ung. g. A., 1915, S. 383—399.
- 83. Schumacher F., Die Golderzlagerstätten und das Braunkohlenvorkommen der Rudaer 12 Apostel-Gewerkschaft zu Brad in Siebenbürgen. Zeitschrift pr. Geologie, 1912, S. 1—86.
- 84. Schuster M., Über Auswürflinge im Basalttuffe von Reps in Siebenbürgen. T. M., 1878, S. 318—330.
- 85. Semper, Beiträge zur Kenntnis der Golderzlagerstätten des siebenbürgischen Erzgebirges. Abh. der k. preuß. geol. Landesanstalt. Heft 33, 1900.
- 86. Staub R., Der Bau der Alpen. Beitr. Geol. Schw., 1924.
- 87. Sueß E., Das Antlitz der Erde. Bd. 3, 1910.
- 89. Szabo J., Die Trachyte und Rhyolithe der Umgebung von Tokaj. Jb. k. k. geol. R. A., 1866, S. 82-97.
- 90. Typenvermengung in der Donautrachytgruppe. F. K., Bd. 24, 1904, S. 223—234.

- 91. Szadeczky J., Ungarns Obsidiane, insbesondere ihre geologischen Verhältnisse. F. K., 1880, S. 219-222.
- 92. Petrographische und geologische Mitteilungen des zentralen Teiles des Tokaj-Eperjeser Gebirges und der Umgebung von Pusztafalu. F. K., 1889, S. 289—298.
- 93. Beiträge zur geologischen Beschaffenheit der Umgebung von Munkacs. F. K., Bd. 20, 1890, S. 61—67.
- 94. Zur Kenntnis der Gesteine des siebenbürgischen Erzgebirges. F. K., 1892, Bd. 22, S. 323-330.
- 95. La Montagne de Pilis. F. K., Bd. 22, 1892.
- Das nordwestlich von Satoralja und Rudabanyacska-Kovacsvagas liegende Gebiet in geologischer und petrographischer Hinsicht. F. K., Bd. 27, 1897, S. 349—385.
- 97. Über den Rhyolith von Nagybarod usw. F. K., Bd. 34, S. 501.
- 98. Über meine im Bihargebirge und in der Vlegyasza im Jahre 1906 vorgenommene geol. Reambulation. Jb. ung. g. A., 1906, S. 56-77.
- 99. v. Szentpétéry S., Petrographische Daten aus dem siebenbürgischen Erzgebirge. Jb. ung. g. A. 1915, S. 364—382.
- 100. Die Eruptivgesteine der Drocsa und des siebenbürg. Erzgebirges. Jb. ung. g. A., 1916, S. 336—368.
- 101. Tucan Fr., Zur Petrographie der Fruska-Gora. N. J., 1915, S. 68.
- 102. Uhlig V., Ergebnisse der geologischen Aufnahme in den westgalizischen Karpathen. Jb. k. k. geol. R. A., 1888, S. 251.
- 103. do. Jb. k. k. geol. R. A., 1890, S. 790.
- 104. Der Bau der Karpathen. In "Bild und Bau Österreichs", Wien 1903.
- 105. Über die Tektonik der Karpathen. Sitzb. Ak. Wiss. Wien, Bd. 116, Abt. 1, S. 871—982.
- 106. Vadasz E., Geologische Notizen aus dem Bükkgebirge. F. K., Bd. 39, 1909, S. 227-238.
- 107. Die geologischen Verhältnisse des Zengözuges und der angrenzenden Hüggelländer. Jb. ung. g. A., 1913, S. 381.
- 108. Vendl A., Die geologischen und petrographischen Verhältnisse das Gebirges von Velenze. Mitt. ung. g. A., Bd. 22, S. 1—186.
- 109. Über die sogenannten Picrite des Banats. Centralblatt für Mineralogie. Heft 10, 1925, S. 297—304.
- 110. Winkler A., Versuch einer tektonischen Analyse des mittelsteirischen Tertiär. gebietes. Verh. k. k. geol. R. A., 1913, S. 311.
- 111. Das Eruptivgebiet von Gleichenberg in Steiermark. Jb. k. k. geol. R. A., 1913, S. 403—502.
- 112. Der Basalt am Pauliberg bei Landsee im Komitat Ödenburg. Verhk. k. k. geol. R. A., 1913, S. 355—360.
- 113. Die tertiären Eruptiva am Ostrande der Alpen. Zeitschrift für Vulkanologie. Bd. 1, S. 167-196.