Zeitschrift: Schweizerische Lehrerzeitung
Herausgeber: Schweizerischer Lehrerverein

Band: 76 (1931)

Heft: 10

Anhang: Erfahrungen im naturwissenschaftlichen Unterricht: Mitteilungen der

Vereinigung Schweizerischer Naturwissenschaftslehrer : Beilage zur Schweizerischen Lehrerzeitung, März 1931, Nummer 2 = Expériences

acquises dans l'enseignement des sciences naturelles

Autor: Reber, Th. / Günthart, A. / Saurer, G

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ERFAHRUNGEN IM NATURWISSENSCHAFTLICHEN UNTERRICHT

Expériences acquises dans l'enseignement des sciences naturelles mittellungen der vereinigung schweizerischer naturwissenschaftslehrer beilage zur schweizerischen Lehrerzeitung

MÄRZ 1931

16. JAHRGANG • NUMMER 2

Probleme des chemischen Unterrichtes

Von Th. Reber, Oberrealschule Zürich.

Es ist diesmal keine fertige Erfahrung, die ich vorlege, sondern ich will Fragen stellen und Probleme auf werfen, welche die Grundlage für eine Aussprache bilden können.

Der Chemieunterricht enthält für den Fachlehrer vielerlei Aufgaben, die noch nicht befriedigend gelöst werden konnten. Der Eine probiert dies, der Andere das, es fehlt aber oft der sichere Grund für den Aufbau eines Unterrichtes, der weder den Stoff noch den Lehrer, sondern den Schüler als Mittelpunkt hat. Der Methodik des Chemieunterrichtes sind für die Zukunft so umfangreiche Probleme gestellt, daß sie erst von mehreren Lehrergenerationen nach und nach gelöst werden können. Heute stehen wir am Anfang dieser Entwicklung, welche noch stark gehemmt wird durch die Nachwirkung einer veralteten Unterrichtsart und oft auch durch die Vorschriften der Lehrpläne unserer Schulen. Die Chemielehrer sollten sich zunächst einmal zu einer Front zusammenschließen, die sich von dem unförmigen, großen Haufen der Stoffüberfülle energisch abkehren und dafür geschlossen dem Hauptziel zumarschieren würde.

Dieses Ziel ist ein Unterricht, der die Selbständigkeit der Schüler im Beobachten, Denken und Ausdruck weit ergiebiger schult, als das unter den heutigen Verhältnissen möglich ist. Es wäre ein Unterricht, für den der zu behandelnde Stoff nur untergeordnetes Mittel zu einem höheren Zweck ist, welcher gegenüber den engen Vorschriften eines Lehrpensums weitgehend unabhängig bleiben kann. Dieser Unterricht sollte die Schüler in der Entwicklung ihrer erkennenden und sich befreienden Persönlichkeiten noch tatkräftiger unterstützen, als das zur Zeit geschehen kann. Man denkt dabei unwillkürlich an die schön geformten und inhaltschweren Sätze der vielerlei Schulprogramme, welche die jeweiligen Lehrziele umschreiben. Sollen aber derartige gutgemeinte Sätze nicht zu Phrasen werden, so müssen wir uns immer wieder den großen Unterschied zwischen Wünschen und Tatsachen vor Augen halten. Wenn wir nämlich den Erfolg unserer Schulen auf die Erziehung zur Selbständigkeit, eigener Erkenntnis, Willensstärke und Charaktergröße, also auf das Wesentliche hin unvoreingenommen prüfen, so ist das Ergebnis doch außerordentlich dürftig im Vergleich zur aufgewandten Zeit und Mühe. Man höre darüber die Urteile ehemaliger Schüler und erinnere sich selbst an seine Schulzeit. Ausnahmen bestätigen auch hier eine Regel. Die Einwirkung der Schule auf das Innenleben der Schüler hat allerdings eine natürliche, meist enge Begrenzung, denn die Schule kann nur günstige Bedingungen geben und nicht Persönlichkeiten selbst schaffen. Anderseits wissen wir aber, daß gerade diese Bedingungen im heutigen Schulbetrieb noch oft im Argen liegen. Was im allgemeinen gilt, trifft auch im Besonderen für den Chemieunterricht zu.

Wir und viele andere sehen das anzustrebende Ziel klar vor uns. Es gibt auch Lehrer und andere Leute, sogar Schüler, welche glauben, den geraden Weg dazu gefunden zu haben. Den anpreisenden Worten folgen aber meist keine entsprechenden Taten. Gerade die zahlreichen Wege, die in unserer Zeit empfohlen werden und die sich in der Richtung oft entgegenlaufen, müssen bedenklich machen. Es ist gar nicht möglich, auf dem erzieherischen Gebiet Wege gleich fertigen Landstraßen zu weisen, sondern die Pfade müssen allmählich gebahnt werden und verlaufen dann auf und ab, hin und her nach den jeweiligen Umständen. Am Anfang sind solche Wege auf jeden Fall sehr holprig, da viele Hindernisse zu umgehen oder zu übersteigen sind. Es fällt mir deshalb auch nicht ein, auf dem Fachgebiet des Chemieunterrichtes eine fertig gebaute Straße der Methodik empfehlen zu wollen, denn so etwas gibt es überhaupt nicht. Zuerst heißt es, die vielen Hemmungen, welche den freien Blick versperren, zu erkennen und zu untersuchen, wie man mit denselben fertig werden kann. In diesem Zustand der Vorbereitung und des Suchens befindet sich im allgemeinen die Methodik des chemischen Unterrichtes unserer Zeit. Ist dann einmal im Pflanzland der Schule tüchtig gerodet und gesäubert worden, so kann man daran gehen, mit Vorsicht und ständiger methodischer Erfahrung Wege anzulegen, die dem Ziel zuführen, in dem als Mittelpunkt die Erziehung des an Leib und Seele gesunden, geistreichen und arbeitsfreudigen Schülers steht.

Im folgenden nenne ich einige besondere Schwierigkeiten, welche eine Ausgestaltung des Chemieunterrichtes mit sich bringt.

Der Stoffumfang ist auch heute noch im Vergleich zur gegebenen Stundenzahl viel zu groß. Die Behandlung der zahlreichen Gebiete und Einzeltatsachen läßt zu wenig Zeit für eine genügende selbständige Arbeit der Schüler. Es kann zu wenig experimentiert und abgeleitet werden, auch ist es oft unmöglich, den Stoff mit der nötigen Vertiefung in bezug auf Erkenntnis der Grundlagen und Zusammenhänge zu behandeln. Dem muß mit der Zeit unbedingt abgeholfen werden, wie kann das aber geschehen? Eine Stundenvermehrung kommt nicht in Betracht, also dann eine Stoffkürzung um einen großen Teil, vielleicht um die Hälfte des jetzt üblichen Umfanges. Was für Gebiete sind aber unerläßlich und welche kann man opfern?

Ist es gerechtfertigt, sich darauf zu beschränken, aus jeder Gruppe des periodischen Systems nur einen oder höchstens zwei Vertreter als Typen zu kennzeichnen (Na, Ca, Al, Fe, C, Si, N, P, O, S, Cl) und die übrigen Elemente mit ihren Verbindungen nur in Übersichten zu erwähnen? Wäre es des weiteren nicht angebracht, die für die Ernährung wichtigsten organischen Verbindungen gründlicher durchzunehmen, als das meist geschieht und dafür zum Beispiel die Schwefelsäurefabrikation, das Ozon, das Wasserstoffsuperoxyd, die Sodafabrikation und noch andere Gebiete der anorganischen Chemie wegzulassen? Es tut allerdings dem zünftigen Chemiker leid, wenn er sein schönes, großes Wissensgebiet so beschneiden muß, doch wird in der Folge wahrscheinlich nichts anderes übrig bleiben, trotz allen gegenteiligen Vorhalten in bezug auf praktische Wichtigkeit und dergleichen.

Wie und an welcher Stelle soll man die notwendigen theoretischen Abschnitte den Schülern beibringen? In dieser Hinsicht bestehen in dem Vorgehen der Chemielehrer beträchtliche Unterschiede; wo ist das Richtige zu finden? Ein großer Zwiespalt macht dabei bedeutende Schwierigkeiten. Einerseits gilt die Forderung, daß der Unterricht nicht von der Abstraktion, sondern von der Anschaulichkeit ausgehen soll. Demgemäß müßten zum Beispiel die Atom- und Molekulartheorie mit der Stöchiometrie erst spät in den Unterricht eingreifen, nachdem sie vorher durch viele Versuche und Tatsachenkenntnisse gut fundiert worden sind, ansonst die Gefahr des unverstandenen Auswendiglernens vorhanden ist. Anderseits besteht die Forderung, daß die Ergebnisse der theoretischen Chemie tüchtig und lange geschult werden müssen an Beispielen aus dem täglichen Leben und der Technik, Das kann aber bei der beschränkten Zeit nur geschehen, wenn die grundlegenden theoretischen Abschnitte möglichst früh behandelt werden. Wo ist demnach für unsere Schulverhältnisse der günstigste Platz für die Einführung von Formeln, Gleichungen, Atom-Molekulartheorie und Wertigkeit, bei dem es gelingt, das Eine zu tun und das Andere nicht zu lassen? Jeder Chemielehrer hat in dieser Beziehung seine eigenen Erfahrungen, oft auch seine eigene Methode; welch gute Gelegenheit für eine nicht fordernde, wohl aber vergleichende und daher fruchtbare Aussprache!

Im naturwissenschaftlichen und besonders im chemischen Unterricht wird dem Schüler oftmals zugemutet, drei Tätigkeiten zu gleicher Zeit auszuführen, nämlich Beobachten, Zuhören und Aufschreiben. Es ist auch dem Erwachsenen unter solchen Umständen unmöglich, alles recht zu machen. Nimmt man aber immer nur eine dieser Tätigkeiten nach der andern, so kommt man meist nur im Schneckentempo voran. Von der vernünftigen Lösung dieses Problems hängt der Lehterfolg im Sinne des oben genannten Zieles (nicht des bloßen Wissens) wesentlich ab. Ich habe noch keine ganz befriedigende Lösung finden können; wer hat eine solche zur Verfügung? In diesem Zusammenhang stehen auch folgende Fragen: Soll man den Schülern diktieren, soll man frei nachschreiben lassen, soll man ein Lehrbuch benützen oder zeitweise das und zeitweise jenes anwenden? Was für Erfahrungen machen die Kollegen in dieser Beziehung?

Die Lehrbuchfrage ist ein Kapitel für sich. Ein gutes Chemielehrbuch würde die lästige Schreiberei im Unterricht zum größten Teil überflüssig machen und könnte dem Schüler überdies Gelegenheit zum Studium von Abschnitten geben, die in der Schule nicht behandelt wurden, nicht zu vergessen die Übermittlung

zahlreicher Abbildungen von Übersichten, Apparaten, Fabrikeinrichtungen und Forscherbildnissen. Es gibt eine große Zahl von Lehrbüchern für den Mittelschul-Chemieunterricht, ihre Aufzählung könnte einige Druckseiten in Anspruch nehmen, darunter hat es solche, die als gut gelten. Die meisten haben aber den großen Nachteil, daß sie vollgestopft sind mit der Beschreibung von hunderterlei Tatsachen auf Kosten einer vertieften Behandlung der Zusammenhänge in physikalisch-chemischer Richtung, was doch allein das wirkliche Verständnis der Chemie herbeiführen kann. Mit wenigen Ausnahmen zu viel schöne Oberfläche und zu wenig festen Grund! Auch ist es gewöhnlich unmöglich, mit unserer geringen Stundenzahl den weitgespannten Lehrgang der meisten Chemiebücher einzuhalten. Wer hat ein Lehrbuch jahrelang in seinem Unterricht mit Erfolg gebraucht? Erfolg in dem Sinn, daß die Schüler nicht bloß wissen, sondern auch verstehen und selbständig chemische Ableitungen und Voraussagungen machen können. Und wer könnte seine Erfahrungen auf diesem Gebiet durch Urteile ehemaliger Schüler belegen? Wie sind dann solche Bücher, die einem modernen, vollwertigen Chemieunterricht genügen, in der Schule am vorteilhaftesten zu gebrauchen? Wird in der Stunde vorgelesen oder zu Hause nachgelesen? Wie fügen sich Ergänzungen und Übungen zum Lehrbuch ein? Wer berichtet über solche Erfahrungen? Man könnte zum Beispiel ein umfangreiches Buch wünschen, etwa 500 Seiten stark, das aber nicht nach Vollständigkeit hinsichtlich Aufzählung von Stoffen und Reaktionen streben würde. Im Gegenteil würde es nur die allerwichtigsten theoretischen Grundlagen und nur die bedeutendsten Stoffund Fabrikationsbeschreibungen enthalten, an denen man einfach nicht vorübergehen kann, dafür aber so eingehend und bis auf den Grund klar dargestellt, daß der Schüler daraus wirkliches chemisches Verständnis gewinnen könnte. Man kann aber auch einen ganz andern Standpunkt in der Lehrbuchfrage einnehmen und ihn auch wohl begründen; wer unternimmt es?

Ich breche mit meinen Fragestellungen ab. Noch manche andere Probleme des chemischen Unterrichtes ließen sich aufwerfen, so die Gestaltung der Laboratoriumsübungen in günstiger Verbindung mit dem theoretischen Unterricht, der Wert und Umfang stöchiometrischer Rechnungen, die Art der mündlichen und schriftlichen Repetition, die Anknüpfung des Unterrichtes ans tägliche Leben (Wirtschaft), die Abhaltung von Schülervorträgen mit nachfolgender Diskussion usw. Doch ich meine, es genügt fürs erste Mal mit den obigen Anregungen. Wer nimmt nun das Wort?¹)

Zum Thema Hausarbeit

Von A. Günthart, Kantonsschule Frauenfeld

Die 1928 und 1929 erstmalig erschienenen Aufsätze A. Stiegers, die im vorigen Heft neu abgedruckt sind, haben mich damals veranlaßt, einen Versuch in der gleichen Richtung zu unternehmen. Freilich konnte ich nicht so viel Zeit und Arbeit auf die Sache verwenden, wie Kollege Stieger. Ich sagte den Schülern einer vierten Klasse (10. Schuljahr) etwa folgendes: "In der Technik gibt man dem Arbeiter Anleitung, wie

¹⁾ Antworten auf diese Fragen und Mitteilungen entsprechender Erfahrungen nimmt die Redaktion gerne entgegen.

er arbeiten soll, um in möglichst kurzer Zeit möglichst großen Erfolg zu erzielen. Hier handelt es sich um eine Geldfrage. Eure häusliche Arbeit ist aber für Euch noch wichtiger, denn Ihr arbeitet für Eure Zukunft. Wäre es darum nicht richtig, sich auch hier einmal genau zu überlegen, wie man rationell arbeiten kann? Ihr habt sicher schon Erfahrungen mit zweckmäßigen und unzweckmäßigen Arbeitsmethoden an Euch selber gemacht. Schreibt Euch einmal einige Regeln auf, wie man arbeiten soll und wie nicht und dann wollen wir einmal miteinander über diese Sache reden." Aus den anschließenden Verhandlungen entstanden die folgenden (drolligerweise mit dem Schlafen beginnenden)

Zehn Gebote der geistigen Arbeit.

§ 1. Täglich mindestens acht Stunden Schlaf!

§ 2. Mit sich selbst nicht weichlich sein: Kalte Waschungen und stramme Märsche, die Zeit nicht vertrödeln und Arbeit und Vergnügen nicht vermischen (konzentriert arbeiten), nicht schlaflos im Bett herumliegen, Entschlüsse zwar überlegt aber rasch fassen.

§ 3. Nicht unter Zwangsgefühl sondern nur freudig und mit bestem Willen, das Ziel zu erreichen, an die Arbeit gehen. Wenn ermüdet, dann lieber zuerst ein Marsch im Freien oder 10 Minuten mit geschlossenen Augen liegen. – Sonst aber: Zuerst Arbeit, dann Vergnügen. Möglichst bestimmte Arbeitsstunden.

§ 4. Die Aufgaben nicht am Verfalltag, sondern am Abend des Tages, an dem sie gestellt wurden, erledigen; Aufsätze nicht auf den

letzten Termin verschieben.

§ 5. Eine Sache ganz erledigen, bevor eine andere in Angriff genommen wird. Lieblingsfächer auf den Schluß versparen, was am meisten innern Widerstand findet zuerst drannehmen.

§ 6. Am Abend erledigte Aufgaben, besonders wenn es sich um Gedächtnisstoff handelt, am folgenden

Morgen nochmals kurz wiederholen.

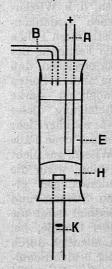
- § 7. Wenn ein Heft geführt und zu Hause reingeschrieben wird: Zuerst die vorletzte Stunde im Reinheft nochmals kurz überblicken, dann die Brouillon-Notizen, auch die Zeichnungen, genau studieren, korrigieren, unterstreichen, eventuell ergänzen und bei dieser Gelegenheit den Gang der letzten Stunde gründlich durchdenken und sich die neuen Begriffe (Namen) merken; dann erst einschreiben.
- § 8. Bei allen Überlegungen Bleistift in der Hand!
- § 9. In den Sprachen laut lernen. Aber auch in andern Fächern (Geschichte, Geographie) die Dinge laut (deutsch oder Dialekt) darstellen, als ob man sie jemand erklären wollte.
- § 10. Herumgehen beim Lernen wirkt meist fördernd.

Ich bemerkte, daß ich in der Frage der Repetitionen einen andern Standpunkt einnehme, als Kollege Stieger. Ich lege großen Wert auf starke Eindrücke beim erstmaligen Erleben des Neuen, geringen Wert dagegen auf nachfolgende Einprägeübungen, auch auf solche in der vernünftigen, von Stieger beschriebenen Form. Ich habe die Erfahrung gemacht, daß durch solche nachfolgenden Wiederholungen das Gedächtnis allzusehr an die Stelle der Verstandesarbeit tritt. Gedächtnismäßige Aneignung aber führt nach meiner Erfahrung immer wieder zu Unselbständigkeit. (Ieh verwende darum auch zum Examinieren nicht die

übliche Abfragemethode, sondern lege dem Kandidaten einen möglichst unbekannten Naturgegenstand vor und sehe zu, wie er diesen beobachtet und wie die Vorstellungen, die diese Beobachtung bei ihm weckt, assimiliert werden.) Eigentliche Repetitionen, d. h. Wiederholungen des erstmalig durchlaufenen Gedankenganges, veranstalte ich nur in ganz bestimmten Fällen und jedenfalls nicht oft. Ich suche die Festigung des Wissens in der Regel mehr dadurch zu erreichen, daß ich dasselbe Problem später von ganz andern Seiten her neuerdings behandle, um so möglichst starke Assoziationen zu schaffen. Nach Befolgung dieser Methode wird das erworbene Wissen zwar nachher nicht so rasch reproduziert, aber geschickter auf neue Fälle angewendet. (Am längsten haftet das Wissen, gar nicht zu reden vom praktischen Können, dann, wenn die erstmalige Erarbeitung durch Schülerübungen erfolgte.1) - Die Unterschiede zwischen Stiegers und meinen Auffassungen sind wohl sehr bedingt durch die verschiedenen Unterrichtsfächer - dort Chemie, bei mir Biologie und Geographie - und namentlich durch die sehr verschiedenen Bildungsziele der beiden Schulgattungen: ein Technikum muß ja großen Wert auf rasch verwendbare Kenntnisse legen, der gymnasialen Mittelschule dagegen ist die allgemeine Schulung durch das Fach wichtiger als das erworbene Wissensgut selbst.

Noch in einem andern nebensächlichern Punkte weiche ich von Stieger ab: Ich lasse in den untern und mittlern Klassen (9., 10. und meist auch noch 11. Schuljahr) ein "Reinheft" führen, ja ich diktiere sogar ganz knappe Merksätze, die der ältere Schüler dann erweitern kann. Die Schüler wären in diesem Alter noch nicht imstande, die teilweise komplizierten anatomischen, kartographischen Zeichnungen usw. in der Stunde ohne allzugroßen Zeitverlust definitiv zu Papier zu bringen. Die Notizen werden also zu Hause rein geschrieben. Aber dabei lege ich schon seit Jahren Nachdruck auf das obige Gebot § 7 und überzeuge mich auch immer wieder, daß das Heft auf jede Stunde nachgeführt ist. Diese Heftführung dient mir als starkes geistiges Zuchtmittel. Erst in den obersten Klassen beginnen die Schüler, die einzelnen nach Wunsch früher oder später, die Hefte direkt in der Stunde und schließlich selbständig zu führen. Auf gute Heftführung lege ich aber auch hier noch den größten Wert. Ich muß es schon aus praktischen Gründen tun: weil wir zwar oft allerlei Quellenschriften, aber meist kein Lehrbuch

Verschiedene Wege führen zum Ziel. Es wäre zu wünschen, daß der eine und andere Kollege über seine Arbeitsweise hier berichtete. Ich habe aus Stiegers Aufsätzen viel gelernt und glaube darum, daß auch weitere Mitteilungen über das Thema Hausarbeit da und dort Anregung bringen würden.


Kleine Mitteilungen

Die elektrolytische Herstellung von reiner Natronlauge mit Quecksilberkathode. Die Herstellung reiner Natronlauge durch Elektrolyse von wässeriger Kochsalzlösung stößt im Unterricht leicht auf Schwierigkeiten. Werden die Elektrodenräume nicht getrennt, so entsteht so gut wie keine Lauge, werden sie durch Tonzylinder getrennt, so entsteht an der Kathode die Lauge, aber vermischt mit Kochsalz. Die reine Lauge erhält man wohl am besten durch Elektrolyse an einer Quecksilberkathode. Hierzu läßt sich das in dieser Zeitschrift 1926, Heft 3. S. 35, be-

¹⁾ Über Schülerübungen vgl. Erf. IX, S. 33 f.

schriebene Elektrolysegefäß gut verwenden, d. i. ein Glasrohr von 30 mm Durchmesser und 15 cm Länge. (Siehe Abb.)

In einen durchbohrten Kork, der das Glasrohr unten abschließt, wird ein Kupferstab (K) als elektrische Zuleitung

gebracht. Darüber kommt Quecksilber (H) und dann eine Kochsalzlösung (E). Kupfer-Quecksilber wird Kathode, ein Kohlenstab (A) Anode. An die Elektroden wird eine Gleichspannung von 6—8Volt gelegt; die Stromstärke kann dann auf 4—6 Ampère steigen. Nach dem Einschalten tritt Chlor aus dem Ableitungsrohr (B) aus und kann aufgefangen werden, das Natrium legiert sich mit dem Quecksilber zum Amalgam. Nach etwa einer Minute wird der Strom unterbrochen, der obere Kork-weggenommen und der ganze Inhalt des Elektrolysegefäßes, um Amalgamund Kochsalzwasser zu trennen, in einen Tropftrichter gegossen. Man läßt das Amalgam in ein Glasgefäß (Reagierglas) abfließen, gibt Wasser darüber und beobachtet sofort eine deutliche Wasserstoffentwicklung. Mit Phenolphtalin läßt sich die entstehende Lauge nachweisen.

Dieser Versuch ist auch insofern lehrreich, als das Elektrolysegefäß, nachdem eine kurze Zeit elektrolysiert worden ist, nach Ausschalten der angelegten Spannung eine Klemmenspannung von über 3 Volt anzeigt, d. h. das Elektrolysegefäß ist ein galvanisches Element aus Natrium, Kohle und Kochsalzlösung geworden. Der Versuch eignet sich also infolge des großen Lösungsdruckes des Natriums auch gut zur Demonstration einer großen Polarisationsspannung.

G. Saurer, Schiers.

Herstellung von Ammoniumamalgam. Ersetzt man im oben genannten Elektrolysegefäß das Kochsalz durch Ammoniumchlorid, so sieht man kurze Zeit nach dem Einschalten aus der Quecksilberoberfläche heraus das sehr voluminöse, graue Ammoniumamalgam wachsen. Es sieht aus wie ein Schwamm und trennt sich sehr deutlich von dem darunter liegenden glänzenden Quecksilber. Läßt man den ganzen Inhalt des Elektrolysengefäßes aus einem Tropftrichter abfließen, so geht zuerst das Quecksilber, dann viel langsamer das Amalgam weg. Die Viskosität des Ammoniumamalgams ist auffällig groß; es kosität des Ammoniumamalgams ist auffällig groß; es hammoniak und Wasserstoff. Zu Wasser gebracht, entsteht Wasserstoff und Ammoniakwasser.

G. Saurer, Schiers.

Bücherschau

Erich Nelson. Die Orchideen Deutschlands und der angrenzenden Gebiete. 60 Arten auf 20 Fol.-Tafeln, mit Bestimmungs-Schlüssel. Subskriptionspreis Fr. 26.

Die Originale sind Aquarelle, deren wissenschaftliche und künstlerische Qualität von den Gutachtern Correns-Berlin, Schröter-Zürich und H. Schinz-Zürich sehr gelobt wird. Die Reproduktion (Faksimile-Farbenlichtdruck) ist, soweit ich aus einer Probetafel ersehen konnte, wohlgelungen. Es wird uns hier offenbar zu bescheidenem Preis ein ganz einzigartiges Tafelwerk geboten, das sich die Bibliotheken und biologischen Sammlungen unserer Mittelschulen beizeiten (später erfolgt eine wesentliche Erhöhung des Preises) sichern sollten. Subskription bei Herrn Erich Nelson, München, Karl-Theodorstraße 12. G.

F. Fischers Skizzenblätter, über die in Erf. XV, S. 4 berichtet wurde, haben sich inzwischen erfreulich weiter entwickelt. Weit über 100,000 Blätter sind bis heute abgesetzt worden. Die zoologische Reihe wurde durch je ein Blatt Fledermaus, Vogelschnäbel, Vogelfüße, Fisch-, Regenwurm- und Bienenanatomie, die menschlich-anatomische Reihe durch ein Schema des Verdauungskanals, eine Darstellung der Niere, ein Schema eines Lungenbläschens und eine prächtige Schädelzeichnung erweitert. Alles sind Neuzeichnungen nach der Natur. Eine botanische

Reihe ist in Vorbereitung. Diese erfreuliche Entwicklung bedeutet einen Gewinn für die Sache des biologischen Unterrichts. Man verlange Prospekt von Herrn Sekundarlehrer F. Fischer in Seebach bei Zürich. G.

Rosenberg, Karl und Leitinger, Rich. Naturlehre. 3. Teil. 123 S. in m. 8°. Mit einem Titelbild, einer Farbtafel und 119 Abbildungen. Wien 1930, Hölder-Pichler-Tempsky A.-G.

Ein feines Chemie- und Physikbüchlein für die Unter-(Sekundar-) Stufe. Der Zusammenhang mit dem Unterrichtswerk Rosenbergs, dieses tüchtigsten Methodikers Österreichs, zeigt sich in der Art der Stoffdarbietung und der wohlüberlegten Ausgestaltung der Abbildungen überall sehr deutlich. Die Stoffe und ihre Einteilung beruhen, namentlich auch im chemischen Teil, ganz auf dem praktischen Leben. G.

Kraus-Deisinger. Naturlehre. 3. Stufe, 13. Aufl., bearbeitet von Josef Deisinger und Hans Kellermann. 123 S. in m. 80 mit 140 Abbildungen. Wien 1930, Hölder-Pichler-Tempsky A.-G.

Dieser Lehrgang der Physik und Chemie ist für dasselbe Alter berechnet wie der vorige. Er verwendet zum Teil andere Stoffe, entnimmt sie aber auch weitgehend dem praktischen Leben und teilt ebenfalls nach praktischen Gesichtspunkten ein. Das Buch stellt in Text und Bildern etwas höhere Anforderungen, bietet dafür aber recht anziehende Darstellungen modernster Anwendungen. G.

Zeitschriften

Naturwissenschaftliche Monatshefte XI (1930/31). — Heft I enthält mehr wissenschaftliche als methodische Aufsätze. (Vergleicht man die Gesamtzahl letzterer mit unsern kleinen "Erfahrungen", die ausschließlich Methodisches bringen, so steht die Schweiz gut da.) G. Grube (Techn. Hochschule Stuttgart) schildert die heutigen technischen Anwendungen der Elektrolyse geschmolzener Salze, ein chemisch interessantes und wirtschaftlich wichtiges Thema. Es folgt Hans Klähn-Rostock, die Lage versteinerter Seelilien und Seesterne und ihre Beziehung zur fossilen Wasserbewegung. Karl Metzner zeigt hierauf die Bedeutung der Biologie für die Erforschung des Antlitzes der Erde an Hand der bekannten Verschiebungstheorie. Mehr Beziehungen zum Unterricht hat der num folgende Aufsatz von A. Michaelis-Hankau über Biologie und Ethik, der mir aber noch nicht genügend abgeklärt erscheint. F. Runkel in Köln-Lindenthal spricht über die gegenwärtige Organisation des Wetternachrichtendienstes, Rob. Landeck-Berlin und R. Pfalz-Rochlitz über billige Lichtbilder (Gelatinefolien, ähnlich unseren Tageslichtbildern). Es folgen Berichte wissenschaftlicher Versammlungen und Ankündigungen solcher sowie Bücherbesprechungen.

Heft 2 beginnt mit dem 2. Teil des Aufsatzes von Grube-Stuttgart, dem zahlreiche gute Skizzen und ein Literaturverzeichnis beigegeben sind. Von Interesse ist der num folgende kurze Aufsatz von Paul Linde in Berlin-Karlshorst über den Anfangsunterricht in der Biologie. Paul Eichler-Dresden beschreibt daraufhin einen Zentrifugalapparat für biologische Zwecke mit gekauftem Elektromotor und selbstgefertigtem Drehgestell (Schnurverbindung). Es folgt R. Hennig-Düsseldorf, Meeresaberglauben und Meeresschrecken alter Zeit und ihr naturwissenschaftlicher Hintergrund. Ernst Feige, das Haushuhn, mit einigen Rassebildern, ist zu knapp für diesen Stoff. Schließlich stellt R. Freytag-Leipzig die neueren Ergebnisse der Hormonforschung zusammen und liefert M. Lilienstern-Leningrad eine weitere illustrierte Mitteilung über Versuchsfelder auf Schulfensterbrettern (Stickstoffdüngung). Es folgen noch Berichte über den gegenwärtigen Stand der Kohlehydratforschung aus der 10. internationalen Konferenz der Union internationale de chimie in Lüttich vom 14.—20. September 1930 und die Bücherbesprechungen.

Optik und Schule 1930, Heft 11/12 enthält zwei für uns brauchbare Aufsätze: E. Lessing-Leonberg bei Stuttgart, Bau und Einrichtung einer Dunkelkammer in einer Zimmerecke und E. Schrammen-Gildenhall, das Photographieren ohne Kamera mit Abbildungen schöner Kontaktphotos von Pflanzen.