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Die Bedeutung der Kristallpolyeder in der
Lehre der regelmäßigen Punktsysteme.

Mit 63 Textfiguren.

Von Leonhard Weber, Zürich.
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Einleitung und Problemstellung.
P. Niggli hat durch ilmfangreiche statistische Untersuchung

die Beziehung zwischen Morphologie und Struktur der Kristalle
klargelegt: Die Hauptbindungsrichtungen der Atome bestimmen die
für den Kristall charakteristischen Zonen. Damit ist die Strukturlehre

für den Kristallographien zum unentbehrlichen Hilfsmittel
geworden. Zwar hat man in knstallographischen Kreisen seit

Hauy's Spaltversuch eine ständige Vorliebe für strukturelle Fragen
gehabt, und die Kristallographie darf es sich für alle Zeiten zur
großen Ehre anrechnen, daß einer ihrer bedeutendsten Vertreter,
E. Fedorow, gleichzeitig wie der Mathematiker A. Schoenfjies,
aber unabhängig von diesem, die Strukturlehre in exakter Form
abgeleitet hat. Daß aber trotzdem die Großzahl der Kristallographien

für die abstrakten Sätze der Strukturlehre wenig Interesse

hat, ist bedauerliche Tatsache, da gerade die Kristallographien mit
ihrem angebornen Sinn für Symmetrie berufen wären, an der
Bereicherung und Vertiefung der Strukturlehre mitzuwirken.

Der Kristallograph, der mehr wie irgend ein anderer die
Raumanschauung pflegt, findet in der Strukturlehre zu viel formelhafte
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Mathematik, zu wenig greifbare Anschaulichkeit. Auch wünschte

er, daß der Zusammenhang mit dem, was ihn alle Tage beschäftigt,
stärker hervortrete, denn schließlich sind es doch die gleichen
Begriffe, um die sich hier wie dort alles dreht.

Es wird kaum Sache eines einzelnen sein, der Strukturlehre
das für den Kristallographien anschaulichste Gepräge zu geben.
Es werden die verschiedensten Richtungen daran mitzuwirken haben.

Einseitigkeiten müssen die vermittelnden Übergänge finden, grobe
Vorstellungen sind zu vergeistigen, abstrakte Gedankengänge durch
konkrete Beispiele zu beleben.

Ein bescheidener Versuch in dieser Richtung möchten die

folgenden Seiten sein. Die Vorstellungen, von denen ausgegangen
wird, sind nebst den allen Kristallographien vertrauten 26 Arten
von Kristallformen die 14 Bravais'schen Raumgitter, und das Ziel,
die Veranschaulichung der Symmetrieverhältnisse und geometrischen
Beziehungen der 230 Raumgruppen, soll dadurch erreicht werden,
daß die Gitterpunkte durch geeignete Kristallforinen verbildlicht
werden. Schon Bravais ist diesen Weg z. T. gegangen, als er bei
seinem Versuch, die 14 Raumgitter den Symmetrieverhältnissen
der 32 Kristallklassen anzupassen, verlangte, daß die Gitterpunkte
etwa in Gestalt der für die betreffende Klasse charakteristischen
Kristallform zu denken seien. Natürlich werden die Gitterpunkte
im Modell, das eine bestimmte Raumgruppe veranschaulichen soll,
nur mit einerlei Kristallformen besetzt. Darin stimmt der hier
vorliegende Versuch vollständig mit Bravais' Gedanke überein; er
unterscheidet sich dann aber von ihm in doppelter Hinsicht. Einmal

werden hier die Kristallformen nicht ausschließlich in Parallelstellung

mit den Gitterpunkten verbunden (denn dann blieben wir
beim Raumgitter), sondern sie erscheinen in mannigfaltigsten
Stellungen, jedoch immer so, daß ausgezeichnete Richtungen der Form
zu ausgezeichneten Richtungen des Komplexes werden. Die
Orientierung ist, wenn auch nicht parallel gleich, so doch gesetzmäßig.
Der zweite Unterscheidungspunkt liegt darin, daß die Symmetrie
der Bausteine auch niedriger sein kann als die resultierende
Symmetrie des Komplexes, wenngleich in der Ableitung überall das

Bestreben zum Ausdruck kommt, möglichst hochsymmetrische
Gebilde zu verwenden.

Rein mathematisch gesprochen handelt es sich also um die

Ermittlung von raumgitterartigen, für die 230 Raumsysteme
charakteristischen Komplexen. Diese raumgitterartigen Komplexe sind
in der geometrischen Kristallographie von P. Niggli stark betont,
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nicht daß alle überhaupt möglichen hervorgehoben und durch

Koordinatentripel definiert wären, es gehört aber doch zum
eigentümlichen Charakterzug der dort gewählten Einzelbeschreibung der
230 Raumgruppen, daß immer und immer wieder auf solche Komplexe

aufmerksam gemacht wird. P. Niggli's Buch ist daher
vorzüglichste Quelle für den nachstehenden Versuch.

Begreiflicherweise kann es sich nicht darum handeln, die 230

Komplexe bloß zu beschreiben und abzubilden; es müssen auch

ihre gegenseitigen genetischen Beziehungen betont werden. Das

genetische Moment war von jeher in der Kristallographie beliebt
und viel verwendet, sei es im Sinne des Aufbaues, sei es im Sinne
des Abbaues. Beide haben ihre Berechtigung; die Vollkommenheit
besteht in der Beherrschung beider. Im vorliegenden Fall scheint
der Abbau der gegebene Weg zu sein. Denn für jede Symmetrieklasse

leuchten gewisse Strukturschemata, die symmorphen,
unmittelbar ein, und es ist ein Leichtes, hieraus eine Menge anderer
Schemata dadurch abzuleiten, daß die Gitterpunkte in regelmäßiger
Verteilung mit kristallographisch deutbaren Teilflächnern jenes
Polyeders ersetzt werden, welches für ein symmorplies Strukturschema

verwendet wurde.
Es ist überaus reizvoll, unter diesem Gesichtspunkt die 230

Raumgruppen einmal durchzudenken. Natürlich muß es mit
möglichst viel bildlichem Beiwerk geschehen, wenn es auch nicht nötig
ist, jeden gedanklichen Schritt durch Figuren oder Modelle zu
erläutern. Die zahlreichen Figuren, die den folgenden Ausführungen
beigegeben sind, erscheinen mir als ein Mindestmaß, und es ist
rein äußeren Gründen zuzuschreiben, wenn sie nicht um ein
Bedeutendes vermehrt sind. Da die bildliche Darstellung von
raumgitterartigen Verhältnissen manchen Schwierigkeiten begegnet, ist
es kaum möglich, alles nach dem gleichen Schema durchzuführen.
Dies mag die eine und andere Figur entschuldigen.

Wie schon gesagt, schließt sich die Darstellung eng an die

„geometrische Kristallographie des Diskontinuums" von P. Niggli
an. Immerhin lassen sich mehrfache Abweichungen nicht umgehen.
Vor allem ist die Reihenfolge wesentlich anders wie in der
„analytisch-geometrischen Darstellung" der einzelnen Raumgruppen.
Es hängt dies mit der hier gewählten genetischen Darstellungsweise

zusammen. Auch P. Niggli weicht von jenem durch die
Schönflies'sche Numerierung festgelegten Gang in seinem „Schema
der speziellen Ableitung aller möglichen Raumgruppen" vielfach
ab. Zur Erleichterung der Auffindung einer bestimmten Raum-
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gruppe sind am Rand die Raumgruppen entsprechend der Reihenfolge

ihrer Ableitung fortlaufend numeriert, und am Schluß werden
in einer eigenen Tabelle (pag. 51) die Raumgruppensymbole der
entsprechenden Nummer gegenübergestellt.

Bei Raumgruppen, die sich in mehrfacher Weise veranschaulichen

lassen, wird regelmäßig jene vorgezogen, für die P. Niggli
die Koordinatendarstellung gegeben hat. Die verschiedenen
Veranschaulichungen unterscheiden sich übrigens nur durch eine andere
Wahl des Nullpunktes und damit verbundene abweichende
Zusammenfassung einzelner Flächen zu einer Form. Es gehört zum
Anregendsten, die Symmetrieverhältnisse von Strukturen, die sich
aus Analogie zu andern ergeben müßten, etwa mit Nigglis Haupttabelle

I (1. c, pag. 125 —131) zu deuten. Diesbezügliche Hinweise
und Bemerkungen sind im Text zahlreich eingestreut. Da und dort
wird das eine oder andere Beispiel sogar mit einer gewissen
Ausführlichkeit behandelt.

Auf die Symmetrieverhältnisse der einzelnen Schemata wird
im allgemeinen nicht eingegangen. Dem aufmerksamen Betrachter
der Figuren zwingen sie sich unmittelbar auf — sicherlich viel
leichter als bei den üblichen Kugelmodellen. Das Zurücktreten
des Symmetriemoments läßt eine gewisse Analogie erblicken zur
Naumann'schen Behandlungsart der Kristallographie. An und für
sich ist das freilich eine Einseitigkeit, ja Unvollkommenheit, aber
es ist dies mit dem gesteckten Ziel mehr oder weniger gegeben.

Anschauliche Darstellung der 230 Raumgruppen.
I. Trikline Abteilung.

A. Hemiedrische Klasse. CV

Ein anschauliches und allgemeinstes Strukturschema triklin-
hemiedrischer Symmetrie ergibt sich in Übereinstimmung mit den
Bravais'schen Ideen, wenn den einzelnen Gitterpunkten eines
beliebigen1) Raumgitters je ein asymmetrisches Pedion,2) also jene
Kristallform zugeordnet wird, welche für diese Symmetrieklasse
eigentümlich ist. In Fig. I ist dieses Pedion durch den von den
Achsenebenen erzeugten Ausschnitt der an und für sich unbe-

*) Geometrisch gesprochen ist jedes der 14 Raumgitter zulässig, physikalisch
kommt aber nur das trikline — allgemein ein solches in Frage, welches für die
betreffende Abteilung charakteristisch ist.

2) Bekanntlich kommt das Pedion als Kristallform in zehn Symmetrieklassen
vor. In jeder einzelnen ist es durch eine besondere Flächensymmetrie
ausgezeichnet.
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grenzten Pedionsfläche dargestellt. Der unregelmäßig dreiseitige
Umriß des Flächenstückes soll die Asymmetrie des Pedions
besonders hervorheben. Daß die Pedien zueinander nur parallel orientiert

sind, liegt darin begründet, daß dem Komplex einzig
Translationen als Deckoperationen zukommen dürfen. Diese
Translationen haben dann aber zur weiteren Folge, daß alle Pedien von
den ihnen zugeordneten Gitterpunkten gleichen Abstand besitzen.

\l

Fig. 1 3) <5V Fig. 2. ©/.

Welches im übrigen Lage und Orientierung des Pedions sein

mögen, der Komplex ist immer von derselben Art; Spezialfälle,
die durch irgendwelche besonderen Merkmale hervorstechen, sind
ausgeschlossen. Es gibt daher nur ein Raumsystem triklin-hemi-

i edrischer Symmetrie. Dasselbe wird mit ß, bezeichnet und ist
symmorph, d. h. die Symmetrie des Komplexes fällt mit der
Symmetrie der einzelnen Bausteine überein.

B. Holoedrische Klasse. Ct.

Auch der triklinen Holoedrie kommt nur ein einziges, eben-

2 falls symmorphes Raumsystem zu. Es wird mit (£,- bezeichnet und
kann bildlich etwa dadurch charakterisiert werden, daß mit jedem
Gitterpunkt des zu Grunde liegenden triklinen Raumgitters ein

Pinakoid verbunden wird. Die beiden Flächen dieses Pinakoides
sind einzeln genommen asymmetrisch, stehen aber gegenseitig im
Verhältnis der Inversion. Jeder Gitterpunkt ist also Zentrum der

Symmetrie. Symmetriezentren sind übrigens auch die sieben
folgenden Punktlagen:

IN°o]|, |[oio]|, |[ool]|, |[oil]|. |[±oi.]|, |[Uo]|. |[K|]|.
Alle diese Beziehungen sind aus Fig. 2 schön ersichtlich.
Wenn eine der Pinakoidflächen durch ein Symmetriezentrum

geht, so rückt auch die zweite Fläche des nämlichen Pinakoides,

8) Die Erklärung zu den Figuren ist im Text vorab an jener Stelle zu suchen,

wo die betreffende Figurnummer kursiv gedruckt ist.
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oder aber eine mit ihr gleichartige von einem anderen Pinakoid in
diesen nämlichen Punkt herein, und durch dieses Zusammenfallen
der zwei inversen Flächen entsteht eine einzige Fläche zentro-
symmetrischer Qualität. Während es nun im allgemeinen Fall auf
jedes Parallelepiped des Raumgitters zwei zueinander inverse,
asymmetrische Flächen, also ein Pinakoid trifft, enthält in den
acht Sonderfällen jedes Parallelepiped nur ein Flächenstück, aber
nicht mehr von asymmetrischer, sondern nunmehr zentrosymmetri-
scher Beschaffenheit. Sagt man von einem Komplex der ersten Art,
er sei zweizählig, so heißen die acht anderen einzählig.

Die Erscheinung, daß durch Verminderung der Zähligkeit die

Symmetrie der Fläche erhöht wird, gilt allgemein, doch sollen
solche spezielle Gitter hier nicht weiter interessieren.

IL Monokline Abteilung.
A. Hemiedrische Klasse. C8.

Da es zwei Arten von monoklinen Raumgittern gibt, die als

pinakoidal und basiszentriert gewählt werden können, lassen sich
sofort zwei symmorphe Raumsysteme konstruieren. Es sind zu

4 4

&
Fig. 3. (Ss Fisr. 4. Gs'3.

dem Zweck die Gitterpunkte einfach mit identischen und parallel
gestellten Domen, d. h. den für die monokline Hemiedrie
charakteristischen Formen in Beziehung zu bringen. Fig. 3 zeigt den
auf das pinakoidale Gitter bezogenen Fall und entspricht dem

Raumsystem (£/. Das analog besetzte basiszentrierte Gitter, dessen

Abbildung überflüssig erscheint, würde das Raumsystem 6/ ver-4
anschaulichen.

Weitere Strukturschemata ergeben sich dadurch, daß die beiden
Flächen des Domas auseinandergezogen und mit verschiedenen

Gitterpunkten verbunden werden. Fig. 4 zeigt eine Anordnungs-
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möglichkeit im pinakoidalen Gitter: parallel zu )001[ alternieren
Netzebenen, deren Gitterpunkte je durch rechte Domenhälften
besetzt sind, mit solchen, denen nur linke Domenhälften angehören

5 (S/). Ganz ähnlich könnte man mit dem basiszentrierten Gitter
verfahren und bekäme ein Bild für die Symmetrieverhältnisse des

6 Raumsystemes (£/.
Durch diese Besetzung des pinakoidalen und basiszentrierten

Gitters, das modellartig mit festen Dimensionen ein für alle Mal
als gegeben zu denken ist, hat sich die Translationskonstante der
c-Richtung verdoppelt. Solchen Verdoppelungen, allgemein
Vervielfachungen der ursprünglichen Translationskonstante, werden wir
häufig begegnen. Wir drücken dies dann gelegentlich so aus, daß

wir sagen, die a-, b-, c-Achse sei verdoppelt, verdreifacht u. s. w.
worden.

Die beiden zuletzt beschriebenen Anordnungen von
Ebenensegmenten in den monoklinen Raumgittern sind nur zwei willkürlich
gewählte Fälle aus einer unübersehbaren Mannigfaltigkeit; die
Domenhälften in den beiden Raumgittern hätten nämlich auch
anders verteilt werden können, ohne daß dadurch der Symmetriecharakter

der Anordnung prinzipiell verändert worden wäre.
Hervorgehoben sei besonders, daß ein basiszentriertes Gitter, dessen

„Eckpunkte" durchgehends mit den einen Domenhälften und dessen

„Basismitten" ebenso regelmäßig mit den anderen Domenhälften
besetzt würden, einen mit £A2 identischen Komplex ergibt — von
Stellung und Lage des Nullpunktes abgesehen.

B. Hemimorphe Klasse. C2.

Charakteristische Form ist das Sphenoid, das in Verknüpfung
mit dem pinakoidalen oder basiszentrierten Gitter die Verbildlichung
der beiden symmorphen Raurngruppen ergibt. Nach dem unter
Nr. 1,2,3 und 4 Gesagten l) bedürfen sie keiner weiteren Erklärung
mehr. Auch Figuren sind überflüssig. Daß die Digyre des Sphenoids
der b-Richtung des Gitters parallel sein muß, ist selbstverständ-

7, s lieh. Bemerkt sei bloß, daß sich (So1 vom pinakoidalen, (S23 vom
basiszentrierten Gitter ableitet.

Für weitere Komplexe ist in Analogie zur Hemiedrie das

Sphenoid auseinanderzuziehen. Wurde im Falle der Hemiedrie die

Spiegelebene des Domas zu einer Gleitspiegelebene, so tritt in der

Hemimorphie an Stelle der Digyre des Sphenoides eine Diheliko-

4) Diese und die weiteren No.-Verweise beziehen sich auf die kleinen, am
Rand stehenden Zahlen.
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gyre. Die Anordnung der beiden Sphenoidhälften hat daher längs
Geraden zu erfolgen, die der b-Achse parallel sind, ähnlich wie bei

d,2 und e.s4 die Domenhälften längs Geraden gereiht waren, die

zur b-Achse senkrecht standen. — Es gibt nur einen Komplex:
bezogen auf das gewöhnliche pinakoidale, monokline Raumgitter, liegt
zwischen je zwei auf der b-Achse senkrecht stehenden und mit
einerlei Sphenoidhälften besetzten Netzebenen immer eine weitere
Netzebene, auf der lauter Sphenoidhälften der anderen Stellung
sind. Fig. 5 zeigt diesen Fall. Das Symbol ist (£22. 9

Eine Besetzung des basiszentrierten Gitters etwa in der Weise,
daß die Eckpunkte der Parallelepipede mit der einen, die
Basiszentren mit den anderen Sphenoidhälften in Beziehung gebracht
werden, ist mit do2 identisch.

-p

t
4

<¥\
18-

Fig. 5. (L Fig. 6. (S,/,5.

C. Holoedrische Klasse. C2i,-

Ein vierflächiges Prisma (vierter Stellung) ist allgemeine Form.
Wie es in den beiden symmorphen Raumsystemen mit den

Gitterpunkten zu verbinden ist, braucht nicht näher gesagt zu werden.
Das pinakoidale Gitter ergibt Höh1, das basiszentrierte <i2/f3. 10, 11

Das Prisma läßt sich, allgemein gesprochen, in zwei
spiegelbildliche Sphenoide oder Pinakoide, auch in zwei digyrisch
verdrehte Domen und schließlich in vier Pedien auflösen. Diese

Formen sind nun mit den beiden Raumgittern in Beziehung zu

bringen. Eine nähere Prüfung zeigt aber alsbald, wie sich dies
alles auf den Fall der Pinakoide zurückführen läßt.

Werden in Fig. 5 die Sphenoidhälften dadurch zu Pinakoiden
ergänzt, daß die Gitterpunkte den Charakter von Symmetriezentren
erhalten, so ergibt sich der für ©2/r charakteristische Komplex.12
Durch den nämlichen Prozeß der Einführung des Symmetriezentrums
werden auch die einzelnen Flächen des in Fig. 4 dargestellten
Komplexes zu Pinakoiden, und es entsteht so eine Darstellung des

Raumsystemes G2/l4. Wie durch den Vergleich der Fig. 5 mit der 13

Fig. 4 deutlich wird, liegt das Unterscheidende der beiden Raum-
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Systeme &2,,2 und 62/,4 darin, daß die Wechsellagerung der mit den
einen oder den anderen Pinakoidarten besetzten Netzebenen hier
nach (001), dort nach (010) statthat.

Den zwei übrigen Komplexen vom Symmetriecharakter der
monoklinen Holoedrie liegt das basiszentrierte Gitter zu Grunde,

14 und zwar ergibt sich die Veranschaulichung von ß2/l5, wenn die

„Eckpunkte" mit dem einen, die „Basiszentren" mit dem anderen
der spiegelbildlichen Pinakoide besetzt werden (Fig. 6). Es
verdient besondere Beachtung, daß im Gegensatz zu analogen
Besetzungen in den Klassen C8 und C2 Fig. 6 einen wirklich neuen
Fall darstellt und weder mit S2/,2 noch mit G2/,4 identisch ist. In
P. NigglPs Geometr. Kristallographie des Diskontinuums ist übrigens
dieses Raumsystem so gestellt, daß die {100}-Ebenen zentriert
werden.

is Das letzte der hierhergehörigen Raumsystemen — ©2/,6 — läßt
sich so darstellen, daß auch den Gitterpunkten von Gs4 der
Charakter von Symmetriezentren beigelegt wird. G2/,6 ist das
basiszentrierte Analogon zu (£2/,4.

III. Rhombische Abteilung.
A. Hemimorphe Klasse. C2V.

Unter den viererlei rhombischen Raumgittern, die als einfaches

pinakoidales), einfach flächenzentriertes, innenzentriertes und
allseits flächenzentriertes unterschieden werden, nimmt das

zweitgenannte in der Hemimorphie insofern eine Ausnahmestellung ein,
als die zentrierte Fläche zur Digyrenrichtung sowohl parallel wie
senkrecht sein kann. Ersteres trifft bei der üblichen Stellung für
das vordere und für das seitliche Pinakoid zu. Prinzipielle
Symmetrieunterschiede zwischen diesen beiden Stellungen ergeben sich

indessen keine, so daß im folgenden rein willkürlich, aber konsequent

das (010)-zentrierte bevorzugt werden soll. Im ganzen sind
also fünf Raumgitter zu berücksichtigen.

Typische Kristallform der Hemimorphie ist die rhombische

Pyramide. Mit ihr bilden sich die fünf symmorphen Raumsysteme,
über die hier nichts weiteres zu sagen ist, als daß

16 Kgy1 dem einfachen,

17 S21,11 dem basiszentrierten,

is S2r11 dem (010)-zentrierten,
ig Q2v20 dem innenzentrierten,
20 G2r18 dem allseitig flächenzentrierten Raumgitter entspricht.
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Die rhombische Pyramide kann aufgefaßt werden als Komplex
1. zweier nach {100}, bezw. nach (010} spiegelbildlich gestellter

monokliner Domen,
2. zweier monokliner Sphenoide mit vertikal gerichteter Digyre,

die nach {100} und zugleich nach {010} spiegelbildlich
orientiert sind,

3. von vier Pedien.
Es ist nun zu untersuchen, wie diese „Teilflächner" der

rhombischen Pyramide in den einzelnen Gittern unterzubringen sind.

Für das einfache Gitter, mit dem begonnen werden soll, ist
die Unterscheidung der beiden Domen, wie man sich leicht
überzeugt, für das Wesen der Sache belanglos. In Übereinstimmung
mit der Darstellung bei P. Niggli seien die beiden Domen gewählt,
deren eigene Symmetrieebene {010} ist und die dadurch aus der
rhombischen Pyramide hervorgehen, daß diese nach {100J halbiert
wird. Besetzt man jetzt irgend eine der zu {001} parallelen
Netzebenen mit den Domen der einen Stellung, die unmittelbar darüber
oder darunter liegende Netzebene mit den Domen der anderen
Stellung, so erhält man ein Strukturmodell des Raumsystems E2r2.21

Die Translationsgröße der c-Achse ist dem ursprünglichen Gitter
gegenüber verdoppelt. Der Wechsel der verschieden besetzten

(001)-Ebenen entspricht ganz demjenigen, der bei den

Raumsystemen E*2 und E2/,4 ausführlich beschrieben und z. T. (Fig. 4)

abgebildet wurde.
Wollte man Domen in der Weise anordnen, daß die (100)-

oder (OlO)-Ebenen abwechselnd nur mit der einen oder andern
Art von Domen besetzt wären, so daß sich also die Verdoppelung
der a- oder b-Achse ergeben würde, so erhielte man, von der Lage
des Nullpunktes abgesehen, wieder Es,.1.

In E2t,3 sind die oben erwähnten zweierlei Sphenoide so an- 2>

geordnet, wie in E2t,2 die beiden Arten Domen. Eine Figur ist
ebensowenig erforderlich wie dort.

Im Gegensatz zu den Domen lassen sich nun die Sphenoide
auch derart anordnen, daß das Gitter nach der a- oder b-Achse

verdoppelt erscheint. Im Anschluß an die Darstellung bei P. Niggli
ist die b-Achse bevorzugt. Das Raumsystem ist S2r4. Die bildliche 2*

Darstellung ergäbe etwelche Beziehung zu Fig. 5, indem wie dort
parallel gleich besetzte (OlO)-Ebenen mit solchen alternieren, deren

Gitterpunkte die komplementäre Form tragen.
Schließlich lassen sich die Sphenoide noch in der Weise im

Raumgitter einordnen, daß die Translationsgröße nach zwei Achsen-
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richtungen verdoppelt wird. Im Schnittpunkt dieser Achsen mag
das eine Sphenoid angebracht werden; benachbart dazu liegen auf

den beiden verdoppelten Achsen die zu jenem Sphenoid
spiegelbildlichen Sphenoide. Denkbar sind drei Fälle. Ein wirklich neuer

Symmetriecharakter kommt aber nur einem derselben zu, indem

die (a, b)-Verdoppelung auf den schon behandelten symmorphen
Fall E2V14 (siehe No. 18) zurückführt und die (b, c)-Verdoppelung

von der (a, c)-Verdoppelung nur stellungsverschieden ist. Fig. 7

erläutert in Übereinstimmung mit P. Niggli's Darstellung die

(b, c)-Verdoppelung. Es ist sehr schön zu sehen, wie sich die vier

Flächen zweier übereinander oder nebeneinander gestellter

24 Sphenoide zu einer rhombischen Pyramide ergänzen (E2r15).

fc.

&
£>. £*.^

4
<&- & k

M
Fig. 7. Gar1-"'. Fig. 8. Gor"'.

Eine Charakteristik. e Anordnung von Pedien (Fig. 8) ergibt
25 das Raumsystem E2r5. H! -*kt man zwei übereinander liegende Pedien

zu einem Sphenoid zusammen, so daß die Verdoppelung nach der

c-Achse verschwindet, > erhält man die schon besprochene

Veranschaulichung des Raumsystems Eo/ (cfr. No. 23). Übrigens

weicht die Aufstellung der Fig. 8 von der bei P. Niggli adoptierten

insofern ab, als dort eine Verdoppelung nach der c- und a-Achse

gewählt wurde, hier aber die schon bei Fig. 7 gebrauchte

Verdoppelung der b- und c-Achse vorgezogen wurde.

Etwas mannigfaltiger als im pinakoidalen Gitter sind die

Anordnungsmöglichkeiten im basiszentrierten. Da das Elementar-

parallelepiped zwei gleichwertige Punktlagen umfaßt, so ist es an

und für sich möglich, einen Komplex hierher gehöriger Symmetrie

dadurch zu gewinnen, daß ohne Vervielfachung irgendwelcher

Achsenrichtung „Eck- und Mittelpunkt" mit zwei der oben

genannten spiegelbildlich orientierten zweiflächigen Teilkörpern der
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rhombischen Pyramide besetzt werden (vgl. E2/(r>, Fig. 6). Einen
neuen Symmetriefall erhält man indessen nur bei Verwendung von
Sphenoiden der beiderlei Stellungen. Es ergibt dies das Raum-

system G2L.\ Domen führen, wie man sich leicht überzeugt, wieder- 26

um auf E2u4 zurück.

Si.

"4,4M-
/T^r* i v

4^

k

^^
$

Fig. 9. G,r21. Fig. 10. Gaüy.

Die Ableitung der Raumgruppen E2,1J und E2,13 ist analog der- 2i,

jenigen von E2r2 und E2r3. Wie dort, so sind auch hier die Ebenen

parallel zu {001} abwechselnd mit Formen der einen, bezw. der
andern Stellung besetzt. Bei G2<12 sind es Domen, bei E2r13 Sphenoide.

Eine Mittelstellung zwischen E:,s und E2r13 nimmt E2r21 ein, in- 2g

dem hier sowohl übereinander längs der c-Achscnrichtung, wie auch

in den (OOl)-Netzebenen selber Sphenoide beiderlei Stellungen
miteinander alternieren, so wie es Fig. 9 zeigt. Dieselbe Anordnung,

mit Domen vorgenommen, ist eine Veranschaulichung des

Raumsystems E2r22, das wir, unter anderem Gesichtspunkt
betrachtet, weiter unten besprechen werden.

Ein Pedienkomplex (Fig. 10) ist dem Raumsystem E2,-9 eigen- 30

tümlich. Zu E2r8 steht er in demselben Verhältnis wie etwa E2r5 zu

E2,l, indem je zwei Flächen, welche in E2,s ein Sphenoid bilden,
nun in der Digyrenrichtung auseinandergezogen sind, so daß zwei
verschiedenartig besetzte (OOl)-Ebenen miteinander alternieren. Die
verschiedenen Fälle, die sich einstellen zu müssen scheinen, sind nur
stellungsverschieden.

Nicht symmorphe Raumgruppen leiten sich auch mit Hilfe des

für die Hemimorphie charakteristischen, (010)-zentrierten
Raumgitters und zwar folgende ab.

Zunächst lassen sich Eck- und Mittelpunkte mit entgegengesetzten

Domen verbinden, die nach |010| nicht selber
symmetrisch sind. Man hat so ein Bild für E2r7 (gegenüber der Auf-
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Stellung bei P. Niggli sind die a- und b-Achse vertauscht). Die
analoge Verwendung von Sphenoiden veranschaulicht das Raum-

32 system S2,6. In diesen beiden Strukturschemata sind alle (010)-
Netzebenen parallel gleich. Es ist nun aber auch möglich, daß diese
Ebenen bloß abwechselnd einander identisch sind, indem auf den
dazwischen gelegenen Ebenen die Sphenoide, mit denen die Eck-
und Mittelpunkte in Beziehung gebracht werden, gerade entgegengesetzter

Stellung sind wie bei den anderen Ebenen. Es resultiert
33 so Fig. 11 als Bild für das Raumsystem E2i,22.

M M

Fig. 11. G2l^.

Statt Eck- und Mittelpunkte irgend einer (OlO)-Netzebene
verschieden zu besetzen, könnte man ihnen gleiche Sphenoide (nicht
aber gleiche Domen) zuordnen, dafür aber die entsprechenden
Punkte der beiden benachbarten Ebenen mit den entgegengesetzten
Sphenoiden in Beziehung bringen. Das entstehende Schema steht
in engster Beziehung zu Fig. 11, indem das Unterscheidende bloß
darin liegt, daß jetzt, wie es die Ableitung erfordert, alle Punkte
einer Ebene (010) unter sich parallel gleich sind. Das zugehörige

34 Raumsystem wird mit E2t16 symbolisiert.

Raumgruppen, deren bildliche Veranschaulichung auf ein
innenzentriertes Gitter bezogen werden kann, gibt es außer der sym-
morphen Raumgruppe (E2r20, siehe oben No. IQ) nur noch zwei, von

35 denen die erstere, E2y10, dadurch definiert ist, daß die Eckpunkte
und Raummitten mit Sphenoiden — Domen führen auf E2ü7 zurück

36 — spiegelbildlicher Art besetzt sind, die andere aber, E2r19, zum

„Typus mit sogen. Diamantgittern" gehört. Zu ihrer Darstellung
benötigt man acht Zellen des innenzentrierten Gitters, dessen

Punkte zu Trägern von Pedien werden. Die Pedien zweier

übereinanderliegender Gitterpunkte ergänzen sich zu einem Sphenoid.
Die Pedien der Mittelpunkte ergeben das Sphenoid der einen,

diejenigen der Eckpunkte das der anderen Art. Überdies erscheinen

diese Sphenoide auf benachbarten c-Richtungen in verschiedener
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Weise auseinandergezogen. Jenes Pedion, welches auf der einen

c-Richtung unten liegt, ist auf der benachbarten c-Achsenrichtung
mit dem höher gelegenen Gitterpunkt verknüpft. Alles dies wird
aus Fig. 12 ersichtlich. Der größeren Anschaulichkeit wegen sind

nur die nicht parallel gleichen Punkte mit Pedien in Beziehung

gebracht; der übrige Teil des Parallelepipeds ist, um Überschneidungen

nicht unnötig zu häufen, bloß skizziert angedeutet.

X 4
£tfr

&
4 )L

Vs.

£

Fig. 12. <SV».

Schließlich läßt sich noch eine neue Raumgruppe — E2t.17 — 37

bilden, wenn im allseitig flächenzentrierten Gitter Sphenoide so

angeordnet werden, daß z. B. auf den abwechselnden (010)-Ebenen
nur Sphenoide der einen Art liegen. Besetzung von Eckpunkt und
Basismitte mit Sphenoiden der einen Stellung bei gleichzeitiger
Besetzung der Seitenflächen durch Sphenoide der anderen Stellung
ergibt wiederum ©2U13. Werden statt der Sphenoide von E2l,17 in
analoger Weise Domen verwendet, so ergibt sich abermals E2l,15.

B. Hemiedrische Klasse. V.
Der Umstand, daß in der Hemiedrie keine singulären

Richtungen auftreten, hat zur Folge, daß zwischen (001)-zentriertem
und (010)-zentriertem Gitter nicht unterschieden werden muß. Wir
haben demnach nurmehr vier symmorphe Raumsysteme und zwar
entspricht

3S1 dem einfachen, 38

SB6 dem basiszentrierten, 39

938 dem innenzentrierten, 40

Mineralog.-petrograph. Mittig., Bd. V, Heft 1, 1925 2
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4i $7 dem allseitig flächenzentrierten Raumgitter. Wegen der
Symmorphie sind an Stelle der Gitterpunkte rhombische Bisphenoide
zu denken.

Das rhombische Bisphenoid gewährt nur zwei Zergliederungsmöglichkeiten,

entweder in zwei „monokline", stellungsverschiedene

Sphenoide, oder dann in vier Pedien. Ob die den Sphenoiden
charakteristische Digyre nach der knstallographischen a-, b- oder
c-Achse orientiert sei, ist im allgemeinen belanglos. Einzig beim
basiszentrierten Gitter zeichnet sich die c-Achse den beiden andern
gegenüber in gewisser Weise aus, in keinem Fall aber kann diese
Digyre mit jener Richtung zusammenfallen, nach welcher die
Translationskonstante verdoppelt wird, weil sonst diese Richtung Digyre
und Dihelikogyre zugleich wäre.

42 Mit dem einfachen Gitter steht einzig die Raumgruppe SB2

in näherer Beziehung. Die abwechselnden (001)-Netzebenen werden
mit den beiderlei Sphenoiden besetzt, deren Digyre zur a- oder
b-Achse parallel ist. Die Translationskonstante in der c-Richtung
ist dem ursprünglichen Gitter gegenüber verdoppelt.

Auf das basiszentrierte Gitter werden drei nicht symmorphe
43 Raumsysteme bezogen. Das erste, SB3, wird dadurch veranschaulicht,

daß sich in den (001)-Ebenen, die alle unter sich parallel gleich
identisch sind, die stellungsverschiedenen Sphenoide mit zur c-

Richtung parallelen Digyren regelmäßig auf Eck- und Mittelpunkte
44 verteilen. Das zweite, SB5, hat in den Mittelpunkten dieselben

Sphenoide wie in den Eckpunkten (Digyre z. B. parallel zur a-

Achse), besitzt aber alternierende (001)-Ebenen. Das dritte Raum-
45 system endlich, SB9, nimmt den beiden andern gegenüber eine

Mittelstellung ein. In Eck- und Mittelpunkten sitzen wieder ungleiche
Sphenoide (mit horizontaler Digyre), es wechseln aber auch längs
der c-Richtung die Sphenoide miteinander ab.

Das innenzentrierte Gitter liefert keine nicht symmorphen
46 Raumsysteme, und das allseitig flächenzentrierte nur SB4. Bei SB4

ist das Bisphenoid in Pedien aufgelöst. Die verschiedenen
möglichen Anordnungen sind bloß stellungsungleich (Fig. 13).

C. Holoedrische Klasse. Vh.

Die Hauptform dieser Klasse, die rhombische Bipyramide, ist
zerteilbar in zwei Pyramiden, zwei Bisphenoide, zwei Prismen (von
monokliner Symmetrie), vier Domen, vier Sphenoide und vier
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Pinakoide (alle drei von monokliner Symmetrie). Wegen des
vorhandenen Symmetriezentrums ist die Zerlegung in Pedien nicht zu
betrachten. Diese große Mannigfaltigkeit von Teilflächnern ist
zugleich mit der Vierzahl der Raumgitter die Veranlassung dafür, daß

wir in dieser Symmetrieklasse die maximale Zahl von
Raumsystemen erreichen, die in einer Klasse überhaupt möglich ist: 28.

Z4L

*
J2

L<. "OiV
4

^ ^7*
^^ ^

K* V TTZ

Fig. 13. SB*. Fig. 14. «ä11.

Symmorphe Raumsysteme gibt es natürlich nur vier,
entsprechend den vier Gittertypen. Einfaches Gitter hat SB//, basis- 47-50

zentriertes SB/,19, innenzentriertes SB/r5, allseitig flächenzentriertes
SB,23-

Beginnen wir die Durchsicht der nicht symmorphen Komplexe
wiederum mit dem einfachen Gitter, so sind jene Anordnungen
am naheliegendsten, wo übereinander die zweierlei Bisphenoide
oder Prismen (nicht mit Vertikaler Digyre!) regelmäßig abwechseln.
Die zugehörigen Raumsysteme sind SB/,3 und SB/,5. Beide Raum- 51 52

Systeme lassen sich übrigens auch in anderer Weise definieren.
Die Zweiflächner der eingangs stehenden Aufzählung ergeben

mit dem einfachen Gitter holoedrische Strukturmodelle, wenn die
Translationskonstanten nach zwei Richtungen, z. B. nach der b-
und c-Achse, verdoppelt werden. Die Pinakoide liefern zwei Fälle:
SB/,11 wird durch Fig. 14 veranschaulicht (in der Darstellung Nigglis 53

mit Verdoppelung von a und b). Nun möge ein Pinakoid einer
beliebigen (OlO)-Ebene näher ins Auge gefaßt werden. Auf den

in ihm sich schneidenden b- und c-Richtungen hat es zwei mit ihm

ungleiche und auch unter sich verschiedene Pinakoide als Nachbarn.
Werden diese miteinander vertauscht, so ergibt sich eine Anordnung,

welche das Raumsystem SB7ia darstellt. Der eigentliche innere 54

Unterschied zwischen SB/,11 und SB/,8 ist der, daß parallel zu {010}
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dort Spiegelebenen, hier aber bloß Gleitspiegelebenen vorhanden
sind. — Eine andere Zusammenfassung der Flächen würde übrigens
in beiden Fällen auf vier Sphenoide, bei SB/,11 überdies auf vier
Domen führen.

Auch Bisphenoide können in einem solchen Gitter derart
angeordnet werden, daß holoedrische Symmetrie resultiert. Der
entstehende Komplex mag am besten mit Fig. 7 verglichen werden.
Es sind einzig an Stelle der dortigen Sphenoide Bisphenoide zu
setzen. Sie wechseln mithin sowohl nebeneinander wie auch über-

55 einander regelmäßig ab (SB?t21).

Gewissermaßen verachtfacht ist das Gitter, welches der Fig. 15
56 (SB/,27) zu Grunde liegt. Die Figur selber zeigt im wesentlichen nur

einen Achtelsteilraum. In jedem Gitterpunkt sind Pinakoide
angebracht. Ihre Anordnung ist sehr anschaulich. Es bilden nämlich

V

Fig. 15. W.
immer zwei benachbarte Pinakoide, die einer Achsenrichtung
angehören, ein monoklines Prisma mit zur betreffenden Achsenrichtung

senkrechter Digyre. Damit ist die Orientierung — von
zyklischer Vertauschungsmöglichkeit der Achsen abgesehen —
eindeutig festgelegt.

Die Basiszentrierung umfaßt wie in der Hemimorphie die

größte Mannigfaltigkeit: elf nicht symmorphe Raumgruppen. Auf
der Hand liegen folgende Fälle, wo in Eck- und Mittelpunkt je
zwei spiegelbildliche Vierflächner sitzen. Diese Vierflächner sind
bei

SB/,13 Pyramiden mit vertikaler Digyre,
SB/,4 Bisphenoide,
SB/,9 Prismen mit vertikaler Digyre,
SB/,7 Prismen mit horizontaler Digyre.
Bei Verdoppelung der primitiven c-Achse sind je vier Punkte

zu besetzen. Zwei- und Vierflächner kommen in Betracht. Aus

6i, 62 3V leitet man SB/,6 (Fig. 16) und SB/,14 (Fig. 17) ab, indem man die

57

53

59

60
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Prismen längs der c-Achse zu Pinakoiden auseinanderzieht, unter
Berücksichtigung der beiden Möglichkeiten, die sich für die c-

Richtung der „Basiszentren" einstellen, wenn die Anordnung auf
der c-Richtung der „Eckpunkte" fest gegeben ist. Aus Fig. 17

folgt dann das Schema des Raumsystems 9S;i16 durch Vertauschung 63

von oberer Basismitte mit dem „Eckpinakoid" der nämlichen
Netzebene. Übrigens steht dieser neue Komplex in naher Beziehung zu

^̂
fPP

4v

"T"

9i% pvy\A^4f
&^

Fig. 16. $h*. Fig. 17. 2V

SB/,9. Läßt man nämlich die beiden (001)-Netzebenen durch
Verschiebung längs der c-Achse wieder zusammenfallen, so entsteht
gerade das für SB/,9 charakteristische Modell.

Bisphenoid und Prisma liefern je zwei Typen: In jeder Basisebene

sind nur Figuren einerlei Stellung, deren Spiegelbilder in
der nächstbenachbarten, darunter oder darüber gelegenen Ebene
sind. Bisphenoide hat man bei SB,,20, Prismen (mit horizontaler 64

Digyre) bei SB,t17. Aus SB/,20 kommt durch Vertauschung der Bi- 65

sphenoide der Basismitten SB,,26, während eine übereinstimmende 66

Anordnung der Prismen mit vertikaler Digyre SB,,28 erzeugt. 67

Auf innenzentriertes Gitter, wobei Eckpunkte und Mittelpunkte

mit komplementären Formen zu besetzen sind, lassen sich
vorab SB,,2 und SB,,12 beziehen, entsprechend spiegelbildlichen Bi- 68,69

sphenoiden im ersten, bezw. Prismen im anderen Fall. Bei letzteren
wird selbstverständlich die Unterscheidung der Digyrenlage
belanglos.

SB/,24 ist wieder vom Diamantgittertypus. Zur Darstellung 70

werden acht Zellen des innenzentrierten Gitters benötigt. Die
Gitterpunkte sind alle mit Sphenoiden gleicher Digyrenrichtung
zu besetzen. In Fig. 18, die dieses Symmetrieschema darstellt, sind
der Deutlichkeit wegen, ähnlich wie bei Fig. 12, die vordem
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Kanten des Parallelepipeds z. T. weggelassen. Auch wurden keine

Sphenoide eingezeichnet, welche sich aus den anderen durch bloße
Translation von der Größe a, b, c herleiten lassen. Mit Fig. 12

^7
ÖP>

^f
&

Fig. 18. 53/t24.

sind nur wenig Analogien vorhanden, schon aus dem einfachen

Grund, weil in Fig. 18 sowohl „obere" wie „untere" Flächen
auftreten (Bipyramiden), während in Fig. 12 nur „obere" vorhanden

sind.

j.
-̂r

jl*ö
TS

Fig. 19. 2to18. Fig. 20. iV°
Im allseitig flächenzentrierten Gitter sind am naheliegendsten

die Anordnungen von Bisphenoiden und Prismen, indem irgend
zwei der Gitterpunkte mit der einen Form, die anderen zwei mit
ihrem Spiegelbild verbunden werden. Bisphenoide haben wir bei

71,72 SB/,22, Prismen bei SB,,18 (Fig. 19). Beachtung verdient der Umstand,
•daß die Digyre des Prismas jener Seitenebene des Parallelepipeds
parallel läuft, welche die identischen Formen enthält.
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Auch mit Pinakoiden läßt sich auskommen und zwar in
zweifacher Weise. Die eine Anordnung ist durch Fig. 20 (SB,,10) wieder- 73

gegeben, die andere folgt hieraus dadurch, daß die Pinakoide von
Basismitte und hinterer Flächenmitte miteinander vertauscht werden
(SB,,15). Es ergänzt sich dann das Pinakoid der hintern Ecke mit 74

irgend einem Seitenmitten-Pinakoid zu einem monoklinen Prisma,
dessen Digyre gerade dieser Ebene angehört.

IV. Hexagonale Abteilung.
Das basiszentrierte rhombische Raumgitter geht bei geeigneter

Deformation in das sogen, hexagonale Raumgitter über. Strukturen,

welche mit diesem Raumgitter im Zusammenhang stehen,
finden daher an dieser Stelle ihre passende Besprechung.

Teilweise analogen Charakter wie das hexagonale Gitter hat
noch ein zweites, das in der monoklinen und rhombischen Abteilung

nicht vorgebildet ist, sondern sich direkt vom triklinen Raumgitter

herleitet. Aus diesem geht es dadurch hervor, daß alle
primitiven Translationen unter sich gleich werden, ebenso wie die
drei Winkel, welche ihre Richtungen miteinander bilden. Es wird
rhomboedrisches Raumgitter genannt. Genetisch bedeutet es ein

Mittelglied, einen Übergangspunkt in der Entwicklung, der seinen
Abschluß erst im kubischen System erreicht, während das
hexagonale Gitter bereits den Endpunkt einer Reihe darstellt.

Die Unterteilung des hexagonalen Systems ist im Lehrgebäude
der Kristallographie stark umstritten. Während die einen vom
hexagonalen System schlechthin sprechen und es in 12 koordinierte
Klassen gliedern, ziehen andere eine Zweiteilung in zwei eigene
Systeme vor, welche mit den fünf übrigen Systemen als hexagonales
und trigonales völlig ranggleich sind. Dadurch aber, daß dem
erstem bald sieben, bald nur fünf Klassen zugerechnet werden,
erhellt sofort das Ungenügende und Willkürliche aller dieser
Abgrenzungen.

Strukturell ist die Sachlage viel klarer. Die fünf Klassen,
denen eine Hexagyroide oder eine Trigyre ohne dazu senkrechte
Symmetrieebene als Hauptachse zukommt, bilden insofern eine

genau umschriebene Einheit, als ihnen strukturell sowohl das
hexagonale wie das rhomboedrische Raumgitter zu Grunde liegt. Ihnen
sind dann die fünf Klassen mit Hexagyre und rein hexagonaler
Struktur gegenüberzustellen. Zwischen beiden stehen die oben noch
ausgeschlossenen Klassen, auf deren Trigyre eine Symmetrieebene
senkrecht steht. Sie sollen, da sie nur auf hexagonales Gitter be-
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zogen werden können, in der folgenden Darstellung den Übergang

bilden von den fünf trigonal-rhomboedrischen Klassen zu den
fünf eigentlich hexagonalen Klassen.

IVi. Trigonal-rhomboedrische Abteilung.
A. Tetartoedrische Klasse. C3.

Allgemeine Form ist die trigonale Pyramide dritter Stellung.
Indem solche unter sich identische Pyramiden mit den
Gitterpunkten des hexagonalen und rhomboedrischen Raumgitters
verbunden werden, ergeben sich die Strukturschemata der beiden

75 symmorphen Raumsysteme G^1 (hexagonales Gitter, vergl. auch
76 Fig. 21) und (S34 (rhomboedrisches Gitter). Nicht symmorphe Raum-

77, 78 Systeme gibt es zwei, ß32 und <X33, die sich nur dadurch unter¬
scheiden, daß die Trigyren bei S32 linksgewundene, bei G33

rechtsgewundene Schraubenachsen sind. Bildlich kommt dies sehr
anschaulich zum Ausdruck, wenn die trigonale Pyramide in drei,

*&= sSsL

s&
Fig. 21. (S31. Fig. 22. V. Fig. 23. G33.

nach Maßgabe von Fig. 21 mit den Zahlen 1, 2, 3 numerierte
Pedien zerlegt wird. Man kann dann alle Gitterpunkte einer
beliebigen (0001)-Netzebene des hexagonalen Gitters mit identischen
und parallelen Pedien der Stellung 1 besetzen, die der unmittelbar
darüberliegenden mit Pedien der Stellung 2 und die der
nächsthöheren Netzebene mit Pedien der Stellung 3 und in diesem

Rhythmus unbegrenzt weiterfahren. Es entsteht so Fig. 22 als

Schema des Raumsystems K32. Bei 633 (Fig. 23) ist die Reihenfolge

der Pedien, mit welchen jene Ebenen besetzt werden, durch
die Zahlen 1, 3, 2 charakterisiert, wogegen sie vorher 1, 2, 3 war.

B. Paramorphe Klasse. C3r

Rhomboeder dritter Stellung heißt die Kristallform, welche

phänomenologisch die Symmetrieverhältnisse der paramorphen
Klasse allgemein zum Ausdruck bringt. Mit solchen Rhomboedern
dritter Stellung bilden sich die Veranschaulichungen der beiden
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hier möglichen symmorphen Raumgruppen. Es sind S3,1 mit hexa- 79

gonalem und &3i2 mit rhomboedrischem Gitter. so

Da es keine Schrauben-Drehspiegelachsen gibt, so ist das

Auseinanderziehen der Rhomboederflächen auf drei übereinander
liegende (0001)-Netzebenen unmöglich. Die genannten symmorphen
Raumgruppen sind mithin die einzigen Raumgruppen, die hier

überhaupt als möglich in Betracht fallen.

C. Hemimorphe Klasse. CZv.

Die charakteristische Form ist die ditrigonale Pyramide. Sie

besitzt drei zur Trigyre parallele Spiegelebenen. Diese sind den

drei Symmetrieebenenscharen, welche dem rhomboedrischen Raumgitter,

rein geometrisch gesprochen, von Natur aus zukommen,
parallel zu stellen, während sie im hexagonalen Raumgitter, welches

Fig. 24. Gar1. Fig. 25. (£3*>2.

Die zwei Stellungen der ditrigonalen Pyramide im hexagonalen Raumgitter.

zweierlei Scharen von je drei Spiegelebenenrichtungen hat, in
zweifacher Weise orientiert werden können. Die Kopfbilder der

Figuren 24 und 25 machen dies deutlich. Die Stellung ist so
gewählt, daß der Verlauf der resultierenden Symmetrieebenen mit der

kristallographisch üblichen Orientierung übereinstimmt. Dies hat
zur Folge, daß die Raumgitter in Fig. 24 und Fig. 25 nicht parallel
orientiert sein können. Fig. 25 weicht diesbezüglich von der bei
P- Niggli adoptierten Stellung ab. Wegen der starken Betonung
des hier so wichtigen knstallographischen Momentes scheint aber
diese Abweichung notwendig zu sein. Im übrigen unterscheiden
sich beide Stellungen nur durch eine 90°-Drehung um die c-Achse.
Die Koordinatendarstellung bei P. Niggli paßt daher nach leichter
Transformation auch auf die hier bevorzugte Orientierung.

Auf Grund dieser Festsetzungen ergeben sich drei symmorphe
Raumgruppen:

&3t/ mit hexagonalem Raumgitter, entsprechend Fig. 24, 81

S3y2 ebenfalls mit hexagonalem Raumgitter, aber entsprechend 32

Fig. 25, und
S3V5 mit rhomboedrischem Raumgitter. 83
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Von den möglichen Zerlegungen der ditrigonalen Pyramide
sind, wie leicht zu zeigen ist, einzig die in zwei spiegelbildliche
trigonale Pyramiden von Bedeutung — gemäß den Zahlen 1, 3, 5,

bezw. 2, 4, 6 der Fig. 24 und 25. Natürlich ist auf die Stellung
der ditrigonalen Pyramide gegenüber dem Raumgitter wohl zu
achten. Besetzt man nun alle Gitterpunkte einer beliebigen Basisebene

mit Teilpyramiden der einen Art, die darüber- und darunterliegende

Basisebene mit denen der anderen Art u. s. w., so erhält
84 man eine Veranschaulichung des Raumsystems (£3u3, wenn die tri-
85 gonalen Tritopyramiden Fig. 24 entsprechen, jedoch G3r4, wenn

sie sich von der ditrigonalen Pyramide der Fig. 25 herleiten.
Es ist bekannt, daß es grundsätzlich nur einerlei Art rhom-

boedrischer Gitter gibt, das einfache, deformiert würfelige, daß

aber dieses rhomboedrische Raumgitter auch als innenzentriertes
betrachtet werden kann. (£3u5 darf daher ebensogut auf ein
innenzentriertes, wie auf das vorhin gewählte einfache Gitter bezogen
werden, und es ergibt sich dann in völliger Analogie zu £2r10, SB/,2

und SB/,12 ein Flächenkomplex trigonalhemimorpher Symmetrie
dadurch, daß die Eckpunkte des rhomboedrischen Gitters mit der
einen Art der oben erwähnten trigonalen Teilpyramiden (Flächen 1,

3, 5), die Rhomboedermittelpunkte mit der andern Art (Flächen 2,

4, 6) besetzt werden. Die entsprechende Raumgruppe wird mit
86 (£3r6 bezeichnet.

D. Enantiomorphe Klasse. £)3.

Die Raumsysteme dieser Symmetrieklasse zeigen in ihrer
gegenseitigen Beziehung große Analogie zu den für die hemimorphe
Klasse abgeleiteten. So bildet man mit parallel gestellten trigonalen
Trapezoedern, der typischen Form der Enantiomorphie, ähnlich wie
dort, drei symmorphe Raumsysteme. Da nämlich die trigonalen
Trapezoeder nur drei Digyren besitzen, können sie wiederum in
zweifacher Weise mit dem hexagonalen Raumgitter verbunden
werden. Fig. 26 und Fig. 27 illustrieren diese Verhältnisse.
Zugleich entspricht

87 Fig. 26 der Raumgruppe 3V,
88 Fig. 27 der Raumgruppe 2)32, während das rhomboedrische
89 Gitter der Raumgruppe 2)37 zu Grunde liegt.

Das trigonale Trapezoeder läßt sich in drei Sphenoide mit
horizontaler Digyre zerlegen. In der Numerierung der Fig. 26

und 27 sind das die Sphenoide 1—2, 3—4, 5—6. Durch Verteilung

derselben auf je drei übereinanderliegende (0001)-Netzebenen
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ergeben sich die nicht symmorphen Raumgruppen. Es sind mehrere

Fälle zu unterscheiden. Einmal sind wie in der Hemimorphie die

beiden Stellungen gegenüber dem Raumgitter in Betracht Zu ziehen,
und dann ist zweitens die Aufeinanderfolge, in der die Sphenoide
angeordnet werden (vergl. Fig. 22 und 23), zu berücksichtigen.

3;

Fig. 26. SV. Fig. 27. 2>32.

Die zwei Stellungen des trigonalen Trapezoeders im hexagonalen Raumgitter.

Dieser letztere Umstand zeichnet die Enantiomorphie der
Hemimorphie gegenüber aus und zeigt, da er eigentlich nichts weiteres'
besagt als die Existenz von rechts- und linksgewundenen Schraubenachsen,

die enge Verwandtschaft der Enantiomorphie mit der
Tetartoedrie. Man erhält so folgende vier Fälle:
3V1 entsprechend
£>36 f Fig. 26

$)8*1 entsprechend
86I$1 Fig. 27

Die Gitterpunkte dreier übereinanderliegender i 1-2, 3-4, 5-6 90

(OOOl)-Netzebenen werden ähnlich wie in Fig. 22 ]_2 5.5 3^4 gi
u. 23, wo sie mit Pedien besetzt wurden, nun ;

' '

mit Sphenoiden in Beziehung gebracht gemäß 1-2,3-4,5-6 92

der Reihenfolge 1-2, 5-6, 3-4 93

Die Besetzung der Eck- und Mittelpunkte des rhomboedrischen
Gitters mit der oberen, bezw. unteren Hälfte des trigonalen
Trapezoeders, den einzigen kristallographisch deutbaren Hälftflächnern
des Trapezoeders, führt zu nichts Neuem. Sie bedeutet £)37 gegenüber

einfach eine Verschiebung des Nullpunktes um 1/4 der Tri-
gyrenlänge.

E. Holoedrische Klasse. Dzd-

Der Enantiomorphie gegenüber unterscheidet sich die Holoedrie
durch den Hinzutritt des Symmetriezentrums. Die Trigyre wird
dadurch zur Hexagyroide. Schraubenartige Anordnungen, bei denen
drei übereinander liegende Ebenen mit verschieden gestellten Teil-
flächnern des Skalenoeders besetzt wären, sind also ausgeschlossen
(vergl. den analogen Fall bei der Paramorphie). Es fehlen demnach

in der Holoedrie die zu£)33, £)33, £)35 und £)36 analogen
Raumgruppen. Die nicht symmorphen Raumgruppen müssen vielmehr
nach dem bei der Hemimorphie konstatierten Schema gebaut sein.
Von der Hemimorphie unterscheidet sich ja die Holoedrie ebenfalls

nur durch das Symmetriezentrum.
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Das Skalenoeder kann dem hexagonalen Raumgitter gegenüber
ebenfalls eine zweifache Orientierung haben. Fig. 28 und Fig. 29
erläutern dieselbe. Hierbei ist zu beachten, daß sich im Kopfbild
des Skalenoeders obere und untere Hälfte in allem decken. Das
Bild bekommt das Aussehen einer hexagonalen Bipyramide zweiter
Stellung. Um diesen hier störenden Eindruck zu vermeiden, sind
die Skalenoeder-Flächen mit der häufig beobachteten Streifung
nach den Randkanten gezeichnet.

Fig. 28. 5)3d!. Fig. 29. 2)3d3.

Die zwei Stellungen des trigonalen Skalenoeders im hexagonalen Raumgitter.

Man erhält nun im Ganzen sechs Fälle; zunächst drei sym-
morphe Raumsysteme, nämlich

94 SW mit gedrehtem hexagonalem Gitter, entsprechend Fig. 28,
95 ©3d3 mit normal gestelltem hexagonalem Gitter, entsprechend

Fig. 29,

96 £)3/ mit rhomboedrischem Gitter,
sodann drei nicht symmorphe Raumgruppen, indem man das
Skalenoeder in zwei spiegelbildliche trigonale Trapezoeder (Flächen
1—2, 5—6, 9—10 einerseits und 3—4, 7—8, 11—12 anderseits)
zerlegt und im hexagonalen Raumgitter die abwechselnden (0001)-
Ebenen (also bloß Zweier-Rhythmus) mit Trapezoedern der einen
Art, die dazwischen gelegenen mit solchen der andern Art besetzt
(unter Berücksichtigung der doppelten möglichen Orientierung der

Trapezoeder-Digyren gegenüber dem Raumgitter), im rhomboedri-
schen Gitter aber die eine Trapezoederart auf die Eckpunkte, die
andere auf die Mittelpunkte verteilt. Man bekommt so

97 5)3d2 hexagonales Gitter mit Flächenanordnung analog zu Fig. 28,

98 ©3d4 hexagonales Gitter mit Flächenanordnung analog zu Fig. 29,

99 $)3rf6 rhomboedrisches, innenzentriertes Gitter.
©3u6 und ®3d6 werden auf ein innenzentriertes rhomboedrisches

Raumgitter bezogen. Die Einheitlichkeit der Darstellung würde
daher gewinnen, wenn auch den fünf symmorphen Raumsystemen
K34, ©ar, ©sr6, 3V, £W5 formal das innenzentrierte Raumgitter zu

Grunde gelegt würde.
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IV2. Rein trigonale Abteilung.
A. Paramorphe Klasse. C3,,.

Wie der triklinen Hemiedrie und Holoedrie kommt auch der

trigonalen Paramorphie nur ein einziges Strukturschema allgemeinster

Art zu. Es ist natürlich symmorph und ergibt sich also
dadurch, daß mit den Gitterpunkten parallel orientierte trigonale
Bipyramiden dritter Stellung verknüpft werden. Die Raumgruppe
wird Kg/,1 genannt. 100

B. Holoedrische Klasse. D3h.

Wegen der drei und nur drei vertikalen Symmetrieebenen mit
dazu parallelen Digyren sind wie in der Hemimorphie, Enantiomorphie

und Holoedrie der trigonal-rhomboedrischen Abteilung
zweierlei Stellungen der allgemeinsten Flächenform gegenüber dem

hexagonalen Raumgitter zu unterscheiden, so daß sich zwei sym-
morphe Raumsysteme ergeben. Im übrigen leiten sich die einzelnen
Fälle am einfachsten ab durch Bezugnahme auf die trigonal-rhom-
boedrische Hemimorphie. Das Unterscheidende zwischen diesen
beiden Klassen liegt ja lediglich darin, daß sich in der Holoedrie
eine Symmetrieebene senkrecht zur Trigyre einstellt. Die beiden
Raumgruppen S3i;5 und S3t.c mit rhomboedrischem Gitter fallen
daher sofort außer Betracht, und bei den vier anderen ist das Wort
Pyramide immer durch den Ausdruck Bipyramide zu ersetzen. Man
hat so

S)^,1 mit ditrigonalen Bipyramiden, entsprechend den ditrigo- 101

nalen Pyramiden von S^1,
£)3/,3 ebenso wie bei ©3/,1, nur im gedrehten Gitter, entsprechend 102

©3f2,

_ Q | mit zwei spiegelbildlich gestellten „£>3/r L • 1 D. a t a \ entsprechend 63r3, 103

4 trigonalen Bipyramiden auf den l '

31 I alternierenden (0001)-Netzebenen J * *v '

IV3. Rein hexagonale Abteilung.
A. Tetartoedrische Klasse. C6.

Die Ableitung der Raumgruppen, welche der hexagonalen
Tetartoedrie zukommen, geht parallel der bei der trigonal-rhomboedrischen

Tetartoedrie gegebenen. Durch die höhere Zähligkeit
der Hauptachse wird aber eine größere Mannigfaltigkeit bedingt.

Die symmorphe Raumgruppe, Gg1, ist nach den bisherigen 105

Ausführungen selbstverständlich. Die charakteristische Form ist
die hexagonale Pyramide dritter Stellung (Fig. 30). Sie läßt sich
zerlegen in
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1. zwei trigonale Pyramiden dritter Stellung, entsprechend den
Flächen 1, 3, 5, bezw. 2, 4, 6 der Fig. 30,

2. drei Sphenoide mit den Flächen 1—4, 2—5, 3—6,
3. sechs Pedien.

Besetzt man die Gitterpunkte der (0001)-Netzebenen abwechselnd

mit den trigonalen Pyramiden der einen und andern Stellung,
io6 so erhält man das Strukturschema der Raumgruppe 66G. Die

Translationsgröße nach c ist verdoppelt. — Die Sphenoide benötigen
drei übereinander folgende (0001)-Netzebenen und lassen sich dem-

107 gemäß in doppelter Reihenfolge ordnen. Bei SV sind die Punkte
der einen Netzebene z. B. mit 1—4-Sphenoiden besetzt. Darüber
folgt eine Ebene mit nur 3—6-Sphenoiden und auf der dritten

los Ebene endlich sitzen die 5—2-Sphenoide. Bei ©66 ist die Reihenfolge

1—4, 2—5, 3—6. Die Anschaulichkeit mag durch die
Betrachtung der beiden Figuren 22 und 23 der trigonal-rhomboedri-
schen Tetartoedrie unterstützt werden.

109

110

Fig. 30. (V. Fig. 31. Ggr1. Fig. 32. Sy

Die c-Achse ist in diesen beiden Fällen Digyre und gleichzeitig

3-zählige Schraubenachse. Nur 6-zählige Schraubenachse ist
sie in den beiden weiteren Raumgruppen. Die hexagonalen Trito-
pyramiden von S6X erscheinen daher in sechs Pedien auseinandergezogen.

Diese besetzen dann je eine (0001)-Netzebene. Mit irgend
einer (0001)-Netzebene ist daher erst wieder die sechstfolgende
parallelgleich identisch. Natürlich gibt es wieder einen doppelten
Schraubensinn, d. h. eine doppelte Reihenfolge in der Besetzung
der übereinander liegenden Ebenen. Sie kann anschaulich dargestellt

werden bei
662 durch die natürlich geordneten Zahlen 1, 2, 3, 4, 5, 6,

G63 durch die umgekehrt geordneten Zahlen 6, 5, 4, 3, 2, 1.

B. Paramorphe Klasse. C6/i.

in Neben der symmorphen Raumgruppe S^,1 gibt es nur noch

n2 eine einzige weitere Raumgruppe: G6/,2. Hier sind die abwechselnden

(0001)-Ebenen mit den aus der hexagonalen Titrobipyra-
mide (allgemeinste Form der Klasse C6,,) hervorgehenden, um
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60° verdrehten Rhomboedern dritter Stellung oder trigonalen
Bipyramiden (ebenfalls dritter Stellung) zu besetzen.

C. Hemimorphe Klasse. C6V.

Über die mit dihexagonalen Pyramiden gebildete symmorphe
Raumgruppe G^1 ist nichts weiteres zu sagen; nur sei hervor- 113

gehoben, daß die Unterscheidung von zwei Stellungen im Raumgitter,

wie sie in der trigonal-rhomboedrischen Abteilung erforderlich

war, jetzt sinnlos wird, weil dihexagonale Pyramide und
hexagonales Raumgitter die gleiche Zahl von Symmetrieebenen
haben.

Unter den zahlreichen, an und für sich möglichen Zerlegungen
der dihexagonalen Pyramide kommen nur jene in Betracht, welche
zwei und nur zwei Teilkörper ergeben. Die kristallographisch
deutbaren Teilkörper sind

1. hexagonale Pyramiden dritter Stellung (Flächen 1, 3, 5, 7,

9, 11 und 2, 4, 6, 8, 10, 12 der Fig. 31), die, auf die abwechselnden
(0001)-Ebenen verteilt, 66u2 ergeben, u\

2. ditrigonale Pyramiden, die im Raumgitter in zweifacher
Weise gestellt sein können. Da aber die schließlich resultierende
Symmetrie phänomenologisch keine der beiden Stellungen
unterscheiden läßt, so kann die Drehung des Raumgitters, welche für
die kristallographisch richtige Orientierung der ditrigonalen Pyramide

im einen Fall nötig wäre, ganz gut unterbleiben. Man hat
dann, immer auf die gewöhnliche Stellung des Raumgitters
bezogen :

C£6l.3, wenn die abwechselnden (OOOl)-Netzebenen besetzt sind n5

mit den von Ebenen 1—2—5—6—9—10, bezw 3—4—7—8—11—12
gebildeten ditrigonalen Pyramiden,

(£6rS wenn die ditrigonalen Pyramiden von Ebenen 1—4—5—hö
8 — 9—12, bezw. 2—3—6—7—10—11 begrenzt sind.

D. Enantiomorphe Klasse. Dc>.

Der Umstand, daß hier bloß Achsensymmetrie auftritt und
demnach zwischen Rechts- und Linksschraubung gegebenen Falles
unterschieden werden kann, bedingt wieder eine größere
Mannigfaltigkeit.

Die symmorphe Raumgruppe 3V ist selbstverständlich. Indem H7

die ihr zu Grunde liegenden hexagonalen Trapezoeder zu trigonalen

(gegenseitig um 60° verdrehten) Trapezoedern auseinandergezogen

und diese im Raumgitter so verteilt werden, daß die ab-
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wechselnden (0001)-Ebenen nur mit den einen oder andern besetzt
us werden, entsteht 3)66.

Auch Vierflächner kommen in Betracht. Es bilden nämlich die
Flächen 1—6—7—12, 2—3—8—9, 4—5—10—11 (Fig. 32) je ein
rhombisches Bisphenoid, die, auf drei übereinander liegende (0001)-
Ebenen angeordnet, wieder eine neue Raumgruppe ergeben.
Natürlich sind Rechts- und Linkssinn auseinanderzuhalten. Es ent-

119 spricht 3V jener Anordnung, wo, wenn 1 12-Bisphenoide irgend
eine (0001)-Ebene besetzen, die darüber gelegene Netzebene mit
2 9 - Bisphenoiden, die nächst weitere aber mit 4... 11 - Bi-

120 sphenoiden besetzt ist. Bei £)66 ist die Reihenfolge vertauscht. Zu
unterst sind wieder 1 12-Bisphenoide, zu oberst jedoch 2 9-
Bisphenoide. Ob dann die rhombische a-Achse mit einer
hexagonalen Neben- oder Zwischenachse zusammenfalle, bleibt sich
gleichgültig. Schließlich ist es ein und dasselbe.

Bei der sechsstufigen Anordnung sind die Netzebenen mit
Zweiflächnern besetzt. Diese Zweiflächner sind Sphenoide mit
horizontaler Digyre (vergl. die Raumgruppen 2)33 bis £>36). Mit
Bezugnahme auf Fig. 32 ergeben 1—2-Sphenoide in der untersten
Netzebene, 3—4-Sphenoide in der zweiten Ebene, weiterhin 5—6-,
7—8-, 9—10-Sphenoide in den nach oben folgenden Netzebenen
und schließlich 11—12-Sphenoide in der obersten (sechsten) Netz-

121 ebene das Raumsystem £>62. Die umgekehrte Reihenfolge liegt
122 $V zu Grunde.

Die Analogie zur hexagonalen Tetartoedrie ist offensichtlich.
Durch Vorsetzung der Silbe „Bi-" bei jeder Formenbezeichnung
in der Ableitung der Tetartoedrie (Bipedion als Bisphenoid zu

deuten) wird die der Enantiomorphie entsprechende Raumgruppe
erhalten.

E. Holoedrische Klasse. D6h.

Genau so, wie sich die Raumgruppen der Enantiomorphie formal

durch kleine sprachliche Änderungen aus denjenigen der
Tetartoedrie ableiten lassen, ergeben sich auch die vier Raumgruppen
der Holoedrie anschaulich aus denjenigen der Hemimorphie bei

Ersetzung des Wortes „Pyramide" durch das Wort „Bipyramide".
Bezüglich des Details kann deshalb auf die dortigen Bemerkungen
verwiesen werden, und es genügt hier die bloße Aufzählung der

einzelnen Raumsysteme.

123 ©eÄ1. Symmorphes Raumsystem (mit dihexagonalen
Bipyramiden).
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T)6h2. Die (0001)-Netzebenen abwechselnd mit hexagonalen 124

Bipyramiden dritter Stellung besetzt.
Se/,3. Übereinstimmende Anordnung von ditrigonalen Bipyra- 125

miden der nämlichen Aufstellung wie die der ditrigonalen Pyra-
myden in (£6,,3.

£>6/,4. Gleiche Verteilung von ditrigonalen Bipyramiden nor- 126

maier Stellung ({2110} ist Symmetrieebene).

V. Tetragonale Abteilung.
Wie die hexagonale Abteilung so knüpft auch die tetragonale

eng an die rhombische an. Während aber die hexagonale einen
Endpunkt in der Entwicklung des basiszentrierten Gitters bedeutet,
bildet die tetragonale Abteilung einen Übergang von sämtlichen
rhombischen Raumgittern zu den kubischen.

Gewöhnlich werden nur zwei tetragonale Raumgitter gezählt,
indem das einfache und das basiszentrierte einerseits, das
innenzentrierte und allseitsflächenzentrierte anderseits je die nämliche
Zahl, Art und Lage der Symmetrieelemente haben. Man spricht
daher gemeinhin nur vom einfachen und innenzentrierten tetra-
gonalen Raumgitter. Immerhin ist es in gewissen Fällen
notwendig, auch basiszentriertes und allseitsflächenzentriertes Gitter
in Betracht zu ziehen, sollen die resultierenden Symmetrieelemente
die in der Kristallographie adoptierte Orientierung bekommen.

Die tetragonale Abteilung umfaßt die unter allen Abteilungen
maximale Zahl von Raumgruppen: im ganzen 68, die sich auf die
sieben Symmetrieklassen verteilen. Die Analogie zur hexagonalen
Abteilung springt weniger deutlich in die Augen als es etwa beim
phänomenologischen Studium der beiden Systeme der Fall ist.

A. Tetartoedrische Klasse /. Art. C4.

Mit der charakteristischen Form der tetragonalen Tetartoedrie
I. Art, d. h. mit der tetragonalen Tritopyramide bildet man die den
beiden Gittern entsprechenden symmorphen Komplexe und zwar
Gj1 mit dem einfachen, G45 mit dem raumzentrierten Gitter. 127/8

Da die Flächen der tetragonalen Tritopyramide einzig durch
Drehungen ineinander überführbar sind, kommen als mögliche
Zerlegungen in Frage

1. um 90° verdrehte Sphenoide, gebildet von je zwei einander
gegenüberliegenden Flächen der Tritopyramide und

2. Pedien.

Erstere lassen sich mit dem einfachen Gitter so verbinden,
daß alle Punkte einer (001)-Netzebene zu Trägern von Sphenoiden

Mineralog.-petrograph. Mittgl., Bd. V, Heft 1, 1925 3



32 Leonhard Weber.

der einen Art werden, während die benachbarte Ebene mit den
129 um 90° gedrehten Sphenoiden besetzt wird. Das ergibt G43. Hier¬

mit identisch ist der Fall, wo in Eck- und Mittelpunkten des
raumzentrierten Gitters ungleiche Sphenoide liegen.

Die Pedienanordnung bedingt im einfachen Gitter einen
regelmäßigen Wechsel von je vier übereinanderliegenden (001)-Ebenen,
ähnlich wie er in der Dreizahl, bezw. Sechszahl für die
entsprechenden Tetartoedrien der trigonal - rhomboedrischen, bezw.

hexagonalen Abteilung charakteristisch war. Und wie dort, so sind
auch hier zweierlei Anordnungen möglich, eine linksgewundene
und eine rechtsgewundene. Zur Veranschaulichung sei auf die Fig.
21—23 verwiesen. Mit Anlehnung an die dortige Bezeichnung
entspricht

no G4l der Reihenfolge 1, 2, 3, 4 (vergl. auch Fig. 33, z. B. Achse I),
ni G42 der Reihenfolge 4, 3, 2,1.

MA

.^

.^=&

.-££=
Fig. 33. G46.

In diesen beiden Fällen hat die durch den Basismittelpunkt
gehende c-Richtung den Charakter einer 4-zähligen Schraubenachse.
Im Windungssinn stimmt sie mit den Schraubenachsen der Seitenkanten

überein, ist aber im übrigen von ihnen wesentlich
verschieden, und es ist klar, daß völlige Übereinstimmung der beiden
Achsen nur eine um 45° gedrehte Stellung von Gr und Gi1 ist. Ein
wirklich neues Raumsystem ergibt sich aber dadurch, daß von den
beiden an und für sich identischen c-Achsenrichtungen z. B.

diejenige der Basismitte gegenüber derjenigen der Eckpunkte um
die Hälfte ihrer Periode verschoben wird. Ob der Windungssinn
nach rechts oder nach links gerichtet sei, bleibt sich gleichgültig,
da nach jenen c-Richtungen, welche im Halbierungspunkt der a,-
und a2-Achsen errichtet sind, die Flächenanordnung gerade
entgegengesetzten Windungssinn zeigt wie an den beiden erstbetrachteten

Achsen, ohne aber hierzu spiegelbildlich zu sein. Der resul-
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tierende Komplex ist in Fig. 33 dargestellt und entspricht der

Raumgruppe G4G. Gegenüber der Koordinatendarstellung von P. 132

Niggli zeigt er eine Nullpunktsverschiebung.

B. Tetartoedrische Klasse IL Art. S4.

Hier gibt es nur die beiden symmorphen Raumgruppen ©tx 133

und ©42. Ersterer liegt das einfache, letzterer das innenzentriertej 134

Gitter zu Grunde. An Stelle der Gitterpunkte treten tetragonale
Bisphenoide dritter Stellung.

C. Paramorphe Klasse. Civ.

Wenn die charakteristische Form dieser Symmetrieklasse, die

ditetragonale Pyramide, die Gitterpunkte ersetzt, ergeben sich die
beiden symmorphen Raumgruppen G^1 mit dem einfachen und 135

G4U9 mit dem innenzentrierten Gitter. 136

Die ditetragonale Pyramide läßt sich zerlegen in

a) zwei tetragonale Pyramiden dritter Stellung,
b) zwei rhombische Pyramiden, deren eigene Spiegelebenen

{110}-Ebenen sind,
c) zwei rhombische Pyramiden, die je nach [100) -Ebenen spiegelbildlich

sind,
d) vier Sphenoide mit vertikaler Digyre,
e) vier Domen, deren Spiegelebenen (100) parallel sind,
f) vier Domen, deren Spiegelebenen {110} parallel sind,

g) acht Pedien.

Zur Einordnung dieser Kristallformen in den beiden
Raumgittern eignet sich in ganz vortrefflicher Weise das für die
Tetartoedrie benutzte Schema. Dadurch nämlich, daß im einfachen Gitter,
ähnlich wie bei G43 die (001)-Netzebenen abwechselnd mit den

entgegengesetzten Vierflächnern besetzt werden, ergeben sich die

Raumgruppen
Gu,5, wenn die Vierflächner Tritopyramiden sind, i37

Gjr3, wenn sie rhombische Pyramiden von der {110}-Art sind, 13s

Gir7, wenn sie rhombische Pyramiden von der {100}-Art sind. 139

Hat das Sphenoid, der einzige in Betracht fallende Hälft-
flächner der Tetartoedrie I, mit dem innenzentrierten Gitter keinen
neuen Symmetriefall erzeugt, so stellen sich jetzt wegen der größeren
Mannigfaltigkeit der Verhältnisse sogar zwei neue Fälle ein. Es

entspricht
G,rfi dem innenzentrierten Gitter mit ungleichen Tritopyamiden 140

in Eck- und Mittelpunkten,
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141 Gjü1 der analogen Anordnung von rhombischen Pyramiden mit
Eigensymmetrie nach {110}.

Ebenso wie sich G^5 dadurch aus der symmorphen Anordnung
ableitet, daß die ditetragonale Pyramide in zwei nach der c-Achse
auseinandergezogene Tritopyramiden zerlegt wird, liefert auch die
Raumgruppe GR>9 einen neuen Fall, wenn die eine Hälfte der di-
tetragonalen Eckpyramide längs der zugehörigen c-Richtung auf
die Höhe der durch den Mittelpunkt gehende Ebene gehoben und
die übereinstimmende Hälfte der Mittelpunktspyramide auf das

h-
¥

f
\
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-4^

V x

+
r
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\

Fig. 34. e4(A Fig. 35. <£,,¦*.

Niveau der durch den untern Eckpunkt gehenden Basis gebracht
wird. Der entstehende Komplex erscheint dann als basiszentriertes,
in der c-Richtung verdoppeltes Gitter, bei dem nicht nur Eckpunkte
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Fig. 36. 64l3. Fig. 37. (w
und Basismitten ungleich besetzt sind (6U-2, siehe No. 143), sondern
auch längs der durch diese beiden Punktarten gehenden c-Rich-
tungen die beiden Formen regelmäßig miteinander wechseln. Der
Komplex ist also vom Typus der Fig. 9 (und ähnlicher) und ver-

142 anschaulicht GW0.

Ein ähnliches basiszentriertes Gitter, jedoch mit einzigem
Wechsel in der Besetzung von Basismitten und Basisecken, bildet

143 das Schema der bereits genannten Raumgruppe 6„2.
Einen nämlichen Typ wie das vorletzte Gitter, d. h.

basiszentriert und nach c verdoppelt, bildet auch das Strukturschema
144 von divs. Die Bausteine sind Sphenoide. Es sind vier Anord-
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nungen denkbar, zu deren Erläuterung die vier Figuren 34, 35, 36

und 37 dienen mögen. Die einzelnen Flächen sind wie bei der

stereographischen Projektion, wenn auch in etwas anderer
Bedeutung, durch Kreuz und Kreis symbolisiert. Kreuze bezeichnen

Punkte, die um eine Netzebene höher liegen als die durch Kreise

dargestellten. Man braucht nun bloß die Punkte in geeigneter,
bei Fig. 35 und 36 angedeuteter Art und Weise zusammenzufassen,
um einzusehen, daß einzig Fig. 34 einen neuen Symmetriefall
darstellt, entsprechend der Raumgruppe Gu<8, während

Fig. 35 mit der Raumgruppe G,rS

Fig. 36 mit der Raumgruppe Glr3,

Fig. 37 mit der Raumgruppe G,/1 identisch wird.
Mit Domen lassen sich entweder keine raumgitterartigen Komplexe

bilden, oder sie stimmen mit schon erledigten Raumgruppen
überein. Dagegen liefern die Pedien neue Strukturtypen, die am

J5 [ m ü

Ä^n4

Fig. 3S. G4ru.

besten auf das gewöhnliche, jedoch nach der ar und a2-Achse

verdoppelte, nach der c-Achse sogar vervierfachte Gitter bezogen
werden. Es darf dann vorausgesetzt werden, daß die hintere, linke
c-Kante gleichgebaut sei wie im Strukturmodell von G4l. Sie ist
also von vier Pedien schraubenförmig umgeben (Achse lin Fig. 3S).
Nun ist klar, daß die Achsen II und IV gerade entgegengesetzten
Windungssinn haben müssen, wenn der Komplex irgendwelche
vertikale Symmetrieebenen besitzen soll. Zwei Fälle sind denkbar:
die Symmetrieebenen sind entweder gewöhnliche Spiegelebenen,
und dann resultiert Fig. 38 entsprechend der Raumgruppe G)r11, 145

oder aber Gleitspiegelebenen mit einer zur c-Achse parallelen
Gleitkomponente entsprechend der Raumgruppe GJr12, und dann 146

entsteht ein Komplex, der sich von dem in Fig. 38 wiedergegebenen
dadurch unterscheidet, daß II und IV vertauscht erscheinen. In
beiden Fällen sind I und III, bezw. II und IV nur digyrisch ver-
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dreht. Im übrigen zeigt Fig. 38 nur einen Viertel des Elementar-
parallelepipeds. Die Zahlenschemata der Fig. 39 und Fig. 40 fassen
den Sachverhalt schön zusammen. Die Zahlen selber deuten die
Stufen an, auf denen sich die Pedien befinden.

D. Paramorphe Klasse. C.ih.

Von den beiden symmorphen Raumgruppen wird beim Ersatz
der Gitterpunkte durch tetragonale Tritobipyramiden

147 Gd/i1 durch das einfache,
148 gi7l5 durch das innenzentrierte Gitter versinnlicht.

Die Tritobipyramide kann in folgende Teilflächner zergliedert
werden (Fig. 41):

Fig. 39. ©41," Fig. 40. GV2. Fig. 41.

1. Obere und untere Tritopyramide, also 1—2—3—4 einerseits
und 1'—2'—3'—4' anderseits.

2. Zwei um 90° gedrehte tetragonale Bisphenoide dritter Stel¬

lung: 1— 2'—3—4' und V—2—3'—4.
3. Zwei „monokline" Prismen mit vertikaler Digyre: 1—1'—3—3y

und 2—T—4—4\
4. Vier monokline Sphenoide als Hälften der ebengenannten Pris¬

men: 1—3; 2—4; 1'—3'; V—4\
5. Acht Pedien.

Obere und untere Tritopyramide können nur im innenzentrierten

Gitter untergebracht werden und zwar bei abwechselnder

Verteilung auf Eckpunkte und Raummitten. Es entsteht so das

H9 für G4/i3 charakteristische Strukturschema.
Die tetragonalen Bisphenoide sind für den Aufbau para-

morpher Strukturbilder ungeeignet: vierzählige Drehspiegelachse
und Tetragyre mit senkrechter Spiegelebene vertragen sich nicht.

Mit Prismen können mehrere raumgitterartige Komplexe ge-
150 bildet werden. Etwas Neues — G4/t2 — stellt aber nur der Fall

dar, wo irgend eine (001)-Netzebene mit Prismen der einen

Stellung, die unmittelbar benachbarte parallele Netzebene mit Prismen
der anderen Stellung besetzt wird.
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Für die Sphenoide sind vier Punkte erfordert. Am anschaulichsten

ist die Darstellung im basiszentrierten Gitter mit
verdoppelter c-Richtung. Es werden dann in den Eckpunkten
beispielsweise die von den oberen Flächen gebildeten zwei Sphenoide,
in den Basismitten die beiden unteren eingefügt. Es sind zwei
Kombinationen denkbar. Liegen in den unteren Eckpunkten Sphenoide

1—3, in den darüber befindlichen also Sphenoide 2—4, so
können die Basismitten in folgender Weise besetzt sein:

unten 1'—3' T—4'
entweder oder umgekehrt

oben 2'—4' V—V

Schematische Darstellungen nach Art der Fig. 34—37 lassen

erkennen, daß, von der Lage des Nullpunktes abgesehen, beide

Gruppierungen identisch sind. G^1. i*i

I _ II

v

^
ÄZ^^^ ?^VV

Fig 42. (£4/,6.

Die Gruppierung der Pedien ist in gewissem Sinn analog zu

Glt12. Wiederum ist vom gewöhnlichen tetragonalen Gitter
auszugehen. a4- und a2-Richtung müssen verdoppelt werden, die c-Richtung

ist zu vervierfachen. Wir haben also 16 Zellen. Fig. 42 zeigt
die Anordnung (es ist aber nur 14 dargestellt). Die vier c-Rich-
tungen tragen dieselbe Numerierung wie in Fig. 38. Um sie herum
sind die Pedien nach Art vierzähliger, links- und rechtsgewundener
Schraubenachsen angeordnet. I zeigt z. B. Linksschraubensinn
entsprechend der nämlichen Achse in Fig. 38. Die Symmetrieebenen
können nur Gleitspiegelebenen sein. Sie mögen mit den (001)-
Netzebenen zusammenfallen. Die Gleitkomponente der untersten
sei der a2-Achse parallel gerichtet. Die Gleitkomponente der nächst
höheren ist dann parallel zu ax. II wird hierdurch zur
Rechtsschraube und die Flächen liegen, im Gegensatz etwa zur
gleichbezeichneten in Fig. 38, unter den Netzebenen. Ebenfalls Rechts-
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schraubensinn zeigt IV. Ihre Nullpunktslage ergibt sich zwanglos,
sobald man berücksichtigt, daß II durch die Linksschraubung um
I in IV übergeht. Ähnlich ist III durch die Rechtsschraubung um

152 II aus I ableitbar. Die Raumgruppe wird mit Gi/,fi bezeichnet.

D. Enantiomorphe Klasse. D±.

Die Raumgruppen der Enantiomorphie stehen untereinander
in recht übersichtlichem Zusammenhang. Typische Form ist das

Trapezoeder. Parallele Trapezoeder sind die Bauelemente der

symmorphen Flächenkomplexe.

153

154

o A
14° \ / * M
l 3* / \°8/

r te- 43. Fig. 44. £>/.

SV hat einfaches,
SV innenzentriertes Gitter.
Aus dem Trapezoeder (Fig. 43) leitet man ab:

1. Obere und untere, gegenseitig um einen gewissen Winkel
gedrehte tetragonale Tritopyramiden. 1 —3—5—7 und 2—4—6—8.

2. Zwei um 90 ° gegenseitig verdrehte rhombische Bisphenoide,
deren horizontale Digyren den tetragonalen Zwischenachsen

parallel sind, entsprechend den Flächen 2—3—6—7 und
1—8—4—5.

3. Ebenfalls zwei rhombische Bisphenoide, aber mit Digyren,
die den Nebenachsen parallel sind. 1—2—5—6 und 3—4—7—8.

4. Vier monokline Sphenoide mit vertikaler Digyre. 1—5, 3—7,
2—6, 4—8.

5. Vier monokline Sphenoide mit horizontaler Digyre in Richtung

der Nebenachsen: 1—2, 3—4, 5—6, 7—8.
6. Ähnliche Sphenoide, aber mit Digyren, die den Zwischenachsen

parallel sind: 2—3, 4—5, 6—7, 8—1.
7. Acht Pedien.

Mit den unter 2. genannten rhombischen Bisphenoiden lassen

sich zweierlei Flächenkomplexe bilden.
155 3V hat basiszentriertes Gitter,
156 SV innenzentriertes. S)ie Eckpunkte sind mit den einen, die

Innenpunkte mit den anderen Sphenoiden besetzt.
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SV könnte übrigens ebenso anschaulich durch obere und untere
Pyramiden definiert werden. Dem innenzentrierten Gitter lassen
sich auch die beiden Sphenoide von 3. einordnen. Der entstehende
Komplex versinnlicht SV- Hiermit identisch sind alle jene Korn- 157

I

2^
C^

1/

Fig. 45. £V°.

plexe, die sich aus dem gewöhnlichen, nach c verdoppelten Gitter
dadurch ableiten, daß die (OOl)-Ebenen abwechselnd mit um 90°
gedrehten Bisphenoiden besetzt werden, und zwar' ist es für den

Symmetrieeffekt belanglos, ob alle ihre horizontalen Digyren den
Nebenachsen oder Zwischenachsen parallel laufen.

Zwei neue, zueinander enantiomorphe Raumgruppen ergeben
sich aus SV- Das innenzentrierte Gitter ist nach c zu verdoppeln
und die Bisphenoide müssen zu Sphenoiden der Art von No. 6

zerlegt und auf der c-Achse unter Wahrung des Charakters von
innenzentrierten Gittern auseinandergezogen werden. Liegt etwa
am hintern, untern Eckpunkt das Sphenoid 1— S, so trägt der
darüberliegende Eckpunkt das Sphenoid 4 — 5. Die Mittelpunkts-
sphenoide lassen dann eine doppelte Anordnung zu. Diejenige von
Fig. 44 entspricht der Raumgruppe SV, die andere, bei der diese iss

Sphenoide ihre Rolle gerade vertauschen, gehört zu SV- 159

Ebenfalls zwei enantiomorphe Anordnungen liefern die unter
5. genannten monoklinen Sphenoide und zwar unter Zugrundelegung

des gewöhnlichen, aber nach c vervierfachten tetragonalen
Gitters. Bei SV ist ihre gegenseitige Stellung längs allen Seiten- 100

kanten übereinstimmend wie in Fig. 45 längs I. SV hat umge- igi

gekehrten Windungssinn.
Die letzte Raumgruppe — SVÜ — veranschaulicht sich bild- 162

lieh am ungezwungensten im basiszentrierten, nach c vervierfachten
Gitter. Die Bausteine sind wieder Sphenoide mit horizontaler
Digyre; ob diese den Nebenachsen oder Zwischenachsen parallel
gehen, bleibt sich gleichgültig. In Fig. 45 sind letztere bevorzugt.
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Die durch die Eckpunkte gehende c-Achse hat gleichen Windungssinn,

wie die durch die Basismitten gehende. In Fig. 45 ist Linkssinn

vorausgesetzt. Beide sind übrigens digyrisch verdreht. Eine
hierzu enantiomorphe Anordnung gibt es nicht, weil die Achsen II
und IV Rechtsschraubensinn haben. Die Bauelemente sind daher
ebensowohl im Rechts- wie im Linksschraubensinn angeordnet.

F. Hemiedrische Klasse IL Art. 93,/.

Das tetragonale Skalenoeder mit zwei vertikalen Spiegelebenen,
deren Winkelhalbierende Digyren sind, kann in zweifacher Wreise

dem Raumgitter gegenüber orientiert sein, entweder so, daß die
Symmetrieelemente die kristallographisch übliche Lage haben, oder
dann so, daß sie dieser Stellung gegenüber um 45° gedreht
erscheinen. Das ergibt vier symmorphe Komplexe. Da von der
gewohnten kristallographischen Orientierung der Symmetrieelemente
nicht abgewichen werden soll, sind die Gitter gegebenen Falls zu
drehen, so daß jetzt alle vier tetragonalen Gitter in Betracht zu
ziehen sind. Es entspricht dann

163 das einfache Gitter der Raumgruppe 93/,
164 das innenzentrierte der Raumgruppe 93/1,
165 das basiszentrierte der Raumgruppe 93/,
166 das allseitsflächenzentrierte der Raumgruppe 93/.

Von den vielen Teilflächnern, die sich aus dem tetragonalen
Skalenoeder ableiten lassen, benötigt die folgende Darstellung
nur drei: tetragonales und rhombisches Bisphenoid und rnono-
klines Sphenoid.

Die beiden tetragonalen Sphenoide dritter Stellung werden
mit den Eck- und Innenpunkten des basis- und raumzentrierten
Gitters verbunden. Sind sie nach {110} spiegelbildlich gestellt,

167/8 so resultieren die den Raumgruppen 93/ (basiszentriert) und 93/
(raumzentriert) entsprechenden Komplexe. Sind aber die beiden
Bisphenoide nach {100} spiegelbildlich orientiert, so muß wegen
obiger Festsetzung das Gitter gedreht werden. Aus dem
basiszentrierten Gitter entsteht ein Gitter gewöhnlicher Art, dessen

ax- und a2-Richtung verdoppelt sind, und es wechseln die beiden

169 Bisphenoide gerade nach diesen Richtungen miteinander ab, 93/.
Umgekehrt geht das innenzentrierte Gitter in das allseitigflächen-
zentrierte über und die Besetzung ist so, daß in der einen (001)-
Netzebene nur die eine Bisphenoidart, in der dazu benachbarten

no aber die andere liegt (93/).
Rhombische Bisphenoide kommen bei drei Raumgruppen in

ni Frage. Bei 93/ liegt ein gewöhnliches, aber nach c verdoppeltes



Kristallpolyeder in der Lehre der regelmäßigen Punktsysteme. 41

Gitter vor. In die eine Basisebene kommen die Bisphenoide der
einen Stellung, die horizontalen Digyren nach den Nebenachsen

orientiert, in die darübergelegene die gleich orientierten der anderen
Art.

93/ zeigt die nämlichen Verhältnisse, nur sind jetzt die hört- 172

zontalen Bisphenoidachsen nach den kristallographischen Zwischenachsen

gerichtet. Um die kristallographisch übliche Aufstellung zu

bekommen, ist das Gitter um 45° zu drehen. Es wird dadurch
basiszentriert, bleibt aber nach c verdoppelt, und die (001)-Ebenen
alternieren wie bei 93/.

Mit 93/ steht 93/° in engstem Zusammenhang. Das Unter- 173

scheidende liegt einzig darin, daß jetzt auch noch c verdoppelt wird.

^^2>-

^b-«
Fig. 46. 33d12. Fig. 47.

174

Es wechseln dann nach allen drei Kantenrichtungen die Bisphenoide
regelmäßig miteinander ab.

Auch 93/2 wird auf ein solches achtfaches Gitter bezogen.
Bauelemente sind aber jetzt monokline Bisphenoide mit horizontaler
Digyre. Sie kommen in vierfacher Stellung vor; die Digyre ist
immer nach einer der Nebenachsen gerichtet. Fig. 46 erläutert die
Anordnung.

G. Holoedrische Klasse. D4h.

Die tetragonale Holoedrie umfaßt 20 Raumgruppen, die
drittgrößte Zahl, die überhaupt in einer Symmetrieklasse vorkommen
kann. Symmorphe Raumgruppen gibt es natürlich nur zwei.
Ditetragonale Bipyramide im einfachen Raumgitter entspricht SV1, 175

im innenzentrierten Raumgitter £)4/7. n6

Von den nicht symmorphen Raumsystemen können elf auf
das basiszentrierte, das innenzentrierte und das nach c verdoppelte
gewöhnliche Gitter bezogen werden, und es ist sehr lohnend,
dieselben in übersichtlicher Zusammenstellung zu untersuchen.

Die Zähligkeit der Gitterpunkte aller der genannten drei Gitter
ist zwei. Es braucht daher je zwei komplementäre, von der ditetra-
gonalen Bipyramide abstammende Achtflächner, um holoedrische
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Symmetrie zu bekommen. Ditetragonale Pyramiden werden nicht
benötigt.

Achtflächner basiszentriertes
G.

innenzentriertes nach c ver-

H7/9 Tetragon. Trapezoeder: fä^g&föw-s
180/1 Tetrag. Tritobipyramide: l^t^'^t-t'-s-s'

M'-4-4'-5-5'-8-8'
bezw. 2.2/-3-3'-6-6'-7-7/
\-Y-2-1'-5-5'-b-b'
bezw. 3-3'-4-4'-7-7'-8-S'

185 Tetragon. Skalenoeder: ^Z'StrJ^-t'-i.s

182 Rhomb. Bipyramide:

183/4 Rhomb. Bipyramide:

S)4*3

£4h5

(5)4/,5)

(S)4„3)

SW

o.

£>4,t6

!2

£Wj

doppelte G.

S)4/,2

(S>4*2)

£V>9

£W°
(£4/,9)

(SV0)186/7 Tetragon. Skalenoeder: S^^.w
In dieser Tabelle steht in jeder Reihe zuerst links der Name

des in Betracht kommenden Polyeders. Durch die rechts
anschließenden Zahlen wird es genauer definiert. Die Zahlen selber

%
-^e-

^ o

Fig 4S. SV,y

**

Fig. 49.

•X

äe

SU

'Xr
o/\

¦>6r 0\/_ \ZL_

^
Fig 50. S>4/,13.

L>l(r- "^
Fig. 51. S>4/<16.

beziehen sich auf die Anordnung der Fig. 47. Schließlich sind durch
die üblichen Symbole die Raumgruppen benannt, denen die
Komplexe zuzuordnen sind. Eingeklammerte Symbole bedeuten

Raumgruppen, die schon durch andere Achtflächner definiert sind.

Fünf weitere Raumgruppen werden durch basiszentrierte, nach

c verdoppelte Gitter zur Darstellung gebracht. Darin sind je vier
Punkte durch Teilflächner der ditetragonalen Bipyramide zu

ersetzen. Es sind daher mindestens Vierflächner erfordert. Bei vieren
dieser Raumgruppen kommt man mit den verschiedenen
Kombinationen von rhombischen Bisphenoiden aus. Der Anschaulichkeit

wegen sind sie durch Figuren symbolisch erläutert und zwar sind
die beiden ungleichen, übereinanderfolgenden Netzebenen
nebeneinander gezeichnet. Die Flächen der verschiedenen Formen sind

durch Kreuze und Kreise symbolisiert, allerdings mit anderer Be-
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deutung wie bei Fig. 34—37. Das Kreuz bedeutet, daß die Fläche
über der betreffenden Netzebene sitzt, der Kreis das umgekehrte.

Die horizontalen Digyren der Bisphenoide sind durchwegs
diagonal gestellt. Bei S)4/,s ergänzen sich zwei Bisphenoide einer iss

(001)-Ebene zu einem tetragonalen Trapezoeder, die übereinanderliegenden

zu einem Skalenoeder, dessen horizontale Digyren ebenfalls

diagonal, also nicht kristallographisch orientiert sind (Fig. 48).
Bei SV11 ergänzen sich die übereinander liegenden Bisphenoide isq

zu Trapezoedern, während zwei in derselben Ebene gelegene eine
rhombische Bipyramide (mit diagonal gestellten vertikalen
Symmetrieebenen) ergeben (Fig. 49).

3, e43 «

\~/o^.\o \+ °l1°

o2

^E
P/TV* S i Vi3* °4 4°

2o ,1*°\t/
/"\q 3* °4-

,3
^-x.

4° *3oo

Fig. 52. S54/i19. Fig. 53. S>4fc20.

S)4/3: In einer (OOl)-Ebene gelegene Bisphenoide bilden zu- 190

sammen ein Skalenoeder (vergl. SV8), die übereinanderliegenden
eine rhombische Bipyramide (S)^11). Fig. 50. Für £)4/6 lautet die 10i

Kombination: in der Basis rhombische Bipyramide, übereinander
Skalenoeder (Fig. 51).

Die fünfte Raumgruppe, der ein basiszentriertes, nach c

verdoppeltes Gitter zukommt, ist SV18. Die Punkte werden mit tetra-192
gonalen Trapezoedern besetzt und zwar sind sowohl die Punkte
in der Ebene selber wie die Punkte übereinander zu zweien
enantiomorph.

Für die beiden letzten Raumgruppen wählt man zweckmäßig
das nach at und a2 verdoppelte, nach c vervierfachte gewöhnliche
Gitter. Die Bauelemente sind Sphenoide mit horizontaler Digyre.
Sie kommen in acht verschiedenen Stellungen vor. Je vier
untereinandergestellte sind nur drehungsverschieden. Aus Fig. 52 ersieht
man, wie vier an derselben c-Richtung gruppierte Sphenoide
schraubenartig angeordnet sind. II und IV sind die Spiegelbilder
von I und III. Diese letztern sind ähnlich wie in früheren Figuren
linksgewunden (die arabischen Zahlen bezeichnen wie in Fig. 39
und Fig. 40, deren Vergleich mit Fig. 52/53 übrigens sehr
instruktiv ist, die Stufen, auf denen sich die Sphenoide befinden).

Fig. 52 illustriert 3V19. 193
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Werden die Achsen II und IV miteinander vertauscht, so

ergibt sich eine Anordnung, welche dem letzten tetragonalen Raum-

194 system — SV,20 — zugehört. S)ie schematische, zu Fig. 52 analoge

Figur 53 erläutert die Details.

VI. Kubische Abteilung.
Es gibt drei kubische Raumgittertypen: der einfache, der

innenzentrierte und der allseitsflächenzentrierte. In der Aufstellung sind

sie nicht unbestimmt oder mehrdeutig, wie etwa die Gitter der

tetragonalen Abteilung.

/£ £> r^

^ A.
- f gV ^

195

196

197

Fig. 54. 24. Fig. 55. I5.

A. Tetartoedrische Klasse. T.

Allgemeinste Kristallform dieser Klasse ist das tetraedrische

Pentagondodekaeder. Im folgenden denken wir vorab ans rechte,

positive. Es liefert die drei symmorphen Raumgruppen und zwar
X1 mit dem einfachen,
2>* mit dem innenzentrierten,
I2 mit dem allseitsflächenzentrierten Raumgitter.
Daneben gibt es zwei nicht symmorphe Raumgruppen. Die

198 eine derselben — X1 — läßt sich im flächenzentrierten Gitter ver¬

anschaulichen. Zu dem Zweck werden die drei Flächen, welche je
in einem positiven Oktanten liegen, als Einheit betrachtet (trigonale

Pyramide dritter Stellung). Das tetraedrische Pentagondodekaeder

erscheint so als Kombination von vier Pyramiden. Jede

dieser Pyramiden ist nun mit einem bestimmten Punkt des

flächenzentrierten Gitters verbunden. Die Verteilung ist aus Fig. 54 zu

ersehen.
199 Die andere nicht symmorphe Raumgruppe — %b — benötigt

zu ihrer Verbildlichung des nach allen drei Achsenrichtungen
verdoppelten Würfelgitters. Ein Eckpunkt und die drei benachbarten

Kantenmitten werden mit den vier durch die Zerlegung des tetra-
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edrischen Pentagondodekaeders entstandenen trigonalen Pyramiden
besetzt. Von den vier weiteren Punkten unseres Gitters hat je einer
mit einer dieser trigonalen Pyramiden die Trigyre gemeinsam. Er
wird dann parallel gleich besetzt wie der andere (Fig. 55).

B. Paramorphe Klasse. Th.

Die symmorphen Raumgruppen sind
X,1 einfaches Gitter, j Die 0itterpunkle sind durch 200

X/,5 innenzentriertes Gitter, parallel gestellte Dyakis- 201

X/,3 allseitsflächenzentriertes Gitter. I dodekaeder ersetzt. 202

Das Dyakisdodekaeder hat dem tetraedrischen Pentagondodekaeder

gegenüber das Symmetriezentrum voraus. Jene vier Flächen-

tripel, welche vorhin als trigonale Pyramiden herausgehoben wurden,

bilden nun mit ihren Gegenflächen vier Rhomboeder dritter
Stellung. Mit diesen Rhomboedern läßt sich gleich verfahren wie
vorhin bei X4 und X5, und Fig. 54 und Fig. 55 sind leicht in diesem
Sinn ergänzt zu denken, so daß eine weitere Darstellung
überflüssig wird. Es sei nur gesagt, daß flächenzentriertes Gitter mit
den vier Rhomboedern dritter Stellung die Raumgruppe X;iG, acht- 203

faches Würfelgitter mit 2X4 Rhomboedern dritter Stellung die

Raumgruppe X/*7 darstellt. 204

Um mit dem innenzentrierten Gitter einen nicht symmorphen
Komplex paramorpher Symmetrie herzustellen, sind die beiden
Punkte mit 12-Flächnern zu besetzen, die sich zum Dyakisdodekaeder

ergänzen. Es sind das zwei enantiomorphe tetraedrische
Pentagondodekaeder. Wird in die Eckpunkte das positive rechte
gebracht, so ist dem Raumzentrum das negative linke zuzuordnen.
Es resultiert so X/,2. 205

Die letzte nicht symmorphe Raumgruppe dieser Symmetrieklasse

gehört zum Typus mit Diamantgittern. Solchen Gruppen
sind wir schon mehrfach begegnet und fanden immer raumgitterartige

Flächenkomplexe zu ihrer Verdeutlichung. In der kubischen
Abteilung ist das leider ganz anders. Hier sind die Verhältnisse
so kompliziert, daß es keine einfache Kristallform gibt, die
geeignet wäre, in Verbindung mit einem der drei Raumgitter die
Raumgruppen mit Diamantgittern zu veranschaulichen. Die Veran-
schaulichung läßt sich erst mit Hilfe von Zwillingsgebilden
erreichen. Im vorliegenden Fall, wo es sich um die Raumgruppe
X/,4 handelt, sind zwei zentrosymmetrisch gestellte tetraedrische 2oö

Pentagondodekaeder mit gemeinsamer Trigyre (Zwillingsebene eine
Fläche des Würfels) zu wählen. Bezüglich der Flächenzahl und



46 Leonhard Weber.

Flächenorientierung stimmt dieser Zwilling vollständig mit einem
Dyakisdodekaeder überein. Von einem solchen unterscheidet er sich
aber gleichwohl in wesentlichen Punkten, und zwar liegt das
Unterscheidende darin, daß beim Zwillingskomplex jedes Pentagondodekaeder

seine Individualität bewahrt. Praktisch kommt dies im
Strukturmodell darin zum Ausdruck, daß die beiden Schwerpunkte,
die ja zur Bildung des Dyakisdodekaeders zusammenfallen müßten,
nun einen gewissen Abstand haben, der gleich ist einem Viertel
der Raumdiagonale der Würfelzelle des Raumgitters. Ein solcher

Fig. 56. Xh4.

Zwillingskomplex zweier tetraedrischer Pentagondodetraeder.

Komplex ist in Fig. 56 dargestellt und zwar mit einem gewissen,
durch die eingezeichneten Achsenkreuze abschätzbaren Abstand der
Mittelpunkte. Werden nun die vier Punkte des flächenzentrierten
Gitters durch solche unter sich parallel gestellte Zwillinge ersetzt,
so hat man die gewünschte Veranschaulichung der Raumgruppe X/.4.

C. Hemimorphe Klasse. T(l.

Die sechs Raumgruppen dieser Klasse lassen sich übersichtlich

in folgendem Schema zusammenfassen.

X/ einfaches Gitter j Die Gitterpunkte sind durch
%db innenzentriertes Gitter [ parallel gestellte Dyakisdodekae-
%d3 allseitsflächenzentriertes Gitter

Hexakistetraeder, alle in paralleler e i
Stellung ü |

Rechte und linke, positive tetraedr. % ;

Pentagondodekaeder ^S^

einfach

Id1

der ersetzt.
Das Gitter ist

innenzentr. allseitsfl.

Rechte und linke, positive tetraedr. s c.

Pentagondodekaeder ° j°

Trigonale Pyramiden dritter Stellung Q >
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Zd1, X,/3, Zd2 sind symmorph. 207/9

X<i4 ist ohne weiteres klar. Die beiderlei Punktarten sind ab- 210

wechselnd ersetzt durch die zwei Hälftflächner der charakteristischen

Kristallform. Sehr einfach ist auch die Anordnung der Formen
bei X/. Sie ist von der Art des Steinsalzgitters, indem jedes 211

tetraedrische Petagondodekaeder, das einen Gitterpunkt ersetzt, in

Richtung der drei Hauptachsen von sechs spiegelbildlichen
Dodekaedern gleicher Stellung umgeben ist.

In Zd6 sind alle Würfeleckpunkte mit jenen trigonalen Pyra- 212

miden besetzt, welche sich z. B. vom positiven rechten tetraedri-
sehen Pentagondodekaeder herleiten, und zwar ist die Verteilung
genau so wie in Fig. 55. Die trigonalen Pyramiden der andere-n

Z
.L*

9.1

Fig. 57. Zd9. Fig. 58.

Art, welche also vom positiven linken herkommen, sind auf die
Raummitten verteilt. Wenn wir nun verlangen, daß die Pyramide
der Raummitte irgend einer Zelle das Spiegelbild nach (lfO) jener
Pyramide sein soll, welche in der hintern, untern, linken Ecke der
nämlichen Zelle sitzt, so verfügen wir nur über den Nullpunkt.
Wir bekommen so die Anordnung, wie sie in Fig. 57 schematisch
zum Ausdruck gebracht ist. Mit 1, 2, 3, 4 sind die vier, das positive,

rechte tetraedrische Pentagondodekaeder bildenden trigonalen
Pyramiden bezeichnet, so wie es Fig. 58 angibt. Werden die in den
übereinstimmenden Quadranten gelegenen trigonalen Pyramiden
der Linksform mit 1', 2\ 3\ 4' angegeben, so sieht man sofort,
daß nach (110) als Spiegelebene einander zugeordnet sind:

1 und T, 2 und 2', 3 und 4\ 4 und 3\
Gerade das bringt Fig. 57 zum Ausdruck und definiert eindeutig
die Lage der Pyramiden, da ja ihre Orientierung kristallographisch
völlig bestimmt ist.

D. Enantiomorphe Klasse. O.

Den drei symmorphen Gruppen entsprechen die drei kubischen
Gitter, falls die Punkte durch identische und parallel gestellte
Pentagonikositetraeder ersetzt sind.

Mineralog.-petrograph. Mittig., Bd. V, Heft 1, 1925
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213

214

215

D1 ist dem einfachen,
£> dem innenzentrierten und
D3 dem allseitsflächenzentrierten Gitter zugeordnet.
Mit dem innenzentrierten Gitter läßt sich eine weitere Raum-

216 gruppe — tC2 — veranschaulichen, wenn Eck- und Innenpunkte
je mit einem der beiden Hälftflächner des Pentagonikositetraeders
besetzt werden. In diesem Fall sind es zwei rechte (oder dann
zwei linke) tetraedrische Pentagondodekaeder in positiver und negativer

Stellung.
D8 bedarf des nach allen Kantenrichtungen verdoppelten

innenzentrierten Gitters (vergl. Fig. 57). Die Punkte werden wie bei
Zd6 mit trigonalen Pyramiden verbunden. Diese zerfallen aber nicht
mehr in zwei spiegelbildliche Gruppen, sondern sind unter sich

217

4^
4^

^
W

Fig. 59. £)8. Fig. 60. O4.

nur drehungsverschieden. Die Anordnung ist ganz analog zu Fig. 57

und in Fig. 59 dargestellt. Statt der Flächentripel des

Pentagonikositetraeders sind allerdings nur deren Mittellagen, d. h. Oktaederflächen

gezeichnet. Auch sind Fig. 57 und 59 nicht in paralleler
Aufstellung.

2i8 Eine Raumgruppe mit Diamantgittern ist £)4. Die Veranschaulichung

geschieht in analoger Weise wie bei X/t4. Im
flächenzentrierten Gitter kommen an Stelle der Gitterpunkte parallel
orientierte Gebilde, wie sie in Fig. 60 dargestellt sind.
Kristallographisch lassen sie sich deuten als Verzwillingung zweier tetra-
edrischer Pentagondodekaeder. [HO] ist Zwillingsachse. Beide

Individuen haben wieder eine gemeinsame Trigyre. Ihre Zentren
fallen aber nicht zusammen. Wie bei X,,4 muß ihr Abstand gleich
sein dem Viertel der Diagonale der Würfelzelle des Raumgitters.

219/20 Die beiden letzten Raumgruppen, D6 und D7, stehen zuein¬

ander im Verhältnis der Enantiomorphie und können ebenfalls,

wenn auch nicht gerade elegant, auf das allseitig flächenzentrierte

Gitter bezogen werden. Das Pentagonikositetraeder wird in vier
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trigonale Trapezoeder zerlegt. Jedes derselben wird mit einem

Gitterpunkt verbunden, jedoch nicht so, daß das Zentrum des

Trapezoeders mit dem Gitterpunkt zusammenfällt. Die Trapezoeder
sind vielmehr längs ihrer trigonalen Achse um einen Viertel der
Raumdiagonale des Gitterwürfels verschoben. Welches im
einzelnen der Sinn dieser Verschiebung sei und wie die Trapezoeder
überhaupt orientiert seien, erhellt aus der Figur 61. Darin sind

M

Off

Njfl

Fig. 61. C6.
Die Doppelpfeile stellen trigonale Trapezoeder dar.

zwar nur die Richtungen der Trapezoederachsen mit ihrem Schwerpunkt

eingezeichnet. Da aber diese Achse, bei Annahme irgend
einer Fläche, das Trapezoeder als Teilflächner des Pentagonikosi-
tetraeders eindeutig bestimmt, durfte die komplizierte Eintragung
der Trapezoeder umgangen werden. Die Achsenlängen selber sind
übrigens willkürlich. Daß in der Figur jene Enden den
Gitterpunkten näher liegen, welche in den negativen Quadranten
ausstechen, ist beachtenswert, hängt aber mit der Wahl des
Nullpunktes zusammen.

Fig. 61 entspricht der Raumgruppe £>. Da D7 hierzu enantio-
morph ist — der einzige Fall der kubischen Abteilung —, so
sind hierfür weitere Erklärungen überflüssig.

E. Holoedrische Klasse. Oh.

Diese Klasse zählt unter allen kubischen am meisten
Raumgruppen. Die drei symmorphen Raumgruppen

Da1 mit einfachem, 221

£)hd mit innenzentriertem und 222

£V mit allseitig flächenzentriertem Gitter — bei Ersatz der 223

Gitterpunkte durch Hexakisoktaeder — sind selbstverständlich.
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Ebenso ist es klar, daß wir Komplexe holoedrischer Symmetrie
erhalten, wenn wir im innenzentrierten Gitter Eck- und Mittelpunkte

je mit entgegengesetzten Hemiedern allgemeinster Lage
besetzen. Es gibt abwechselnde Besetzung mit

224 rechtem und linkem Pentagonikositetraeder die Raumgruppe £)h2,

225 rechtem und linkem Dyakisdodekaeder die Raumgruppe 0/t3,
226 positivem und negativem Hexakistetraeder die Raumgruppe D;i4.

227 Steinsalzgitterartig ist die Veranschaulichung von O^6. Das
Gitter ist also das gewöhnliche würfelige, aber nach den drei Achsen
verdoppelt. In irgend einem Punkt sitzt ein rechtes Pentagonikositetraeder.

Nach den drei Hauptachsen sind ihm sechs spiegelbildliche,

also linke Pentagonikositetraeder nächstbenachbart.
Mit dem innenzentrierten Gitter lassen sich nach Verdoppelung

228 in Richtung der drei Achsen zwei Raumgruppen darstellen. Dk8

rm* rx- /®* /q-
Fig. 62. £ä*. Fig. 63. Zwillingskomplex D/J.

wird mit den vier vom Hexakisoktaeder sich ableitenden tetra-
edrischen Pentagondodekaedern gebildet. Von den 16 zur
Verfügung stehenden Punkten werden immer vier, ein flächenzentriertes

Gitter bildende, parallel gleich besetzt. Es sitzt in |[000]| ein

rechtes positives, in |[||t]| ein rechtes negatives, in |[| |]| ein

linkes positives und in |[f--f-f]| ein linkes negatives tetraedrisches

Pentagondodekaeder. Alles das ist aus Fig. 62 ersichtlich.

229 Im andern hierhergehörigen Komplex — O/*10 — sind die

Punkte durch die acht aus dem Hexakisoktaeder sich ableitenden

Rhomboeder dritter Stellung besetzt. Das Strukturschema ist ganz

analog zu Fig. 57. Das Unterscheidende liegt darin, daß jetzt
jeder Gitterpunkt als Symmetriezentrum fungiert. Mit Rücksicht

auf die Bedeutung der Ziffern in Fig. 57 ist mithin £>h10 eindeutig
definiert.

230 Die letzte verbleibende Raumgruppe, £)h\ gehört wieder zum

Typus derjenigen mit Diamantgittern. Wir legen ihr also wiederum
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das flächenzentrierte Gitter zu Grunde und ersetzen die Gitterpunkte

durch parallel gestellte Zwillinge (Fig. 63) zweier Hexakis-
tetraeder nach {100} mit gemeinsamer Trigyre und nicht zusammenfallenden

Zentren. Das Verhältnis ihres Abstandes zur Gitterwürfeldiagonale

ist das mehrfach erwähnte.

Numerierung der 230 Raumgruppen und Reihenfolge,
in der sie im Vorstehenden besprochen wurden.

/. Trikline Abteilung.
A. Hemiedrische Klasse Q

Gt 1

B. Holoedrische Klasse Ci
Gi 2

//. Monokline Abteilung.
A. Hemiedrische Klasse Cs

Gs1 3 6s3
6s2 5 6s4

B. Hemimorphe Klasse C2

G2X 7 G23"

G2a 9

C. Holoedrische Klasse C2h

(52h1 10 G2h4

G2h2 12 <52h«

Sali <5»

///. Rhombische Abteilung.
A. Hemimorphe Klasse C2v

©2V1

©2v2

G2v3

(52V4

e2v5

G2v6

G2v7

(t2v8

G2v9

©2V11

16

21

22
23

25
32
31

26
30
35

17

B. Hemiedrische
331

332

SU3

SB4

335

38

42
43

46

44

®2v,a

GW3
G2v14

G2v15

©2v16

G2.17

< ©2r18

G2v19

62 v20

G2v21

G*v22

Klasse V
336

SB7

338

339

C. Holoedrische Klasse Vh
33h1 47 33h5

33h2

33u3

33h4

68

51

58

33h6

$h7
33h8

13

14

15

27

28
18

24

34
37

20
36
19

29

33

39
41

40
45

52
61

60

54

33h9 59 33h19 48
33h10 73 33h20 64
33h11 53 33h21 55
33h12 69 Söb22 71

33h13 57 33h23 50
33h14 62 *\24 70
33h16 74 33h25 49
3?h16 63 §Bh26 66
33h17 65 33h27 56
33h18 72 33h28 67

IVX. Trigonal-rhomboedrische Abteilung.
A. Tetartoedrische Klasse Q

G31 75 G33 78

g32 77 G34 76

B. Paramorphe Klasse C31

(SV 79 G3i 80

C. Hemimorphe Klasse C3V

Gs,1 81 G3v4 85
G3v2 82 G3v6 83

G3v3 84 G3v6 86

D. Enantiomorphe Klasse D 3

sy 87 £)35 91

3V 88 £>86 93

3V 90 2>87 89

3V 92
E. Holoedrische Klasse D3d

sw 94 ®3d4 98
£>3d2 97 £>3d5 96

95 $3£>3d8

/Ko. Rein trigonale Abteilung.
A. Paramorphe Klasse C31.

©3h1 100

B. Holoedrische Klasse D31,

SW 101 2)3h3

SD3h2 103 £>3h4

Rein hexagonale Abteilung.
A. Tetartoedrische Klasse Q

Ge1 105 G64

G62 109 G66

G68 110 Gß6

/K3.

99

102

104

107

108

106
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D.

Paramorphe Klasse Ceh

Geh1 111 G6ha

Hemimorphe Klasse Q
Ger1 113 G6v3

G6v2 114 G6v4

Enantiomorphe Klasse D6

©e1 117

©62 121

©68 122

©64

©6*
2>66

E. Holoedrische Klasse Dch

©e 123

124

©6

112

115

116

119

120
118

125

126

K. Tetragonale Abteilung.
A. Tetartoedrische Klasse I. Art Q

G41 127 G44 130

G42 131 G45 128

G48 129 G46 132
B. Tetartoedrische Klasse II. Art S4

©41 133 ©42 134

C. Hemimorphe Klasse C4V

139

144

136

142

145

146

151

148

152

156
161

159

154

162

Hemiedrische Klasse II. Art Vd
33dJ 163 33d4 168
33d2 171 33d5 165
33d3 167 33d6 172

D.

G4V1 135 G4v7

G4v2 143 G4v8

G4v3 138 G4,9

G4^ 141 G4v10

G4v5 137 G4vn

64*8 140 G4v12

Paramorphe Klasse C411

G4hx 147 G4h4

G4h2 150 G4h5

G4h3 149 S4h6

Enantiomorphe Klasse D4
©41 153 ©46

©42 155 ©47

©43 160 ©48

©44 158 ©49

©45 157 ©410

20d'

33d8

169

170

166

G. Holoedrische
©4h1 175

©4h2

©4h8

©4h4

©4h5

©4h6

©4 h7

©4h8

179

177

178

180

181

186

188

©4h9 182

©4h10 184

33d10 173
33dn 164
33d12 174

Klasse D4h

©4hn 189

©4hia 185

©4h18 190
©4h14 183

©4h15 187

©4h16 191

©4h17 176

©4h18 192

©4h19 193

©4h20 194

VI. Kubische Abteilung.
A. Tetartoedrische Klasse

X1 195 X4
X2 197 X5

Z* 196

B. Paramorphe Klasse Th
Xh1 200 £h5
£h2 205 £h6
Xh8 202 Xh7

Xh4 206
C. Hemimorphe Klasse Td

Xd1 207 Xd4

Xd2 209 XdB

Xd3 208 Xd6

D. Enantiomorphe Klasse O

198

199

201

203
204

O1

D2
D3
O4

213
216

215
218

D5
O6
D7
O8

E. Holoedrische Klasse Oh

Dh1

Oh2

Dh3
Oh4

221

224
225
226

223

Oh6

Oh7

Oh8

Oh9
Dh10

210
211

212

214
219
220

217

227

230
228
222
229

Allgemeine Beziehungen zwischen Kristallpolyedern
und Diskontinuum.

Für den mit der kristallographischen Terminologie Vertrauten
geben die bisherigen Ausführungen eine anschauliche Vorstellung
der 230 Raumsysteme und gewähren mannigfaltige Einblicke in
deren gegenseitigen Beziehungen. Klar ist vor allem, daß die

Symmetrieelemente der Polyeder, welche die Stelle der Gitter-
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punkte einnehmen, zu Symmetrieelementen des ganzen Komplexes
werden, und daß diejenigen Symmetrieelemente der symmorphen
Raumgruppen, welche beim Auseinanderziehen der Teilflächner
scheinbar verloren gehen, Anlaß geben zum Entstehen von
Symmetrieelementen mit Gleitkomponenten, also von Schraubenachsen
und Gleitspiegelebenen. Betrachten wir vielleicht einmal Fig. 14.

Die vordere Fläche ist mit der hinteren identisch. Beide lassen
sich durch primitive Translation nach der a-Achse ineinander
überführen. Es genügt daher, die eine, z. B. die vordere, zu betrachten.
Mit einem Blick erkennen wir viererlei Lagen von Pinakoiden, die

zusammen eine Bipyramide ergeben. Daß sie rhombisch ist, folgt
aus den Dimensionen des Gitters oder der gegenseitigen Neigung
der Flächen. Gehen wir etwa von dem links unten gelegenen
Pinakoid aus, so gehören zu ihm drei weitere, welche die vordere
Fläche und die im betrachteten Punkt zusammenlaufenden Kanten
zentrieren. Das rechts vom Ausgangspinakoid gelegene, zweite
Pinakoid ist das Spiegelbild des erstem. Die Ebenen also, welche
ihren Abstand halbierend auf der b-Achse senkrecht steht, ist eine

Symmetrieebene. Den nämlichen Symmetriecharakter hat die Ebene,
welche zwischen dem zweiten und dritten Pinakoid dieser Reihe
in entsprechender Weise gelegen ist. Nur sind ihr gegenüber die
Pinakoide anders orientiert wie der ersteren gegenüber. Symbolisch
lassen sich diese beiden Spiegelebenen durch (010) i und (010)2

4 4

bezeichnen. Phänomenologisch bedingen sie die für die rhombische
Holoedrie erforderliche Symmetrie nach {010}.

Ganz anders sind die vier in Rede stehenden Pinakoide den

(001)- und (lOO)-Ebenen gegenüber gelegen. Keine diesen parallele
Ebene, wo sie auch gelegen sein mag, ist Spiegelebene. Wir
erkennen vielmehr, daß das Pinakoid, welches zum Eckpinakoid nach

{100} spiegelbildlich wäre, die c-Kante zentriert. (100) ist dem-

nach eine Gleitspiegelebene mit der Gleitkomponente —. Vom

gleichen Charakter ist die hierzu parallele Ebene, welche die
a-Kante des Gitters halbiert. Das (001) - Spiegelbild des Eck-

pinakoids endlich ist in der Mitte der vordem Fläche. Es ist also

parallel zu (001) in der b-Richtung verschoben. (001) ist mithin
auch Gleitspiegelebene, und ihre Lage wird durch den Umstand
bestimmt, daß sie den vertikalen Abstand der beiden spiegelbildlichen

Pinakoide halbieren muß. Sie hat demnach das Symbol

(001 )j_ und die Gleitkomponente ist gegeben durch Überein-
4 2

stimmenden Charakter hat (001) A.
4
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Ähnlich können wir die Digyren finden. Wir fragen immer:
welches Pinakoid leitet sich durch Drehung um eine Digyre von
gegebener Richtung aus dem Eckpinakoid ab und suchen dann
seine Lage auf. Hat seine Verschiebung dem Eckpinakoid gegenüber

eine Komponente in Richtung der Digyre, so ist diese eine
Schraubungsachse, ist aber die Verschiebung zur Achse selber
senkrecht, so bleibt sie Drehungsachse. Im vorliegenden Fall ist

[100] Drehungsachse mit den Einstichpunkten
|[oo|]|.|[oof]M[ol|]|,|[oH]|

[010] Schraubungsachse mit den Einstichpunkten

IM|,|[oo^|[ioo]|,|[iot]|
[001] Schraubungsachse mit den Einstichpunkten

|[OToMof°]|>|[Ho]|,|[Ho]|-
Schlagen wir nun bei 23,,11 in der geometrischen Kristallographie

des Diskontinuums nach, so finden wir daselbst die
gleichen Symmetrieelemente verzeichnet, nur mit Vertauschung der
Indizes, entsprechend der anders gewählten Aufstellung.

Die einem Komplex eigentümlichen Symmetrieelemente sind
es nun, welche die einzelnen Flächen und Formen miteinander in
Beziehung bringen. Sie würden auch bewirken, daß irgend ein
Punkt allgemeiner Lage sich in ähnlicher Weise vervielfältigt. Es

entstände so ein Punktkomplex. Sind die Flächenkomplexe mehr
für das Vorstellungsvermögen berechnet, so sind die Punktkomplexe
von besonderer Bedeutung für die Strukturbestimmung. Theoretisch
gehören Punktkomplexe und Flächenkomplexe zusammen, genau
so wie in der Kristallgeometrie Zonen und Flächen studiert werden.
Wir können sogar einem Punktkomplex einen ganz bestimmten
Flächenkomplex zuordnen und umgekehrt. Dazu benötigen wir aber
eine für Flächen- und Punktkomplexe gleich geeignete Symbolik.

Zusammengehörige Koordinatenwerte (P. Niggli) und ihr
Zusammenhang mit den Millerschen Symbolen der ein¬

fachen Kristallformen. Vier Sätze.
Soweit es nur auf die gegenseitige Lage als solche ankommt,

könnte man für den Flächenkomplex die in der Kristallographie
üblichen Symbole verwenden und durch beigeschriebene Zahlen
zugleich angeben, welches die Koordinaten des für die betreffende
Form in Betracht kommenden Nullpunktes seien. Der in Fig. 14

dargestellte Komplex, mit welchem wir soeben exemplifiziert haben,
würde sich dann in folgender Weise darstellen:
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(hkl)ooo (hkl)oo-l (hk I)o|o (hkÖo-Li-

(hkl)ooo (hkl)ool (hkT)o|o (n"kl)o||
Nun wird aber auch die Lage der Ebene selber unter Umständen
bedeutungsvoll. Es muß also im Symbol noch irgendwie zum
Ausdruck gebracht werden, wie sie vom betreffenden Nullpunkt
entfernt sei. Am einfachsten geschieht dies so, daß wir einer
beliebigen Ebene g? eine Zone § mit gleichen Indizes zuordnen und
als die Indizes von §f gerade die Koordinaten ihres Schnittpunktes
mit 5 wählen. Es sei z. B. die Ebene £y durch das Symbol (321)
gegeben. Die zugeordnete Zone 5 hat also das Symbol [321],
Nun sei die Ebene so gelegen, daß sie durch den auf 5 liegenden
Punkt |[y,-f,y]| gehe. Dann schreiben wir das Flächensymbol kurz
in der Form (y }j). Analog bezeichnet das Symbol (f- • -1 • y) oder
(lj- ~ ~) eine Ebene von der kristallographischen Symbolisierung
(20.6.15), die aber durch den auf der Zone [20.6.15] gelegenen
Punkt mit den Koordinaten |[~ ¦ -¦ • 1]| gelegt ist.

Durch diese Symbolisierung wird nun eindeutig jede Fläche
einem bestimmten Punkt und jeder Punkt einer bestimmten Ebene

zugeordnet. Selbstverständlich müssen Punkt und Ebene auf das

nämliche Koordinatenkreuz mit dem gleichen Ursprung bezogen
werden. Die zusätzlichen Glieder, welche in der Koordinatendarstellung

von P. Niggli in so vielen Raumgruppen erscheinen, sind
nach dieser Auffassung nicht den Indizes zuzuzählen, sondern bloß
als beigeschriebene Zahlen für die Lagebestimmung des Ursprungs
zu verwenden. Natürlich hindert nichts daran, sie auf einen einzigen
Koordinatenanfangspunkt zu beziehen, falls der Dualismus zwischen

Flächenkomplex und Punktkomplex nicht in Frage steht.
Für. Flächen und Kanten gleicher Symbolisierung besteht eine

interessante Relation (cfr. P. Niggli, Lehrbuch der Min., 1924, 653),
die an dieser Stelle ihren Beweis finden möge.

I. Konstruiert man über den kristallographischen Achsen a,

b, c als konjugierten Halbmessern ein Ellipsoid und bringt man in
jenem Punkt, wo die durch den Ursprung gehende Gerade [uvw]
die Ellipsoidoberfläche trifft, die Tangentialebene an, so sind die
Indizes dieser Ebenen (uvw).

Der Beweis ist einfach. Es ist nämlich das Ellipsoid gegeben
durch die Gleichung

X* Yf Z2
a2 + b2 c2

X, Y, Z und die Achsen a, b, c sind in der nämlichen Längeneinheit)
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(z. B. in mm) ausgedrückt. Es vereinfacht sich aber die Rechnung
bedeutend, wenn X, Y, Z mit den bezüglichen Achsenlängen als
charakteristischen Einheiten gemessen werden. Nennen wir die neuen
Koordinaten x, y, z, so kommt also

X ax, Y by, Z cz
und die Gleichung des Ellipsoides nimmt die Form an:

x2 + y2 +z2 1.

Nun betrachten wir die der Zone [uvw] parallele, durch den

Ursprung gehende Gerade. Ihre Gleichung ist
x __ y _ z
u v w'

Der Schnittpunkt mit dem Ellipsoid ist daher

x qu y qv z qw, 1

wo _ 1

Q ~~
Vu2 +v2 + w2

Es genügt hier, einzig die positive Wurzel zu betrachten, da wir
[uvw] selber vektoriell deuten und somit [uvw] von [uvw]
unterscheiden. Die Tangentialebene an das Ellipsoid im Punkte 1

ist nun

qux + Qvy + qwz 1.

Betrachten wir nur die Orientierung der Ebene — und für die
Bestimmung der Indizes reicht das hin —, so können wir sie durch
den Ursprung gelegt denken und bekommen also

ux + vy + wz 0.
Nun ist bekannt, daß in einer Ebenengleichung die Koeffizienten
der Variablen den Indizes hkl proportional sind. Es ist deshalb
für die Tangentialebene

h : k : 1 u : v : w, w. z. b. w.

Neben dem Koordinatenkreuz der kristallographischen Achsen
betrachtet die Kristallgeometrie noch ein zweites, dessen Zusammenhang

mit dem ersten sich am besten vektoriell ausdrücken läßt.
Bezeichnen wir nämlich die gewöhnlichen Achsen vektoriell mit
a, b, c und die anderen mit 91, 33, (£, so gelten die Definitionsf-
gleichungen

91 [bc] » [ca] ® [ab]
A, B, C können als Längen der neuen Achsen gelten.

Unter diesen Voraussetzungen besteht der weitere Satz:
II. Konstruiert man über A, B, C als konjugierten Halbmessern

ein Ellipsoid und legt an dasselbe in jenem Punkt, wo die Normale
der Fläche (hkl) die Ellipsoidoberflache trifft, eine Tangential-
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ebene, so hat die Normale dieser letztern die gleichen Indizes wie
die Fläche.

Der Beweis ist ganz analog wie bei I.

Wird die Zone [uvw] vektoriell durch
8 ua + vb -4- wc

und die Flächennormale durch

g h3[ + kö + l©
bestimmt, so hat man nicht nur Richtungen, sondern auch Längen,
und diese Längen stehen wiederum in engster Beziehung zum

Ellipsoid. Ist nämlich im erstem Fall r die Länge des Radiusvektors

des Berührungspunktes von Ellipsoid und Tangentialebene
undn der Abstand dieser Ebene vom Mittelpunkt undr das Volumen
des von den Achsen a, b, c bestimmten Parallelepipeds, so besteht
die Beziehung.

IH. ,8,:|3f =r:~
Werden mit R, N und V die analogen Größen im Falle II
bezeichnet, so gilt
IV. \% : i =R:-Jf

Zum Beweis von III ist zu beachten, daß

r Qh (1)

und — cos (j,5)

ist. Für cos(g, g) findet man (vergl. z. B. P. Niggli, Lehrbuch d.

Min., 1924, Seite 112) ganz allgemein den Ausdruck

/c> v hu + kv + lw
cos (£!) «

|g.Hj|
Da in unserem Fall h u, k =-- v, 1 w ist, erhalten wir

JL— v
—

v

r
~"

<?2 S'-|8l "" el3H-r
oder

n ^V (2)

und es kommt aus 1) und 2)
v

'ä : 'S r: —, w. z. b.w.
n

Der Beweis für die andere Proportion ist ganz analog. Es
ist nur zu beachten, daß jetzt das von den Achsen A, B, C
gebildete Volumen in Rechnung tritt und daß § und g ihre Rolle
vertauscht haben.
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Auf die Analogie dieser Sätze zu gewissen physikalischen
Größen hat schon P. Niggli (1. c. 653) aufmerksam gemacht.

Anwendung der viergliedrigen Punktsymbole
im Diskontinuum.

Der elegante Dualismus, den wir zwischen Flächenkomplex
und Punktkomplex gefunden haben, erleidet eine unangenehme
Störung bei hexagonalem Achsenkreuz. Hier erfordert die
naturgemäße Symbolisierung vier Indizes. Viergliedrige Flächensymbole
sind denn auch in der Kristallographie schon lange üblich geworden.
Da aber die Kristallographie von jeher ihr Hauptaugenmerk auf
die Flächen gerichtet und mit Zonensymbolen nur in Ausnahmefällen

operiert hat, ist es begreiflich, daß viergliedrige
Zonensymbole bisher nie recht im Gebrauch waren, zumal sich in allen
Rechnungen, wo sie rein formal erwünscht wären, auch anders
auskommen ließ, sei es, daß eine der überzähligen Achsen
überhaupt außer Acht gelassen wurde, sei es, daß das sogenannte
orthohexagonale Achsenkreuz herangezogen wurde. Letzteres ist
z. B. in der geometrischen Kristallographie des Diskontinuums
geschehen. In den letzten Jahren hat sich die Sachlage etwas
verändert. Verfasser hat gewisse viergliedrige Zonensymbole
Punktsymbole) vorgeschlagen, die kurz in folgender Weise definiert
werden können.

Werden die Koordinaten eines Punktes mit [mnop] bezeichnet,

ähnlich wie die Indizes einer Fläche (hkil), so gilt zunächst
die Beziehung m -f- n -f- o 0 und für einen Vektor, welcher vom
Koordinatenursprung nach dem betreffenden Punkt gezogen ist,
ergibt sich

i — max + nu2 + oa3 + pc.

Um also vom Ursprung aus nach jenem Punkt zu gelangen, legen
wir zuerst auf der arAchse m Einheiten zurück, gehen dann n
Einheiten parallel der zweiten Achse, hernach o Einheiten parallel der
dritten und schließlich p Einheiten längs c. Für die positiven
Endpunkte der Achsen erhalten wir also folgende "Koordinatenwerte:

iKiio]|.|ß;io]|,|[Hfo]|.|[oooi]|
Wie weit diese Symbole Anklang gefunden haben, ist wohl

schwer zu sagen. Es erfüllt aber den Verfasser mit größter Freude,
daß gerade P. Niggli diese Symbole im ersten Band der
Neuauflage seines Lehrbuches der Mineralogie verwertet rjat und im
zweiten Band einen noch ausgedehnteren Gebrauch davon machen

wird.
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Zur Ergänzung der bei P. Niggli angeführten Formeln
möchte ich hier wegen der praktischen Wichtigkeit zur
Untersuchung hexagonaler Strukturmodelle noch zwei weitere anfügen.

1. Eine Gerade sei durch einen Punkt m0n0o0 p0 und ihre
Richtung [uvww] gegeben. Irgend einer ihrer Punkte habe die
Koordinaten mnop. Es bestehen dann die Gleichungen:

m — mp n — n0 o — Op p — Po

u v w w
Der Beweis ist einfach. Die Punkte m0n0OoPo und mnop

bestimmen einen Vektor.
(m — m0) üi + (n — n0) a* + (o — o0) a3 + (p — p0) c

Dieser Vektor muß der Richtung der Zone juvww], d. h. dem
Vektor

uat +va2 + wa8 + wc
parallel sein. Da dies nur bei Proportionalität entsprechender
Vektoren möglich ist, so folgt unmittelbar obige Gleichung.

2. Der durch die Verbindungslinie zweier Punkte bestimmte
Vektor wurde eben zu

(m — m0)ai + (n —n0)fl2 + (o — o0)a3 + Pc
gefunden. Indem man quadriert und umwandelt, kommt als Quadrat
des Abstandes

d2 -|-a2 {(m -m0)2 + (n - n«)2 + (o - o0)2} + c2 (p -p0)2.

Fällt der eine Punkt mit dem Ursprung zusammen und stellt der
andere den in dieser Richtung dem Ursprung benachbarteste Gitterpunkt

dar, so ist d gleich dem Parameter T der betreffenden Zone.
Mit Rücksicht auf praktische Fälle seien hier die kürzesten
Parameter der in der Basis gelegenen Zonen zusammengestellt:

[2110] 1 — [1101 [8710] : 19-- [352] [4310] 39 — [572]

[10T0] 3 —[211] [32l0] : 21 -- [451] [13.8.5.0] 43 - [671]

[5410] 7 — [231] [11.7.4.0] : 31 -- [561] [13.17.2.0] 49 - [583]

[7520] 13 - [341] [11.TÖ.T.0] : 37-- [473] [5320] 57 —[781]
In der ersten Kolonne stehen je die Indizes. Daneben ist T2

angegeben und zuletzt folgt das entsprechende dreigliedrige Miller-
sche Symbol, um den bizarren Gang dieser Zonenfolge klarzulegen.

Für diese viergliedrigen Zonensymbole gelten genau die

gleichen Beziehungen, wie wir sie oben für die dreigliedrigen
allgemein gefunden haben. Einer beliebigen Fläche (hkil) wird
also wie dort ein bestimmter Punkt |[hkil]| zugeordnet und
jedem Punkt |[mnop]| entspricht ganz eindeutig die Ebene

(mnop).
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Es lohnt sich, die orthohexagonale Koordinatendarstellung von
P. Niggli in die hexagonale umzuwandeln. Natürlich würde es

weit über den Rahmen dieser Arbeit hinausgehen, wenn die
hexagonale Darstellung für alle 52 in Betracht kommenden
Raumgruppen in ähnlicher Ausführlichkeit gegeben werden sollte wie
in der geometrischen Kristallographie des Diskontinuums. Ich ziehe
es vor, im nachstehenden nur die wichtigsten Größen, nach

allgemeinen Gesichtspunkten angeordnet, in gedrängtester Kürze
mitzuteilen. Wie bei der Beschreibung der trigonalen und rhombo-
edrisch-trigonalen Raumgruppen, so halte ich auch hier an der
kristallographisch üblichen Orientierung fest, so daß das um 30°
gedrehte hexagonale Raumgitter ebenfalls zu berücksichtigen ist.

Komponenten der primitiven Translationen.

A. Für das hexagonale Raumgitter normaler Stellung.

TTyO; H!0; lifo; 0001

Dahin gehören außer allen rein hexagonalen Raumgruppen noch

folgende:
®3\ ©32, ©33, ®*\ «W, £3v3, ®32, ®34, ®36, $W, SW, SW, $W, ^W

B. Für das hexagonale Raumgitter der um 30° gedrehten
Stellung.

fo|-0; ff0 0; Of^O; 0001

Hierher gehören:
<S3.2, ©3/, S>8\ 2)33, S)35, SW, SW, SW, $W

Die beiden Tripel

HfOundOffO
sind neben den beiden ersten nicht im strengen Sinn primitiv, sie

leisten aber vielfach gute Dienste und sind für das Gitter selber
den anderen völlig gleichberechtigt.

C. Fur das rhomboedrische Raumgitter.
i 0Ii. I-Ln-1. o^--3 U 3 3 ' 3 3U3,U3 3 3

Es gehören hierher:
©34, ®3,2, Gs*5, GW, ®37, SW, ®3/.

Additive Zusatzglieder der rhomboedrischen
Raumgruppen (Z. G).

L0lL. qLIl3U3 3,U3 3 3
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Koordinaten der Einstichpunkte der vertikalen Achsen in der
Basisebene.

A. Für das hexagonale Gitter der gewöhnlichen Aufstellung.
0000 mit trigonalen oder hexagonalen Achsen.

yOyO, 03 yO nur mit trigonalen Achsen, z.T. jede für sich z.T.
beide zusammengehörig.

6-zähligen Achsen.
T6 6°i IIa0; 6il0 nur Digyren, also immer in Verbindung mit

B. Für das hexagonale Gitter der gedrehten Stellung.
0000 nur Trigyren.

9--9--9O, ^q-q-O zusammengehörige oder einzelne Trigyren.

C. Für das rhomboedrische Gitter.

0000, jOyO, OyyO Trigyren und 6-zählige Drehspiegelachsen.

1 Ü0, jjjO, j-gjO linksgewundene I

94 2-2- 2" 4 2" 1 1 2" Schraubenachsen.
9-9-9-O, 79-9-0, 9-9-9-O rechtsgewundene I

Symmeiriezen treu.

A. Im hexagonalen Gitter gewöhnlicher Stellung.

0000; yy-ßO, iy-gO, ^-fi-yO | Die untereinanderstehenden Gruppen

nnnl- 1111 1111 Hill gehören z. T. zusammen.
UUU 2) 3 6 6 2) 63 6 2' 663 2l
Bei SW, SW, SW, SW ist je 000J zu addieren.

B. Im hexagonalen Gitter der gedrehten Aufstellung.

3; jOJO, }y00, OJJO

l.lnll llnl f)1^12, 3V3 2 3 3U2>U3 3 2

C. Im rhomboedrischen Gitter.
Eckpunkte: 0000

Raummitten: OOOy

\s x
1 r. T 1 1 11 1 1 1 r 1

Kantenmitten: 7 0TT; -2iyy; yyy^
Flachenmitten: T0Ty; yyyy; yyyy

Zu jedem Quadrupel sind
die oben angegebenen

Z. G. zu addieren.
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Die Zusammengehörigen Koordinatenwerte.

Trigyrisch gehören je zusammen

1. mnop nomp omnp
nmop Spiegelbilder von 1. nach (1010)

omnp obere, 1. gegenüberliegende Punkte

nmop 2. gegenüberliegend, oben,

omnp

2. onmp monp
3. mnop nomp
4. onmp monp

r mnop nomp
2' onmp monp
3' mnop nomp
4' onmp monp

den ungestrichenen zentro-
symetrisch gegenübergelegen.

nmop
omnp
nmop

Mit Hilfe dieser Gruppierungen können wir die Koordinatenquadrupel

der verschiedenen Raumgruppen folgenderweise
zusammenfassen.

IVi. Trigonal-rhomboedrische Abteilung.
©31 1. (£32 mnop nomp + y omnp + y
©34 1. mit Z. G. ©s3 mnop nomp + y omnp + y
®v 1. und 1'.
G»/S 1. und r. beide mit Z. G.

©34
@3f2

©3,3 I Alle mit 1. und 4
1 ©3V4 4. jedoch mit zusätzlichem 00ö|

©8K5 1. und 4., aber beide mit Z.G. GW 1

— hierzu kommen noch Z. G.

SV
2)32

j „
S)37 1. und 4'. und Z.G.

1. und 4.

S)33 ,1 | 2

mnop nomp + y omnp+y
2>34 monp onmp+y nmop + y
S>35 mnop nomp + y omnp+y
S)3G monp onmp+y nmop + y

sw 1., 1'., 4., 4'. 3W | 1., 4'., ferner 4. und 1'. mit zu-

sw SW sätzlichem 000 y
sw dazu noch Z. G. SW 1 dazu noch Z. G.

/V2- /?£/# trigonale Abteilung.
©3Ä1 1. und 3'.

SW | 9' V ®3/'3 1 **' 3 ' Ferner 2
>

4- mit zusätz"

sw 1
1., 4., 2 3 ^ j ljchem j000|j
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1V3. Rein hexagonale Abteilung.
©g1 1., 3. ©6G 1. Sodann mit zusätzlichen [OOOy]

Gc2 mnop omnp + 6 nomp+y
mnop+y omnp+y n o'm p + -6-

— - i i ,inomp+y omnp + 33mnop nomp-fy
mnop+y nomp+y omnp+y

2

3

1 I 2

mnop nomp -|- 3nomp + 3 omnp +
mnop nomp + 3 omnp +

©6:) mnop nomp+y omnp+y
mnop nomp+y omnp+y

Se,1 1, 3., 1', 3'.
GW 1., 1'., dazu 3., 3'. mit zusätzlichem OOOy

©e,1 1., 2., 3., 4.

©6,2 1. 3. | 2., 4.
|

Gßv3 1., 2. dazu 3., 4. je mit zusätzlichem OOOy

G6v4 1,4.1 2,3.1
SV 1,3, 2', 4'. S)6G 1., 4'., dazu 3, 2'. mit zusätzlichem 000j
S)G2 mnop omnp + 6 nomp+y

mnop nmnp+y onmp + y

mnop + y omnp+y nomp+y
monp+y nmop+y onmp+y

S)G3 mnop nomp+y omnp+y
mnop onmp+y nmop+y
mnop+y nomp+y omnp+y
monp+y onmp+y nmop+y

S)64 mnop mnop nomp+y nomp+y
monp monp onmp+y onmp+y

omnp+y omnp+y
nmop + y nmop+y

S)6ö mnop mnop nomp + 3- nomp+y
monp monp onmp+y onmp+y

omnp + 3 omnp+y
nmop + y nmop+y

Mineralog.-petrograph. Mittig., Bd. V, Heft 1, 1925
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A.h 1,2,3,4., 1., 2'., 3'., 4'.
rt//2 1, 1', 3, 3'. I 12., 2'., 4, 4'.

A\h

w
1, 2, T, 2'. dazu 3, 3'., 4., 4'. mit zusätzlichem OOO].
1., 4., l'.,4\l I

2., 2., 3, 3'. I

Allgemeine und spezielle Gitter.
Kehren wir wieder zu den Flächenkomplexen zurück, um noch

einige interessante Beziehungen zur Kristallographie hervorzuheben.

Bei der Ableitung der 230 Flächenkomplexe haben wir immer
nur von Flächen allgemeinster Lage gesprochen. Diese sind aber
durch keine Symmetrieeigenschaften ausgezeichnet und charakterisieren

daher in vortrefflichster Weise die Asymmetrie der zugeordneten

allgemeinen Punktlage. Rein äußerlich können wir, wie
bereits früher angedeutet, diese Asymmetrie schon durch die unregelmäßig

dreiseitige Gestalt des Ebenensegmentes zum Ausdruck
bringen. Nun lehrt die Kristallographie, daß mit Ausnahme des

triklinen Systems in allen Klassen spezielle Formen auftreten,
deren Flächen in geringerer Zahl erscheinen, als im allgemeinsten
Fall, dafür aber durch gewisse Symmetriequalitäten ausgezeichnet
sind. Denken wir uns im Flächenkomplex den nämlichen
Grenzübergang vollzogen, so bekommen wir einen wenigerzähligen Komplex,

die einzelnen Flächen aber sind irgendwie symmetrisch
geworden.

Von den Symmetriequalitäten abgesehen, gehören die sogen.
Grenzformen mehreren Symmetrieklassen an. So kommt z. B. die
hexagonale Bipyramide zweiter Stellung in fünf verschiedenen
Klassen vor: in der Holoedrie, Paramorphie und Enantiomorphie
des hexagonalen Systems, ferner in der Holoedrie des trigonalen
und in der Holoedrie des rhomboedrischen Systems. Die auf die
normale Stellung des Raumgitters bezogenen symmorphen
Raumgruppen dieser fünf Klassen müssen also übereinstimmende spezielle
Komplexe haben, welche sich von den Bipyramiden zweiter Stellung

ableiten. Es sind dies die Komplexe, welche wir mit |[2m.
m.m. p]| symbolisieren können und die mithin zwei Freiheitsgrade
besitzen. Ja noch mehr! Selbst die nicht symmorphen
Raumgruppen der holoedrischen Klasse müssen die gleichen Komplexe
ergeben, denn die für diese Raumsysteme charakteristischen
Bipyramiden dritter Stellung oder ditrigonalen Bipyramiden zweierlei

Stellung werden — immer von Symmetriequalitäten abgesehen
— zu identischen Bipyramiden zweiter Stellung, wenn jener
Grenzübergang vollzogen wird.
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Vollziehen wir in allen diesen Fallen den Grenzübergang mit
Hilfe der ungleichseitigen Dreieckchen, so wird die innere
Ungleichheit der resultierenden Bipyramiden ebenso augenscheinlich,
wie wir sie am Kristall selber durch die Atzfiguren deutlich machen
können. Es treten nämlich die Dreiecke in ganz individueller Weise
zu diesen P\ramiden zweiter Stellung zusammen Bei 3>w2 z. B

kommt in die Ebene der Bipyramidenflache nur je ein Dreieck zu

liegen, ebenso wie bei SW Bei Z)^>1 sind sie aber so gedreht,
daß je ein oberes Dreieckchen zu einem unteren spiegelbildlich
liegt, wahrend sie bei£) }2 zueinander digynsch \ erdreht sindu s. w

Das Charakteristikum dieser Grenzübergänge ist, daß sich das

Verhältnis der Indizes (hkil) kontinuierlich ändert Es können
aber auch spezielle Gitter dann entstehen, wenn bei gleichbleibendem
Verhältnis der Indizes sich nur deren Große ändert Knüpfen w ir
zu dem Zweck wiederum an Fig. 14 an und betrachten etwa die
beiden Flachen (h k 1) 000 und (h k 1)0 10. Nun lassen wir h, kundl
im gleichen Verhältnis großer werden, d. h wir multiplizieren
sämtliche Indizes mit einem und demselben positnen Faktor
Nimmt dieser Faktor zu, so werden die Flachen immer mehr von
ihrem Zentrum wegrucken, berühren sich dann, schneiden sich
hierauf in einer beim weiteren Wachsen jenes Faktors sich parallel
bleibenden Geraden und schließlich fallen die beiden mit den
Ebenen dualistisch verknüpften Punkte zusammen, dann nämlich,
wenn k 1/4 geworden ist. Ausgangsflachen mit anderen Verhaltnissen

der Indizes fuhren auf einen anderen Punkt. Alle Punkte
aber liegen in der Symmetrieebene (010) ^4, und war sehen deutlich,

wie sich die Zahligkeit der Punktlage vermindert, wahrend
sich ihre Symmetrie, welche durch die beiden Ebenen trefflich zum
Ausdruck kommt, demgemäß erhöht.

Es*ist überaus lohnend, gerade unter solchen Gesichtspunkten
die speziellen Gitter zu studieren. Von besonderem Vorteil wird
es dabei sein, wenn alle raumgitterartigen Komplexe gleicher
Symmetrie, auf die wir bei den einzelnen Raumgruppen hingewiesen
haben, mit in Betracht gezogen werden.

Sind Grenzformen unter allen Umstanden mehrdeutig, so
können Kombinationen von Grenzformen eindeutig sein. So
gehört z. B. die Kombination der trigonalen Bipyramide (zweiter
Stellung) mit dem Rhomboeder (erster Stellung) einzig der Enantiomorphie

an, wiewohl jene in zwei und dieses sogar in drei
Symmetrieklassen auftritt. Eine ahnliche Eindeutigkeit vom entsprechenden

Strukturkomplex zu behaupten, wäre aber nicht unbedingt
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richtig. In £)}3 z. B. würde der Komplex |[m0mp]| (entsprechend
dem Rhomboeder) mit dem Komplex |[* -6 ~ p]| (entsprechend einer
speziellen Lage der trigonalen Bipyramide) eine Punktverteilung
ergeben, die auch in Z)dd möglich ist. Der Flächenkomplex freilich
ist verschieden, weil zur Punktlage noch das Moment der
Orientierung kommt. Für die Strukturbestimmung ist das aber belanglos,

weil wir noch keine „Ätzmethode" für die Raumgitter haben.
Damit sind wir auf einen Punkt gestoßen, wo sich strukturelle

und phänomenologische Kristallographie wesentlich unterscheiden.
Die phänomenologische Kristallographie operiert nur mit den

Zahlenverhältnissen, die strukturelle aber auch mit den Zahlen-
größen. Das Problem der Eindeutigkeit und Vieldeutigkeit einer
Kombination von Komplexen, namentlich Punktkomplexen, wird
daher nicht bloß die Form (dieser Name auch auf die der Flächen-
form zuzuordnende Punktiorm ausgedehnt), sondern noch die gegenseitige

Lage der einzelnen Komplexe zu berücksichtigen haben.
Wird aber erst noch die Orientierung, d. h. die Lage der Achsen
unbestimmt, wie das im monoklinen und triklinen System in
besonderem Maße der Fall ist, so braucht es wirklich schon Punkte
recht allgemeiner Lage, um Eindeutigkeit zu haben.

Zusammenfassung.
In längeren Ausführungen wurde gezeigt, wie sich die 230

Raumgruppen des Diskontinuums dadurch versinnbildlichen lassen,
daß die Punkte der Bravais'schen Raumgitter durch die
kristallographischen Polyeder ersetzt werden in der Weise, daß die letztern
zwar einerlei Art und gleicher Größe, jedoch nicht sämtlich parallel
oder im strengen Sinn identisch sein müssen (rechts und links!).
Die Miller'schen Indizes dieser Formen stehen mit den „zusammengehörigen

Koordinatenwerten" (P. Niggli) in engstem Zusammenhang

(das Gleiche läßt sich auch für die 4-gliedrigen Symbole
zeigen), während die Symmetrie der Fläche für die „Symmetriebedingung

der betreffenden Punktlage" charakteristisch ist.
Die Bedeutung der Kristallpolyeder in der Lehre der

regelmäßigen Punktsysteme ist also eine doppelte: 1. durch Betonung
des für die geometrischen Wissenschaften so befruchtend wirkenden
Dualismus zwischen Punkt und Ebene wird die Kristallographie
des Diskontinuums vertieft und 2. die Bezugnahme auf geläufige
Vorstellungen und Ideen erleichtert dem Kristallographien das
Erfassen und Beherrschen der für ihn immer unentbehrlicher
werdenden Theorie der regelmäßigen Punktverteilung.

Zürich, den 8. Januar 1925.
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