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Die Bedeutung derKristallpolyederin der

Lehre der regelmidBigen Punktsysteme.
Mit 63 Textfiguren.

Von Leonhard Weber, Ziirich.

Inhaltsiibersicht. .
eite
Einleitung und Problemstellung 2
Anschauliche Darstellung der 230 Raumgruppen 5
1. Trikline Abteilung ; . s 5
A. Hemiedrische Klasse C1 5
B. Holoedrische Klasse Ci 6
II. Monokline Abteilung 7
A. Hemiedrische Klasse Cs 7
B. Hemimorphe Klasse C, 8
C. Holoedrische Klasse Ca\, 9
I1I. Rhombische Abteilung . 10
A. Hemimorphe Klasse Cs« 10
B. Hemiedrische Klasse V 15
. C. Holoedrische Klasse V, 16
IV. Hexagonale Abteilung ‘ 21
1V,. Trigonal-rhomboedrische Abtellung. 22
A. Tetartoedrische Klasse C; . 22
B. Paramorphe Klasse Ca; 22
C. Hemimaorphe Klasse Cs. 23
D. Enantiomorphe Klasse D; . 24
E. Holoedrische Klasse Dsa 25
1V,. Rein trigonale Abteilung . 27
A. Paramorphe Klasse Csu 27
B. Holoedrische Klasse Dsy 27
[V;. Rein hexagonale Abteilung 27
A. Tetartoedrische Klasse C; . 27
B. Paramorphe Klasse Cen 28
C. Hemimorphe Klasse Cs+ 29
D. Enantiomorphe Klasse Dy . 29
E. Holoedrische Klasse Dsn 30



2 Leonhard Weber.

Seite:

V. Tetragonale Abteilung . . . . . . ’ 31

A. Tetartoedrische Klasse IR Art Cy : : ; : . 31

B. Tetartoedrische Klasse II. Art S, . . ’ : 5 33

C. Hemimorphe Kiasse C4« . . . . . . . 33

D. Paramorphe Klasse Can . . . . . . .. 36

E. Enantiomorphe Klasse D, . . . . . . . 38

F. Hemiedrische Klasse II. Art Va4 . i 8 .40

G. Holoedrische Klasse Dy . . . . . . D4l

VI. Kubische Abteilung . . : ; y : ; ; : 44

A. Tetartoedrische K]asse T . . . . . . " 44

B. Paramorphe Klasse Tw : ; : ; : . . 45

C. Hemimorphe Klasse Ta . . . . . : . 46

D. Enantiomorphe Klasse O . . . . . . .4

E. Holoedrische Klasse On . : ; : : ; ; 49
Numerierung der 230 Raumgruppen und Reihenfolge, in der sie

im Vorstehenden besprochen wurden . ; : s ; 5 51
Allgemeine Beziehungen zwischen Kristallpolyedern und Diskonti-

nuum . 5 52
Zusammengehorlge Koordmatenwerte (P nggh) und lhr Zusammen-
hang mit den Miller’schen Symbolen der einfachen Kristallformen

Vier Sitze : : 54

Anwendung der v1erghedr|gen Punktsymbole im Dlskontmuum . 58

Allgemeine und spezielle Gitter . : 5 : : : : : 64

Zusammenfassung 2 = s s . . .. . 65

Einleitung und Problemstellung,.

P. Niggli hat durch ifmfangreiche statistische Untersuchung
die Beziehung zwischen Morphologie und Struktur der Kristalle
klargelegt: Die Hauptbindungsrichtungen der Atome bestimmen die
fir den Kristall charakteristischen Zonen. Damit ist die Struktur-
lehre fiir den Kristallographen zum unentbehrlichen Hilfsmittel
geworden. Zwar hat man in kristallographischen Kreisen seit
Hauy’s Spaltversuch eine stindige Vorliebe fiir strukturelle Fragen
gehabt, und die Kristallographie darf es sich fiir alle Zeiten zur
groflen Ehre anrechnen, dafl einer ihrer bedeutendsten Vertreter,
E. Fedorow, gleichzeitig wie der Mathematiker A. Schoenfiies,
aber unabhangig von diesem, die Strukturlehre in exakter Form
abgeleitet hat. DaB aber trotzdem die Gropfzahl der Kristallo-
graphen fiir die abstrakten Sitze der Strukturlehre wenig Interesse
hat, ist bedauerliche Tatsache, da gerade die Kristallographen mit
ihrem angebornen Sinn fiir Symmetrie berufen wiren, an der Be-
reicherung und Vertiefung der Strukturlehre mitzuwirken.

Der Kristallograph, der mehr wie irgend ein anderer die Raum-
anschauung pflegt, findet in der Strukturlehre zu viel formelhafte



Kristallpolyeder in der Lehre der regelmidBigen Punktsysteme. 3

Mathematik, zu wenig greifbare Anschaulichkeit. Auch wiinschte
er, daB der Zusammenhang mit dem, was ihn alle Tage beschiftigt,
stirker hervortrete, denn schlieBlich sind es doch die gleichen Be-
griffe, um die sich hier wie dort alles dreht.

Es wird kaum Sache eines einzelnen sein, der Strukturlehre
das fiir den Kristallographen anschaulichste Geprige zu geben.
Es werden die verschiedensten Richtungen daran mitzuwirken haben.
Einseitigkeiten miissen die vermittelnden Uberginge finden, grobe
Vorstellungen sind zu vergeistigen, abstrakte Gedankenginge durch
konkrete Beispiele zu beleben.

Ein bescheidener Versuch in dieser Richtung mochten die fol-
genden Seiten sein. Die Vorstellungen, von denen ausgegangen
wird, sind nebst den allen Kristallographen vertrauten 26 Arten
von Kristallfformen die 14 Bravais’schen Raumgitter, und das Ziel,
die Veranschaulichung der Symmetrieverhiltnisse und geometrischen
Beziehungen der 230 Raumgruppen, soll dadurch erreicht werden,
daB die Gitterpunkte durch geeignete Kristallformen verbildlicht
werden. Schon Bravais ist diesen Weg z. T. gegangen, als er bei
seinem Versuch, die 14 Raumgitter den Symmetrieverhaltnissen
der 32 Kristallklassen anzupassen, verlangte, da die Gitterpunkte
etwa in Gestalt der fiir die betreffende Klasse charakteristischen
Kristalliform zu denken seien. Natiirlich werden die Gitterpunkte
im Modell, das eine bestimmte Raumgruppe veranschaulichen soll,
nur mit einerlei Kristallformen besetzt. Darin stimmt der hier vor-
liegende Versuch vollstindig mit Bravais’ Gedanke iiberein; er
unterscheidet sich dann aber von ihm in doppelter Hinsicht, Ein-
mal werden hier die Kristallformen nicht ausschlieBlich in [Parallel-
stellung mit den Gitterpunkten verbunden (denn dann blieben wir
beim Raumgitter), sondern sie erscheinen in mannigfaltigsten Stel-
lungen, jedoch immer so, daB ausgezeichnete Richtungen der Form
zu ausgezeichneten Richtungen des Komplexes werden. Die Orien-
tierung ist, wenn auch nicht parallel gleich, so doch gesetzmifig.
Der zweite Unterscheidungspunkt liegt darin, daB die Symmetrie
der Bausteine auch niedriger sein kann als die resultierende Sym-
metrie des Komplexes, wenngleich in der Ableitung iiberall das
Bestreben zum Ausdruck kommt, moglichst hochsymmetrische Ge-
bilde zu verwenden.

Rein mathematisch gesprochen handelt es sich also um die
Ermittlung von raumgitterartigen, fiir die 230 Raumsysteme cha-
rakteristischen Komplexen. Diese raumgitterartigen Komplexe sind
in der geometrischen Kristallographie von P. Niggli stark betont,
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nicht daB alle i{iberhaupt moglichen hervorgehoben und durch
Koordinatentripel definiert wéren, es gehort aber doch zum eigen-
tiimlichen Charakterzug der dort gewihlten Einzelbeschreibung der
230 Raumgruppen, daB immer und immer wieder auf solche Kom-
plexe aufmerksam gemacht wird. P. Niggli’s Buch ist daher vor-
ziiglichste Quelle fiir den nachstehenden Versuch.

Begreiflicherweise kann es sich nicht darum handeln, die 230
Komplexe bloB zu beschreiben und abzubilden; es miissen auch
ihre gegenseitigen genetischen Beziehungen betont werden. Das
genetische Moment war von jeher in der Kristallographie beliebt
und viel verwendet, sei es im Sinne des Aufbaues, sei es im Sinne
des Abbaues. Beide haben ihre Berechtigung; die Vollkommenheit
besteht in der Beherrschung beider. Im vorliegenden Fall scheint
der Abbau der gegebene Weg zu sein. Denn fiir jede Symmetrie-
klasse leuchten gewisse Strukturschemata, die symmorphen, un-
mittelbar ein, und es ist ein Leichtes, hieraus eine Menge anderer
Schemata dadurch abzuleiten, daB die Gitterpunkte in regelmaBiger
Verteilung mit kristallographisch deutbaren Teilflichnern jenes
Polyeders ersetzt werden, welches fiir ein symmorphes Struktur-
schema verwendet wurde.

Es ist liberaus reizvoll, unter diesem Gesichtspunkt die 230
Raumgruppen einmal durchzudenken. Natiirlich muBl es mit mdg-
lichst viel bildlichem Beiwerk geschehen, wenn es auch nicht nétig
ist, jeden gedanklichen Schritt durch Figuren oder Modelle zu er-
lautern. Die zahlreichen Figuren, die den folgenden Ausfithrungen
beigegeben sind, erscheinen mir als ein Mindestmall, und es ist
rein duBeren Griinden zuzuschreiben, wenn sie nicht um ein Be-
deutendes vermehrt sind. Da die bildliche Darstellung von raum-
gitterartigen Verhaltnissen manchen Schwierigkeiten begegnet, ist
es kaum moglich, alles nach dem gleichen Schema durchzufiihren.
Dies mag die eine und andere Figur entschuldigen.

Wie schon gesagt, schlieBt sich die Darstellung eng an die
,geometrische Kristallographie des Diskontinuums‘* von P. Niggli
an. Immerhin lassen sich mehrfache Abweichungen nicht umgehen.
Vor allem ist die Reihenfolge wesentlich anders wie in der ,ana-
lytisch-geometrischen Darstellung‘* der einzelnen Raumgruppen.
Es hiangt dies mit der hier gewihlten genetischen Darstellungs-
weise zusammen. Auch P. Niggli weicht von jenem durch die
Schonflies’sche Numerierung festgelegten Gang in seinem ,,Schema
der speziellen Ableitung aller moglichen Raumgruppen‘‘ vielfach
ab. Zur Erleichterung der Auffindung einer bestimmten Raum-
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gruppe sind am Rand die Raumgruppen entsprechend der Reihen-
folge ihrer Ableitung fortlaufend numeriert, und am Schlufl werden
in einer eigenen Tabelle (pag. 51) die Raumgruppensymbole der
entsprechenden Nummer gegeniibergestellt.

Bei Raumgruppen, die sich in mehrfacher Weisc veranschau-
lichen lassen, wird regelmifBiig jene vorgezogen, fiir die P. Niggli
die Koordinatendarstellung gegeben hat. Die verschiedenen Ver-
anschaulichungen unterscheiden sich iibrigens nur durch eine andere
Wahl des Nullpunktes und damit verbundene abweichende Zu-
sammenfassung einzelner Flichen zu einer Form. Es gehoért zum
Anregendsten, die Symmetrieverhiltnisse von Strukturen, die sich
aus Analogie zu andern ergeben miifiten, etwa mit Nigglis Haupt-
tabelle I (l. c., pag. 125—131) zu deuten. Diesbeziigliche Hinweise
und Bemerkungen sind im Text zahlreich eingestreut. Da und dort
wird das eine oder andere Beispiel sogar mit einer gewissen Aus-
fithrlichkeit behandelt. :

_ Auf die Symmetrieverhiltnisse der einzelnen Schemata wird

im allgemeinen nicht eingegangen. Dem aufmerksamen Betrachter
der Figuren zwingen sie sich unmittelbar auf - sicherlich viel
leichter als bei den iiblichen Kugelmodellen. Das Zuriicktreten
des Symmetriemoments liBt eine gewisse Analogie erblicken zur
Naumann’schen Behandlungsart der Kristallographie. An und fiir
sich ist das freilich eine Einseitigkeit, ja Unvollkommenheit, aber
es ist dies mit dem gesteckten Ziel mehr oder weniger gegeben.

Anschauliche Darstellung der 230 Raumgruppen.

I. Trikline Abteilung.
A Hemiedrische Klasse. C,.

Ein anschauliches und allgemeinstes Strukturschema triklin-
hemiedrischer Symmetrie ergibt sich in Ubereinstimmung mit den
Bravais’schen ldeen, wenn den einzelnen Gitterpunkten ecines be-
liebigen') Raumgitters je ein asymmetrisches Pedion,?) also jene
Kristallform zugeordnet wird, welche fiir diese Symmetrieklasse
eigentiimlich ist. In Fig. I/ ist dieses Pedion durch den von den
Achsenebenen erzeugten Ausschnitt der an und fiir sich unbe-

) Geometrisch gesprochen ist jedes der 14 Raumgitter zuldssig, physikalisch
kommt aber nur das trikline — allgemein ein solches in Frage, welches fiir die
betreffende Abteilung charakteristisch ist. .

%) Bekanntlich kommt das Pedion als Kristaliform in zehn Symmetrieklassen

vor. In jeder einzelnen ist es durch eine besondere Flichensymmetrie ausge-
zeichnet.
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grenzten Pedionsfliche dargestellt. Der unregelmiBig dreiseitige
UmriB des Flachenstiickes soll die Asymmetrie des Pedions be-
sonders hervorheben. DaB die Pedien zueinander nur parallel orien-
tiert sind, liegt darin begriindet, daB dem Komplex einzig Trans-
lationen als Deckoperationen zukommen diirfen. Diese Trans-
lationen haben dann aber zur weiteren Folge, daB alle Pedien von
den ihnen zugeordneten Gitterpunkten gleichen Abstand besitzen.

Fig. 13) &, Fig. 2. G,

Welches im iibrigen Lage und Orientierung des Pedions sein
mogen, der Komplex ist immer von derselben Art; Spezialfille,
die durch irgendwelche besonderen Merkmale hervorstechen, sind
ausgeschlossen. Es gibt daher nur ein Raumsystem triklin-hemi-
edrischer Symmetrie. Dasselbe wird mit €, bezeichnet und ist
symmorph, d. h. die Symmetrie des Komplexes fallt mit der Sym-
metrie der einzelnen Bausteine iiberein.

B. Holoedrische Klasse. C..

Auch der triklinen Holoedrie kommt nur ein einziges, eben-
falls symmorphes Raumsystem zu. Es wird mit G; bezeichnet und
kann bildlich etwa dadurch charakterisiert werden, daB mit jedem
Gitterpunkt des zu Grunde liegenden triklinen Raumgitters ein
Pinakoid verbunden wird. Die beiden Flichen dieses Pinakoides
sind einzeln genommen asymmetrisch, stehen aber gegenseitig im
Verhiltnis der Inversion. Jeder Gitterpunkt ist also Zentrum der
Symmetrie. Symmetriezentren sind iibrigens auch die sieben fol-
genden Punktlagen:

ool o ol ool flo4 11 o1l Its ol [+ + 411
Alle diese Beziehungen sind aus Fig. 2 schoén ersichtlich.

Wenn eine der Pinakoidflichen durch ein Symmetriezentrum
geht, so riickt ‘auch die zweite Fliche des nidmlichen Pinakoides,

%) Die Erklarung zu den Figuren ist im Text vorab an jener Stelle zu suchen,
wo die betreffende Figurnummer kursiv gedruckt ist.
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oder aber eine mit ihr gleichartige von einem anderen Pinakoid in
diesen ndmlichen Punkt herein, und durch dieses Zusammenfallen
der zwei inversen Flichen entsteht eine einzige Fliache zentro-
symmetrischer Qualitit. Wihrend es nun im allgemeinen Fall auf
jedes Parallelepiped des Raumgitters zwei =zueinander inverse,
asymmetrische Flichen, also ein Pinakoid trifft, enthalt in den
acht Sonderfillen jedes Parallelepiped nur ein Flachenstiick, aber
nicht mehr von asymmetrischer, sondern nunmehr zentrosymmetri-
scher Beschaffenheit. Sagt man von einem Komplex der ersten Art,
er sei zweizdhlig, so heiBen die acht anderen €inzidhlig.

Die Erscheinung, daB durch Verminderung der Zihligkeit die
Symmetrie der Fliche erhdht wird, gilt allgemein, doch sollen
solche spezielle Gitter hier nicht weiter interessieren.

I1. Monokline Abteilung.

A. Hemiedrische Klasse. C,.
Da es zwei Arten von monoklinen Raumgittern gibt, die als
pinakoidal und basiszentriert gewihlt werden koénnen, lassen sich
sofort zwei symmorphe Raumsysteme konstruieren. Es sind zu

Flg 3. @sl. Flg 4. ng.

dem Zweck die Gitterpunkte einfach mit identischen und parallel
gestellten Domen, d. h, den fiir die monokline Hemiedrie cha-
rakteristischen Formen in Beziehung zu bringen. Fig. 3 zeigt den
auf das pinakoidale Gitter bezogenen Fall und entspricht dem
Raumsystem €,t. Das analog besetzte basiszentrierte Gitter, dessen
Abbildung iiberfliissig erscheint, wiirde das Raumsystem €} ver-
anschaulichen.

Weitere Strukturschemata ergeben sich dadurch, daf die beiden
Flichen des Domas auseinandergezogen und mit verschiedenen
Gitterpunkten verbunden werden. Fig. 4 zeigt eine Anordnungs-
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moglichkeit im pinakoidalen Gitter: parallel zu {001} alternieren
Netzebenen, deren Gitterpunkte je durch rechte Domenhilften be-
setzt sind, mit solchen, denen nur linke Domenhilften angehéren
(€,2). Ganz dhnlich kénnte man mit dem basiszentrierten Gitter
verfahren und bekime ein Bild fiir die Symmetrieverhiltnisse des
Raumsystemes @,¢.

Durch diese Besetzung des pinakoidalen und basiszentrierten
Giitters, das modellartig mit festen Dimensionen cin fiir alle Mal
als gegeben zu denken ist, hat sich die Translationskonstante der
c-Richtung verdoppelt. Solchen Verdoppelungen, allgemein Ver-
vielfachungen der urspriinglichen Translationskonstante, werden wir
haufig begegnen. Wir driicken dies dann gelegentlich so aus, daf}
wir sagen, die a-, b-, c-Achse sei verdoppelt, verdreifacht u.s.w.
worden.

Die beiden zuletzt heschriebenen Anordnungen von Ebenen-
scgmenten in den monoklinen Raumgittern sind nur zwei willkiirlich
gewihlte Fialle aus einer unitbersehbaren Mannigfaltigkeit; die
Domenhalften in den beiden Raumgittern hitten namlich auch
anders verteilt werden konnen, ohne daB dadurch der Symmetrie-
charakter der Anordnung prinzipiell verindert worden ware. Her-
vorgehoben sei besonders, dafl ein basiszentriertes Gitter, dessen
,Eckpunkte* durchgehends mit den einen Domenhéalften und dessen
,,Basismitten‘‘ ebenso regelmidfBig mit den anderen Domenhalften
besetzt wiirden, einen mit €2 identischen Komplex ergibt — von
Stellung und Lage des Nullpunktes abgesehen.

B. Hemimorphe Klasse. C,.

Charakteristische Form ist das Sphenoid, das in Verkniupfung
mit dem pinakoidalen oder basiszentrierten Gitter die Verbildlichung
der beiden symmorphen Raumgruppen ergibt. Nach dem unter
Nr. 1,2, 3 und 4 Gesagten ?) bediirfen sie keiner weiteren Erklarung
mehr. Auch Figuren sind iiberfliissig. DaBl die Digyre des Sphenoids
der b-Richtung des QGitters parallel sein muB, ist selbstverstand-
lich. Bemerkt sei bloB, daB sich ¢,' vom pinakoidalen, €,*> vom
basiszentrierten Gitter ableitet.

Fiir weitere Komplexe ist in Analogie zur Hemiedrie das
Sphenoid auseinanderzuziehen. Wurde im Falle der Hemiedrie die
Spiegelebene des Domas zu einer Gleitspiegelebene, so tritt in der
Hemimorphie an Stelle der Digyre des Sphenoides eine Diheliko-

4) Diese und die weiteren No.-Verweise beziehen sich auf die kleinen, am
Rand stehenden Zahlen.
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gyre. Die Anordnung der beiden Sphenoidhilften hat daher lings
Geraden zu erfolgen, die der b-Achse parallel sind, dhnlich wie bei
G2 und ¢t die Domenhidlften lings Geraden gereiht waren, die
zur b-Achse senkrecht standen. — Es gibt nur einen Komplex: be-
zogen auf das gewdhnliche pinakoidale, monokline Raumgitter, liegt
zwischen je zwei auf der b-Achse senkrecht stehenden und mit
einerlei Sphenocidhilften besetzten Netzebenen immer eine weitere
Netzebene, auf der lauter Sphenoidhilften der anderen Stellung
sind. Fig. 5 zeigt diesen Fall. Das Symbol ist G.2.

Eine Besetzung des basiszentrierten Gitters etwa in der Weise,
daB die Eckpunkte der Parallelepipede mit der einen, die Basis-
zentren mit den anderen Sphenoidhilften in Beziehung gebracht
werden, ist mit G,2 identisch.

Fig. 5. G,2 Fig. 6. G.z5.

C. Holovedrische Klasse. Co.

Ein vierflichiges Prisma (vierter Stellung) ist allgemeine Form.
Wie es in den beiden symmorphen Raumsystemen mit den Gitter-
punkten zu verbinden ist, braucht nicht niher gesagt zu werden.
Das pinakoidale Gitter ergibt ¢,,1, das basiszentrierte G.°.

Das Prisma laBt sich, allgemein gesprochen, in zwei spiegel-
bildliche Sphenoide oder Pinakoide, auch in zwei digyrisch ver-
drehte Domen und schlieBlich in vier Pedien auflésen. Diese
Formen sind nun mit den beiden Raumgittern in Beziehung zu
bringen. Eine nidhere Priiffung zeigt aber alsbald, wie sich dies
alles auf den Fall der Pinakoide zuriickfithren l4Bt.

Werden in Fig. 5 die Sphenoidhalften dadurch zu Pinakoiden
erginzt, da die Gitterpunkte den Charakter von Symmetriezentren

9

10, 11

erhalten, so ergibt sich der fiur @2 charakteristische Komplex.,,

Durch den nadmlichen ProzeBl der Einfithrung des Symmetriezentrums
werden auch die einzelnen Flichen des in Fig. 4 dargestellten
Komplexes zu Pinakoiden, und es entsteht so eine Darstellung des

Raumsystemes G,,*. Wie durch den Vergleich der Fig. 5 mit der 4

Fig. 4 deutlich wird, liegt das Unterscheidende der beiden Raum-
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systeme G2 und Gy* darin, da die Wechsellagerung der mit den
einen oder den anderen PPinakoidarten besetzten Netzebenen hier
nach (001), dort nach (010) statthat.

Den zwei iibrigen Komplexen vom Symmetriecharakter der
monoklinen Holoedrie liegt das basiszentrierte Gitter zu Grunde,
und zwar ergibt sich die Veranschaulichung von G,5 wenn die
,Eckpunkte’‘ mit dem einen, die , Basiszentren* mit dem anderen
der spiegelbildlichen Pinakoide besetzt werden (Fig. 6). Es ver-
dient besondere Beachtung, dafi im Gegensatz zu analogen Be-
setzungen in den Klassen C, und C, Fig. 6 einen wirklich neuen
Fall darstellt und weder mit @.,% noch mit €,,* identisch ist. In
P. Niggli’s Geometr. Kristallographie des Diskontinuums istiibrigens
dieses Raumsystem so gestellt, daB die {100}-Ebenen zentriert
werden.

Das letzte der hierhergehérigen Raumsystemen — §,,6 — 4Bt
sich so darstellen, daB auch den Gitterpunkten von G* der Cha-
rakter von Symmetriezentren beigelegt wird. @, ist das basis-
zentrierte Analogon zu Gyt

I1l. Rhombische Abteilung.
A. Hemimorphe Klasse. C,,.

Unter den viererlei rhombischen Raumgittern, die als einfaches
(= pinakoidales), einfach flichenzentriertes, innenzentriertes und
allseits flachenzentriertes unterschieden werden, nimmt das zweit-
genannte in der Hemimorphie insofern eine Ausnahmestellung ein,
als die zentrierte Flache zur Digyrenrichtung sowohl parallel wie
senkrecht sein kann. Ersteres trifft bei der iiblichen Stellung fiir
das vordere und fiir das seitliche Pinakoid zu. Prinzipielle Sym-
metrieunterschiede zwischen diesen beiden Stellungen ergeben sich
indessen keine, so daB im folgenden rein willkiirlich, aber konse-
quent das (010)-zentrierte bevorzugt werden soll. Im ganzen sind
also fiinf Raumgitter zu beriicksichtigen.

Typische Kristallform der Hemimorphie ist die rhombische
Pyramide. Mit ihr bilden sich die fiinf symmorphen Raumsysteme,
iiber die hier nichts weiteres zu sagen ist, als dal

@, dem einfachen,

@,.1t dem basiszentrierten,

€52+ dem (010)-zentrierten,

€,,2° dem innenzentrierten, ,

@13 dem allseitig flichenzentrierten Raumgitter entspricht.
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Die rhombische Pyramide kann aufgefaB8t werden als Komplex
1. zweier nach {100}, bezw. nach {010} spiegelbildlich gestellter
. monokliner Domen,
zweier monokliner Sphenoide mit vertikal gerichteter Digyre,
die nach {100} und zugleich nach {010} spiegelbildlich
orientiert sind,

3. von vier Pedien.

Es ist nun zu untersuchen, wie diese ,Teilflichner* der rhom-
bischen Pyramide in den einzelnen Qittern unterzubringen sind.

o

Fiir das einfache Gitter, mit dem begonnen werden soll, ist
die Unterscheidung der beiden Domen, wie man sich leicht iiber-
zeugt, fiir das Wesen der Sache belanglos. In Ubereinstimmung
mit der Darstellung bei P. Niggli seien die beiden Domen gewdihlt,
deren eigene Symmetrieebene ]010} ist und die dadurch aus der
rhombischen Pyramide hervorgehen, daBl diese nmach [100; halbiert
wird. Besetzt man jetzt irgend eine der zu {001} parallelen Netz-
ebenen mit den Domen der einen Stellung, die unmittelbar dariiber
oder darunter liegende Netzebene mit den Domen der anderen
Stellung, so erhdlt man ein Strukturmodell des Raumsystems @, 2.
Die TranslationsgroBie der c-Achse ist dem wurspriinglichen Gitter
gegeniiber verdoppelt. Der Wechsel der verschieden besetzten
(001) - Ebenen entspricht ganz demjenigen, der bei den Raum-
systemen @, und G,,* ausfithrlich beschrieben und z. T. (Fig. 4)
abgebildet wurde.

Wollte man Domen in der Weise anordnen, daff die (100)-
oder (010)-Ebenen abwechselnd nur mit der einen oder andern
Art von Domen besetzt wiren, so dafl sich also die Verdoppelung
der a- oder b-Achse ergeben wiirde, so erhielte man, von der Lage
des Nullpunktes abgesehen, wieder @,1.

In §,? sind die oben erwihnten zweierlei Sphenoide so an-
geordnet, wie in @,2 die beiden Arten Domen. Eine Figur ist
ebensowenig erforderlich wie dort.

Im Gegensatz zu den Domen lassen sich nun die Sphenoide
auch derart anordnen, daB das Qitter nach der a- oder b-Achse
verdoppelt erscheint. Im Anschluff an die Darstellung bei P. Niggli
ist dic b-Achse bevorzugt. Das Raumsystem ist ,*. Die bildliche
Darstellung ergibe etwelche Beziehung zu Fig. 5, indem wie dort
parallel gleich besetzte (010)-Ebenen mit solchen alternieren, deren
Gitterpunkte die komplementire Form tragen.

SchiieBlich lassen sich die Sphenoide noch in der Weise im
Raumgitter einordnen, daB die TranslationsgroBe nach zwei Achsen-

n
-
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richtungen verdoppelt wird. Im Schnittpunkt dieser Achsen mag
das eine Sphenoid angebracht werden; benachbart dazu liegen auf
den beiden verdoppelten Achsen die zu jenem Sphenoid spiegel-
bildlichen Sphenoide. Denkbar sind drei Fille. Ein wirklich neuer
Symmetriecharakter kommt aber nur einem derselben zu, indem
die (a, b)-Verdoppelung auf den schon behandelten symmorphen
Fall G,* (siehe No. 18) zuriickfiihrt und die (b, c)-Verdoppelung
von der (a,c)-Verdoppelung nur stellungsverschieden ist. Fig. 7
erliutert in Ubereinstimmung mit P. Niggli’s Darstellung die
(b, ¢)-Verdoppelung. Es ist sehr schon zu sehen, wie sich die vier
Flichen zweier ibereinander oder nebeneinander gestellter
Sphenoide zu einer rhombischen Pyramide erginzen (GC.'%).

};;_
/] T b
V7 Z
e

Fig. 7. G.p'n Fig. 8. Gu%

Eine charakteristis ..« Anordnung von Pedien (Fig. 8) ergibt
das Raumsystem G,5. .kt man zwei iibereinander liegende Pedien
zu einem Sphenoid zuscmmen, so daB die Vérdoppelung nach der
c-Achse verschwindet, > erhidlt man die schon besprochene Ver-
anschaulichung des Raumsystems G4 (cfr. No. 23). Ubrigens
weicht die Aufstellung der Fig. 8 von der bei P. Niggli adoptierten
insofern ab, als dort eine Verdoppelung nach der ¢- und a-Achse
gewihlt wurde, hier aber die schon bei Fig. 7 gebrauchte Ver-
doppelung der b- und c-Achse vorgezogen wurde.

Ftwas mannigfaltiger als im pinakoidalen Gitter sind die An-
ordnungsmoglichkeiten im basiszentrierten. Da das Elementar-
parallelepiped zwei gleichwertige Punktlagen umfaBt, so ist es an
und fiir sich méoglich, einen Komplex hierher gehdriger Symmetrie
dadurch zu gewinnen, daB ohne Vervielfachung irgendwelcher
Achsenrichtung , Eck- und Mittelpunkt mit zwei der oben ge-
nannten spiegelbildlich orientierten zweiflachigen Teilkorpern der



Kristallpolyeder in der Lehre der regelmidBigen Punktsysteme. 13

rhombischen Pyramide besetzt werden (vgl. €,5 Fig. 6). Einen
neuen Symmetriefall erhidlt man indessen nur bei Verwendung von
Sphenoiden der beiderlei Stellungen. Es ergibt dies das Raum-
system @,5. Domen fiihren, wie man sich leicht iiberzeugt, wieder- 4
um auf G,,' zuriick.

Fig. 9. G2 Fig. 10. G,y

Die Ableitung der Raumgruppen G,1? und G, ist analog der- o7 3
jenigen von ¢,2 und G,3. Wie dort, so sind auch hier die Ebenen
parallel zu 1001} abwechselnd mit Formen der einen, bezw. der
andern Stellung besetzt. Bei G,22 sind es Domen, bei €23 Sphenoide.

Eine Mittelstellung zwischen €.~ und G,2% nimmt C,.2! ein, in- o
dem hier sowohl iibereinander lings der c-Achsenrichtung, wie auch
in den (001)-Netzebenen selber Sphenoide beiderlei Stellungen
miteinander alternieren, so wie es Fig. 9 zeigt. Dieselbe Anord-
nung, mit Domen vorgenommen, ist eine Veranschaulichung des
Raumsystems ,.22, das wir, unter anderem Gesichtspunkt be-
trachtet, weiter unten besprechen werden.

Ein Pedienkomplex (Fig. 70) ist dem Raumsystem G, eigen- 3
titmlich. Zu 6,5 steht er in demselben Verhidltnis wie etwa ¢,.5 zu
@4, indem je zwei Fliachen, welche in ¢, ein Sphenoid bilden,
nun in der Digyrenrichtung auseinandergezogen sind, so dafl zwei
verschiedenartig besetzte (001)-Ebenen miteinander alternieren. Die
verschiedenen Fille, die sich einstellen zu miissen scheinen, sind nur
stellungsverschieden.

Nicht symmorphe Raumgruppen leiten sich auch mit Hilfe des
fiir die Hemimorphie charakteristischen, (010)-zentrierten Raum-
gitters und zwar folgende ab.

Zunichst lassen sich Eck- und Mittelpunkte mit entgegen-
gesetzten Domen verbinden, die nach 010} nicht selber sym-
metrisch sind. Man hat so ein Bild fiir G,7 (gegeniiber der Auf-
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stellung bei P. Niggli sind die a- und b-Achse vertauscht). Die
analoge Verwendung von Sphenoiden veranschaulicht das Raum-
system @,¢5. In diesen beiden Strukturschemata sind alle (010)-
Netzebenen parallel gleich. Es ist nun aber auch méglich, daB diese
Ebenen bloB abwechselnd ecinander identisch sind, indem auf den
dazwischen gelegenen Ebenen die Sphenoide, mit denen die Eck-
und Mittelpunkte in Beziehung gebracht werden, gerade entgegen-
gesetzter Stellung sind wie bei den anderen Ebenen. Es resultiert
so Fig. 11 als Bild fiir das Raumsystem G,,%.

Fig. 11. G2z,

Statt Eck- und Mittelpunkte irgend einer (010)-Netzebene ver-
schieden zu besetzen, kénnte man ihnen gleiche Sphenoide (nicht
aber gleiche Domen) zuordnen, dafiir aber die entsprechenden
Punkte der beiden benachbarten Ebenen mit den entgegengesetzten
Sphenoiden in Beziehung bringen. Das entstehende Schema steht
in engster Beziehung zu Fig. 11, indem das Unterscheidende blof}
darin liegt, daB} jetzt, wie es die Ableitung erfordert, alle Punkte
einer Ebene (010) unter sich parallel gleich sind. Das zugehérige
Raumsystem wird mit G,1% symbolisiert.

Raumgruppen, deren bildliche Veranschaulichung auf ein innen-
zentriertes Gitter bezogen werden kann, gibt es auBer der sym-
morphen Raumgruppe (€,.2, siche obenNo.19) nur noch zwei, von
denen die erstere, €,1°, dadurch definiert ist, daB die Eckpunkte
und Raummitten mit Sphenoiden — Domen fithren auf €,,7 zuriick
— spiegelbildlicher Art besetzt sind, die andere aber, §,1%, zum
,Typus mit sogen. Diamantgittern’* gehort. Zu ihrer Darstellung
benétigt man acht Zellen des innenzentrierten Gitters, dessen
Punkte zu Triagern von Pedien werden. Die Pedien zweier uber-
einanderliegender Gitterpunkte erginzen sich zu einem Sphenoid.
Die Pedien der Mittelpunkte ergeben das Sphenoid der einen, die-
jenigen der Eckpunkte das der anderen Art. Uberdies erscheinen
diese Sphenoide auf benachbarten c-Richtungen in verschiedener
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Weise auseinandergezogen. Jenes Pedion, welches auf der einen
c-Richtung unten liegt, ist auf der benachbarten c-Achsenrichtung
mit dem hoher gelegenen Gitterpunkt verkniipft. Alles dies wird
aus Fig. 12 ersichtlich. Der groéBeren Anschaulichkeit wegen sind
nur die nicht parallel gleichen Punkte mit Pedien in Beziehung
gebracht; der iibrige Teil des Parallelepipeds ist, um Uberschnei-
dungen nicht unnétig zu hiufen, blof skizziert angedeutet.

Flg 12. Gyl

SchlieBlich 148t sich noch eine neue Raumgruppe — €, — 5
bilden, wenn im allseitig flichenzentrierten Gitter Sphenoide so
~angeordnet werden, daB8 z. B. auf den abwechselnden (010)-Ebenen
nur Sphenoide der einen Art liegen. Besetzung von Eckpunkt uind
Basismitte mit Sphenoiden der einen Stellung bei gleichzeitiger
Besetzung der Seitenflichen durch Sphenoide der anderen Stellung
ergibt wiederum @,2%. Werden statt der Sphenoide von G, in
analoger Weise Domen verwendet, so ergibt sich abermals @,,15.

B. Hemiedrische Klasse. V.

Der Umstand, daBf in der Hemiedrie keine singulidren Rich-
tungen auftreten, hat zur Folge, daB zwischen (001)-zentriertem
und (010)-zentriertem Gitter nicht unterschieden werden muB. Wir
haben demnach nurmehr vier symmorphe Raumsysteme und zwar
entspricht

B1 dem einfachen, 38
B¢ dem basiszentrierten, 39
B8 dem innenzentrierten, 40

Mineralog.-petrograph. Mittlg., Bd. V, Heft 1, 1925 2
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P dem allseitig flichenzentrierten Raumgitter. Wegen der
Symmorphie sind an Stelle der Gitterpunkte rhombische Bisphenoide
zu denken.

Das rhombische Bisphenoid gewihrt nur zwei Zergliederungs-
moglichkeiten, entweder in zwei ,monokline*’, stellungsverschie-
dene Sphenoide, oder dann in vier Pedien. Ob die den Sphenoiden
charakteristische Digyre nach der kristallographischen a-, b- oder
c-Achse orientiert sei, ist im allgemeinen belanglos. Einzig beim
basiszentrierten Gitter zeichnet sich die c-Achse den beiden andern
gegeniber in gewisser Weise aus, in keinem Fall aber kann diese
Digyre mit jener Richtung zusammenfallen, nach welcher die Trans-
lationskonstante verdoppelt wird, weil sonst diese Richtung Digyre
und Dihelikogyre zugleich wire.

Mit dem einfachen Gitter steht einzig die Raumgruppe 22
in niherer Beziehung. Die abwechselnden (001)-Netzebenen werden
mit den beiderlei Sphenoiden besetzt, deren Digyre zur a- oder
b-Achse parallel ist. Die Translationskonstante in der c-Richtung
ist dem urspriinglichen Gitter gegeniiber verdoppelt.

Auf das basiszentrierte Gitter werden drei nicht symmorphe
Raumsysteme bezogen. Das erste, 33, wird dadurch veranschaulicht,
daB sich in den (001)-Ebenen, die alle unter sich parallel gleich
identisch sind, die stellungsverschiedenen Sphenoide mit zur c-
Richtung parallelen Digyren regelmaBig auf Eck- und Mittelpunkte
verteilen. Das zweite, 85 hat in den Mittelpunkten dieselben
Sphenoide wie in den Eckpunkten (Digyre z. B. parallel zur a-
Achse), besitzt aber alternierende (001)-Ebenen. Das dritte Raum-
system endlich, 8° nimmt den beiden andern gegeniiber eine Mittel-
stellung ein. In Eck- und Mittelpunkten sitzen wieder ungleiche
Sphenoide (mit horizontaler Digyre), es wechseln aber auch lings
der c-Richtung die Sphenoide miteinander ab.

Das innenzentrierte Gitter liefert keine nicht symmorphen
Raumsysteme, und das allseitic flichenzentrierte nur B+ Bei B¢
ist das Bisphenoid in Pedien aufgeldst. Die verschiedenen mog-
lichen Anordnungen sind bloB stellungsungleich (Fig. 13).

C. Holoedrische Klasse. V,.
Die Hauptform dieser Klasse, die rhombische Bipyramide, ist
zerteilbar in zwei Pyramiden, zwei Bisphenoide, zwei Prismen (von
monokliner Symmetrie), vier Domen, vier Sphenoide -und vier
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Pinakoide (alle drei von monokliner Symmetrie). Wegen des vor-
handenen Symmetriezentrums ist die Zerlegung in Pedien nicht zu
betrachten. Diese groBe Mannigfaltigkeit von Teilflichnern ist zu-
gleich mit der Vierzahl der Raumgitter die Veranlassung dafiir, daB
wir in dieser Symmetrieklasse die maximale Zahl von Raum-
systemen erreichen, die in einer Klasse iiberhaupt mdglich ist: 28.

Fig. 13. 04 Fig. 14. Bp'L,

Symmorphe Raumsysteme gibt es natiirlich nur vier, ent-
sprechend den vier Gittertypen. Einfaches Gitter hat %,!, basis-
zentriertes 3,19, innenzentriertes ¥,25, allseitig flachenzentrieries
B, 23,

Beginnen wir die Durchsicht der nicht symmorphen Komplexe
wiederum mit dem einfachen Gitter, so sind jene Anordnungen
am naheliegendsten, wo ibereinander die zweierlei Bisphenoide
oder Prismen (nicht mit vertikaler Digyre!) regelmiBig abwechseln.
Die zugehérigen Raumsysteme sind 93,2 und 9,5 Beide Raum-
systeme lassen sich {ibrigens auch in anderer Weise definieren.

Die Zweiflichner der eingangs stehenden Aufzihlung ergeben
mit dem einfachen Gitter holoedrische Strukturmodelle, wenn die
Translationskonstanten nach zwei Richtungen, z. B. nach der b-
und c-Achse, verdoppelt werden. Die Pinakoide liefern zwei Fille:
Pt wird durch Fig. 14 veranschaulicht (in der Darstellung Nigglis
mit Verdoppelung von a und b). Nun mdge ein Pinakoid einer
beliebigen (010)-Ebene nidher ins Auge gefaBt werden. Auf den
in ihm sich schneidenden b- und c-Richtungen hat es zwei mit ihm
ungleiche und auch unter sich verschiedene Pinakoide als Nachbarn.
Werden diese miteinander vertauscht, so ergibt sich eine Anord-
nung, welche das Raumsystem %,® darstellt. Der eigentliche innere
Unterschied zwischen $,1' und %, ist der, daB parallel zu {010}
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dort Spiegelebenen, hier aber bloB Gleitspiegelebenen vorhanden
sind. — Eine andere Zusammenfassung der Flidchen wiirde iibrigens
in beiden Fallen auf vier Sphenoide, bei %, iiberdies auf vier
Domen fiithren.

Auch Bisphenoide kénnen in einem solchen Gitter derart an-
geordnet werden, daB holoedrische Symmetrie resultiert. Der ent-
stehende Komplex mag am besten mit Fig. 7 verglichen werden.
Es sind einzig an Stelle der dortigen Sphenoide Bisphenocide zu
setzen. Sie wechseln mithin sowohl nebeneinander wie auch iiber-
einander regelmiBig ab (B,2).

GewissermaBen verachtfacht ist das Gitter, welches der Fig. 75
(2B,2") zu Grunde liegt. Die Figur selber zeigt im wesentlichen nur
einen Achtelsteilraum. In jedem Gitterpunkt sind Pinakoide an-
gebracht. Thre Anordnung ist sehr anschaulich. Es bilden nidmlich

Fig. 15. Ba?".

immer zwei benachbarte Pinakoide, die einer Achsenrichtung an-
gehoren, ein monoklines Prisma mit zur betreffenden Achsenrich-
tung senkrechter Digyre. Damit ist die Orientierung — von
zyklischer Vertauschungsmoglichkeit der Achsen abgesehen — ein-
deutig festgelegt.

Die Basiszentrierung umfaBt wie in der Hemimorphie die
grofite Mannigfaltigkeit: elf nicht symmorphe Raumgruppen. Auf
der Hand liegen folgende Fille, wo in Eck- und Mittelpunkt je
zwei spiegelbildliche Vierflachner sitzen. Diese Vierflachner sind
bei
8,12 Pyramiden mit vertikaler Digyre,

B+ Bisphenoide,

B;,9 Prismen mit vertikaler Digyre,

R;,7 Prismen mit horizontaler Digyre.

Bei Verdoppelung der primitiven c-Achse sind je vier Punkte
zu besetzen. Zwei- und Vierflichner kommen in Betracht. Aus
B, leitet man B¢ (Fig. 16) und By (Fig. 17) ab, indem man die
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Prismen lings der c-Achse zu Pinakoiden auseinanderzieht, unter
Beriicksichtigung der beiden Maoglichkeiten, die sich fiir die c-
Richtung der , Basiszentren‘‘ einstellen, wenn die Anordnung auf
der c-Richtung der , ,Eckpunkte‘‘ fest gegeben ist. Aus Fig. 17

folgt dann das Schema des Raumsystems 9,16 durch Vertauschung 6

von oberer Basismitte mit dem ,,Eckpinakoid‘* der niamlichen Netz-
ebene. Ubrigens steht dieser neue Komplex in naher Beziehung zu

Fig. 16. TS, Fig. 17. Bp't,

B;°. LiaBt man nimlich die beiden (001)-Netzebenen durch Ver-
schiebung lings der c-Achse wieder zusammenfallen, so entsteht
gerade das fiir 8,? charakteristische Modell.

Bisphenoid und Prisma liefern je zwei Typen: In jeder Basis-
ebene sind nur Figuren einerlei Stellung, deren Spiegelbilder in
der nichstbenachbarten, darunter oder dariiber gelegenen Ebene
sind. Bisphenoide hat man bei 3,2, Prismen (mit horizontaler
Digyre) bei B,17. Aus 8,2 kommt durch Vertauschung der Bi-
sphenoide der Basismitten 2,26, wihrend eine {bereinstimmende
Anordnung der Prismen mit vertikaler Digyre %, erzeugt.

Auf innenzentriertes Gitter, wobei Eckpunkte und Mittel-
punkte mit komplementiren Formen zu besetzen sind, lassen sich
vorab £,2 und %B,!2 beziehen, entsprechend spiegelbildlichen Bi-

65
66
67

68, 69

sphenoiden im ersten, bezw. Prismen im anderen Fall. Bei letzteren

wird selbstverstindlich die Unterscheidung der Digyrenlage be-
langlos.

B2+ ist wieder vom Diamantgittertypus. Zur Darstellung
werden acht Zellen des innenzentrierten Gitters bendtigt. Die
Gitterpunkte sind alle mit Sphenoiden gleicher Digyrenrichtung
zu besetzen. In Fig. 18, die dieses Symmetrieschema darstellt, sind
der Deutlichkeit wegen, dhnlich wie bei Fig. 12, die vordern

70
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Kanten des Parallelepipeds z. T. weggelassen. Auch wurden keine
Sphenoide eingezeichnet, welche sich aus den anderen durch bloBe
Translation von der GroBe a, b, c herleiten lassen. Mit Fig. 12

N

< —% f

Fig. 18. Lx24,

sind nur wenig Analogien vorhanden, schon aus dem einfachen
Grund, weil in Fig. 18 sowohl ,obere‘* wie ,untere‘ Flichen auf-

treten (Bipyramiden), wihrend in Fig. 12 nur ,obere‘’ vorhanden
sind.

A7 _ Was
g_%_ Z |

Fig. 19. Bp's. Fig. 20.

<&

Im allseitig flachenzentrierten Gitter sind am naheliegendsten
die Anordnungen von Bisphenoiden und Prismen, indem irgend
zwei der Gitterpunkte mit der einen Form, die anderen zwei mit
ihrem Spiegelbild verbunden werden. Bisphenoide haben wir bei

7, 72 B2, Prismen bei $,2¢ (Fig. 19). Beachtung verdient der Umstand,
sdaB die Digyre des Prismas jener Seitenebene des Parallelepipeds
parallel liauft, welche die identischen Formen enthilt.

LBy, 10,

~
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Auch mit Pinakoiden 148t sich auskommen und zwar in zwei-
facher Weise. Die eine Anordnung ist durch Fig. 20 (8,°) wieder-
gegeben, die andere folgt hieraus dadurch, da die Pinakoide von
Basismitte und hinterer Flichenmitte miteinander vertauscht werden
(%,2%). Es ergidnzt sich dann das Pinakoid der hintern Ecke mit
irgend einem Seitenmitten-Pinakoid zu einem monoklinen Prisma,
dessen Digyre gerade dieser Ebene angehort.

- IV. Hexagonale Abteilung.

Das basiszentrierte rhombische Raumgitter geht bei geeigneter
Deformation in das sogen. hexagonale Raumgitter iiber. Struk-
turen, welche mit diesem Raumgitter im Zusammenhang stehen,
finden daher an dieser Stelle ihre passende Besprechung.

Teilweise analogen Charakter wie das hexagonale Gitter hat
noch ein zweites, das in der monoklinen und rhombischen Abtei-
lung nicht vorgebildet ist, sondern sich direkt vom triklinen Raum-
gitter herleitet. Aus diesem geht es dadurch hervor, daB3 alle
primitiven Translationen unter sich gleich werden, ebenso wie die
drei Winkel, welche ihre Richtungen miteinander bilden. Es wird
rhomboedrisches Raumgitter genannt. Genetisch bedeutet es ein
Mittelglied, einen Ubergangspunkt in der Entwicklung, der seinen
AbschluB erst im kubischen System erreicht, wiahrend das hexa-
gonale Gitter bereits den Endpunkt einer Reihe darstellt.

Die Unterteilung des hexagonalen Systems ist im Lehrgebiude
der Kristallographie stark umstritten. Wihrend die einen vom hexa-
gonalen System schlechthin sprechen und es in 12 koordinierte
Klassen gliedern, zichen andere eine Zweiteilung in zwei eigene
Systeme vor, welche mit den fiinf iibrigen Systemen als hexagonales
und trigonales voéllig ranggleich sind. Dadurch aber, daB dem
erstern bald sieben, bald nur fiinf Klassen zugerechnet werden,
erhellt sofort das Ungeniigende und Willkiirliche aller dieser Ab-
grenzungen.

Strukturell ist die Sachlage viel klarer. Die fiinf Klassen,
denen eine Hexagyroide oder eine Trigyre ohne dazu senkrechte
Symmetrieebene als Hauptachse zukommt, bilden insofern eine
genau umschriebene Einheit, als ihnen strukturelt sowohl das hexa-
gonale wie das rhomboedrische Raumgitter zu Grunde liegt. Thnen
sind dann die fiinf Klassen mit Hexagyre und rein hexagonaler
Struktur gegeniiberzustellen. Zwischen beiden stehen die oben noch
ausgeschlossenen Klassen, auf deren Trigyvre eine Symmetrieebene
senkrecht steht. Sie sollen, da sie nur auf hexagonales Gitter be-
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zogen werden koénnen, in der folgenden Darstellung den Uber-
gang bilden von den fiinf trigonal-rhomboedrischen Klassen zu den
fiinf eigentlich hexagonalen Klassen.

IV,. Trigonal-rhomboedrische Abteilung.
A, Tetartoedrische Klasse. C,.

Allgemeine Form ist die trigonale Pyramide dritter Stellung.

Indem solche unter sich identische Pyramiden mit den Gitter-
punkten des hexagonalen und rhomboedrischen Raumgitters ver-
bunden werden, ergeben sich die Strukturschemata der beiden

5 symmorphen Raumsysteme €' (hexagonales Gitter, vergl. auch
76 Fig. 21) und @;* (rhomboedrisches Gitter). Nicht symmorphe Raum-
7, 18 systeme gibt es zwei, €2 und @3, die sich nur dadurch unter-
scheiden, dafl die Trigyren bei 6,2 linksgewundene, bei &,* rechts-
gewundene Schraubenachsen sind. Bildlich kommt dies sehr an-
schaulich zum Ausdruck, wenn die trigonale Pyramide in drei,

S <l
S
| L — [t
A
== =
Fig. 21. G, Fig. 22. (4% Fig. 23. ©,%

nach MaBgabe von Fig. 21 mit den Zahlen 1, 2, 3 numerierte
Pedien zerlegt wird. Man kann dann alle Gitterpunkte einer be-
liebigen (0001)-Netzebene des hexagonalen Gitters mit identischen
und parallelen Pedien der Stellung 1 besetzen, die der unmittelbar
dariiberliegenden mit Pedien der Stellung 2 und die der nachst-
héheren Netzebene mit Pedien der Stellung 3 und in diesem
Rhythmus unbegrenzt weiterfahren. Es entsteht so Fig. 22 als
Schema des Raumsystems G;2. Bei €3 (Fig. 23) ist die Reihen-
folge der Pedien, mit welchen jene Ebenen besetzt werden, durch
die Zahlen 1, 3, 2 charakterisiert, wogegen sie vorher 1, 2, 3 war.

B. Paramorphe Klasse. C;.

Rhomboeder dritter Stellung heiBt die Kristallform, welche
phinomenologisch die Symmetrieverhiltnisse der paramorphen
Klasse allgemein zum Ausdruck bringt. Mit solchen Rhomboedern
dritter Stellung bilden sich die Veranschaulichungen ‘der beiden
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hier moglichen symmorphen Raumgruppen. Es sind ¢;! mit hexa-
gonalem und @,2 mit rhomboedrischem Gitter.

Da es keine Schrauben-Drehspiegelachsen gibt, so ist das Aus-
einanderziehen der Rhomboederflichen auf drei iibereinander lie-
gende (0001)-Netzebenen unmdglich. Die genannten symmorphen
Raumgruppen sind mithin die einzigen Raumgruppen, die hier
iberhaupt als mdglich in Betracht fallen.

C. Hemimorphe Klasse. C,,.

Die charakteristische Form ist die ditrigonale Pyramide. Sie
besitzt drei zur Trigyre parallele Spiegelebenen. Diese sind den
drei Symmetrieebenenscharen, welche dem rhomboedrischen Raum-
gitter, rein geometrisch gesprochen, von Natur aus zukommen,
parallel zu stellen, wihrend sie im hexagonalen Raumgitter, welches

X

K

Fig. 24. @31‘1. Fig. 25. 63{)2.
~ Die zwei Stellungen der ditrigonalen Pyramide im hexagonalen Raumgitter.

3

zweierlei Scharen von je drei Spiegelebenenrichtungen hat, in
zweifacher Weise orientiert werden koénnen. Die Kopfbilder der
Figuren 24 und 25 machen dies deutlich. Die Stellung ist so ge-
wihlt, daB der Verlauf der resultierenden Symmetrieebenen mit der
kristallographisch iiblichen Orientierung iibereinstimmt. Dies hat
zur Folge, daB die Raumgitter in Fig. 24 und Fig. 25 nicht parallel
orientiert sein kénnen. Fig. 25 weicht diesbeziiglich von der bei
P. Niggli adoptierten Stellung ab. Wegen der starken Betonung
des hier so wichtigen kristallographischen Momentes scheint aber
diese Abweichung notwendig zu sein. Im iibrigen unterscheiden
sich beide Stellungen nur durch eine 90°-Drehung um die c-Achse.
Die Koordinatendarsteliung bei P. Niggli paBt daher nach leichter
Transformation auch auf die hier bevorzugte Orientierung.

Auf Grund dieser Festsetzungen ergeben sich drei symmorphe
Raumgruppen:

@;,! mit hexagonalem Raumgitter, entsprechend Fig. 24,

@,.2 ebenfalls mit hexagonalem Raumgitter, aber entsprechend
Fig. 25, und

@,.* mit rhomboedrischem Raumgitter.
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Von den méglichen Zerlegungen der ditrigonalen Pyramide
sind, wie leicht zu zeigen ist, einzig die in zwei spiegelbildliche
trigonale Pyramiden von Bedeutung — gemifl den Zahlen 1, 3, 5,
bezw. 2, 4, 6 der Fig. 24 und 25. Natiirlich ist auf die Stellung
der ditrigonalen Pyramide gegeniiber dem Raumgitter wohl zu
achten. Besetzt man nun alle Gitterpunkte einer beliebigen Basis-
ebene mit Teilpyramiden der einen Art, die dariiber- und darunter-
liegende Basisebene mit denen der anderen Art u.s.w. so erhilt
man eine Veranschaulichung des Raumsystems €,;,2, wenn die tri-
gonalen Tritopyramiden Fig. 24 entsprechen, jedoch G€,.!, wenn
sie sich von der ditrigonalen Pyramide der Fig. 25 herleiten.

Es ist bekannt, dal es grundsitzlich nur einerlei Art rhom-
boedrischer Gitter gibt, das einfache, deformiert wiirfelige, daf
aber dieses rhomboedrische Raumgitter auch als innenzentriertes
betrachtet werden kann. @5 darf daher ebensogut auf ein innen-
zentriertes, wie auf das vorhin gewihlte einfache Gitter bezogen
werden, und es ergibt sich dann in volliger Analogie zu G20, 3,2
und B, ein Flichenkomplex trigonalhemimorpher Symmetrie da-
durch, daB die Eckpunkte des rhomboedrischen Gitters mit der
einen Art der oben erwihnten trigonalen Teilpyramiden (Flachen 1,
3, 5), die Rhomboedermittelpunkte mit der andern Art (Fliachen 2,
4, 6) besetzt werden. Die entsprechende Raumgruppe wird mit
E;.¢ bezeichnet.

D. Enantiomorphe Klasse. D;.

Die Raumsysteme dieser Symmetrieklasse zeigenin ihrer gegen-
seitigen Beziehung groBe Analogie zu den fiir die hemimorphe
Klasse abgeleiteten. So bildet man mit parallel gestellten trigonalen
Trapezoedern, der typischen Form der Enantiomorphie, dhnlich wie
dort, drei symmorphe Raumsvsteme. Da nimlich die trigonalen
Trapezoeder nur drei Digyren besitzen, konnen sie wiederum in
zweifacher Weise mit dem hexagonalen Raumgitter verbunden
werden. Fig. 26 und Fig. 27 illustrieren diese Verhiltnisse. Zu-
gleich entspricht

Fig. 26 der Raumgruppe 9.1, 3

Fig. 27 der Raumgruppe 9,2, wihrend das rhomboedrische
Gitter der Raumgruppe ;" zu Grunde liegt.

Das trigonale Trapezoeder laft sich in drei Sphenoide mit
horizontaler Digyre zerlegen. In der Numerierung der Fig. 26
und 27 sind das die Sphenoide 1—2, 3—4, 5—6. Durch Vertei-
lung derselben auf je drei iibereinanderliegende (0001)-Netzebenen
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ergeben sich die nicht symmorphen Raumgruppen. Es sind mehrere
Fille zu unterscheiden. Einmal sind wie in der Hemimorphie die
beiden Stellungen gegeniiber dem Raumgitter in Betracht zu ziehen,
und dann ist zweitens die Aufeinanderfolge, in der die Sphenoide
angeordnet werden (vergl. Fig. 22 und 23), zu beriicksichtigen.

k> S\
N

Fig. 26. D, Fig. 27. D,
Die zwei Stellungen des trigonalen Trapezoeders im hexagonalen Raumgitter.

Dieser letztere Umstand zeichnet die Enantiomorphie der Hemi-
morphie gegeniiber aus und zeigt, da er eigentlich nichts weiteres
besagt als die Existenz von rechts- und linksgewundenen Schrauben-
achsen, die enge Verwandtschaft der Enantiomorphie mit der
Tetartoedrie. Man erhidlt so folgende vier Fille:

Dg? |entsprechend { Die Gitterpunkte dreier iibereinanderliegender | 1-2,3-4,5-6
@35} Fig. 26 (0001)-Netzebenen werden dhnlich wie in Fig.22 | 12 5.6 34
" u. 23, wo sie mit Pedien besetzt wurden, nun T
Dg }entsprechend mit Sphenoiden in Beziehung gebracht gemiB | 1-2, 3-4,5-6
D, 6 Fig. 27 der Reihenfolge 1-2,5-6,3-4

Die Besetzung der Eck- und Mittelpunkte des rhomboedrischen
Gitters mit der oberen, bezw. unteren Halfte des trigonalen Tra-
pezoeders, den einzigen kristallographisch deutbaren Halftflichnern
des Trapezoeders, fiihrt zu nichts Neuem. Sie bedeutet ©,” gegen-
itber einfach eine Verschiebung des Nullpunktes um 1/ der Tri-
gyrenlinge.

E. Holoedrische Klasse. Da.g.

Der Enantiomorphie gegeniiber unterscheidet sich die Holoedrie
durch den Hinzutritt des Symmetriezentrums. Die Trigyre wird
dadurch zur Hexagyroide. Schraubenartige Anordnungen, bei denen
drei iibereinander liegende Ebenen mit verschieden gestellten Teil-
flichnern des Skalenoeders besetzt wiren, sind also ausgeschlossen
(vergl. den analogen Fall bei der Paramorphie). Es fehlen dem-
nach in der Holoedrie die zu®;3, ©;% ©,° und D,;¢ analogen Raum-
gruppen. Die nicht symmorphen Raumgruppen miissen vielmehr
nach dem bei der Hemimorphie konstatierten Schema gebaut sein.
Von der Hemimorphie unterscheidet sich ja die Holoedrie eben-
falls nur durch das Symmetriezentrum.
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Das Skalenoeder kann dem hexagonalen Raumgitter gegeniiber
ebenfalls eine zweifache Orientierung haben. Fig. 28 und Fig. 29
erliutern dieselbe. Hierbei ist zu beachten, daB sich im Kopfbild
des Skalenoeders obere und untere Hilfte in allem decken. Das
Bild bekommt das Aussehen einer hexagonalen Bipyramide zweiter
Stellung. Um diesen hier stérenden Eindruck zu vermeiden, sind
die Skalenoeder-Flichen mit der hiufig beobachteten Streifung
nach den Randkanten gezeichnet.

S 37
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Fig. 28. ©34'. Fig. 20. D43
Die zwei Stellungen des trigonalen Skalenoeders im hexagonalen Raumgitter.

Man erhilt nun im Ganzen sechs Fille; zunichst drei sym-
morphe Raumsysteme, namlich

o4 Dy mit gedrehtem hexagonalem Gitter, entsprechend Fig. 28,

95 Dss® mit normal gestelltem hexagonalem Gitter, entsprechend
Fig. 29,

96 Dy mit rhomboedrischem Gitter,

sodann drei nicht symmorphe Raumgruppen, indem man das Ska-
lenoeder in zwei spiegelbildliche trigonale Trapezoeder (Flachen
1—2, 5—6, 9—10 einerseits und 3—4, 7—8, 11—12 anderseits)
zerlegt und im hexagonalen Raumgitter die abwechselnden (0001)-
Ebenen (also bloB Zweier-Rhythmus) mit Trapezoedern der einen
Art, die dazwischen gelegenen mit solchen der andern Art besetzt
(unter Beriicksichtigung der doppelten méglichen Orientierung der
Trapezoeder-Digyren gegeniiber dem Raumgitter), im rhomboedri-
schen Gitter aber die eine. Trapezoederart auf die Eckpunkte, die
andere auf die Mittelpunkte verteilt. Man bekommt so

o7 D342 hexagonales Gitter mit Flichenanordnung analog zu Fig. 28,
08 Dsat hexagonales Gitter mit Flichenanordnung analog zu Fig. 29,
0 D.4f rhomboedrisches, innenzentriertes Gitter.

€,,f und D4 werden auf ein innenzentriertes rhomboedrisches
Raumgitter bezogen. Die Einheitlichkeit der Darstellung wiirde
daher gewinnen, wenn auch den fiinf symmorphen Raumsystemen
Cst, G2, Cu5, Dy?, Dye® formal das innenzentrierte Raumgitter zu
Grunde gelegt wiirde. ' '
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IV:. Rein trigonale Abteilung.
A. Paramorphe Klasse. Cs,.

Wie der triklinen Hemiedrie und Holoedrie kommt auch der
trigonalen Paramorphie nur ein einziges Strukturschema allgemein-
ster Art zu. Es ist natiirlich symmorph und ergibt sich also da-
durch, daB mit den Gitterpunkten parallel orientierte trigonale Bi-
pyramiden dritter Stellung verkniipft werden. Die Raumgruppe
wird @4 genannt.

B. Holoedrische Klasse. Dy,

Wegen der drei und nur drei vertikalen Symmetrieebenen mit
dazu parallelen Digyren sind wie in der Hemimorphie, Enantio-
morphie und Holoedrie der trigonal-rhomboedrischen Abteilung
zweierlei Stellungen der allgemeinsten Flichenform gegeniiber dem
hexagonalen Raumgitter zu unterscheiden, so daB sich zwei sym-
morphe Raumsysteme ergeben. Im iibrigen leiten sich die einzelnen
Fille am einfachsten ab durch Bezugnahme auf die trigonal-rhom-
boedrische Hemimorphie. Das Unterscheidende zwischen diesen
beiden Klassen liegt ja lediglich darin, dafl sich in der Holoedrie
eine Symmetrieebene senkrecht zur Trigyre einstellt. Die beiden
Raumgruppen @, und €, mit rhomboedrischem Gitter fallen da-
her sofort auBler Betracht, und bei den vier anderen ist das Wort
Pyramide immer durch den Ausdruck Bipyramide zu ersetzen. Man
hat so

Da! mit ditrigonalen Bipyramiden, entsprechend den ditrigo-
nalen Pyramiden von G,

D% ebenso wie bei Dy, nur im gedrehten Gitter, entsprechend
@3'-'2)

mit zwei spiegelbildlich gestellten

Dy, . ; \ l entsprechend G,,2
ot 1 "
Dyt rigonalen Bipyramiden auf den ’ entsprechend 1.

alternierenden (0001)-Netzebenen

1V:;. Rein hexagonale Abteilung.
A. Tetartoedrische Klasse. Cs.

Die Ableitung der Raumgruppen, welche der hexagonalen
Tetartoedrie zukommen, geht parallel der bei der trigonal-rhom-
boedrischen Tetartoedrie gegebenen. Durch die hdhere Zihligkeit
der Hauptachse wird aber eine groBere Mannigfaltigkeit bedingt.

Die symmorphe Raumgruppe, G, ist nach den bisherigen
Ausfithrungen selbstverstindlich. Die charakteristische Form ist
die hexagonale Pyramide dritter Stellung (Fig. 30). Sie 1iBt sich
zerlegen in
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1. zwei trigonale Pyramiden dritter Stellung, entsprechend den
Flachen 1, 3, 5, bezw. 2, 4, 6 der Fig. 30,

2. drei Sphenoide mit den Fliachen 1—4, 2—5, 3—6,

3. sechs Pedien,

Besetzt man die Gitterpunkte der (0001)-Netzebenen abwech-
selnd mit den trigonalen Pyramiden der einen und andern Stellung,
106 SO erhilt man das Strukturschema der Raumgruppe €. Die Trans-
lationsgr6Be nach c ist verdoppelt. — Die Sphenoide bendtigen
drei iibereinander folgende (0001)-Netzebenen und lassen sich dem-
107 gemaB in doppelter Reihenfolge ordnen. Bei G4 sind die Punkte
der einen Netzebene z. B. mit 1—4-Sphenoiden besetzt. Dariiber
folgt eine Ebene mit nur 3—6-Sphenociden und auf der dritten
18 Ebene endlich sitzen die 5-—2-Sphenoide. Bei €, ist die Reihen-
folge 1—4, 2—5, 3—6. Die Anschaulichkeit mag durch die Be-
trachtung der beiden Figuren 22 und 23 der trigonal-rhomboedri-
schen Tetartoedrie unterstiitzt werden.

Flg. 30. 661' Fig. 31. 63(' 1. Flg. 32. ®6]'

Die c-Achse ist in diesen beiden Fillen Digyre und gleich-
zeitig 3-zdhlige Schraubenachse. Nur 6-zdhlige Schraubenachse ist
sie in den beiden weiteren Raumgruppen. Die hexagonalen Trito-
pyramiden von g erscheinen daher in sechs Pedien auseinander-
gezogen. Diese besetzen dann je eine (0001)-Netzebene. Mit irgend
einer (0001)-Netzebene ist daher erst wieder die sechstfolgende
parallelgleich identisch. Natiirlich gibt es wieder einen doppelten
Schraubensinn, d. h. eine doppelte Reihenfolge in der Besetzung
der iibereinander liegenden Ebenen. Sie kann anschaulich darge-
stellt werden bei

109 2 durch die natiirlich geordneten Zahlen 1, 2, 3, 4, 5, 0,
110 G durch die umgekehrt geordneten Zahlen 6, 5, 4, 3, 2, 1.

B. Paramorphe Klasse. Cg,.

m Neben der symmorphen Raumgruppe €g! gibt es nur noch
12 eine einzige weitere Raumgruppe: €g2. Hier sind die abwech-
selnden (0001)-Ebenen mit den aus der hexagonalen Titrobipyra-
mide (allgemeinste Form der Klasse Cg) hervorgehenden, um
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60° verdrehten Rhomboedern dritter Stellung oder trigonalen Bi-
pyramiden (ebenfalls dritter Stellung) zu besetzen.

C. Hemimorphe Klasse. Cs,.

Uber die mit dihexagonalen Pyramiden gebildete symmorphe
Raumgruppe G;! ist nichts weiteres zu sagen; nur sei hervor-
gehoben, daB die Unterscheidung von zwei Stellungen im Raum-
gitter, wie sie in der trigonal-rhomboedrischen Abteilung erforder-
lich war, jetzt sinnlos wird, weil dihexagonale Pyramide und
hexagonales Raumgitter die gleiche Zahl von Svmmetrieebenen
haben.

Unter den zahlreichen, an und fiir sich moglichen Zerlegungen
der dihexagonalen Pyramide kommen nur jene in Betracht, welche
zwel und nur zwei Teilkorper ergeben. Die kristallographisch deut-
baren Teilkérper sind

1. hexagonale Pyramiden dritter Stellung (Flachen 1, 3, 5, 7,
0,11 und 2, 4, 6, 8, 10, 12 der Fig. 37), die, auf die abwechselnden
(0001)-Ebenen verteilt, G4, ergeben,

2. ditrigonale Pyramiden, die im Raumgitter in zweifacher
Weise gestellt sein konnen. Da aber die schlieflich resultierende
Symmetrie phidnomenologisch keine der beiden Stellungen unter-
scheiden liBt, so kann die Drehung des Raumgitters, welche fiir
die kristallographisch richtige Orientierung der ditrigonalen Pyra-
mide im einen Fall notig wire, ganz gut unterbleiben. Man hat
dann, immer auf die gewdhnliche Stellung des Raumgitters be-
zogen:

@43, wenn die abwechselnden (0001)-Netzebenen besetzt sind
mit den von Ebenen 1 —2—5—6—9—10, bezw 3—4—7—8—-11—12
gebildeten ditrigonalen Pyramiden,

Cet, wenn die ditrigonalen Pyramiden von Ebenen 1—4—5—
8—0—12, bezw. 2—3—6—7—10—11 begrenzt sind.

D. Enantiomorphe Klasse. D,

Der Umstand, da8 hier bloB Achsensymmetrie auftritt und
demnach zwischen Rechts- und Linksschraubung gegebenen Falles
unterschieden werden kann, bedingt wieder eine groBere Mannig-
faltigkeit.

Die symmorphe Raumgruppe D¢ ist selbstverstindlich. Indem
die ihr zu Grunde liegenden hexagonalen Trapezoeder zu trigo-
nalen (gegenseitig um 60° verdrehten) Trapezoedern auseinander-
gezogen und diese im Raumgitter so verteilt werden, daB die ab-
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wechselnden (0001)-Ebenen nur mit den einen oder andern besetzt
werden, entsteht Dgt.

Auch Vierflachner kommen in Betracht. Es bilden nimlich die
Flichen 1 —6—7—12, 2—3—8-—-9, 4—5—10—11 (Fig. 32) je ein
rhombisches Bisphenoid, die, auf drei iibereinander liegende (0001)-
Ebenen angeordnet, wieder eine neue Raumgruppe ergeben. Na-
tirlich sind Rechts- und Linkssinn auseinanderzuhalten. Es ent-
spricht D¢ jener Anordnung, wo, wenn 1..12-Bisphenoide irgend
eine (0001)-Ebene besetzen, die dariiber gelegene Netzebéne mit
2..9- Bisphenoiden, die nichst weitere aber mit 4...11-Bi-
sphenoiden besetzt ist. Bei D¢ ist die Reihenfolge vertauscht. Zu
unterst sind wieder 1..12-Bisphenoide, zu oberst jedoch 2...9-
Bisphenoide. Ob dann die rhombische a-Achse mit einer hexa-
gonalen Neben- oder Zwischenachse zusammenfalle, bleibt sich
gleichgiiltig. SchlieBlich ist es ein und dasselbe. ,

Bei der sechsstufigen Anordnung sind die Netzebenen mit
Zweiflachnern besetzt. Diese Zweiflichner sind Sphenoide mit
horizontaler Digyre (vérgl. die Raumgruppen ©; bis ©.5). Mit
Bezugnahme auf Fig. 32 ergeben 1—2-Sphenoide in der untersten
Netzebene, 3—4-Sphenoide in der zweiten Ebene, weiterhin 5—6-,
7—8-, 9—10-Sphenoide in den nach oben folgenden Netzebenen
und schlieBlich 11—12-Sphenoide in der obersten (sechsten) Netz-
ebene das Raumsystem . Die umgekehrte Reihenfolge liegt
D zu Grunde.

Die Analogie zur hexagonalen Tetartoedrie ist offensichtlich.
Durch Vorsetzung der Silbe ,Bi-‘‘ bei jeder Formenbezeichnung
in der Ableitung der Tetartoedrie (Bipedion als Bisphenoid zu
deuten) wird die der Enantiomorphie entsprechende Raumgruppe

erhalten.

E. Holoedrische Klasse. Dyg,.

Genau so, wie sich die Raumgruppen der Enantiomorphie for-
mal durch kleine sprachliche Anderungen aus denjenigen der Tetar-
toedrie ableiten lassen, ergeben sich auch die vier Raumgruppen
der Holoedrie anschaulich aus denjenigen der Hemimorphie bei
Ersetzung des Wortes , Pyramide‘‘ durch das Wort ,,Bipyramide‘.
Beziiglich des Details kann deshalb auf die dortigen Bemerkungen
verwiesen werden, und es geniigt hier die bloBe Aufzihlung der

einzelnen Raumsysteme.
Derl. Symmorphes Raumsystem (mit dihexagonalen Bipyra-

miden).
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Den?. Die (0001) - Netzebenen abwechselnd mit hexagonalen
Bipyramiden dritter Stellung besetzt.

De®. Ubereinstimmende Anordnung von ditrigonalen Bipyra-
miden der namlichen Aufstellung wie die der ditrigonalen Pyra-
myden in @g8.

Dent. Gleiche Verteilung von ditrigonalen Bipyramiden nor-
maler Stellung (/2110} ist Symmetrieebene).

V. Tetragonale Abteilung.

Wie die hexagonale Abteilung so kniipft auch die tetragonale
eng an die rhombische an. Wahrend aber die hexagonale einen
Endpunkt in der Entwicklung des basiszentrierten Gitters bedeutet,
bildet die tetragonale Abteilung einen Ubergang von sdmtlichen
rhombischen Raumgittern zu den kubischen.

Gewohnlich werden nur zwei tetragonale Raumgitter gezéhlt,
indem das einfache und das basiszentrierte einerseits, das innen-
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zentrierte und allseitsflichenzentrierte anderseits je die ndmliche

Zahl, Art und Lage der Symmetrieelemente haben. Man spricht
daher gemeinhin nur vom einfachen und innenzentrierten tetra-
gonalen Raumgitter. Immerhin ist es in gewissen Fillen not-
wendig, auch basiszentriertes und allseitsflichenzentriertes Gitter
in Betracht zu ziehen, sollen die resultierenden Symmetrieelemente
die in der Kristallographie adoptierte Orientierung bekommen.
Die tetragonale Abteilung umfaBt die unter allen Abteilungen
maximale Zahl von Raumgruppen: im ganzen 68, die sich auf die
sieben Symmetrieklassen verteilen. Die Analogie zur hexagonalen
Abteilung springt weniger deutlich in die Augen als es etwa beim
phinomenologischen Studium der beiden Systeme der Fall ist.

A. Tetartoedrische Klasse [. Art. C,.

Mit der charakteristischen Form der tetragonalen Tetartoedrie
I. Art, d. h. mit der tetragonalen Tritopyramide bildet man die den
beiden Gittern entsprechenden symmorphen Komplexe und zwar
¢,' mit dem einfachen, G, mit dem raumzentrierten Gitter.

Da die Flichen der tetragonalen Tritopyramide einzig durch
Drehungen ineinander iiberfithrbar sind, kommen als mogliche Zer-
legungen in Frage

1. um 90° verdrehte Sphenoide, gebildet von je zwei einander
gegeniiberliegenden Flachen der Tritopyramide und
2. Pedien. '

Erstere lassen sich mit dem einfachen Gitter so verbinden,

daB alle Punkte einer (001)-Netzebene zu Trigern von Sphenoiden

Mineralog.-petrograph. Mittgl,, Bd. V, Heft 1, 1925 3

127/8



129

32 Leonhard Weber.

der einen Art werden, wihrend die benachbarte Ebene mit den
um 90° gedrehten Sphenoiden besetzt wird. Das ergibt €. Hier-
mit identisch ist der Fall, wo in Eck- und Mittelpunkten des
raumzentrierten Gitters ungleiche Sphenoide liegen.

Die Pedienanordnung bedingt im einfachen Gitter einen regel-
maBigen Wechsel von je vier iibereinanderliegenden (001)-Ebenen,
dhnlich wie er in der Dreizahl, bezw. Sechszah! firr die ent-
sprechenden Tetartoedrien der trigonal - rhomboedrischen, bezw.
hexagonalen Abteilung charakteristisch war. Und wie dort, so sind
auch hier zweierlei Anordnungen moglich, eine linksgewundene
und eine rechtsgewundene. Zur Veranschaulichung sei auf die Fig.
21—23 verwiesen. Mit Anlehnung an die dortige Bezeichnung

~entspricht

130
131

€,* der Reihenfolge 1, 2, 3,4 (vergl. auch Fig. 33,z. B. Achse 1),
€2 der Reihenfolge 4, 3, 2, 1.

I
A

-
b

Fig. 33. 6,5

In diesen beiden Fillen hat die durch den Basismittelpunkt
gehende c-Richtung den Charakter einer 4-zihligen Schraubenachse.
Im Windungssinn stimmt sie mit den Schraubenachsen der Seiten-
kanten fiiberein, ist aber im iibrigen von ihnen wesentlich ver-
schieden, und es ist klar, daB véllige Ubereinstimmung der beiden
Achsen nur eine um 45°¢ gedrehte Stellung von G2 und G,* ist. Ein
wirklich nenes Raumsystem ergibt sich aber dadurch, da von den
beiden an und fiir sich identischen c-Achsenrichtungen z. B. die-
jenige der Basismitte gegeniiber derjenigen der Eckpunkte um
die Halfte ihrer Periode verschoben wird. Ob der Windungssinn
nach rechts oder nach links gerichtet sei, bleibt sich gleichgiiltig,
da nach jenen c-Richtungen, welche im Halbierungspunkt der a,-
und a,-Achsen errichtet sind, die Flichenanordnung gerade ent-
gegengesetzten Windungssinn zeigt wie an den beiden erstbetrach-
teten Achsen, ohne aber hierzu spiegelbildlich zu sein. Der resul-
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tierende Komplex ist in Fig. 33 dargestellt und entspricht der
Raumgruppe ¢,5. Gegeniiber der Koordinatendarstellung von P.
Niggli zeigt er eine Nullpunktsverschiebung.

B. Tetartoedrische Klasse II. Art. S,

Hier gibt es nur die beiden symmorphen Raumgruppen &
und &,2. Ersterer liegt das einfache, letzterer das innenzentrierte
Gitter zu Grunde. An Stelle der Gitterpunkte treten tetragonale
Bisphenoide dritter Stellung.

C. Paramorphe Klasse. C,.

Wenn die charakteristische Form dieser Symmetrieklasse, die
ditetragonale Pyramide, die Gitterpunkte ersetzt, ergeben sich die
beiden symmorphen Raumgruppen ¢, mit dem einfachen und
¢,* mit dem innenzentrierten Gitter.

Die ditetragonale Pyramide 1iBt sich zerlegen in

a) zwei tetragonale Pyramiden dritter Stellung,

b) zwei rhombische Pyramiden, deren eigene Spiegelebenen
{110} -Ebenen sind,

c) zwei rhombische Pyramiden, die je nach {100}-Ebenen spiegel-
bildlich sind,

d) vier Sphenoide mit vertikaler Digyre,

e) vier Domen, deren Spiegelebenen {100} parallel sind,

f) vier Domen, deren Spiegelebenen {110} parallel sind,

g) acht Pedien.

Zur Einordnung dieser Kristallformen in den beiden Raum-
gittern eignet sich in ganz vortrefflicher Weise das fiir die Tetar-
toedrie benutzte Schema. Dadurch ndmlich, daB im einfachen Gitter,
dhnlich wie bei €3 die (001)-Netzebenen abwechselnd mit den ent-
gegengesetzten Vierflichnern besetzt werden, ergeben sich die
Raumgruppen

¢, wenn die Vierflichner Tritopyramiden sind,

€¢,.% wenn sie rhombische Pvramiden von der {110}-Art sind,

¢, wenn sie rhombische Pyramiden von der {100}-Art sind.

Hat das Sphenoid, der cinzige in Betracht fallende HAalft-
flachner der Tetartoedrie I, mit dem innenzentrierten Gitter keinen
neuen Symmetriefall erzeugt, so stellen sich jetzt wegen der gréBeren
Mannigfaltigkeit der Verhidltnisse sogar zwei neue Fille ein. Es
entspricht

G,.% dem innenzentrierten QGitter mit ungleichen Tritopyamiden
in Eck- und Mittelpunkten,

132

133
134

135
136

137

—

38
39

140



34 Leonhard Weber.

141 G,s* der analogen Anordnung von rhombischen Pyramiden mit
Eigensymmetrie nach {110}.

Ebenso wie sich @,,* dadurch aus der symmorphen Anordnung
ableitet, daB die ditetragonale Pyramide in zwei nach der c-Achse
auseinandergezogene Tritopyramiden zerlegt wird, liefert auch die
Raumgruppe €,* einen neuen Fall, wenn die eine Hailfte der di-
tetragonalen Eckpyramide lings der zugehérigen c-Richtung auf
die Hohe der durch den Mittelpunkt gehende Ebene gehoben und
die iibereinstimmende Hailfte der Mittelpunktspyramide auf das

\ \
7& . /-
O \,& )
\
)
Fig. 34. @4 'L‘S. Fig. 35. (.Sq, l,".

Niveau der durch den untern Eckpunkt gehenden Basis gebracht
wird. Der entstehende Komplex erscheint dann als basiszentriertes,
in der c-Richtung verdoppeltes Gitter, bei dem nicht nur ‘Eckpunkte

/ \
\ i J
M N J,
Fig. 36. G,». Fig. 37. G5

und Basismitten ungleich besetzt sind (€,.2, siche No. 143), sondern
auch langs der durch diese beiden Punktarten gehenden c-Rich-
tungen die beiden Formen regelmiBig miteinander wechseln. Der
Komplex ist also vom Typus der Fig. 9 (und &hnlicher) und ver-
142 anschaulicht €10,
Ein ahnliches basiszentriertes Gitter, jedoch mit einzigem
Wechsel in der Besetzung von Basismitten und Basisecken, bildet
143 das Schema der bereits genannten Raumgruppe G,.2.
Einen namlichen Typ wie das vorletzte Gitter, d. h. basis-

zentriert und nach c¢ verdoppelt, bildet auch das Strukturschema
us von G5 Die Bausteine sind Sphenoide. Es sind vier Anord-
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nungen denkbar, zu deren Erliuterung die vier Figuren 34, 35, 36
und 37 dienen mogen. Die einzelnen Flichen sind wie bei der
stereographischen Projektion, wenn auch in etwas anderer Be-
deutung, durch Kreuz und Kreis symbolisiert. Kreuze bezeichnen
Punkte, die um eine Netzebene hoher liegen als die durch Kreise
dargestellten. Man braucht nun bloB die Punkte in geeigneter,
bei Fig. 35 und 36 angedeuteter Art und Weise zusammenzufassen,
um einzusehen, dafBl einzig Fig. 34 einen neuen Symmetriefall dar-
stellt, entsprechend der Raumgruppe €,s3, wahrend

Fig. 35 mit der Raumgruppe ¢,.,

Fig. 36 mit der Raumgruppe €23,

Fig. 37 mit der Raumgruppe €¢,# identisch wird.

Mit Domen lassen sich entweder keine raumgitterartigen Kom-
plexe bilden, oder sie stimmen mit schon erledigten Raumgruppen
iberein. Dagegen liefern die Pedien neue Strukturtypen, die am

g ! m U
|
A
S
P —

Fig. 38. G,r1L

besten auf das gewdohnliche, jedoch nach der a,- und a,-Achse ver-
doppelte, nach der c-Achse sogar vervierfachte Gitter bezogen
werden. Es darf dann vorausgesetzt werden, daBl die hintere, linke
c-Kante gleichgebaut sei wie im Strukturmodell von € . Sie ist
also von vier Pedien schraubenférmig umgeben (Achse lin Fig. 38).
Nun ist klar, daB die Achsen II und IV gerade entgegengesetzten
Windungssinn haben miissen, wenn der Komplex irgendwelche
vertikale Symmetrieebenen besitzen soll. Zwei Fille sind denkbar:
die Symmetrieebenen sind entweder gewdhnliche Spiegelebenen,
und dann resultiert Fig. 38 -entsprechend der Raumgruppe G,
oder aber Gleitspiegelebenen mit einer zur c-Achse parallelen
Gleitkomponente entsprechend der Raumgruppe €,.2, und dann
entsteht ein Komplex, der sich von dem in Fig. 38 wiedergegebenen
dadurch unterscheidet, da Il und IV vertauscht erscheinen. In
beiden Fallen sind I und III, bezw. Il und IV nur digyrisch ver-
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dreht. Im ibrigen zeigt Fig. 38 nur einen Viertel des Elementar-
parallelepipeds. Die Zahlenschemata der Fig. 39 und Fig. 40 fassen
den Sachverhalt schén zusammen. Die Zahlen selber deuten die
Stufen an, auf denen sich die Pedien befinden.

D. Paramorphe Klasse. Cy,.
Von den beiden symmorphen Raumgruppen wird beim Ersatz
der Gitterpunkte durch tetragonale Tritobipyramiden
147 §4t durch das einfache,
148 @5 durch das innenzentrierte Gitter versinnlicht.

Die Tritobipyramide kann in folgende Teilflichner zergliedert
werden (Fig. 41):

4 4 4 2
3/ \ 3 3/ \ _1 3]
I qF 3| »®
2 2 2 & ©,
2 2 A 2 2
R N S S \Z'® ®!
3 \ j 5 1/1\ IHI\5 \ 1
4 4| 2 4
Fig. 39. Gt Fig. 40. G2 Fig. 41.

1. Obere und untere Tritopyramide, also 1—2—3—4 einerseits
und 1’—2’—3’—4’ anderseits.

2. Zwei um 90° gedrehte tetragonale Bisphenoide dritter Stel-
lung: 1—2’—3—4’ und 1’'—2—3’—4.

3. Zwei ,,monokline‘* Prismen mit vertikaler Digyre: 1—1"—3—3’
und 2—2’—4—4,

4. Vier monokline Sphenoide als Hailften der ebengenannten Pris-
men: 1—3; 2—4; 1'--3; 2’—4°,

5. Acht Pedien.

Obere und untere Tritopyramide koénnen nur im innenzen-
trierten Gitter untergebracht werden und zwar bei abwechselnder
Verteilung auf Eckpunkte und Raummitten. Es entsteht so das

149 fiir €,,3 charakteristische Strukturschema.

Die tetragonalen Bisphenoide sind fir den ‘Aufbau para-
morpher Strukturbilder ungeeignet: vierzihlige Drehspiegelachse
und Tetragyre mit senkrechter Spiegelebene vertragen sich nicht.

Mit Prismen konnen mehrere raumgitterartige Komplexe ge-

150 bildet werden. Etwas Neues — @,2 — stellt aber nur der Fall
dar, wo irgend eine (001)-Netzebene mit Prismen der einen Stel-
lung, die unmittelbar benachbarte parallele Netzebene mit Prismen
der anderen Stellung besetzt wird. '
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Fiir die Sphenoide sind vier Punkte erfordert. Am anschau-
lichsten ist die Darstellung im basiszentrierten Gitter mit ver-
doppelter c-Richtung. Es werden dann in den Eckpunkten bei-
spielsweise die von den oberen Flichen gebildeten zwei Sphenoide,
in den Basismitten die beiden unteren eingefiigt. Es sind zwei
Kombinationen denkbar. Liegen in den unteren Eckpunkten Sphe-
noide 1—3, in den dariiber befindlichen also Sphenoide 2—4, so
konnen die Basismitten in folgender Weise besetzt sein:

unten 1’3 27—y
entweder oder umgekehrt
oben 24 ' 1’—3
Schematische Darstellungen nach Art der Fig. 34—37 lassen

erkennen, daB, von der Lage des Nullpunktes abgesehen, beide
Gruppierungen identisch sind. Gt

=
=

=7
<
Fig 42, @8

Die Gruppierung der Pedien ist in gewissem Sinn analog zu
@12, Wiederum ist vom gewdhnlichen tetragonalen Gitter auszu-
gehen. a,- und a,-Richtung miissen verdoppelt werden, die c-Rich-
tung ist zu vervierfachen. Wir haben also 16 Zellen. Fig. 42 zeigt
die Anordnung (es ist aber nur 14 dargestellt). Die vier c-Rich-
tungen tragen dieselbe Numerierung wie in Fig. 38. Um sie herum
sind die Pedien nach Art vierzidhliger, links- und rechtsgewundener
Schraubenachsen angeordnet. | zeigt z. B. Linksschraubensinn ent-
sprechend der namlichen Achse in Fig. 38. Die Symmetrieebenen
konnen nur Gleitspiegelebenen sein. Sie mdégen mit den (001)-
Netzebenen zusammenfallen. Die Gleitkomponente der untersten
sei der a,-Achse parallel gerichtet. Die Gleitkomponente der nichst
hoheren ist dann parallel zu. a,. Il wird hierdurch zur Rechts-
schraube und die Flichen liegen, im Gegensatz etwa zur gleich-
bezeichneten in Fig. 38, unter den Netzebenen. Ebenfalls Rechts-
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schraubensinn zeigt IV. Ihre Nullpunktslage ergibt sich zwanglos,
sobald man beriicksichtigt, dafl II durch die Linksschraubung um
I in IV iibergeht. Ahnlich ist III durch die Rechtsschraubung um
152 Il aus I ableitbar. Die Raumgruppe wird mit ©,,¢ bezeichnet.

D. Enantiomorphe Klasse. D,
Die Raumgruppen der Enantiomorphie stehen untereinander

in recht iibersichtlichem Zusammenhang. Typische Form ist das
Trapezoeder. Parallele Trapezoeder sind die Bauelemente der
symmoarphen Fliachenkomplexe.

N

sich

e
o %
,%E;___?<
fig. 43. Fig. 44. D4

©,! hat einfaches,
D, innenzentriertes Qitter.
Aus dem Trapezoeder (Fig. 43) lecitet man ab:

. Obere und untere, gegenseitig um einen gewissen Winkel ge-

drehte tetragonale Tritopyramiden. 1-—3—5—7und 2—4—06—8.

. Zwei um 90° gegenseitig verdrehte rhombische Bisphenoide,

deren horizontale Digyren den tetragonalen Zwischenachsen
parallel sind, entsprechend den Flichen 2—3—6—7 und
1—8—4—5.

. Ebenfalls zwei rhombische Bisphenoide, aber mit Digyren,

die den Nebenachsen parallel sind. 1 —-2—5—6 und 3—4—7—8,

. Vier monokline Sphenoide mit vertikaler Digyre. 1—5, 3—7,

26, 4—8.

. Vier monokline Sphenoide mit horizontaler Digyre in Rich-

tung der Nebenachsen: 1—2, 3—4, 5—6, 7—38.

. Ahnliche Sphenoide, aber mit Digyren, die den Zwischenachsen

parallel sind: 2—3, 4—5, 6—7, 8—1.

. Acht Pedien.

Mit den unter 2. genannten rhombischen Bisphenoiden lassen
zweierlei Flichenkomplexe bilden.

®,2 hat basiszentriertes Gitter,

D, innenzentriertes. ®ie Eckpunkte sind mit den einen, die

Innenpunkte mit den anderen Sphenoiden besetzt.
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Q,? konnte iibrigens ebenso anschaulich durch obere und uintere
Pyramiden definiert werden. Dem innenzentrierten Gitter lassen
sich auch die beiden Sphenoide von 3. einordnen. Der entstehende
Komplex versinnlicht ©,5. Hiermit identisch sind alle jene Kom-

]YI m“

-

N

S

Fig. 45. D,

plexe, die sich aus dem gewdohnlichen, nach ¢ verdoppelten Gitter
dadurch ableiten, dall die (001)-Ebenen abwechselnd mit um 90°
gedrehten Bisphenoiden besetzt werden, und zwar ist es fiir den
Symmetrieeffekt belanglos, ob alle ihre horizontalen Digyren den
Nebenachsen oder Zwischenachsen parallel laufen.

Zwei neue, zueinander enantiomorphe Raumgruppen ergeben
sich aus ®,% Das innenzentricrte Gitter ist nach ¢ zu verdoppeln
und die Bisphenoide miissen zu Sphenoiden der Art von No. 6
zerlegt und auf der c-Achse unter Wahrung des Charakters von
innenzentrierten Qittern auseinandergezogen werden. Liegt etwa
am hintern, untern Eckpunkt das Sphenoid 1—8, so trigt der
dariiberliegende Eckpunkt das Sphenoid 4--5. Die Mittelpunkts-
sphenoide lassen dann eine doppelte Anordnung zu. Diejenige von
Fig. 44 entspricht der Raumgruppe 2, die andere, bei der diese
Sphenoide ihre Rolle gerade vertauschen, gehdrt zu D2
' Ebenfalls zwei enantiomorphe Anordnungen liefern die uinter
5. genannten monoklinen Sphenoide und zwar unter Zugrunde-
legung des gewdhnlichen, aber nach ¢ vervierfachten tetragonalen
Gitters. Bei ©, ist ihre gegenseitige Stellung langs allen Seiten-
kanten iibereinstimmend wie in Fig. 45 lings 1. ©,7 hat umge-
gekehrten Windungssinn.

Die letzte Raumgruppe -— D, — veranschaulicht sich bild-
lich am ungezwungensten im basiszentrierten, nach c vervierfachten
Gitter. Die Bausteine sind wieder Sphenoide mit horizontaler Di-
gyre; ob diese den Nebenachsen oder Zwischenachsen parallel
gehen, bleibt sich gleichgiiltig. In Fig. 45 sind letztere bevorzugt.
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Die durch die Eckpunkte gehende c-Achse hat gleichen Windungs-
sinn, wie die durch die Basismitten gehende. In Fig. 45 ist Links-
sinn vorausgesetzt. Beide sind iibrigens digyrisch verdreht. Eine
hierzu enantiomorphe Anordnung gibt es nicht, weil die Achsen II
und IV Rechtsschraubensinn haben. Die Bauelemente sind daher
ebensowohl im Rechts- wie im Linksschraubensinn angeordnet.

F. Hemiedrische Klasse 1. Art. 3B,.

Das tetragonale Skalenoeder mit zwei vertikalen Spiegelebencn,
deren Winkelhalbierende Digyren sind, kann in zweifacher Weise
dem Raumgitter gegeniiber orientiert sein, entweder so, dafi die
Symmetrieelemente die kristallographisch iibliche Lage haben, oder
dann so, daB sie dieser Stellung gegeniiber um 45° gedreht er-
scheinen. Das ergibt vier symmorphe Komplexe. Da von der ge-
wohnten kristallographischen Orientierung der Symmetrieelemente
nicht abgewichen werden soll, sind die Gitter gegebenen Falls zu
drehen, so daB} jetzt alle vier tetragonalen Gitter in Betracht zu
ziehen sind. Es entspricht dann

das einfache Gitter der Raumgruppe 2,2,

das innenzentrierte der Raumgruppe 2,1,

das basiszentrierte der Raumgruppe B,

das allseitsflichenzentrierte der Raumgruppe 3.

Von den vielen Teilflichnern, die sich aus dem tetragonalen
Skalenoeder ableiten lassen, benétigt die folgende Darstellung
nur drei: tetragonales und rhombisches Bisphenoid und mono-
klines Sphenoid.

Die beiden tetragonalen Sphenoide dritter Stellung werden
mit den Eck- und Innenpunkten des basis- und raumzentrierten
Gitters verbunden. Sind sie nach {110} spiegelbildlich gestellt,
so resultieren die den Raumgruppen 8B, (basiszentriert) und 8,
(raumzentriert) entsprechenden Komplexe. Sind aber die beiden .
Bisphenoide nach {100} spiegelbildlich orientiert, so muBl wegen
obiger Festsetzung das Gitter gedreht werden. Aus dem basis-
zentrierten Gitter entsteht ein Gitter gewdhnlicher Art, dessen
a,- und a,-Richtung verdoppelt sind, und es wechseln die beiden
Bisphenoide gerade nach diesen Richtungen miteinander ab, B,.
Umgekehrt geht das innenzentrierte Gitter in das allseitigflichen-
zentrierte {iber und die Besetzung ist so, daB in der einen (001)-
Netzebene nur die eine Bisphenoidart, in der dazu benachbarten
aber die andere liegt (8,8).

Rhombische Bisphenoide kommen bei drei Raumgruppen in
Frage. Bei ®B;® liegt ein gewohnliches, aber nach ¢ verdoppeltes
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Gitter vor. In die eine Basisebene kommen die Bisphenoide der
einen Stellung, die horizontalen Digyren nach den Nebenachsen
orientiert, in die dariibergelegene die gleich orientierten der anderén
Art. '

B,s zeigt die namlichen Verhiltnisse, nur sind jetzt die hori-
zontalen Bisphenoidachsen nach den kristallographischen Zwischen-
achsen gerichtet. Um die kristallographisch iibliche Aufstellung zu
bekommen, ist das Gitter um 45° zu drehen. Es wird dadurch
basiszentriert, bleibt aber nach ¢ verdoppelt, und die (001)-Ebenen
alternieren wie bei 2.

Mit 8,7 steht B,10 in engstem Zusammenhang. Das Unter-
scheidende liegt einzig darin, daB jetzt auch noch ¢ verdoppelt wird.

1 . 304
- '/’biégxl’/- ®|®
6® ® 3
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L - 1® ®1%
e
® @
v& s 8| 1
Fig. 46. By'2 Fig. 47.

Es wechseln dann nach allen drei Kantenrichtungen die Bisphenoide
regelmidfBig miteinander ab.

Auch B2 wird auf ein solches achtfaches Gitter bezogen. Bau-
elemente sind aber jetzt monokline Bisphenoide mit horizontaler
Digyre. Sie kommen in vierfacher Stellung vor; die Digyre ist
immer nach einer der Nebenachsen gerichtet. Fig. 46 erliutert die
Anordnung.

G. Holoedrische Klasse. Dy,.

Die tetragonale Holoedrie umfaBt 20 Raumgruppen, die dritt-
gréBte Zahl, die tberhaupt in einer Symmetrieklasse vorkommen
kann. Symmorphe Raumgruppen gibt es natiirlich nur zwei. Di-
tetragonale Bipyramide im einfachen Raumgitter entspricht ..,
im innenzentrierten Raumgitter D"

Von den nicht symmorphen Raumsystemen konnen elf auf
das basiszentrierte, das innenzentrierte und das nach c verdoppelte
gewohnliche Gitter bezogen werden, und es ist sehr lohnend, die-
selben in iibersichtlicher Zusammenstellung zu untersuchen.

Die Zahligkeit der Gitterpunkte aller der genannten drei Gitter

ist zwei. Es braucht daher je zwei komplementire, von der ditetra-
gonalen Bipyramide abstammende Achtflichner, um holoedrische

—
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Symmetrie zu bekommen. Ditetragonale Pyramiden werden nicht
bendétigt.

g basiszentriertes  innenzentriertes nach ¢ ver-
Achtflachner G. . G. doppelte G.
17719 dep: 12345618 3 s 2
Tetragon. Trapezoeder: & i uiiwers Din LTun Dy
180/1 Tetrag. Tritobipyramide: |1 3353 TF o o Tunb Dyn8 (D4n?)
. . -1-4-47-5.5/-8-8"
182 Rhomb. Bipyramide: berw. 25336617 (Da1®) — Tyn®
. R 108 5 GF
183/4 Rhomb. Bipyramide: {,325_'33,?43»?7_7:.3-31 — D' Dy '
185 Tetragon. Skalenoeder: o3 42018 o s (D) Dy'? (2419
186/7 Tetragon. Skalenoeder: %’22"3‘,'_52'%?:2;6,_ g1 Dan’ Dyute (D'

In dieser Tabelle steht in jeder Reihe zuerst links der Name
des in Betracht kommenden [Polyeders. Durch die rechts an-
schlieBenden Zahlen wird es genauer definiert. Die Zahlen selber

L3 L) x

o ' ° o :
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Fig. 50. D,u%. Fig. 51. D',

beziehen sich auf die Anordnung der Fig. 47. Schlieilich sind durch
die iiblichen Symbole die Raumgruppen benannt, denen die Kom-
plexe zuzuordnen sind. Eingeklammerte Symbole bedeuten Raum-
gruppen, die schon durch andere Achtflichner definiert sind.

Fiinf weitere Raumgruppen werden durch basiszentrierte, nach
¢ verdoppelte Gitter zur Darstellung gebracht. Darin sind je vier
Punkte durch Teilflichner der ditetragonalen Bipyramide zu er-
setzen. Es sind daher mindestens Vierflichner erfordert. Bei vieren
dieser Raumgruppen kommt man mit den verschiedenen Kombi-
nationen von rhombischen Bisphenoiden aus. Der Anschaulichkeit
wegen sind sie durch Figuren symbolisch erliutert und zwar sind
die beiden ungleichen, iibereinanderfolgenden Netzebenen neben-
einander gezeichnet. Die Fliachen der verschiedenen Formen sind
durch Kreuze und Kreise symbolisiert, allerdings mit anderer Be-
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deutung wie bei Fig. 34—37. Das Kreuz bedeutet, da die Flache
iiber der betreffenden Netzebene sitzt, der Kreis das umgekehrte.

Die horizontalen Digyren der Bisphenoide sind durchwegs
diagonal gestellt. Bei ©,* erginzen sich zwei Bisphenoide einer
(001)-Ebene zu einem tetragonalen Trapezoeder, die iibereinander-
liegenden zu einem Skalenoeder, dessen horizontale Digyren eben-
falls diagonal, also nicht kristallographisch orientiert sind (Fig. 48).

Bei ©,,1 ergidnzen sich die iibereinander liegenden Bisphenoide
zu Trapezoedern, wahrend zwei in derselben Ebene gelegene eine
rhombische Bipyramide (mit diagonal gestellten vertikalen Sym-
metrieebenen) ergeben (Fig. 49).

* » 3 X 4 *
CPCRL SR <
LAy CI R B P
20 ;1 11« OZ ’*O 13 1! 02
"——\H/o o\m_/r _;} /0 fs) Sx
7515, A 4153 ,;2“»3

Fig.52. D Fig. 53, D,n%,

Du13: In einer (001)-Ebene gelegene Bisphenoide bilden zu-
sammen ein Skalenoeder (vergl. ©,%), die iibereinanderliegenden
eine rhombische Bipyramide (9,). Fig. 50. Fiir D¢ lautet die
Kombination: in der Basis rhombische Bipyramide, iibereinander
Skalenoeder (Fig. 51).

Die fiinfte Raumgruppe, der ein basiszentriertes, nach ¢ ver-
doppeltes Gitter zukommt, ist ©,%. Die Punkte werden mit tetra-
gonalen Trapezoedern besetzt und zwar sind sowohl die Punkte
in der Ebene selber wie die Punkte iibereinander zu zweien
enantiomorph.

Fiir die beiden letzten Raumgruppen wihlt man zweckmiBig
das nach a, und a, verdoppelte, nach ¢ vervierfachte gewdéhnliche
Gitter. Die Bauelemente sind Sphenoide mit horizontaler Digyre.,
Sie kommen in acht verschiedenen Stellungen vor. Je vier unter-
einandergestellte sind nur drehungsverschieden. Aus Fig. 52 ersieht
man, wie vier an derselben c-Richtung gruppierte Sphenoide
schraubenartig angeordnet sind. I und IV sind die Spiegelbilder
von [ und III. Diese letztern sind dhnlich wie in fritheren Figuren
linksgewunden (die arabischen Zahlen bezeichnen wie in Fig. 39
und Fig. 40, deren Vergleich mit Fig. 52/53 iibrigens sehr in-
struktiv ist, die Stufen, auf denes sich die Sphenoide befinden).

Fig. 52 illustriert ®,,4.
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Werden die Achsen Il und IV miteinander vertauscht, so er-
gibt sich eine Anordnung, welche dem letzten tetragonalen Raum-
system — Dy — zugehort. Die schematische, zu Fig. 52 analoge
Figur 53 erliutert die Details.

VI. Kubische Abteilung.

Es gibt drei kubische Raumgittertypen: der einfache, der innen-
zentrierte und der allseitsflichenzentrierte. In der Aufstellung sind
sie nicht unbestimmt oder mehrdeutig, wie etwa die Gitter der tetra-
gonalen Abteilung. |

e
AL/

Fig. 54. 34 Fig. 55. 2%

A. Tetartoedrische Klasse. T.

Allgemeinste Kristallform dieser Klasse ist das tetraedrische
Pentagondodekaeder. Im folgenden denken wir vorab ans rechte,
positive. Es liefert die drei symmorphen Raumgruppen und zwar

¥* mit dem einfachen,

3% mit dem innenzentrierten,

32 mit dem allseitsflichenzentrierten Raumgitter.

Daneben gibt es zwei nicht symmorphe Raumgruppen. Die
eine derselben — ¥* — 148t sich im flichenzentrierten Gitter ver-
anschaulichen. Zu dem Zweck werden die drei Flichen, welche je
in einem positiven Oktanten liegen, als Einheit betrachtet (trigo-
nale Pyramide dritter Stellung). Das tetraedrische Pentagondo-
dekaeder erscheint so als Kombination von vier Pyramiden. Jede
dieser Pyramiden ist nun mit einem bestimmten Punkt des flichen-
zentrierten QGitters verbunden. Die Verteilung ist aus Fig. 54 zu
ersehen. ;

Die andere nicht symmorphe Raumgruppe — %% — bendtigt
zu ihrer Verbildlichung des nach allen drei Achsenrichtungen ver-
doppelten Wiirfelgitters. Ein Eckpunkt und die drei benachbarten
Kantenmitten werden mit den vier durch die Zerlegung des tetra-
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edrischen Pentagondodekaeders entstandenen trigonalen Pyramiden
besetzt. Von den vier weiteren Punkten unseres Gitters hat je einer
mit einer dieser trigonalen Pyramiden die Trigyre gemeinsam. Er
wird dann parallel gleich besetzt wie der andere (Fig. 55).

B. Paramorphe Klasse. T,.
Die symmorphen Raumgruppen sind

It einfaches Gitter, l Die Gitterpunkle sind durch 20
T,° innenzentriertes Gitter, parallel gestellte Dyakis- 201
T, allseitsflichenzentriertes Gitter. I dodekaeder ersetzt. 202

Das Dyakisdodekaeder hat dem tetraedrischen Pentagondode-
kaeder gegeniiber das Symmetriezentrum voraus. Jene vier Flachen-
tripel, welche vorhin als trigonale Pyramiden herausgehoben wur-
den, bilden nun mit ihren Gegenflichen vier Rhomboeder dritter
Stellung. Mit diesen Rhomboedern 148t sich gleich verfahren wie
vorhin bei T4 und I3, und Fig. 54 und Fig. 55 sind leicht in diesem
Sinn erginzt zu denken, so dafl eine weitere Darstellung iiber-
fliissig wird. Es sei nur gesagt, daB} flichenzentriertes Gitter mit
den vier Rhomboedern dritter Stellung die Raumgruppe T,5 acht- 203
faches Wiirfelgitter mit 2 X 4 Rhomboedern dritter Stellung die
Raumgruppe ;7 darstellt. 204

Um mit dem innenzentrierten Gitter cinen nicht symmorphen
Komplex paramorpher Symmetrie herzustellen, sind die beiden
Punkte mit 12-Flichnern zu besetzen, die sich zum Dyakisdode-
kaeder erginzen. Es sind das zwei enantiomorphe tetraedrische
Pentagondodekaeder. Wird in die Eckpunkte das positive rechte
gebracht, so ist dem Raumzentrum das negative linke zuzuordnen.
Es resultiert so T2 558

Die letzte nicht symmorphe Raumgruppe dieser Symmetrie-
klasse gehort zum Typus mit Diamantgittern. Solchen Gruppen
sind wir schon mehrfach begegnet und fanden immer raumgitter-
artige Flachenkomplexe zu ihrer Verdeutlichung. In der kubischen
Abteilung ist das leider ganz anders. Hier sind die Verhiltnisse
so kompliziert, daB es keine cinfache Kristallform gibt, diec ge-
eignet wire, in Verbindung mit cinem der drei Raumgitter dic
Raumgruppen mit Diamantgittern zu veranschaulichen. Die Veran-
schaulichung 148t sich erst it Hilfe von Zwillingsgebilden er-
reichen. Im vorliegenden Fall, wo es sich um die Raumgruppe
3,4 handelt, sind zwei zentrosymmetrisch gestellte tetraedrische 4
Pentagondodekaeder mit gemeinsamer Trigyre (Zwillingsebene eine
Flache des Wiirfels) zu wihlen. Beziiglich der Flichenzahl und
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Flachenorientierung stimmt dieser Zwilling vollstindig mit einem
Dyakisdodekaeder iiberein. Von einem solchen unterscheidet er sich
aber gleichwohl in wesentlichen Punkten, und zwar liegt das Unter-
scheidende darin, dafl beim Zwillingskomplex jedes Pentagondode-
kaeder seine Individualitit bewahrt. Praktisch kommt dies im
Strukturmodell darin zum Ausdruck, daB die beiden Schwerpunkte,
die ja zur Bildung des Dyakisdodekaeders zusammenfallen miiften,
nun einen gewissen Abstand haben, der gleich ist einem Viertel
der Raumdiagonale der Wiirfelzelle des Raumgitters. Ein solcher

Fig. 56. Tnpt.
Zwillingskomplex zweier tetraedrischer Pentagondodetraeder.

Komplex ist in Fig. 56 dargestellt und zwar mit einem gewissen,
durch die eingezeichneten Achsenkreuze abschidtzbaren Abstand der
Mittelpunkte. Werden nun die vier Punkte des flachenzentrierten
Gitters durch solche unter sich parallel gestellte Zwillinge ersetzt,
so hat man die gewiinschte Veranschaulichung der Raumgruppe T,%.

C. Hemimorphe Klasse. T,
Die sechs Raumgruppen dieser Klasse lassen sich iibersicht-
lich in folgendem Schema zusammenfassen.

Z.' einfaches Gitter ] Die Gitterpunkte sind durch
Ts° innenzentriertes Gitter parallel gestellte Dyakisdodekae-

T4 allseitsflachenzentriertes Gitter[ der ersetzt.
Das Gitter ist
einfach innenzentr. allseitsfl.
Hexakistetraeder, alle in paralleler ¢ ;‘ri
Stellung s 2 Iy T8 Ta?
=]
Rechte und linke, positive tetraedr. S g
B o
Pentagondodekaeder < §E = Tat —
.................................................. fz;_ﬁ
Rechte und linke, positive tetraedr. = g A0 — —
Pentagondodekaeder g g
Trigonale Pyramiden dritter Stellung 8 £ — Tus -
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Th, T3, T2 sind symmorph.

T4 ist ohne weiteres klar. Die beiderlei Punktarten sind ab-
wechselnd ersetzt durch die zwei Halftflichner der charakteristi-
schen Kristallform. Sehr einfach ist auch die Anordnung der Formen
bei ¥,. Sie ist von der Art des Steinsalzgitters, indem jedes
tetraedrische Petagondodekaeder, das einen Gitterpunkt ersetzt, in
Richtung der drei Hauptachsen von sechs spiegelbildlichen Do-
dekaedern gleicher Stellung umgeben ist.

In ¥, sind alle Wiirfeleckpunkte mit jenen trigonalen Pyra-
miden besetzt, welche sich z. B. vom positiven rechten tetraedri-
schen Pentagondodekaeder herleiten, und zwar ist die Verteilung
genau so wie in Fig. 55. Die trigonalen Pyramiden der anderen

‘I zl
s g
2 =" ||l
- ‘:9_1 f‘ WL"s'iY
e | 3 2
=g
Fig. 57. Td°. Fig. 58.

Art, welche also vom positiven linken herkommen, sind auf die
Raummitten verteilt. Wenn wir nun verlangen, daB die Pyramide
der Raummitte irgend einer Zelle das Spiegelbild nach (110) jener
Pyramide sein soll, welche in der hintern, untern, linken Ecke der
namlichen Zelle sitzt, so verfiigen wir nur iiber den Nullpunkt.
Wir bekommen so die Anordnung, wie sie in Fig. 57 schematisch
zum Ausdruck gebracht ist. Mit 1, 2, 3, 4 sind die vier, das posi-
tive, rechte tetraedrische Pentagondodekaeder bildenden trigonalen
Pyramiden bezeichnet, so wie es Fig. 58 angibt. Werden die in den
iibereinstimmenden Quadranten gelegenen trigonalen Pyramiden
der Linksform mit 1’, 2’, 3’, 4’ angegeben, so sieht man sofort,
daB nach (110) als Spiegelebene einander zugeordnet sind:
1und 1’; 2 und 2’, 3 und 4’, 4 und 3’

Gerade das bringt Fig. 57 zum Ausdruck und definiert eindeutig
die Lage der Pyramiden, da ja ihre Orientierung kristallographisch
vollig bestimmt ist.

D. Enantiomorphe Klasse. O.
Den drei symmorphen Gruppen entsprechen die drei kubischen
Gitter, falls die Punkte durch identische und parallel gestellte
Pentagonikositetraeder ersetzt sind.

Mineralog.-petrograph, Mittlg., Bd. V, Heft 1, 1925 4
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Ot ist dem einfachen,

25 dem innenzentrierten und

£% dem allseitsflachenzentrierten Gitter zugeordnet.

Mit dem innenzentrierten Gitter 146t sich eine weitere Raum-
gruppe — £? — veranschaulichen, wenn Eck- und Innenpunkte
je mit einem der beiden Halftflaichner des Pentagonikositetraeders
besetzt werden. In diesem Fall sind es zwei rechte (oder dann
zwei linke) tetraedrische Pentagondodekaeder in positiver und nega-
tiver Stellung.

¢ bedarf des nach allen Kantenrichtungen verdoppelten innen-
zentrierten Gitters (vergl. Fig. 57). Die Punkte werden wie bei
¥ 46 mit trigonalen Pyramiden verbunden. Diese zerfallen aber nicht

mehr in zwei spiegelbildliche Gruppen, sondern sind unter sich

BN
|l
3 . i—
k«_,
[~
AL
y—F
Fig. 59. 28 Fig. 60. 4

nur drehungsverschieden. Die Anordnung ist ganz analog zu Fig. 57
und in Fig. 59 dargestellt. Statt der Flachentripel des Pentagon-
ikositetraeders sind allerdings nur deren Mittellagen, d.h. Oktaeder-
flichen gezeichnet. Auch sind Fig. 57 und 59 nicht in paralleler
Aufstellung.

Eine Raumgruppe mit Diamantgittern ist O+ Die Veranschau-
lichung geschieht in analoger Weise wie bei Z,:t Im flachen-
zentrierten Gitter kommen an Stelle der Gitterpunkte parallel
orientierte Gebilde, wie sie in Fig. 60 dargestellt sind. Kristallo-
graphisch lassen sie sich deuten als Verzwillingung zweier tetra-
edrischer Pentagondodekaeder. [110] ist Zwillingsachse. Beide
Individuen haben wieder eine gemeinsame Trigyre. lhre Zentren
fallen aber nicht zusammen. Wie bei T,* muB ihr Abstand gleich
sein dem Viertel der Diagonale der Wiirfelzelle des Raumgitters.

Die beiden letzten Raumgruppen, ©¢ und O7, stehen zuein-
ander im Verhiltnis der Enantiomorphie und koénnen ebenfalls,
wenn auch nicht gerade elegant, auf das allseitig flichenzentrierte
Gitter bezogen werden. Das Pentagonikositetraeder wird in vier
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trigonale Trapezoeder zerlegt. Jedes derselben wird mit einem
Gitterpunkt verbunden, jedoch nicht so, daB das Zentrum des
Trapezoeders mit dem Gitterpunkt zusammenfillt. Die Trapezoeder
sind vielmehr lings ihrer trigonalen Achse um einen Viertel der
Raumdiagonale des Gitterwiirfels verschoben. Welches im ein-
zelnen der Sinn dieser Verschiebung sei und wie die Trapezoeder
iiberhaupt orientiert seien, erhellt aus der Figur 6/. Darin sind

\@

[ni
T — \[m]
[it]
Fig. 61. 26,

Die Doppelpfeile stellen trigonale Trapezoeder dar.

zwar nur die Richtungen der Trapezoederachsen mit ihrem Schwer-
punkt eingezeichnet. Da aber diese Achse, bei Annahme irgend
einer Flache, das Trapezoeder als Teilflichner des Pentagonikosi-
tetraeders eindeutig bestimmt, durfte die komplizierte Eintragung
der Trapezoeder umgangen werden. Die Achsenlingen selber sind
iibrigens - willkiirlich. DaB in der Figur jeme Enden den Gitter-
punkten naher liegen, welche in den negativen Quadranten aus-
stechen, ist beachtenswert, hingt aber mit der Wahl des Null-
punktes zusammen.

Fig. 61 entspricht der Raumgruppe ©¢. Da £©7 hierzu enantio-
morph ist — der einzige Fall der kubischen Abteilung —, so
sind hierfiir weitere Erkldarungen {iberfliissig. '

E. Holoedrische Klasse. O,,.

Diese Klasse zdhlt unter allen kubischen am meisten Raum-
gruppen. Die drei symmorphen Raumgruppen

£, mit einfachem, 221
5,7 mit innenzentriertem und 222
£,5 mit allseitig flichenzentriertem Gitter — bei Ersatz der 223

Gitterpunkte durch Hexakisoktaeder — sind selbstverstindlich.
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Ebenso ist es klar, daB wir Komplexe holoedrischer Symmetrie
erhalten, wenn wir im innenzentrierten Gitter Eck- und Mittel-
punkte je mit entgegengesetzten Hemiedern allgemeinster Lage
besetzen. Es gibt abwechselnde Besetzung mit

rechtem und linkem Pentagonikositetraeder die Raumgruppe 9,2,
rechtem und linkem Dyakisdodekaeder die Raumgruppe £2
positivem und negativem Hexakistetraeder die Raumgruppe O,

Steinsalzgitterartig ist die Veranschaulichung von 9,5 Das
Gitter ist also das gewohnliche wiirfelige, aber nach den drei Achsen
verdoppelt. In irgend einem Punkt sitzt ein rechtes Pentagonikosi-
tetraeder. Nach den drei Hauptachsen sind ihm sechs spiegelbild-
liche, also linke Pentagonikositetraeder nichstbenachbart.

Mit dem innenzentrierten Gitter lassen sich nach Verdoppelung
in Richtung der drei Achsen zwei Raumgruppen darstellen. £,8

g SL '

res rFe- o+ _[O‘
Fig. 62. ©Ogs. Fig. 63. Zwillingskomplex Op".

wird mit den vier vom Hexakisoktaeder sich ableitenden tetra-
edrischen Pentagondodekaedern gebildet. Von den 16 zur Ver-
fiigung stehenden Punkten werden immer vier, ein flichenzentriertes
Gitter bildende, parallel gleich besetzt. Es sitzt in |[000]| ein
rechtes positives, in |[+ 1 1]| ein rechtes negatives, in |[5 ; ]| ein
linkes positives und in [[§ § 3]| ein linkes negatives tetraedrisches
Pentagondodekaeder. Alles das ist aus Fig. 62 ersichtlich.

Im andern hierhergehérigen Komplex — £, — sind die
Punkte durch die acht aus dem Hexakisoktaeder sich ableitenden
Rhomboeder dritter Stellung besetzt. Das Strukturschema ist ganz
analog zu Fig, 57. Das Unterscheidende liegt darin, daf jetzt
jeder Gitterpunkt als Symmetriezentrum fungiert. Mit Riicksicht
auf die Bedeutung der Ziffern in Fig. 57 ist mithin ©,!¢ eindeutig
definiert.

Die letzte verbleibende Raumgruppe, ©,7, gehort wieder zum

Typus derjenigen mit Diamantgittern. Wir legen ihr also wiederum
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das flichenzentrierte Gitter zu Grunde und ersetzen die Gitter-
punkte durch parallel gestellte Zwillinge (Fig. 63) zweier Hexakis-
tetraeder nach {100} mit gemeinsamer Trigyre und nicht zusammen-
fallenden Zentren. Das Verhiltnis ihres Abstandes zur Gitterwiirfel-
diagonale ist das mehrfach erwihnte. '

Numerierung der 230 Raumgruppen und Reihenfolge,
in der sie im Vorstehenden besprochen wurden.

I. Trikline Abteilung.
A. Hemiedrische Klasse C,

G, 1
B. Holoedrische Klasse Ci
@i 2

I, Monokline Abteilung.
A. Hemiedrische Klasse Cs

@5t 3 @S
@s? 5 Gst
B. Hemimorphe Klasse C,
Gyt 7 G,3
C. Holoedrische Klasse Can
(‘S‘Zhl IO @‘2114
Eon? 12 Cop8
Cond 11 (8048

IIl. Rhombische Abteilung.
A. Hemimorphe Klasse C;.

Gl 16 B2
@2\‘2 21 62\'18
€ 22 (PR
Gt 23 8y, 18
@a5. 25 6,16
628 32 Gq4t7
(5:2"7 31 N (5'/2"18
628 26 G, 19
G® 30 @E,,20
@ 35 €,v2t
@2‘_11 17 @2“_22

B. Hemiedrische Klasse V
pLy 38 Be
B2 42 BT
B3 43 Be
B 46 Be
B 44

C. Holoedrische Klasse V)
B! 47 B®
B2 68 Bs
pUR 51 B
Pyt 58 B,,8

13
14
15

27
28
18
24
34
37
20
36
19
29
33

39
41
40
45

52
61
60
54

B..° 59 Bu'? 48
B 73 B2 64
BVe!! 53 B2 55
Bni2 69 B2 71
B3 57 Bu2d 50
Bu't 62 VP 70
Bu'® T4 Pu2d 49
Lyl 63 B2 66
Tp!™ 65 By 56
Bul® 72 R, 67

1Vy. Trigonal-rhomboedrische Abteilung.
A. Tetartoedrische Klasse C;

@5 i) B 78
3,2 11 o Bt 76
B. Paramorphe Klasse Cs;
(P 79 G3; 80
C. Hemimorphe Klasse Ca.
Gs' 81 Gt 85
63,2 82 G35 83
C3.3 84 €58 86
D. Enantiomorphe Klasse D,
R 87 D5 01
D,z 88 D8 03
D3 00 D7 89
Dt 02
E. Holoedrische Klasse Dsq
Dial! M4 Diat 08
Daa? 07 D34 06
Dza® 95 Dza® 99

IV,. Rein trigonale Abteilung.
A. Paramorphe Klasse Csy

Gt 100

B. Holoedrische Klasse Dss
Dant 101 Dan® 102
D3u? 103 Dant 104

1V, Rein hexagonale Abteilung.
A. Tetartoedrische Klasse Cg
Ggt 105 Ggt 107
Ge2 109 G5 108
Gy 110 Gg® 100
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B. Paramorphe Klasse Cgn Ba? 169 Ba'® 173
Gst 111 Cen? 112 By 170 B 164
C. Hemimorphe Klasse Cgr Ba® 166 Va2 174
1 3
gi:g ﬂi gz:,, i;g G. Holoedrische Klasse Dyn
D. Enantiomorphe Klasse Dy Lol 175 Dan'’ 189
Dt 117 Dt 119 Din? 179 Dyn'? 185
D 121 D 120 Dar® 177 Dyn's 190
®68 ]22 SDBG ]18 E.;h“ 178 @4h“I 183
E. Holoedrische Klasse Dgn Dyp® 180 Dyn'® 187
D! 123 Den® 125 Dyn® 181 Danls 191
Den? 124 Dent 126 D 186 Dy4n!? 176
_ Dn® 188 Dyn'® 102
V. Tetragonale A.btetlung. Dan? 182 Danl® 103
A. Tetartoedrische Klasse 1. Art C, Denl® 184 Den2 104
¢, 127 ¢+ 130
¢,z 131 €5 128 VI. Kubische Abteilung.
€2 129 G, 132 A. Tetartoedrische Klasse T
B. Tetartoedrische Klasse I1. Art S, 1195 T4 198
&,' 133 G2 134 T 107 5 199
C. Hemimorphe Klasse Cy. T* 196
€t 135 Gy7 139 B. Paramorphe Klasse Ty
Gi;v2 143 848 144 Tt 200 Twd 201
¢43 138 G4 136 D2 205 Tn® 203
G4t 141 €410 142 Tu® 202 Tu? 204
@4\'5 137 64\-” 145 Tt 206
€48 140 €2 146 C. Hemimorphe Klasse Ta
D. Paramorphe Klasse Cyn T 207 Tat 210
Gan' 147 Gt 151 T2 209 Tab 211
Cm? 150 C4n® 148 Tqa® 208 Tq¢ 212
Cand 149 Gt 152 D. Enantiomorphe Klasse O
E. Enantiomorphe Klasse D, O 213 05 214
D, 153 .6 156 02 216 08 210
,2 155 D," 161 23 215 27 220
D2 160 .8 159 Ot 218 $O8 217
D4 158 D2 154 E. Holoedrische Klasse Oy
D, 157 D, 162 Ot 221 Ot 227
F. Hemiedrische Klasse II. Art Va On? 224 O 230
Ba! 163 Wit 168 ond 225 8 228
Ba2 171 Va5 165 pt 226 Ond 222
Ve 167 Bas 172 On® 223 e 220

Aligemeine Beziehungen zwischen Kristallpolyedern
_ und Diskontinuum.

Fiir den mit der kristallographischen Terminologie Vertrauten
geben die bisherigen Ausfithrungen eine anschauliche Vorstellung
der 230 Raumsysteme und gewihren mannigfaltige Einblicke in
deren gegenseitigen Beziehungen. Klar ist vor allem, daB die
Symmetrieelemente der Polyeder, welche die Stelle der Gitter-
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punkte einnehmen, zu Symmetrieelementen des ganzen Komplexes
werden, und daBl diejenigen Symmetrieelemente der symmorphen
Raumgruppen, welche beim Auseinanderzichen der Teilflichner
scheinbar verloren gehen, AnlaB geben zum Entstehen von Sym-
metrieelementen mit Gleitkomponenten, also von Schraubenachsen
und Gleitspiegelebenen. Betrachten wir vielleicht einmal Fig. 14.
Die vordere Flache ist mit der hinteren identisch. Beide lassen
sich durch primitive Translation nach der a-Achse ineinander iiber-
fithren. Es geniigt daher, die eine, z. B. die vordere, zu betrachten.
Mit einem Blick erkennen wir viererlei Lagen von Pinakoiden, die
zusammen eine Bipyramide ergeben. Dafl sie rhombisch ist, folgt
aus den Dimensionen des Gitters oder der gegenseitigen Neigung
der Flichen. Gehen wir etwa von dem links unten gelegenen
Pinakoid aus, so gehdren zu ihm drei weitere, welche die vordere
Fliche und die im betrachteten Punkt zusammenlaufenden Kanten
zentrieren. Das rechts vom Ausgangspinakoid gelegene, zweite
Pinakoid ist das Spiegelbild des erstern. Die Ebenen also, welche
ihren Abstand halbierend auf der b-Achse senkrecht steht, ist eine
Symmetrieebene. Den namlichen Symmetriecharakter hat die Ebene,
welche zwischen dem zweiten und dritten Pinakoid dieser Reihe
in entsprechender Weise gelegen ist. Nur sind ihr gegeniiber die
Pinakoide anders orientiert wie der ersteren gegeniiber. Symbolisch
lassen sich diese beiden Spiegelebenen durch (01 0)% und (010):_;

bezeichnen. Phinomenologisch bedingen sie die fiir die rhombische
Holoedrie erforderliche Symmetrie nach {010}.

Ganz anders sind die vier in Rede stehenden Pinakoide den
(001)- und (100)-Ebenen gegeniiber gelegen. Keine diesen parallele
Ebene, wo sie auch gelegen sein mag, ist Spiegelebene. Wir er-
kennen vielmehr, daB das Pinakoid, welches zum Eckpinakoid nach
{100} spiegelbildlich wire, die c-Kante zentriert. (100) ist dem-

nach eine Gleitspiegelebene mit der Gleitkomponente —;-. Vom

gleichen Charakter ist die hierzu parallele Ebene, welche die
a-Kante des Gitters halbiert. Das (001) - Spiegelbild des Eck-
pinakoids endlich ist in der Mitte der vordern Fliche. Es ist also
parallel zu (001) in der b-Richtung verschoben. (001) ist mithin
auch GQleitspiegelebene, und ihre Lage wird durch den Umstand
bestimmt, daB sie den vertikalen Abstand der beiden spiegelbild-
lichen Pinakoide halbieren muB. Sie hat demnach das Symbol

(001):1 und die Gleitkomponente ist gegeben durch t2) Uberein-
4
stimmenden Charakter hat (001) 3.
4
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Ahnlich koénnen wir die Digyren finden. Wir fragen immer:
welches Pinakoid leitet sich durch Drehung um eine Digyre von
gegebener Richtung aus dem Eckpinakoid ab und suchen dann
seine Lage auf. Hat seine Verschiebung dem Eckpinakoid gegen-
itber eine Komponente in Richtung der Digyre, so ist diese eine
Schraubungsachse, ist aber die Verschiebung zur Achse selber
senkrecht, so bleibt sie Drehungsachse. Im vorliegenden Fall ist

[100] Drehungsachse mit den Einstichpﬁnkten

oo 3]}, ([0 5]}, [fo= <]}, |fo » <

[010] Schraubungsachse mlt den Einstichpunkten
=} [z o0]} |[z0+]]
[001] Schraubungsachse mit den Einstichpunkten

[0 o]}, ifo %ol [[= <ol I[= ol

Schlagen wir nun bei 3,' in der geometrischen Kristallo-
graphie des Diskontinuums nach, so finden wir daselbst die
gleichen Symmetrieelemente verzeichnet, nur mit Vertauschung der
Indizes, entsprechend der anders gewihlten Aufstellung.

Die ecinem Komplex eigentiimlichen Symmetrieelemente sind
es nun, welche die einzelnen Flichen und Formen miteinander in
Beziehung bringen. Sie wiirden auch bewirken, daB irgend ein
Punkt allgemeiner Lage sich in dhnlicher Weise vervielfiltigt. Es
entstinde so ein Punktkomplex. Sind die Flichenkomplexe mehr
fiir das Vorstellungsvermoégen berechnet, so sind die Punktkomplexe
von besonderer Bedeutung fiir die Strukturbestimmung. Theoretisch
gehoren Punktkomplexe und Flichenkomplexe zusammen, genau
so wie in der Kristallgeometrie Zonen und Flichen studiert werden.
Wir koénnen sogar einem Punktkomplex einen ganz bestimmten
Flichenkomplex zuordnen und umgekehrt. Dazu bendétigen wir aber
eine fiir Flachen- und Punktkomplexe gleich geeignete Symbolik.

Zusammengehorige Koordinatenwerte (P. Niggli) und ihr
Zusammenhang mit den Millerschen Symbolen der ein-
fachen Kristallformen. Vier Sitze.

Soweit es nur auf die gegenseitige Lage als solche ankommt,
kénnte man fiir den Fliachenkomplex die in der Kristallographie
iiblichen Symbole verwenden und durch beigeschriebene Zahlen
zugleich angeben, welches die Koordinaten des fiir die betreffende
Form in Betracht kommenden Nullpunktes seien. Der in Fig, 14
dargestellte Komplex, mit welchem wir soeben exemplifiziert haben
wiirde sich dann in folgender Weise darstellen:
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(hkDoso  (AkI)eod (hkDolo  (hkT)ell
(h k1ooo (h l;l_)oo% (ka)o%o (hk|)0~l

Nun wird aber auch die Lage der Ebene selber unter Umstinden
bedeutungsvoll. Es muB also im Symbol noch irgendwie zum
Ausdruck gebracht werden, wie sie vom betreffenden Nullpunkt
entfernt sei. Am einfachsten geschieht dies so, da wir einer be-
liebigen Ebene & eine Zone 3 mit gleichen Indizes zuordnen und
als die Indizes von & gerade die Koordinaten ihres Schnittpunktes
mit 3 wihlen. Es sei z. B. die Ebene {§ durch das Symbol (321)
gegeben. Die zugeordnete Zone 3 hat also das Symbol [321].
Nun sei die Ebene so gelegen, daB sie durch den auf 3 liegenden
Punkt [, 2, f]l gehe. Dann schreiben wir das Flachensymbol kurz
in der Form (4 +1). Analog bezeichnet das Symbol (3 - | - ) oder
% '+ ‘=) eine Ebene von der kristallographischen Symbolisierung
(20 6.15), die aber durch den auf der Zone [20.6.15] gelegenen
Punkt mit den Koordinaten [ - + - ;]| gelegt ist.

Durch diese Symbolisierung wird nun eindeutig jede Fliche
einem bestimmten Punkt und jeder Punkt einer bestimmten Ebene
zugeordnet. Selbstverstindlich miissen Punkt und Ebene auf das
nimliche Koordinatenkreuz mit dem gleichen Ursprung bezogen
werden. Die zusitzlichen Glieder, welche in der Koordinatendar-
stellung von P. Niggli in so vielen Raumgruppen erscheinen, sind
nach dieser Auffassung nicht den Indizes zuzuzahlen, sondern blof}
als beigeschriebene Zahlen fiir die Lagebestimmung des Ursprungs
zu verwenden. Natiirlich hindert nichts daran, sie auf einen einzigen
Koordinatenanfangspunkt zu beziehen, falls der Dualismus zwischen
Flachenkomplex und Punktkomplex nicht in Frage steht.

Fiir Flichen und Kanten gleicher Symbolisierung besteht eine
interessante Relation (cfr. P. Niggli, Lehrbuch der Min., 1924, 653),
die an dieser Stelle ihren Beweis finden moge.

[. Konstruiert man iiber den kristallographischen Achsen a,
b, ¢ als konjugierten Halbmessern ein Ellipsoid und bringt man in
jenem Punkt, wo die durch den Ursprung gehende Gerade [uvw]
die Ellipsoidoberfliche trifft, die Tangentialebene an, so sind die
Indizes dieser Ebenen (uvw).

Der Beweis ist einfach. Es ist nimlich das Ellipsoid gegeben
durch die Gleichung

X, Y, Z und die Achsen a, b, ¢ sind in der nimlichen Lingeneinheit
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(z. B. in mm) ausgedriickt. Es vereinfacht sich aber die Rechnung
bedeutend, wenn X, Y, Z mit den beziiglichen Achsenlingen als
charakteristischen Einheiten gemessen werden. Nennen wir die neuen
Koordinaten x, y, z, so kommt also

X=ax, Y=by Z=cz
und die Gleichung des Ellipsoides nimmt die Form an:

x*+y?+2z% =

Nun betrachten wir die der Zone [uvw] parallele, durch den Ur-
sprung gehende Gerade. Ihre Gleichung ist

X |y _Z
u v ow
Der Schnittpunkt mit dem Ellipsoid ist daher
X = eu y = ov Z = 0w, 1
wo 0 — 1
) Vu? + v + w?

Es geniigt hier, einzig die positive Wurzel zu betrachten, da wir
[uvw] selber vektoriell deuten und somit [uvw] von [uvw]
unterscheiden. Die Tangentialebene an das Ellipsoid im Punkte 1
ist nun
oux + evy + ewz = 1.
Betrachten wir nur die Orientierung der Ebene — und fiir die
Bestimmung der Indizes reicht das hin —, so konnen wir sie durch
den Ursprung gelegt denken und bekommen also
ux + vy + wz = Q.
Nun ist bekannt, daB in einer Ebenengleichung die Koeffizienten
der Variablen den Indizes hk1 proportional sind. Es ist deshalb
fiir die Tangentialebene
h:k:l=u:v:w, w.z.b. w.

Neben dem Koordinatenkreuz der kristallographischen Achsen
betrachtet die Kristallgeometrie noch ein zweites, dessen Zusammen-
hang mit dem ersten sich am besten vektoriell ausdriicken 1aBt.
Bezeichnen wir namlich die gewohnlichen Achsen vektoriell mit
a, b, ¢ und die anderen mit A B, €, so gelten die Definitionst
gleichungen

A = [b¢] B = [ca] € = [ab]
A, B, C konnen als Lingen der neuen Achsen gelten.

Unter diesen Voraussetzungen besteht der weitere Satz:

I1. Konstruiert man iiber A, B, C als konjugierten Halbmessern
ein Ellipsoid und legt an dasselbe in jenem Punkt, wo die Normale
der Fliche (hkl) die Ellipsoidoberflache trifft, eine Tangential-



Kristallpolyeder in der Lehre der regelmiBigen Punktsysteme. 57

ebene, so hat die Normale dieser letztern die gleichen Indizes wie
die Fliche.
Der Beweis ist ganz analog wie bei L.

Wird die Zone [uvw] vektoriell durch

3 =ua+ vb + we
und die Fliachennormale durch

F=hA4+kBH4-1€
bestimmt, so hat man nicht nur Richtungen, sondern auch Lingen,
und diese Lingen stehen wiederum in engster Beziehung zum
Ellipsoid. Ist ndmlich im erstern Fall r die Linge des Radius-
vektors des Beriihrungspunktes von Ellipsoid und Tangentialebene
und n der Abstand dieser Ebene vom Mittelpunkt und » das Volumen
des von den Achsen a, b, ¢ bestimmten Parallelepipeds, so besteht
die Beziehung.
. %=
Werden mit R, N und V die analogen Gréfen im Falle II be-
zeichnet, so gilt

§ g A
]V' J%:»ng:W
Zum Beweis von III ist zu beachten, daf}
r=2o 3 (1)

und —:_l— = cos (3 %)

ist. Fiir cos (3, &) findet man (vergl. z. B. P. Niggli, Lehrbuch d.
Min., 1924, Seite 112) ganz allgemein den Ausdruck

cos (1) = v

Da in unserem Fall h = u, k = v, | = w ist, erhalten wir
l_ v . v
ro 2§ -l elFl-r

oder
-

n= ‘ -
o' &
und es kommt aus 1) und 2)

3.8 = r:—i—, w.z. b. w.

Der Beweis fiir die andere Proportion ist ganz analog. Es
ist nur zu beachten, daB jetzt das von den Achsen A, B, C ge-
bildete Volumen in Rechnung tritt und daB 3 und & ihre Rolle
vertauscht haben.
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Auf die Analogie dieser Sitze zu gewissen physikalischen
GroBen hat schon P. Niggli (1. c. 653) aufmerksam gemacht.

Anwendung der viergliedrigen Punktsymbole
im Diskontinuum.

Der elegante Dualismus, den wir zwischen Flichenkomplex
und Punktkomplex gefunden haben, erleidet eine unangenehme
Storung bei hexagonalem Achsenkreuz. Hier erfordert die natur-
gemidBe Symbolisierung vier Indizes. Viergliedrige Flichensymbole
sind denn auch in der Kristallographie schon lange iiblich geworden.
Da aber die Kristallographie von jeher ihr Hauptaugenmerk auf
die Flachen gerichtet und mit Zonensymbolen nur in Ausnahme-
fallen operiert hat, ist es begreiflich, daBl viergliedrige Zonen-
symbole bisher nie recht im Gebrauch waren, zumal sich in allen
Rechnungen, wo sie rein formal erwiinscht wéiren, auch anders
auskommen lieB, sei es, daB eine der iiberzihligen Achsen iiber-
haupt auBer Acht gelassen wurde, sei es, dal das sogenannte
orthohexagonale Achsenkreuz herangezogen wurde. Letzteres ist
z. B. in der geometrischen Kristallographie des Diskontinuums ge-
schehen. In den letzten Jahren hat sich die Sachlage etwas ver-
andert. Verfasser hat gewisse viergliedrige Zonensymbole (= Punkt-
symbole) vorgeschlagen, die kurz in folgender Weise definiert
werden konnen.

Werden die Koordinaten eines Punktes mit [mnop] bezeich-
net, dhnlich wie die Indizes einer Fldache (hkil), so gilt zunichst
die Beziehung m + n + o = 0 und fiir einen Vektor, welcher vom
Koordinatenursprung nach dem betreffenden Punkt gezogen ist,
ergibt sich

¥ — ma, +na; + oaz + pc
Um also vom Ursprung aus nach jenem Punkt zu gelangen, legen
wir zuerst auf der a,-Achse m Einheiten zuriick, gehen dann n Ein-
heiten parallel der zweiten Achse, hernach o Einheiten parallel der
dritten und schlieBlich p Einheiten lings c. Fiir die positiven End-
punkte der Achsen erhalten wir also folgende Koordinatenwerte:

(55 5 o) |[5 5 5 olk |55 3 0l} [[o0or]]

Wie weit diese Symbole Anklang gefunden haben, ist wohl
schwer zu sagen. Es erfiillt aber den Verfasser mit groBter Freude,
daB gerade P. Niggli diese Symbole im ersten Band der Neu-
auflage seines Lehrbuches der Mineralogie verwertet hat und im
zweiten Band einen noch ausgedehnteren Gebrauch davon machen
wird. ‘
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Zur Erginzung der bei P. Niggli angefithrten Formeln
mochte ich hier wegen der praktischen Wichtigkeit zur Unter-
suchung hexagonaler Strukturmodelle noch zwei weitere anfiigen.

1. Eine Gerade sei durch einen Punkt m,n,o, p, und ihre
Richtung [uv e w] gegeben. Irgend einer ihrer Punkte habe die

Koordinaten mnop. Es bestehen dann die Gleichungen:
Mm—Me N—MNp _ 0—00 _ P— Poe
u v o w

Der Beweis ist einfach. Die Punkte myn, 0, p, und mnop be-

stimmen einen Vektor.
(m—me)a; + (n—n,)a; + (0 —00) a5 + (p—po)¢

Dieser Vektor muB8 der Richtung der Zone [uvw w], d. h. dem
Vektor

ua;, +va, + was + we

parallel sein. Da dies nur bei Proportionalitit entsprechender
Vektoren moglich ist, so folgt unmittelbar obige Gleichung.

2. Der durch die Verbindungslinie zweier Punkte bestimmte
Vektor wurde eben zu

(m—my)a; + (n—ne)a: + (0 —o0o) a5 + p¢

gefunden. Indem man quadriert und umwandelt, kommt als Quadrat
des Abstandes

d? = %az {(m —mo)* + (n—no)* + (0— 00)*} 4 ¢* (P —po)*
Fillt der eine Punkt mit dem Ursprung zusammen und stellt der
andere den in dieser Richtung dem Ursprung benachbarteste Gitter-
punkt dar, so ist d gleich dem Parameter T der betreffenden Zone.
Mit Riicksicht auf praktische Fille seien hier die kiirzesten Para-
meter der in der Basis gelegenen Zonen zusammengestellt:

[2110] : .1 — [110] [8710] ;19 — [352] [4310] 1 39 — [572)
[to10] : 3 —[211] [3210] . 21 — [451] [13.85.0] : 43 — [671]
[5410] : 7 — [231] [11.7.40] : 31 — [561] [13.11.2.0] : 49 — [583]
[7520] : 13 — [341] [11.10.1.0] : 37 — [473] [5320] . 57— [781]

In der ersten Kolonne stehen je die Indizes. Daneben ist T2 an-
gegeben und zuletzt folgt das entsprechende dreigliedrige Miller-
sche Symbol, um den bizarren Gang dieser Zonenfolge klarzulegen.

Fiir diese viergliedrigen Zonensymbole gelten genau die
gleichen Beziehungen, wie wir sie oben fiir die dreigliedrigen
allgemein gefunden haben. Einer beliebigen Fliche (hkil) wird
also wie dort ein bestimmter Punkt |[[hkil]| zugeordnet und
jedem Punkt |[mnop]l entspricht ganz eindeutig die Ebene

(mnop).
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Es lohnt sich, die orthohexagonale Koordinatendarstellung von
P. Niggli in die hexagonale umzuwandeln. Natiirlich wiirde es
weit iiber den Rahmen dieser Arbeit hinausgehen, wenn die hexa-
gonale Darstellung fiir alle 52 in Betracht kommenden Raum-
gruppen in dhnlicher Ausfiihrlichkeit gegeben werden sollte wie
in der geometrischen Kristallographie des Diskontinuums. Ich ziehe
es vor, im nachstehenden nur die wichtigsten GréBen, nach all-
gemeinen Gesichtspunkten angeordnet, in gedriangtester Kiirze mit-
zuteilen. Wie bei der Beschreibung der trigonalen und rhombo-
edrisch-trigonalen Raumgruppen, so halte ich auch hier an der
kristallographisch iiblichen Orientierung fest, so daB das um 30°
gedrehte hexagonale Raumgitter ebenfalls zu beriicksichtigen ist.

Komponenten der primitiven Translationen.
A. Fiir das hexagonale Raumgitter normaler Stellung.
T30 w350 55505 0001

Dahin gehéren auBer allen rein hexagonalen Raumgruppen noch
folgende:
@31’ @32, @33’ @3,‘1, @3v1’ @3113, @32, @34, @36, @3(13, @3:1‘4, @3/11, @3/11, @3’13

B. Fiir das hexagonale Raumgitter der um 30° gedrehten
Stellung.

2 2 2
?00; 0;5—0; 0001

o]
w]

2
?0 0;

Hierher- gehoren:
@51’2) @3V4) @51) @337 @557 €D3d1$ @2‘{2! ®31127 93,’4
Die beiden Tripel
%% %0 und 0 % %0
sind neben den beiden ersten nicht im strengen Sinn primitiv, sie
leisten aber vielfach gute Dienste und sind fiir das Gitter selber
den anderen vollig gleichberechtigt.

C. Fiir das rhomboedrische Raumgitter.

1 a1 1, T 1al, o111
50335 5305 0353
Es gehoren hierher:

@34, @3[2, (‘5/31»5, @3;;6, @37, %3(15, @3([6.

Additive Zusatzglieder der rhiomboedrischen
Raumgruppen (Z.G.).
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Koordinaten der Einstichpunkte der vertikalen Achsen in der
Basisebene.

A. Fir das hexagonale Gitter der gewdhnlichen Aufstellung.
0000 mit trigonalen oder hexagonalen Achsen.

%0%0, 0, _%0 nur mit trigonalen Achsen, z. T. jede fiir sich z. T.
beide zusammengehdrig.

111 111
0; 5360; 5530 nur Digyren, also immer in Verbindung mit

6-zdhligen Achsen.

a\f._-l
o) —l

1
3

B. Fiir das hexagonale Gitter der gedrehten Stellung.
0000 nur Trigyren.

24, 242
3990, ¢330 zusammengehérige oder einzelne Trigyren.

[

C. Fﬁr das rhomboedrische Gitter.

0000 O 0,03 30 Trigyren und 6-zihlige Drehspiegelachsen.

H

0 0 linksgewundene l
0,

Schraubenachsen.

o|— ©o|n
|~ ol

~o|to O

0 rechtsgewundene l

~o|ml i)
O e ‘Di"’
\O|N| o= S

Symmetriezentren.
A. Im hexagonalen Gitter gewohnlicher Stellung.
1

0000; 5540, §350, 5530 l Die untereinanderstehenden Gruppen
1111 1111 111 gehoren z. T. zusammen.

C. Im rhomboedrischen Gitter.

Eckpunkie: 0000
Raummitten: 0004 Zu jedem Quadrupel sind
» die oben angegebenen

Kantenmitten: 0-6—’6; 56363626 Z. G. zu addieren.
12 T12 111

Flichenmitten:
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Die Zusammengehorigen Koordinatenwerte.
Trigyrisch gehoren je zusammen

1. mnop nomp omnp

2. onmp monp nmop Spiegelbilder von 1. nach (1010)
3. EHSP Haap Baﬁp obere, 1.gegeniiberliegendePunkte
4. onmp monp nmop 2. gegeniiberliegend, oben.
I'mnop nomp omnp

2. onmp monp nmop| den ungestrichenen zentro-

3. mnop nomp omnp | symetrisch gegeniibergelegen.
4'.onmp monp nmop

Mit Hilfe dieser Gruppierungen kénnen wir die Koordinaten-
quadrupel der verschiedenen Raumgruppen folgenderweise zu-
sammenfassen.

IV,. Trigonal-rhomboedrische Abteilung.
E,! 1. €s* mnop nomp+ 3 omnp+%
(O 1. mit Z. G. @3 mnop nomp—l—% omnp + 3

G 1. und 1°.
C,° 1. und 1'. beide mit Z. G.

Cst | + und 4 ©s® | Alle mit 1. und 4.
A st | 4, Jedoch mit 2ushiichem 0005
€s,° 1. und 4, aber beide mit Z.G.  €;,° | — hierzu kommen noch ZG. -

Dt | Ds” 1. und 4'. und Z.G.

D,° | 1. und 4.

D, ! mnop nomp-+3 omnp -+

Dyt l monp onmp -4 nmop-—++

Do mnop nomp—|—~§- omnp —';—%

Dy 0 monp onm[;—!—% nmop -}-%

Deat ] 1,17, 4, 4. D a® l 1, 4'., ferner 4. und 1'. mit zu-
Dsa’ Dya* sitzlichem 000

Dag® dazu noch Z.G. 9D;4° I dazu noch Z. G.

IV, Rein trigonale Abteilung.
G5, 1. und 3.

: } 1, 4, 2, 3. oh } 1, 3. Ferner 2, 4. mit zusitz-

Dspt lichem [000]



Kristallpolyeder in der Lehre der regelmiBigen Punktsysteme. 63

1V, Rein hexagonale Abteilung.

O 1, 3. (O 1. Sodann mit zusitzlichen [OOO%]
;2 mnop omnp—i-;f nomp—}—%
mnop + 5 omnp + 5 nomp + o
(O mnop Hafﬁp—{—% omnp + 3
mnop-+ty nomp-+5 omnp+;
O mnop nomp —{—-;— omnp +§
el nomp-+)  omnp+42
g? mnop nomp +% omnp —|—%
mnop nomp+2  omnp-+l
Gt 1,3,1,3
G2 1, 1, dazu 3, 3. mit zusitzlichem 000+
Ce! 1,2, 3., 4
Ce® 1, 3.| 2, 4.|
8 1., 2. dazu 3, 4. je mit zusitzlichem OOO%
Cut 1, 1) 2, 3. |
De! 1,3,2,4 Ds® 1., 4, dazu 3, 2. mit zusitzlichem 0005]
Dy mnop omnp —l——; nomp —{—%
mnop HEHE—I—% onm];+—;—
mnop+5 omnp—++ nomp-+i
monp+3 nmop+3 onmp ¢
De? mnop nomp-++ omnp —%—%
mnop onmp+¢ nmop-+3
mnop+3 nomp+3 omnp+7;
monp+5 onmp-+3 nmop+ ¢
Dt mnop mnop nomp +% nomp —1—%
T i 1 = A 1
monp monp onmp+3 onmp-t+3
omnp—+5 omnp-+3
nmop+: nmop-+3
Dgd mnop mnop nomp -+ 45 nomp+7
- _ o, e
monp monp onmp 45 onmp—+7
omnp + , afﬁ;p—i-%
nm0b+§ Hm'o'p—l—%

Mineralog.-petrograph. Mitilg., Bd. V, Heit 1, 1925
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Dot 1,2,3.,4,1.,2.,3., 4

D 1,1°,3,3. | E 2 4,4

Dpn® 1,2,1,2. 1 dazu | 3, 3’, 4, 4". | mit zusitzlichem OOO%'.
Dent 14,1, 4 | lz. & s 3’.|

b b b

Allgemeine und spezielle Gitter.
Kehren wir wieder zu den Flichenkomplexen zuriick, um noch
einige interessante Beziehungen zur Kristallographie hervorzuheben.

Bei der Ableitung der 230 Flichenkomplexe haben wir immer
nur von Flichen allgemeinster Lage gesprochen. Diese sind aber
durch keine Symmetrieeigenschaften ausgezeichnet und charakteri-
sieren daher in vortrefflichster Weise die Asymmetrie der zugeord-
neten allgemeinen Punktlage. Rein AduBerlich kénnen wir, wie be-
reits frither angedeutet, diese Asymmetrie schon durch die unregel-
maBig dreiseitige Gestalt des Ebenensegmentes zum Ausdruck
bringen. Nun lehrt die Kristallographie, daB mit Ausnahme des
triklinen Systems in allen Klassen spezielle Formen auftreten,
deren Flichen in geringerer Zahl erscheinen, als im dllgemeinsten
Fall, dafiir aber durch gewisse Symmetriequalititen ausgezeichnet
sind. Denken wir uns im Flichenkomplex den nidmlichen Grenz-
iibergang vollzogen, so bekommen wir einen wenigerzihligen Kom-
plex, die einzelnen Fliachen aber sind irgendwie symmetrisch ge-
worden.

Von den Symmetriequalititen abgesehen, gehoren die sogen.
Grenzformen mehreren Symmetrieklassen an. So kommt z. B. die
hexagonale Bipyramide zweiter Stellung in finf verschiedenen
Klassen vor: in der Holoedrie, Paramorphie und Enantiomorphie
des hexagonalen Systems, ferner in der Holoedrie des trigonalen
und in der Holoedrie des rhomboedrischen Systems. Die auf die
normale Stellung des Raumgitters bezogenen symmorphen Raum-
gruppen dieser fiinf Klassen miissen also iibereinstimmende spezielle
Komplexe haben, welche sich von den Bipyramiden zweiter Stel-
lung ableiten. Es sind dies die Komplexe, welche wir mit |[2m.
m.m.p]| symbolisieren kénnen und die mithin zwei Freiheitsgrade
besitzen. Ja noch mehr! Selbst die nicht symmorphen Raum-
gruppen der holoedrischen Klasse miissen die gleichen Komplexe
ergeben, denn die fiir diese Raumsysteme charakteristischen Bi-
pyramiden dritter Stellung oder ditrigonalen Bipyramiden zweier-
lei Stellung werden — immer von Symmetriequalititen abgesehen
— zu identischen Bipyramiden zweiter Stellung, wenn jener Grenz-
iibergang vollzogen wird. ‘
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Vollziehen wir in allen diesen Fillen den Grenziibergang mit
Hilfe der ungleichseitigen Dreieckchen, so wird die innere Un-
gleichheit der resultierenden Bipyramiden ebenso augenscheinlich,
wie wir sie am Kristall selber durch die Atzfiguren deutlich machen
konnen. Es treten ndmlich die Dreiecke in ganz individueller Weise
zu diesen Pyramiden zweiter Stellung zusammen. Bei ©,72 z. B.
kommt in die Ebene der Bipyramidenfliche nur je ein Dreieck zu
liegen, ebenso wie bei ©;,'. Bei D4t sind sie aber so gedreht,
daB} je ein oberes Dreieckchen zu einem unteren spiegelbildlich
liegt, wahrend sie bei ®,,? zueinander digyrisch verdreht sind u.s. w.

Das Charakteristikum dieser Grenziiberginge ist, daf sich das
Verhiltnis der Indizes (hkil) kontinuierlich dndert. Es konnen
aber auch spezielle Gitter dann entstehen, wenn bei gleichbleibendem
Verhidltnis der Indizes sich nur deren Grofie dndert. Kniipfen wir
zu dem Zweck wiederum an Fig. 14 an und betrachten ctwa die
beiden Flachen (hkl) g und (hk 1)"’-1 o. Nun lassen wir h,kundl

im gleichen Verhiltnis groBer werden, d. h. wir multiplizieren
simtliche Indizes mit einem und demselben positiven Faktor.
Nimmt dieser Faktor zu, so werden die Flichen immer mehr von
ihrem Zentrum wegriicken, berithren sich dann, schneiden sich
hierauf in einer beim weiteren Wachsen jenes Faktors sich parallel
bleibenden Geraden und schlieBlich fallen die beiden mit den
Ebenen dualistisch verkniipften Punkte zusammen, dann ndmlich,
wenn k = 1/, geworden ist. Ausgangsflichen mit anderen Verhalt-
nissen der Indizes fithren auf einen anderen Punkt. Alle Punkte
aber liegen in der Symmetrieebene (010)1;, und wir sehen deut-
lich, wie sich die Zihligkeit der Punktlage vermindert, wihrend
sich ihre Symmetrie, welche durch die beiden Ebenen trefflich zum
Ausdruck kommt, demgemaB erhoht.

Es’ist iiberaus lohnend, gerade unter solchen Gesichtspunkten
die speziellen Gitter zu studieren. Von besonderem Vorteil wird
es dabei sein, wenn alle raumgitterartigen Komplexe gleicher Sym-
metrie, auf die wir bei den einzelnen Raumgruppen hingewiesen
haben, mit in Betracht gezogen werden.

Sind Grenzformen unter allen Umstinden mehrdeutig, so
kénnen Kombinationen von Grenzformen eindeutig sein. So ge-
hort z. B. die Kombination der trigonalen Bipyramide (zweiter
Stellung) mit dem Rhomboeder (erster Stellung) einzig der Enantio-
morphie an, wiewohl jene in zwei und dieses sogar in drei Sym-
metrieklassen auftritt. Eine dhnliche Eindeutigkeit vom entsprechen-
den Strukturkomplex zu behaupten, wire aber nicht unbedingt



66 Leonhard Weber.

richtig. In ©,;2 z. B. wiirde der Komplex I[mOEp]l (entsprechend
dem Rhomboeder) mit dem Komplex |[} ¢ +p]| (entsprechend einer
speziellen Lage der trigonalen Bipyramide) eine Punktverteilung
ergeben, die auch in ®,;; moglich ist. Der Flachenkomplex freilich
ist verschieden, weil zur Punktlage noch das Moment der Orien-
tierung kommt. Fiir die Strukturbestimmung ist das aber belang-
los, weil wir noch keine , Atzmethode‘* fiir die Raumgitter haben.

Damit sind wir auf einen Punkt gestoBen, wo sich strukturelle
und phinomenologische Kristallographie wesentlich unterscheiden.
Die phianomenologische Kristallographie operiert nur mit den
Zahlenverhiltnissen, die strukturelle aber auch mit den Zahlen-
gréfen. Das Problem der Eindeutigkeit und Vieldeutigkeit einer
Kombination von Komplexen, namentlich Punktkomplexen, wird
daher nicht blofl die Form (dieser Name auch auf die der Fldchen-
form zuzuordnende Punktform ausgedehnt), sondern noch die gegen-
seitige Lage der einzelnen Komplexe zu beriicksichtigen haben.
Wird aber erst noch die Orientierung, d. h. die Lage der Achsen
unbestimmt, wie das im monocoklinen und triklinen System in be-
sonderem MaBe der Fall ist, so braucht es wirklich schon Punkte
recht allgemeiner Lage, um Eindeutigkeit zu haben.

Zusammenfassung.

In lingeren Ausfiihrungen wurde gezeigt, wie sich die 230
Raumgruppen des Diskontinuums dadurch versinnbildlichen lassen,
dafl die Punkte der Bravais’schen Raumgitter durch die kristallo-
graphischen Polyeder ersetzt werden in der Weise, dal die letztern
zwar einerlei Art und gleicher GroBe, jedoch nicht samtlich parallel
oder im strengen Sinn identisch sein miissen (rechts und links!).
Die Miller’schen Indizes dieser Formen stehen mit den ,,zusammen-
gehorigen Koordinatenwerten‘“ (P. Niggli) in engstem Zusammen-
hang (das Gleiche ldBt sich auch fiir die 4-gliedrigen Symbole
zeigen), wihrend die Symmetrie der Fliache fur die ,,Symmetrie-
bedingung der - betreffenden Punktlage‘ charakteristisch ist.

Die Bedeutung der Kristallpolyeder in der Lehre der regel-
miBigen Punktsysteme ist also eine doppelte: 1. durch Betonung
des fiir die geometrischen Wissenschaften so befruchtend wirkenden
Dualismus zwischen Punkt und Ebene wird die Kristallographie
des Diskontinuums vertieft und 2. die Bezugnahme auf gelaufige
Vorstellungen und Ideen erleichtert dem Kristallographen das Er-
fassen und Beherrschen der fiir ihn immer unentbehrlicher wer-
denden Theorie der regelmifigen Punktverteilung.

Zirich, den 8. Januar 1925.
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