Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

Band: 68 (2006)

Heft: 5

Rubrik: Geprüfte Traktoren, Zweiachsmäher und Transporter:

Leistungsdiagramm und Leistungsangaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

FAT-Berichte

Nr. 653 2006

Marco Landis und Isidor Schiess, Agroscope FAT Tänikon, Eidgenössische Forschungsanstalt für Agrarwirtschaft und Landtechnik, CH-8356 Ettenhausen,

E-Mail: marco.landis@fat.admin.ch

Geprüfte Traktoren, Zweiachsmäher und Transporter

Leistungsdiagramm und Leistungsangaben

Agroscope FAT Tänikon hat im Jahre 2005
22 aktuelle Traktorenmodelle geprüft und die
Ergebnisse in Form von Prüfberichten und
Vergleichstabellen veröffentlicht. Häufige
Anfragen aus der Praxis haben uns veranlasst,
auf das Thema Leistung sowie den ISO 8178Messzyklus genauer einzugehen. (Zweiter Teil
Leistungsdiagramm und Leistungsangaben)

Abb. 1: Agroscope FAT Tänikon misst die Leistung an der Zapfwelle. Diese Leistung steht auch wirklich für zapfwellenbetriebene Geräte zur Verfügung.

Testberichte bestellen

Prüfstelle/Testbericht-Nummer/ Prüfjahr

Testberichte von bereits geprüften Fahrzeugen oder derzeit in Prüfung befindlichen Traktoren, Transportern oder Zweiachsmähern können unter der folgenden Adresse bezogen werden:

Bibliothek Agroscope FAT Tänikon CH-8356 Ettenhausen TG Tel. 052 368 31 31 Fax 052 365 11 90 E-Mail: doku@fat.admin.ch oder im Internet unter der Adresse: http://www.fat.ch direkt heruntergeladen werden.

Die ausführlichen Testberichte der BLT können bei der Prüfstelle in Wieselburg oder beim Maschinenhersteller bzw. Schweizer Importeur verlangt werden. Die Anschrift der Prüfstelle lautet:

HBLuFA Francisco Josephinum BLT Biomass-Logistics-Technology A-3250 Wieselburg Tel. 0043 7416 52175-0 Fax 0043 7416 52175-45

Die Testberichte befinden sich auch im Internet unter der Adresse: http.//www.blt.bmlf.qv.at.

Neu geprüfte Traktoren

In der abgeschlossenen Testserie konnte die FAT 22 Traktortests durchführen und die Ergebnisse als Einzeltestberichte veröffentlichen (Tab. 1).

Tab. 1: Wichtigste Kenndaten der neu geprüften Traktoren (abgebildete Traktoren)

Test-Nr./ Jahr	Marke	Тур	Allrad	Turbo	Zapfw leistu		Hydrau- lische Hubkraft	Gewicht Total	
			2 1		kW	PS	daN (kp)	kg	
1876/05	NEW HOLLAND	TL 80 A	А		53.2	72.4	3105	3940	
1877/05	NEW HOLLAND	TL 100A	А	T	63.5	86.4	3870	4165	
1878/05	VALTRA	C 120-4	А	TK	74.1	100.8	5760	5050	
1879/05	VALTRA	6400-4	Α	T	62.0	84.3	5220	4680	
1880/05	VALTRA	A85-4	А	T	53.8	73.2	2940	3580	
1882/05	SAME	Silver 110	Α	TK	73.3	99.7	3870	4410	
1883/05	HÜRLIMANN	XA 86	A	T	54.9	74.7	2480	3160	
1884/05	CASE IH	MXU 135	А	TK	85.1	115.7	5000	5860	
1885/05	CASE IH	MXU 125	А	TK	78.7	107.0	5040	5860	
1886/05	CASE IH	MXU 110	А	TK	75.6	102.8	5000	5480	
1887/05	CASE IH	JXU 1100	А	T	63.5	86.4	3870	4165	
1888/05	CASE IH	JXU1080	А		53.2	72.4	3105	3940	
1889/05	STEYR	Profi 6125	А	TK	78.7	107.0	5040	5860	
1890/05	STEYR	Profi 4115	А	TK	75.6	102.8	5000	5480	
1893/05	HÜRLIMANN	XT 110	А	TK	73.3	99.7	3920	4650	
1894/05	MASSEY FERGUSON	6460 Dyna-6	A	TK	74.7	101.6	4855	5460	
1895/05	FENDT	Farmer 412 Vario	A	TK	79.0	107.4	4325	5390	
1896/05	JOHN DEERE	6420 Premium	А	TK	71.7	97.5	3090	5430	
1897/05	VALTRA	M 120-4	А	TK	71.4	97.1	6340	5710	
1898/05	LINDNER	Geotrac 73 Alpin	A	T	47.7	64.9	1855	3530	
1900/05	FENDT	Farmer 209S	А	Т	57.6	78.3	1810	3600	
1901/05	DEUTZ-FAHR	Agrotron TTV 1160	A	TK	102.2	139.0	7505	7060	

Erläuterungen zu den Tabellen

Marke/Typ

Der Druck der Konkurrenz zwingt auch die namhaften Maschinenhersteller zur intensiven Zusammenarbeit oder Zusammenschlüssen. Unter verschiedenen Namen erscheinen deshalb Traktorenmarken für zum Teil identische Produkte. Lediglich die Farbgebung oder gewisse Komfortausstatungen sind unterschiedlich. Alle geprüften und in der Liste aufgeführten Traktoren sind mit Allrad ausgerüstet. Der Allradantrieb erhöht nebst der Zugkraft und der Bremswirkung unter anderem auch die Sicherheit eines Traktors in Hanglagen, insbesondere in Kombination mit grösserer Spurweite.

Motor/Hubraum

(T = Abgasturbolader, K = Ladeluftkühlung)

Ein grösserer Hubraum bei gleicher Nennleistung erhöht das Drehmoment im untersten Drehzahlbereich. Dadurch sind die Anfahreigenschaften dieses Motors in der Regel besser. Der Abgasturbolader dient in erster Linie der Steigerung der Motorleistung in den mittleren und höheren Drehzahlen und der Reduktion des Schwarzrauchs. Treibstoffeinsparungen lassen sich dadurch nur in geringem Masse erzielen. Der Abgasturbolader gehört heute und in Anbetracht künftiger Abgasgrenzwerte ergänzt mit Ladeluftkühlung zur Standardausrüstung.

Motorleistung/Drehzahl

Bei der in der Liste aufgeführten Motorleistung handelt es sich um die Herstellerangabe. Der Vergleich der Motorleistungen ist aufgrund der unterschiedlichen Messnormen kaum möglich (siehe Leistungsangaben). Sie wird bei der Prüfung nicht nachgemessen. Grund: Der Aussagewert der reinen Motorleistung ist für den praktischen Traktor- oder Maschineneinsatz gering, weil die unvermeidlichen Leistungsverluste für Getriebe, Hydraulik und anderer Hilfsantriebe unberücksichtigt bleiben.

Zapfwellenleistung (Nennleistung)

In der Tabelle ist die auf unserem Prüfstand

gemessene Nennleistung angegeben. In der Regel entspricht die Nennleistung (Leistung bei Nenndrehzahl des Motors) der Höchstleistung. Motoren mit stark überhöhtem Drehmomentanstieg (über etwa 35 %) erbringen die Höchstleistung oft bei einer tieferen Drehzahl als der Nenndrehzahl (siehe ausführlicher Testbericht).

Dieselverbrauch

Der spezifische Treibstoffverbrauch ist das einzige direkt vergleichbare Mass für die Sparsamkeit eines Motorfahrzeuges. In der Tabelle ist der Verbrauch bezogen auf die Zapfwellenleistung bei Nenndrehzahl aufgeführt. Durch die zunehmend höheren Leistungsverluste im Getriebe und in Nebenaggregaten, gepaart mit verschärften Anforderungen bezüglich Abgasemissionen moderner Traktoren und Maschinen steigen die Verbrauchswerte tendenzmässig an. Verbrauchswerte unter 270 g/kWh können für direkteinspritzende Dieselmotoren als günstig gelten. Indirekt einspritzende Dieselmotoren (bevorzugt in Mähtraktoren eingebaut) haben einen rund 20 % höheren Verbrauch.

New Holland TL80A, Testbericht Nr. 1876/05.

Hürlimann XA 86, Testbericht Nr. 1883/05.

Valtra A85-4, Testbericht Nr. 1880/05.

Massey Ferguson 6460 Dyna-6, Testbericht Nr. 1894/05.

Drehmomentanstieg

Der Drehmomentanstieg ist ein Mass für die Elastizität eines Motors. In neuerer Zeit verfolgen fast alle Motorhersteller einen Trend zu einem stark überhöhten Drehmomentanstieg. Ein Drehmomentanstieg von 20 bis 30 % wird als gut bezeichnet. Mit einer guten Gangabstufung kann ein etwas schlechterer Drehmomentanstieg wettgemacht werden.

Hydraulik, Hubkraft und Fördermenge

Die in der Tabelle angegebene Hubkraft wird über den ganzen Hubbereich erbracht. Bei Traktoren reicht eine durchgehende Hubkraft von 40 daN (kp) pro kW Motorleistung für den Normaleinsatz aus. Für schweren Einsatz (Gerätekombinationen) sind 50 daN (kp) besser. Bei Zweiachsmähern genügt eine Hubkraft von etwa 30 daN (kp) pro kW Motorleistung im Normalfall. Häufig weisen Traktoren eine so hohe Hubkraft auf, dass die maximal zulässige Hinterachslast sowie das Gesamtgewicht überschritten werden. Die Fördermenge der Hydraulikpumpe

hängt von der Motor- bzw. Pumpendrehzahl und dem Arbeitsdruck ab. Die in der Tabelle aufgeführte Fördermenge bezieht sich auf die Nenndrehzahl des Motors. Bei Traktoren genügt eine Fördermenge der Hydraulikpumpe von 30 bis 45 l/min im Normalfall. Zum Betrieb von mittleren bzw. grossen Frontladern kann jedoch eine Fördermenge von 40 bis 60 l/min erforderlich werden. Für Transporter und Mähtraktoren ist je nach Leistungsklasse eine Förderleistung von 15 bis 30 l/min empfehlenswert.

Lärm am Fahrerohr

Die Messung erfolgt mit Fahrerschutz (siehe auch Testbericht) und belastetem Motor. Der Lärm wird in Dezibel (dB) gemessen. Lärmwerte unter 80 dB(A) werden als günstig, 80 bis 85 dB(A) als mittelmässig und 85 bis 90 dB(A) als hoch bezeichnet. Werte über 90 dB(A) schaden längerfristig der Gesundheit. Eine Reduktion des Lärms um 10 dB(A) wird vom menschlichen Gehör als Halbierung des Lärms empfunden. Bei Transportern und Mähtraktoren liegen die Lärmwerte, gemessen am Ohr des Fahrers, wegen ihrer

unmittelbaren Nähe zum Motor um rund 10 dB(A) höher als jene von Traktoren mit integrierter Kabine.

Gewicht

Bei Gewichtsvergleichen von Traktoren ist zu berücksichtigen, dass der Allradantrieb das Traktorengewicht um 150 bis 250 kg erhöht. Wird noch eine Fronthydraulik mit Frontzapfwelle angebaut, steigt das Gewicht um weitere 150 bis 400 kg an. Bei Traktoren mit integrierter Fahrerschutzkabine liegt das Gewicht weitere 200 bis 400 kg höher als bei Fahrzeugen ohne Sicherheitskabine. Zur Schonung des Bodens sollte dem Traktorengewicht vermehrte Aufmerksamkeit geschenkt werden. Bei den Transportern und Traktoren ist besonders auch auf das zulässige Gesamtgewicht zu achten. Der in den Testblättern veröffentlichte Wert ist dem Typenschein entnommen und kann je nach Achsvariante und montierter Bereifung auch tiefer sein. Wird die Hubkraft voll ausgenützt, beispielsweise mit schweren Säkombinationen, ist die zulässige Hinterachslast und das zulässige Gesamtgewicht sehr schnell überschritten.

Fendt Farmer 412 Vario, Testbericht Nr. 1895/05.

Lindner Geotrac 73 Alpin, Testbericht Nr. 1898/05.

John Deere 6420 Premium, Testbericht Nr. 1896/05.

Deutz Agrotron TTV 1160, Testbericht Nr. 1901/05.

Tab. 2: Ergebnisse aus aktuellen FAT-Traktortestberichten/Stand Winter 2005/2006

		nangaben		000000				200 NM	Messwerte					Bericht
	aktor			Motor				Zapfwelle			aulik	Lärm	Gewicht	
Marke	Тур	Hub-			Leistung		Leistung	Diesel-	Dreh-	Hub-	Förder-	am	Total	
		raum	Turbo					ver-	moment-	kraft	menge	Fahrer-		
			T	Day 1	DC 1		1147	brauch	anstieg	الم ال	17-2-	ohr	1	NI- 10-110
		cm ³		kW	PS	min ⁻¹	kW	g/kWh	%	daN	l/min	dB (A)	kg	Nr./Prüfjah
Leistungsklasse bis									0.5	070	215		1000	10101
BCS BCS	Valiant 500 AR Vivid 400 DT	2199 1371		35 25.5	48 35	2800 3400	23.5 21.5	337 316	26 13	970 710	24.6 21.4	89 94	1300 950	1840/0 1857/0
Deutz-Fahr	Agrolux 60	3064	San Lake	25.5	60	2400	40.9	276		1700	34.7	94	2530	1819/0
		3004		- 44	00	2400	40.5	270	21	1700	34.7)4	2550	1015/1
	bis 54 kW (61–73 PS)													
BCS	Vithar 800 RS	2970		50	68	2600	36.7	294	26	1575	38.3	90	No. of the Chief Comment of the Com-	1841/
Deutz-Fahr	Agrolux 70	4086 2701	т	51.5	70 65	2300	49.0	268 245	20 18	1750 1845	33.5 29.6	94 82	2650	1820/ 1828/
Lindner New Holland	Geotrac 65 TN 75 N	2931	T	48 53	72	2250 2300	46.7 45.1	245	39	1680	43.0	81	2880 2530	1838/
New Holland	TN 75 S	2931	T	53	72	2300	48.2	257	34	1980	42.5	-80	2975	1833/
New Holland	TN 75 V	2931	Ť	53	72	2300	45.0	274	35	1665	41.0	83	2500	1839/
Reform	Mounty 70	2970		50	68	2600	43.2	292	19	1860	35.0	82	2630	1864/
Same	Dorado 75	4000		53	72	2350	48.6	269	21	1660	44.3	79	2970	1835/
Leistungsklasse 55 l	bis 64 kW (74-87 PS)													
BCS	Vithar 900 MT	2776	Т	61	83	2600	50.1	278	38	1240	37.5	91	2050	1842/
Case IH	JXU 1080	4485		57	78	2500	53.2	296	45	3105	55.5	80	3940	1888/
Deutz-Fahr	Agrotron 85	3192	Т	60	82	2300	55.4	282	33	4725	62.5	75	4350	1821/
Hürlimann	XA 86	4000	Т	61	83	2200	54.9	273	33	2480	48.0	78	3160	1883/
Hürlimann	XA 658	4000	Т	61	83	2350	56.2	265	34	2640	44.5	78	3160	1837/
Lindner	Geotrac 73 Alpin	3299	T	55	75	2200	47.7	282	34	1855	35.0	79	3530	1898/
New Holland	TL 80A	4485		60	82	2500	53.2	296		3105	55.5	80	3940	1876/
Reform	Mounty 80 S	2776	Т	59	81	2600	50.0	278	25	1860	35.0	82	2860	1865/
Leistungsklasse 65 l	bis 74 kW (88–101 PS)												
Case IH	JXU 1090	4485	T	65	88	2500	56.4	291	47	4100	53.0	80	4250	1873/
Case IH	JXU 1100	4485	Т	73.5	100	2500	63.5	287	57	3870	57.5	78	4165	1887/
Fendt	Farmer 209S	4314	T	66	90	2300	57.6	285	37	1810	46.6	78	3600	1900/
Hürlimann	XT 95	4000	K	67	91	2300	64.0	264	27	2430	44.5	76		1862/
Lindner	Geotrac 93	4399	T	64.5	88	2200	56.5	279	41	3420	43.8	78	3400	1856/
Lindner	Geotrac 100	3990	T	72	98	2200	67.0	267 287	30 57	3 735 3870	43.5 57.5	82 78	3885	1827/
New Holland Valtra	TL 100A A85-4	4485 4397	T	73.5 64.5	100	2500 2270	63.5 53.8	259	19	2940	50.0	83	4165 3580	1877/ 1880/
	bis 94 kW (102–128 P		•	04.5	00	2270	33.0		15	25 10	30.0	03	3300	10007
Case IH	MXU 110	4485	TK	85	116	2200	75.6	258	49	5000	85.5	72.5	5480	1886/
Case IH	MXU 125	6728	TK	92	125	2200	78.7	264	47	5040	84.5	72.3	5860	1885/
Deutz-Fahr	Agrotron 118	6057	TK	93.5	127	2300	83.0	301	37	7740	110.3	75	6150	1867/
Deutz-Fahr	Agrotron 120 MK3	7145	Т	92	125	2300	80.3	296		7200	90.5	75	6180	1836/
Fendt	Farmer 411 Vario	3802	TK	81	110	2100	74.4	246	52	4320	64.1	73.5	5320	1818/
Fendt	Farmer 412 Vario	3802	TK	88	120	2100	82.7	255	49	4510	96.0	73	5320	1850/
Fendt	Farmer 412 Vario	4038	TK	88	120	2100	79.0	265	47	4325	81.0	73	5390	1895/
Hürlimann	XT 110	4000	TK	80	109	2300	73.3	264	31	3920	41.5	80	4650	1893/
John Deere	6420 Premium	4525	TK	81	110	2300	71.7	272	42	3090	101.5	73	5430	1896/
Massey Ferguson	6460 Dyna-6	4399	TK	85	115	2200	74.7	269	34	4855	92.0	68.5	5460	1894/
New Holland	TM 115 T	7480	T	88	120	2200	80.1	265	47	3870	98.5	75	6000	1823/
New Holland	TM 120	7480	TK T	82 93	111 125	2200 2200	76.6 87.1	280 262	47 39	4230 4545	100.5 95.5	75 74	6140 6140	1853/
New Holland New Holland	TM 135	7480 4485	TK	85	116	2200	75.6	258		5000	95.5 85.5	72.5	5480	1824/ 1874/
New Holland	TS 125 A	6728	TK	92	125	2200	78.7	256		5040	84.5	72.5	5860	1875/
Same	Silver 110	4000	TK	80	109	2300	73.3	264	31	3870	40.0	79	4410	1882/
Steyr	Profi 4115	4485	TK	85	116	2200	75.6	258		5000	85.5	72.5	5480	1890/
Steyr	Profi 6125	6728	TK	92	125	2200	78.7	264	1	5040	84.5	72	5860	1889/
Valtra Valmet	8150-4 HiTech	6596	Т	92	125	2200	85.3	268	42	6030	71.0	78	5590	1817/
Valtra	6400-4	4397	Т	77	105	2200	62.0	297	41	5220	55.0	77	4680	1879/
Valtra	C 120-4	4397	TK	88	120	2200	74.1	275		5760	66.0	77	5050	1878/
Valtra	M 120-4	4397	TK	87	118	2200	71.4	284	42	6340	83.0	73.5	5710	1897/
Leistungsklasse übe	r 95 kW (über 129 PS))												
Case IH	CVX 150	6596	T	107	145	2300	94.0	270		7200	106.0	76		1844/
Case IH	MXU 135	6728	TK	100	136	2200	85.1	265	47	5000	85.0	73.5	5860	1884/
Deutz-Fahr	Agrotron 135 MK3	7145	Т	99	135	2300	89.7	283	34	7070	103.5	74	6160	1822/
Deutz-Fahr	Agrotron TTV 1160	7145	TK	119	162	2100	102.2	282	21	7505	111.5	73.5	7060	1901/
Fendt	Favorit 714 Vario	5702	TK	103	140	2100	92.6	245	59	6030	101.5	72.5	6190	1829/
Fendt	818 Vario	5702	TK	132	180	2100	124.3	239	39	7020	105.3	74	6740	1860/
John Deere	6910 AutoPowr	6788	T	103	140	2100	95.6	255	38	5350	99.5	73	6350	1831/ 1843/
John Deere	6920 AutoPowr	6788 7480	TK	110	150 141	2100 2200	93.7	250 269	40	6120 4860	99.3 98.0	73 74	6380 6510	1843/
New Holland New Holland	TM 150 TM 155	7480	T TK	104 104	141	2200	95.9 96.7	269	40	4410	101.0	74	6510	1854
New Holland	TM 165	7480	T	119	160	2300	106.6	269		4635	107.5	74	6800	1826
New Holland	TM 190	7480	TK	130	177	2200	122.1	259	42	6840	111.0	76		1855
New Holland	TS 135 A	6728	TK	100	136	2200	85.1	265	47	5000	85.0	73.5	5860	1868
New Holland	TVT 170	6596	TK	114	155	2100	103.4	266		7340	113.0	75	6770	1866/
Renault	Ares 696 RZ	6788	Т	103	140	2200	93.3	253	28	5040	55.0	73	6220	1834/
Steyr	CVT 6170	6596	TK	114	155	2100	103.4	266		7340	113.0	75	6770	1861/
Valtra	M 130-4	4397	TK	96	130	2200	78.5	275	30	6120	84.6	75	5330	1859/
Valtra Valmet	8350-4 HiTech	6596	TK	99	135	1800	89.6	251	27	6000	70.0	75	5720	1830/

FAT-Bericht 653

Tab. 3: Geprüfte Spezialtraktoren für den Obst- und Weinbau/Stand Winter 2005/2006

			Bericht											
Т	raktor		Motor				Zapfwelle	9	Hydr	aulik	Lärm	Gewicht		
Marke	Тур	Hub- raum	Turbo		Leistung		Leistung	Diesel- ver- brauch	Dreh- moment- anstieg	Hub- kraft	Förder- menge	am Fahrer- ohr	Total	
		cm ³	_	kW	PS	min ⁻¹	kW	g/kWh	%	daN	l/min	dB (A)	kg	Test-Nr./Jahr
BCS	Valiant 500 AR	2199		35	48	2800	23.5	337	26	970	24.6	89	1300	1840/02
BCS	Vithar 800 RS	2970		50	68	2600	36.7	294	26	1575	38.3	90	1840	1841/02
BCS	Vivid 400 DT	1371		26	35	3400	21.5	316	13	710	21.4	94	950	1857/03
New Holland	TN 75 N	2931	Т	53	72	2300	45.1	272	39	1680	43.0	81	2530	1838/02
New Holland	TN 75 V	2931	Т	53	72	2300	45.0	274	35	1665	41.0	83	2500	1839/02

Ergebnisse aus aktuellen Traktortestberichten

Die Tabelle 2 – Traktoren – und Tabelle 3 – Obst- und Weinbautraktoren – wurden auf den neuesten Stand gebracht. Es sind nur Traktoren aufgeführt, die einen FAT-Test in den letzten fünf Jahren durchlaufen haben. Der vollständige FAT-Bericht 653 enthält in der tabellarischen Zusammenstellung alle Traktoren, Transporter und Zweiachsmäher, die in den letzten zehn Jahren geprüft worden sind. Technische Informationen über ältere Fahrzeuge können insbesondere beim Kauf eines Occasionsfahrzeuges von Interesse sein.

Verschiedene neue interessante Traktorentypen fehlen, weil sie noch nicht zum freiwilligen Test gebracht wurden. Verlangen Sie die entsprechenden Testberichte beim Traktorenhändler. Dadurch kann die Liste künftig noch vervollständigt werden. Erfahrungen zeigen: Ein Vergleich der Testergebnisse vor der Kaufentscheidung lohnt sich und kann die Suche nach dem richtigen Traktor erleichtern.

Geprüfte Zweiachsmäher, Mähtraktoren und Transporter

Zweiachsmäher, Mähtraktoren und Transporter sind Maschinen, die spezifisch im Hang- und Berggebiet hauptsächlich in der Schweiz und Österreich zum Einsatz gelangen. Folglich haben sich sowohl deren Herstellung als auch Prüfung vor allem in diesen beiden Ländern etabliert. Die technische Prüfung dieser Spezialmaschinen obliegt in der Schweiz Agroscope FAT in Tänikon und in Österreich der HBLuFA

Francisco Josephinum, BLT Biomass-Logistics-Technology in Wieselburg. Die Testergebnisse der geprüften Mähtraktoren oder Transporter werden, sofern am Fahrzeug keine Änderungen vorliegen, gegenseitig von der anderen Prüfstelle übernommen und unter Quellenangabe in deren Publikationen veröffentlicht. In der Tabelle 4 - Zweiachsmäher und Mähtraktoren - und Tabelle 5 - Transporter - sind die wichtigsten Testergebnisse zusammen mit der für die Prüfung massgebenden Prüfstelle (FAT oder BLT) und der entsprechenden Testberichtnummer aufgeführt. Die ausführlichen Testberichte sind bei der jeweiligen Prüfstelle (siehe Testbericht-Nr.) oder beim Maschinenhersteller bzw. Schweizer Importeur erhältlich.

Die genauen Anschriften der Prüfstellen finden sich am Schluss dieses Berichts. Die Berichte sind auch im Internet verfügbar.

Tab. 4: FAT- und BLT-geprüfte Zweiachsmäher und Mähtraktoren/Stand Winter 2005/2006

Firmenangaben									Messwerte aus FAT-Testbericht									
Traktor				Motor					Zapfwel	le		Hydraulik	<	Lärm	Gewicht	Prüfstelle		
Marke	Тур	Motor/Typ	Hub- raum	Turbo		Leistung			Diesel- ver- brauch	Dreh- moment- anstieg	Hub- kraft hinten	Hub- kraft vorne	Förder- menge	am Fahrer- ohr	Total			
	191		cm ³		kW	PS	min-1	kW	g/kWh	%	daN	daN	l/min	dB (A)	kg	Nr./Prüfjahr		
Aebi	TT50 Terratrac	Kubota / V1505T	1498	Т	31	42	3000	27.4	320	7.0	930	830	24.0	83	1460	BLT-027/04		
Aebi	TT55 Terratrac	Kubota / V1505T	1498	Т	31	42	3000	27.4	320	7.0	930	790	24.0	83	1460	BLT-027/04		
BCS	Vithar 900 MT	VM / 77 B / 3	2776	Т	61	83	2600	50.1	278	38.0	1240		37.5	91	2050	FAT-1842/02		
Rasant	RS1904P	Kubota / V2203	2197		34	46	2800	29.5	310	25.5	1000	1360	29.0	87	1880	BLT-032/04		
Rasant	RS2205T	Kubota / V2003T	1999	T	41	56	2800	37.0	289	4.2	1360	1580	29.0	87	2050	BLT-032/04		
Reform	Metrac H 4	Kubota / V2203	2197		34	46	2800	29.0	336	31.0	980	820	30.8	91	1800	BLT-003/01		
Reform	Metrac H 6	Perkins / 704-30	2956		42	57	2600	36.3	268	22.6	980	990	26.0	82	2010	BLT-040/01		
Reform	Metrac H 7	Perkins / 704-30	2956		46	62	2600	41.5	256	20.2	980	990	26.0	82	2010	BLT-040/01		
Reform	Mounty 70	VM/13C/3	2970		50	68	2600	43.2	292	19.0	1860	1370	35.0	82	2630	FAT-1864/04		
Reform	Mounty 80S	VM/77/B13	2776	Т	59	81	2600	50	278	25	1860	1370	35.0	82	2860	FAT-1865/04		

Tab. 5: FAT- und BLT-geprüfte Transporter (Grundfahrzeug)/Stand Winter 2005/2006

	Firmenangaben								Messwerte aus FAT-Testbericht								
Traktor					Moto	r			Zapfwel	le	Hydraulik	Lärm	Wen-	Gewicht	Zuläs-	Prüfstelle	
Marke	Тур	Motor/Typ	Hub- raum	Turbo		Leistung			Diesel- ver- brauch	moment-	Förder- menge	am Fah- rerohr	dekreis	Total	siges Ge- samtge- wicht		
			cm ³		kW	PS	min-1	kW	g/kWh	%	l/min	dB (A)	m	kg	kg	Test-Nr./Jahr	
Aebi	TP 68	Kubota / V3300	3318		50.7	69	2600	45.8	300	19	30.0	85	12.2	2490	6000	BLT-018/04	
Aebi	TP 78	Kubota / V3300	3318		51	69	2600	45.8	300	19	30.0	85	12.2	2490	6500	BLT-018/04	
Caron	760/860	VM / 90B/1	2082		33	44	3000	28.8	328	30	22.0	92	13.6	1760	4500	BLT-026/04	
Caron	867	VM / 90B/1	2082		33	44	3000	28.6	331	27	22.0	92	13.6	1760	4500	BLT-026/04	
Reform	Muli 455 SL	Perkins / 704-30	2956		42	57	2600	37.9	250	25	26.0	87	13.7	2140	5500	BLT-039/01	
Reform	Muli 575 GLS	Perkins / 704-30T	2956	Т	53	72	2600	47.1	252	16	26.0	85	13.3	2530	7000	BLT-039/02	
Reform	Muli 575 S	Perkins / 704-30T	2956	Т	58.5	80	2600	52.6	255	21	26.0	85	13.3	2530	7000	BLT-039/02	
Schiltrac	2068 SF	Deutz / BF4M2011F	3109	Т	65	88	2800	55.4	275	21	27.3	86	13.2	2660	7000	FAT-1863/04	

¹⁾ Wendekreis (Unitrac 55/65/95) mit Allradlenkung

Leistungsdiagramm und Leistungsangaben

Die Situation bei den Leistungsangaben wird unübersichtlicher. Manchmal spricht man von Nennleistung, dann wieder von Maximalleistung. Kann man eine Leistungskurve interpretieren, werden diese Unterschiede klar und auch Begriffe wie Drehmomentanstieg oder Anfahrdrehmoment verständlich.

Die richtige Interpretation des Leistungsdiagramms erlaubt Rückschlüsse auf die Charakteristik eines Motors. Dies hilft, den Motor im täglichen Einsatz im Bereich seiner optimalen Leistungsentfaltung zu betreiben.

Die Verwendung von unterschiedlichen Normen für die Leistungsangaben erschweren den Vergleich zusätzlich. Zu unterschiedlich sind die Bedingungen für die Messung der Leistung. So ist es beispielsweise bei einer Norm zulässig, den Motor ohne Lüfter und Kühlradiator zu betreiben. Für den Anwender letztlich von praktischer Relevanz ist nur die Zapfwellenleistung, wie sie Agroscope FAT Tänikon misst. So gewonnene Leistungen lassen sich auch direkt vergleichen.

Weshalb wird die Leistung an der Zapfwelle gemessen?

Wird die Leistung an der Zapfwelle abgenommen, hat dies den Vorteil, dass diese Leistung auch wirklich für zapfwellenbetriebene Geräte zur Verfügung steht. Würde die Leistung direkt am Motor abgenommen, würden wichtige Komponenten wie Hydraulikpumpe, Klimakompressor oder Luftdruckanlage nicht berücksichtigt. Ebenfalls wäre der Verlust zwischen Motorschwungrad und Zapfwellenstummel durch das Getriebe vernachlässigt. Die Zapfwellenleistung kann zudem von einer Fachwerkstatt mit einer Zapfwellenbremse überprüft werden.

Leistungsangaben in Prospekten

Im immer härter werdenden Konkurrenzkampf der Traktorenhersteller versucht jede Marke, ihr Fahrzeug möglichst gut zu präsentieren. Deshalb kann es vorkommen, dass ein Traktor mit gleichem Motor gemäss Prospektangabe plötzlich mehr Leistung als früher hat. Dies muss keine Fehlangabe sein, sondern es wurde lediglich eine andere Prüfnorm für die Leistungsprüfung verwendet. An der Zapfwelle, und damit für den Landwirt nutzbar, leistet der angeblich stärkere Traktor allerdings kein kW mehr.

Auflistung der häufigsten Motorleistungsnormen (Abb. 2)

• DIN 70020

Bei der Messung der Motorleistung nach dieser deutschen Norm werden die Leistungsverluste der gesamten Motorperipherie (unter anderem Lüfter, Kühler, Schalldämpfer) berücksichtigt.

• ECE R24

Bei dieser Messnorm werden Leistungsverluste der Komponenten wie Kühler und Schalldämpfer berücksichtigt. Auch der Lüfter ist angebaut. Bei Viskolüftern darf dieser allerdings mit maximalem Schlupf betrieben werden. Das heisst, der Lüfter dreht nur mit sehr geringer Drehzahl mit.

• ISO TR14396

Diese Messnorm berücksichtigt nur die Leistungsverluste durch Schalldämpfer und Luftfilter. Die gesamten Leistungsverluste für das Kühlsystem (Lüfter und Kühlradiator) bleiben aber unberücksichtigt.

EG 97/68 oder 2000/25/EG
 Diese Messnorm wird für die Abgasmes-

sung der Motoren verwendet. Der Leistungsverlust durch den Lüfter ist nicht berücksichtigt.

Messung an der Zapfwelle

Zapfwellenleistung

Hier werden die Verluste durch Nebenaggregate wie Hydraulikpumpe, Klimakompressor sowie die Getriebeverluste berücksichtigt.

Noch komplizierter wird es, wenn statt der Nennleistung in den Prospekten nur noch die Maximalleistung erscheint (Abb. 3). Eine Überleistung oder auch Maximalleistung entsteht durch ein sehr steil ansteigendes Drehmoment. Ein solcher Motor hat seine maximale Leistung nicht bei Nenndrehzahl, sondern unterhalb von dieser. Die maximale Leistung des Motors kann jedoch nur ausgenutzt werden, wenn bekannt ist, bei welcher Drehzahl diese zur Verfügung steht und der Motor in diesem Bereich betrieben wird, beispielsweise indem die Zapfwellenübersetzung auf die Motorcharakteristik abgestimmt ist.

Ebenfalls kann in den Prospektangaben auch die Leistung bei aktivem Power-Boost erscheinen (Abb. 4). Motoren mit elektronischen Einspritzpumpen können verschiedene Motorkennlinien erzeugen.

FAT-Bericht 653

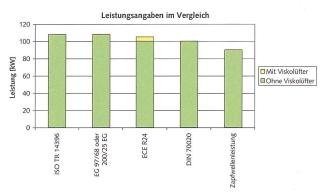


Abb. 2: Vergleich der Leistungen, bei unterschiedlichen Messnormen, eines Fahrzeugs, dessen Motor 100 DIN-kW leistet. Die Werte sind nur als ungefähre Werte zu verstehen und können je nach Motortyp und Fahrzeug leicht abweichen.

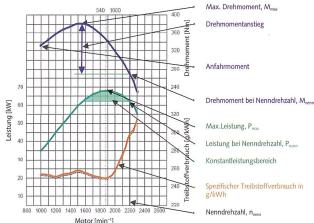


Abb. 5: Im Leistungsdiagramm sind die Leistung, das Drehmoment und der spezifische Verbrauch in Abhängigkeit der Motorendrehzahl angegeben.

Dabei kann die Leistung mit Power-Boost bis zu 25 % höher als bei normaler Leistung liegen. Hier spricht man auch von Mehrleistung auf Abruf. Allerdings muss dabei beachtet werden, dass der Power-Boost nur unter gewissen Voraussetzungen zur Verfügung steht. Beispielsweise:

- Fahrzeug muss in Bewegung sein
- Leistungsabnahme erfolgt an der Zapfwelle
- Kühlwassertemperatur darf nicht zu hoch sein

Interpretation des Leistungsdiagramms

Jeder Motortyp hat bestimmte Eigenschaften. Diese lassen sich im Leistungsdiagramm darstellen. Solche Diagramme sind in den einzelnen Testberichten ver-

öffentlicht und bilden die Motorcharakteristik ab.

Drehmomentkurve

Die blau markierte Drehmomentkurve (vgl. Abbildung 5) wird in Richtung von hoher Drehzahl zu niedriger Drehzahl interpretiert. Bei Nenndrehzahl liegt das Nenndrehmoment an. Ein Drehmoment ist eigentlich eine Drehkraft, vergleichbar mit der Kraft, die auf eine Schraube wirkt, die mit einem Schlüssel festgezogen wird. Vergleichbar mit der Kraft, die ein Radfahrer durch den Druck auf die Pedale ausübt. Mit sinkender Drehzahl nimmt das Drehmoment zu. Dies wird als Drehmomentanstieg bezeichnet. Ein stark ansteigendes Drehmoment weist auf einen Motor mit guten Durchzugseigenschaften hin. Mit einem solchen Fahrzeug können auch höhere

Belastungen bewältigt werden, ohne beispielsweise bei Transportarbeiten in einen tieferen Gang zu schalten. Das maximale Drehmoment wird meist im Bereich von 1300 bis 1600 U/min erreicht. Danach sinkt das Drehmoment wieder ab. Die Belastung auf den Motor muss also reduziert werden, sonst «stirbt» der Motor ab. Das Drehmoment des Motors bei 1000 U/min wird als Anfahrdrehmoment bezeichnet. Je höher das Anfahrdrehmoment ist. desto weniger neigt der Motor zum Abwürgen, wenn zum Beispiel unter Last an einem Berg angefahren werden muss. Das Anfahrdrehmoment sollte höher als das Drehmoment bei Nenndrehzahl sein. Bei stufenlosen Getrieben kommt dem Anfahrdrehmoment weniger Bedeutung zu.

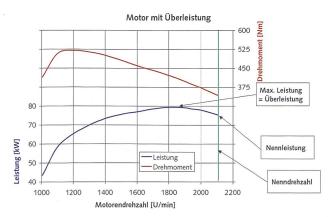


Abb. 3: Bei Motoren mit einem sehr steilen Drehmomentanstieg wird die grösste Leistung unterhalb der Nenndrehzahl erreicht. Dann spricht man von der Maximalleistung.

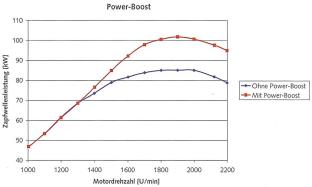


Abb. 4: Traktoren, die mit Power-Boost ausgerüstet sind, können bei Bedarf eine höhere Leistung abgeben. Die Leistung steht aber nur unter bestimmten Bedingungen zur Verfügung.

Leistungskurve

Die grün hervorgehobene Linie ist die Leistungskurve. Die Leistung (P) errechnet sich nach folgender Formel:

$$P[kW] = \frac{M[Nm]*n[min^{-1}]}{9550}$$

Eine höhere Leistung lässt sich also durch eine höhere Drehzahl (n) oder durch ein höheres Drehmoment (M) erreichen. Im dargestellten Leistungsdiagramm ist ein sehr steiler Drehmomentanstieg zu erkennen. Diese Charakteristik ist bei modernen Motoren häufig anzutreffen. Dadurch steht die maximale Leistung nicht bei Nenndrehzahl, sondern leicht unterhalb zur Verfügung. Bei solchen Motoren wird auch von Überleistung oder Maximalleistung gesprochen. Der Bereich zwischen der Nenndrehzahl und tieferen Drehzahl, wo die Leistung wieder der Nennleistung entspricht, bezeichnet man als Konstantleistungsbereich. Verfügt der Motor über eine Überleistung, ist es sinnvoll, die Mehrleistung im Betrieb auszunutzen, indem beispielsweise der Gang so gewählt wird, dass der Motor in diesem Bereich läuft. Bei tiefen Drehzahlen und sinkendem Drehmoment ist die Leistung geringer. Wird also viel Leistung von einem Motor verlangt, muss er mit hohen Drehzahlen betrieben werden.

Verbrauchskurve

Die orange Linie zeigt den spezifischen Treibstoffverbrauch. Dieser sagt aus, wie viel Gramm Diesel pro abgegebenes Kilowatt Leistung verbraucht wird. Der Treibstoffverbrauch soll möglichst tief sein und zur Nenndrehzahl ziemlich flach verlaufen. Die Verbrauchskurve zeigt auch, dass der Motor möglichst im Bereich der Maximalleistung betrieben werden soll, da dort der Verbrauch tiefer ist. Ein tiefer Treibstoffverbrauch deutet auf einen verbrauchsgünstigen Motor und auf wenig Verluste durch das Getriebe und Nebenaggregate hin. Da die Motoren nicht nur bei Volllast betrieben werden, sondern auch bei Teillast, kommt dem dortigen Verbrauch ebenfalls grosse Bedeutung zu. Zu finden sind diese Messwerte beim Teillasttreibstoffverbrauch. Auch der Messzyklus ISO 8178 gibt einen Verbrauch über mehrere Messpunkte an.

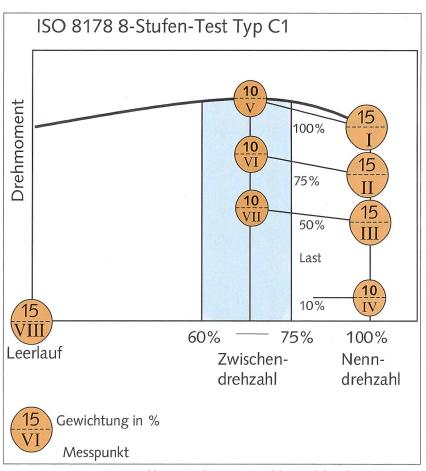


Abb. 6: Mit diesem Messzyklus wird das Abgas gemessen.

ISO-8178-C1-Messzyklus

Den ISO-8178-C1-Messzyklus setzt Agroscope FAT Tänikon zur Messung der Emissionen ein. Die Abgase von Traktormotoren sind nicht zu vernachlässigen, schliesslich verbringt der Landwirt oder die Landwirtin viel Zeit in der Nähe des Traktors und ist daher den Abgasen besonders ausgesetzt. Der ISO-8178-C1-Messzyklus besteht aus acht Messpunkten (Abbildung 6), die in definierter Reihenfolge angefahren werden. Die Messpunkte sind über das ganze Motorenkennfeld verteilt. Die Lastpunkte für die Zwischendrehzahl befinden sich bei der Drehzahl, bei der das maximale Drehmoment erreicht wird. Diese Drehzahl muss sich allerdings zwischen 60% und 75% der Nenndrehzahl befinden. Befindet sich das maximale Drehmoment unterhalb von 60 % der Nenndrehzahl, werden die Messpunkte der Zwischendrehzahl bei 60 % gewählt. Dieser Messzyklus simuliert einen sehr stark ausgelasteten Traktormotor, der zu über 50 % bei Nenndrehzahl betrieben wird. Der gleiche Messzyklus wird auch in den europäischen Normen 97/68 EG und EG 2000/25 verwendet. In der Norm ist die Messung am ausgebauten Motor vorgesehen. Im Rahmen der Traktortests wird der

Messzyklus jedoch am eingebauten Motor vorgenommen, wobei die Leistung an der Zapfwelle abgenommen wird. Dies hat zwei Vorteile: Die Verluste des Getriebes und von Nebenaggregaten, wie Hydraulikpumpe und Klimakompressor, werden berücksichtigt und die thermische Belastung des Motors entspricht dem praktischen Einsatz. Denn unter der Motorhaube ist die Temperatur höher, als wenn der ausgebaute Motor auf dem Prüfstand steht. Allerdings dürfen diese Abgasmesswerte nicht direkt mit den Abnahmemesswerten verglichen werden, da von der installierten Motorleistung nur etwa 90 % an der Zapfwelle ankommen. Die Abgasmesswerte werden durch die Leistung dividiert. Deshalb sind die an der Zapfwelle gemessenen Abgaswerte höher als die in den Gesetzen vorgeschriebenen Grenzwerte. Bei einem modernen Motor liegen die Abgaswerte deutlich tiefer als bei alten. Neben der Emissionen wird auch der Treibstoffverbrauch gemessen. Dieser wird dann auch entsprechend der Gewichtung der Messpunkte verrechnet, sodass daraus ein spezifischer Treibstoffverbrauch auch über die Teillastbereiche entsteht.