Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen =

Bulletin suisse de minéralogie et pétrographie

Band: 2 (1922)

Heft: 3-4

Artikel: Beiträge zur Isomorphie

Autor: Widmer, E.

DOI: https://doi.org/10.5169/seals-4374

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beiträge zur Isomorphie.

(Mit einer Textfigur.)

Von E. Widmer, Zürich.

Nachdem P. Niggli¹ durch eine allgemein vergleichende Untersuchung der Volumeffekte in isomorphen Reihen weitgehende Gesetzmäßigkeiten aufdecken konnte, lag der Gedanke nahe, es müßte sich auch hinsichtlich anderer physikalischer Größen, etwa der optischer Konstanten, solch ein gesetzmäßiger Verlauf ergeben. Eine Untersuchung in dieser Richtung hat der Verfasser durchgeführt. Einige der erhaltenen Resultate sollen hier in Kürze mitgeteilt werden. Eine genauere Darlegung erfolgt später in der Zeitschrift für Kristallographie.

Vier Größen wurden in Betracht gezogen:

- 1. Der Brechungsexponent n. Für nicht isotrope Kristalle wird n als $\sqrt[3]{n_{\alpha} \cdot n_{\beta} \cdot n_{\gamma}}$ resp. $\sqrt[3]{n_{\omega}^2 \cdot n_{\epsilon}}$ in Rechnung gestellt.
 - 2. Die Doppelbrechung $(n_{\gamma} n_{\alpha})$.
 - 3. Die spezifische Refraktion = $\frac{n^2-1}{n^2+2} \cdot \frac{1}{d}$
 - 4. Die Molekularrefraktion = $\frac{n^2-1}{n^2+2} \cdot \frac{M}{d}$ (Lorenz-Lorentz).

Von vollständigen isomorphen Reihen mit ein wertig positiven Substituenten können ohne weiteres benutzt werden: Die Reihe der Alkalihalogenide, der Alkalisulfate und -Selenate, der Doppelsulfate und -Selenate vom Typus R++ R+2 [SO4]2.6 H2O, sowie der Alaune. Die letzteren haben sich aber als sehr revisionsbedürftig erwiesen und werden daher hier noch nicht berücksichtigt. Auch die Halogenide werden bei weiterem Studium noch mehr Vergleichspunkte ergeben.

¹ P. Niggli, Atombau und Kristallstruktur. Zeitschrift für Kristallographie, Band LVI, 1. und 2. Heft.

Benutzte Reihen mit zweiwertig positiven Substituenten sind:

- a. Aragonitreihe, Anhydritreihe, Nitrate und Formiate.
- b. Doppelsulfate und -Selenate, Calcitreihe, die Gruppe R⁺⁺SiF₆. 6 H₂O, ferner Granat-² und Forsteritgruppe.³

Auch für drei- und mehrwertige Substituenten sind Berechnungen ausgeführt worden; es sind aber noch Ergänzungsbestimmungen notwendig.

Im folgenden sind in einem rechtwinkligen Koordinatensystem auf der Abszisse die Substituenten im Abstande ihrer Elektronendifferenz abgetragen zu denken und als Ordinaten jeweilen die zugehörigen Werte:

$$n, (n_{\gamma}-n_{\alpha}), \frac{n^2-1}{n^2+2} \cdot \frac{1}{d}, \frac{n^2-1}{n^2+2} \cdot \frac{M}{d}$$

I. Verlauf der Brechungsexponenten in den einzelnen Reihen.

a) In Reihen mit R+.

Es nimmt n mit steigender Elektronenzahl zu, dem Grad nach aber verschieden. Jodid und Bromid zeigen insofern eine Ausnahme, als bei ihnen von K zu Rb ein geringes Fallen zu konstatieren ist.

b) In Reihen mit R++.

1. Ca-Sr-Ba-Pb-Reihen.

Es ergibt sich: Ansteigen von n mit steigender Elektronenzahl. Von Ca zu Sr in der Aragonitreihe ein Fallen (bei Berücksichtigung der Neubestimmung von Larsen).

2. Mg-Ca-Mn-Fe-Co-Ni-Cu-Zn-Cd-Reihen.

Ganz verschiedenes Verhalten von n. Uebereinstimmung aller Reihen im Ansteigen von Ca zu Mn und von Mn zu Fe.

² Granate sind Mischkristalle. Ihre reinen Endglieder mit ihren zugehörigen physikalischen Konstanten sind nicht faßbar. Allein nach W. E. Ford ist es nun möglich, Brechungsexponent und spez. Gewicht für die reinen Typen zu berechnen. (Am. Journ. of. Sc., vol. XL, 1915, S. 33—49; ferner Zeitschrift f. Krist., Band LVII, 2. Heft, Auszüge S. 222—231.)

³ n und d dieser Glieder nach Esper S. Larsen: The microscopic Determination of the nonopaque minerals. United States Geological Survey. Bulletin 679. Washington 1921.

II. Verlauf der Doppelbrechung in den einzelnen Reihen.

a) In den Reihen mit R+.

Halogenide isotrop. Die einfachen Selenate, Doppelselenate und -Sulfate zeigen Abnahme der Doppelbrechung bis Cs, dann Ansteigen zu Tl; die einfachen Sulfate ein Fallen von K zu Rb, dann Ansteigen.

b) In den Reihen mit R++.

1. In den Ca....Pb-Reihen.

Nitrate isotrop. In der Aragonitreihe von Ca zu Sr ein Fallen. Alle andern zeigen ein Ansteigen mit steigender Elektronenzahl.

2. In den Mg Cd-Reihen.

Durchaus verschiedener Verlauf.

III. Verlauf der spezifischen Refraktion in den einzelnen Reihen.

Der Ausdruck $\frac{n^2-1}{n^2+2} \cdot \frac{1}{d}$ sollte eine Konstante sein. Es zeigt sich aber, daß dem nicht so ist.

a) In Reihen mit R+

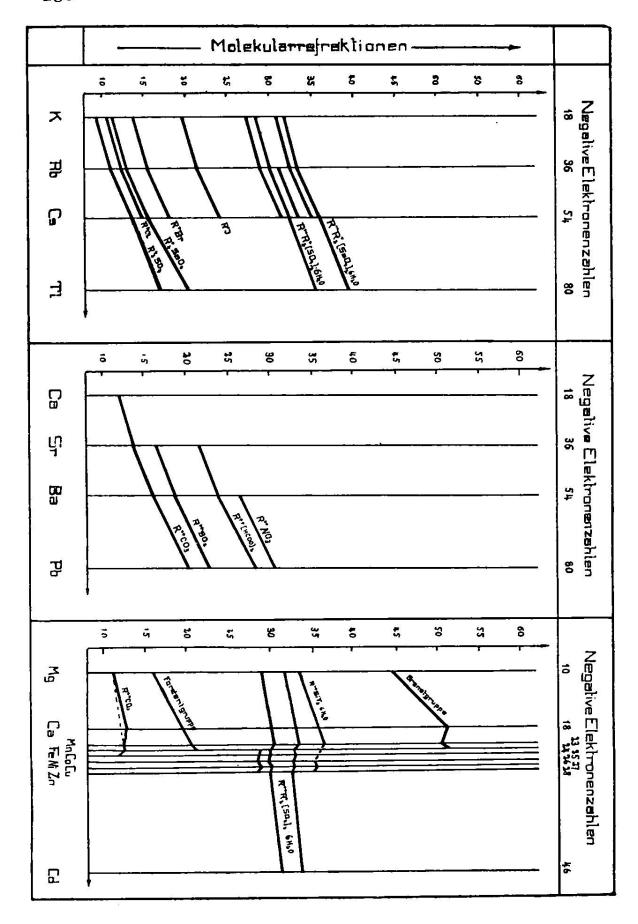
fällt die spezifische Refraktion mit steigender Elektronenzahl.

b) In Reihen mit R++.

1. In Reihen Ca....Pb.

Auch hier fällt die spezifische Refraktion.

2. In Mg.....Cd-Reihen.


In den Reihen: R⁺⁺ R⁺₂ [SO₄]₂. 6 H₂O und R⁺⁺ SiF₆. 6 H₂O nimmt die spezifische Refraktion ebenfalls ab. In den andern Gruppen variiert sie.

IV. Verlauf der Molekularrefraktion in den einzelnen Reihen.

(Vergleiche hiezu die Textfigur.)

a) In Reihen mit R+

nimmt die Molekularrefraktion mit steigender Elektronenzahl zu. Die Verbindungslinien verlaufen nahezu parallel zueinander.

b) In Reihen mit R++.

1. In Reihen Ca....Pb

nimmt die Molekularrefraktion ebenfalls zu mit steigender Elektronenzahl. Auch hier verlaufen die Verbindungslinien praktisch parallel zueinander.

2. In Reihen Mg Cd.

scheinen die Verhältnisse nicht so einfache zu sein. Der Verlauf für die Doppelsulfatreihen ist ein ganz auffallender: Ansteigen von Mg (1c) zu Mn (2-), dann wechselweises Auf- und Absteigen (gerade und ungerade Elektronenzahlen!). Aehnlich in ihrem Verhalten zeigt sich die Reihe R ++ SiFo. 6 H2O und die Calcitgruppe. (Die punktierte Linie verbindet zwei entsprechende Punkte zur Doppelsulfatreihe; die entsprechenden Linien verlaufen parallel.) Die Granatgruppe und die Forsteritgruppe weichen merkwürdigerweise von den übrigen ab. Es sind dies jedoch zwei Reihen aus dem Mineralreich, deren reine Einzelkomponenten nicht leicht zugänglich sind. Vielleicht ist die Berechnung der Konstanten für die reinen Glieder nicht auf die Weise möglich, wie W. E. Ford (l. c.) angegeben hat. Eine vom Verfasser noch nicht ganz abgeschlossene Untersuchung neuer hieher gehöriger isomorpher Reihen soll dazu beitragen, die Sachlage zu klären.

Schlußfolgerungen aus den beobachteten Tatsachen.

- 1. Aus dem nahezu parallelen Verlauf der Molekularrefraktionen ergibt sich: Innerhalb einer isomorphen Reihe mit gleichem Säurerest ist die Größe der Molekularrefraktion vom Metallatom gesetzmäßig abhängig.
- 2. Aus der Tatsache, daß die Tl- und Pb-Verbindungen in Bezug auf die Molekularrefraktion keine Rekurrenzerscheinungen zeigen (im Gegensatz zu den Volumverhältnissen), sondern mit steigender Elektronenzahl zunehmen, folgt, daß die Molekularrefraktion in erster Linie eine Funktion der Elektronenzahl der vikariierenden Jonen und nicht des Atomvolumensist.

Vergleichen wir die Reihen von $K^+_{(18)}$ -Rb $^+_{(36)}$ -Cs $^+_{(54)}$ -Tl $^+_{(80)}$ mit denen von Ca $^{++}_{(18)}$ -Sr $^{++}_{(36)}$ -Ba $^{++}_{(54)}$ -Pb $^{++}_{(80)}$, so erkennen wir, daß nicht nur innerhalb dieser Reihen ein nahezu paralleler Ver-

lauf der Verbindungslinien sich einstellt, sondern daß auch die Linien der einwertigen Reihen ziemlich parallel zu denen der zweiwertigen verlaufen. Da die beiden Reihen das Gemeinsame haben, daß ihre Substituenten gleiche Elektronenzahlen besitzen (sie sind isoster zueinander), darf man schließen, daß für die Aenderung der Molekularrefraktion in isomorphen Reihen mit Kationenersatz der äußere Bau dieser Kationen maßgebendist.

Differenzen der Molekularrefraktionen von Verbindungen mit isosteren Kationen.

Isomorphe Reihen	Part Control of the C					
Differenz der Molekularrefraktionen Rb-K Cs-Rb Tl-Cs Tl-Rb R'' R'2 [S O4] 2 · 6 H2O 2 R'' = Mg 1.59 2.74	-		Elektronendifferenzen			
Differenz der Molekularrefraktionen Rb-K Cs-Rb Tl-Cs Tl-Rb	Isomorphe Reihen	18	18	26	44	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	Differenz der Molekularrefraktionen				
Mn Fe 1.59 2.50		Rb-K	Cs-Rb	Tl-Cs	TI-Rb	
Fe Co 1.59 2.50 — — — — — — — — — — — — — — — — — — —	$\frac{R'' R'^{2} [SO_{4}]_{2} \cdot 6 H_{2}O}{2}; R'' = Mg$	1. 59	2.74			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3 03	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	
Fe Co Co 1.64 2.51 — — — — — — — — — — — — — — — — — — —	$R'' R'^2 [Se O_4] \cdot 6 H_2 O$; $R'' = Mg$	1.76		_		
Co Cu Zn 1. 64 1. 50 2. 73 2. 73 2. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	Fe	1.65	2.75	_	_	
Zn 1.55 2.67 — — —	Co	1.64	2. 51	_		
R'2 SO4 1.60 2.74 3.11 5.65 R'2 SeO4 1.60 2.77 3.77 6.54 R' Cl 1.73 2.69? — — R' Br 1.79 2.63? — — R' J 1.92 2.58? — — Sr-Ca Ba-Sr Pb-Ba Pb-Sr R" NO3 — — 4.19 — R" (HCOO)2 — 2.20 4.33 6.53 R" SO4 — 2.25 4.25 6.50 R" CO3 1.75 2.30 4.10 6.40 Mittl. Differenz der Molekularrefraktion 1.63 2.60 6.36				_	_	
1.60 2.74 3.11 5.65	Zn	1.55	2. 67		_	
The column The		1.60	2. 74	3. 11	5. 65	
R' Br R' J 1. 79 2. 63 ? — — — — — — — — — — — — — — — — — —	$\frac{R'_2 \operatorname{SeO_4}}{2}$	1. 60	2. 77	3. 77	6. 54	
R' NO3 — — — R" (HCOO)2 — 2. 20 4. 19 — R" SO4 — 2. 25 4. 25 6. 50 R" CO3 1. 75 2. 30 4. 10 6. 40 Mittl. Differenz der Molekularrefraktion 1. 63 2. 60 6. 36				_		
Sr-Ca Ba-Sr Pb-Ba Pb-Sr R" NO3 R" (HCOO)2 R" SO4 R" CO3 — 4. 19 — — L 2. 20 R" SO4 R" CO3 — 2. 20 Expression 4. 19 Expression — L 2. 25 R" CO3 4. 25 Expression 6. 50 Expression Mittl. Differenz der Molekularrefraktion 1. 63 2. 60 6. 36						
R" NO3 — — 4. 19 — R" (HCOO)2 — 2. 20 4. 33 6. 53 R" SO4 — 2. 25 4. 25 6. 50 R" CO3 1. 75 2. 30 4. 10 6. 40 Mittl. Differenz der Molekularrefraktion 1. 63 2. 60 6. 36	R'J	1.92	2. 58 ?			
R" (HCOO)2 — 2. 20 4. 33 6. 53 R" SO4 — 2. 25 4. 25 6. 50 R" CO3 1. 75 2. 30 4. 10 6. 40 Mittl. Differenz der Molekularrefraktion 1. 63 2. 60 6. 36		Sr-Ca	Ba-Sr	Pb-Ba	Pb-Sr	
R" (HCOO)2 — 2. 20 4. 33 6. 53 R" SO4 — 2. 25 4. 25 6. 50 R" CO3 1. 75 2. 30 4. 10 6. 40 Mittl. Differenz der Molekularrefraktion 1. 63 2. 60 6. 36			_	4. 19		
R" CO3 1. 75 2. 30 4. 10 6. 40 Mittl. Differenz der Molekularrefraktion 1. 63 2. 60 6. 36		-		4. 33		
Mittl. Differenz der Molekularrefraktion 1. 63 2. 60 6. 36						
	R" CO ₃	1.75	2. 30	4. 10	6.40	
	Mittl. Differenz der Molekularrefraktion	1, 63	2, 60		6.36	
Surficial bio Diction I of one I of 1411	Differenz pro Elektron	0.0905	0. 1444		0. 1445	

⁴ Elektronenzahl bedeutet hier die Zahl der negativen Elektronen, durch welche die positive Kernladung (Ordnungszahl) kompensiert wird, vermindert um die der Jonenwertigkeit entsprechende Zahl abgegebener äußerster Elektronen.

Die genaueren aus der Literatur erhältlichen Daten lassen die Möglichkeit zu, daß im kristallinen Zustande die Differenzen der Molekularrefraktionen isomorpher salzartiger Verbindungen mit vikariierenden Kationen wenig um bestimmte Mittelwerte schwanken, wenn in den verschiedenen Reihen zueinander isostere Kationen verglichen werden. Obige Tabelle enthält die entsprechenden Werte. Man sieht, daß die Differenz der Molekularrefraktionen der Ba-Sr-Verbindungen etwas niedriger ist, als die der Cs-Rb-Verbindungen, dafür diejenige der Pb-Ba-Verbindungen etwas höher, als die der Tl-Cs-Verbindungen. Im übrigen ist die Gleichartigkeit des Verlaufes in den beiden Reihen deutlich erkennbar.

Der Prüfung dieser Gesetzmäßigkeit und ihrer Deutung sind neue Untersuchungen an mehreren isomorphen Reihen gewidmet. Der Vergleich mit den Volumverhältnissen läßt die Vermutung zu, daß in Wirklichkeit nicht die Differenzen der Molekularrefraktionen bei isosterem Kationenersatz, sondern die Verhältnisse der Differenzen einander gleich sind. Ein Einfluß des Anions wäre dann vorhanden. Die Literaturzusammenstellung zeigt eine solche Gesetzmäßigkeit noch nicht. Der Einfluß des Anions scheint ein nicht sehr großer zu sein, und das Anion wirkt nicht immer im gleichen Sinne. Indessen ist das Versuchsmaterial noch zu gering: manche Bestimmung sollten erneut ausgeführt werden. Insbesondere ist auf eventuelle Dimorphie, wie bei den Cs-Halogeniden zu achten. Besteht die Vermutung, wie nachgeprüft werden soll. zu Recht, so würden die Kurven der Figur nicht streng parallel verlaufen; es wäre indessen ein gleicher Gang erkenntlich.

Zürich, Mineralog.-petrogr. Institut, Juni 1922.

(Manuskript entsprechend dem am 28. August in Bern gehaltenen Vortrag eingegangen den 6. Oktober 1922.)