Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

Band: 64 (2002)

Heft: 9

Artikel: Gezogene Aufbereiter im Vergleich : gute Arbeitsqualität und tiefer

Leistungsbedarf

Autor: Frick, Rainer

DOI: https://doi.org/10.5169/seals-1080761

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Eidgenössische Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT), CH-8356 Tänikon TG, Tel. 052 368 31 31, Fax 052 365 11 90

Gezogene Aufbereiter im Vergleich

Gute Arbeitsqualität und tiefer Leistungsbedarf

Rainer Frick, Eidgenössische Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT), Tänikon, CH-8356 Ettenhausen

Die zunehmende Nachfrage nach Heckaufbereitern und die von den Herstellern realisierten Neuerungen veranlassten die FAT, einen Vergleichsversuch mit vier gezogenen Heckaufbereitern von Fella, Vicon und Kurmann durchzuführen. Im Vordergrund standen die Untersuchung der Arbeitsqualität (Abtrocknung, Verluste und Futterqualität) sowie die Messung des Leistungsbedarfs.

Die untersuchten Aufbereiter überzeugen durch eine gute Trocknungsbeschleunigung, eine schonende Arbeitsweise und eine geringe An-

triebsleistung. Alle Geräte ermöglichen das Einstellen auf Schwadoder Breitablage. Wird das Futter beim Mähen breit abgelegt, kann man auf den ersten Arbeitsgang mit dem Kreiselheuer verzichten. Allerdings wird die Trocknung dadurch verzögert.

Für eine ungehinderte Abtrocknung muss dabei das aufbereitete Mähgut möglichst breit und gleichmässig abgelegt werden. In dieser Hinsicht erzielen die Kurmann-Aufbereiter bessere Ergebnisse als jene von Fella und Vicon. Wichtig ist zudem die Verwendung eines passenden Frontmähers.

Der Intensivaufbereiter Kurmann K 618 Twin ergibt im Vergleich zu den Normalaufbereitern eine zusätzliche markante Trocknungsbeschleunigung. Gleichzeitig lassen sich mehrere Arbeitsgänge mit dem Kreiselheuer einsparen. Dies vereinfacht die Futterwerbung, vermindert die Bröckelverluste und verbessert die Futterqualität. Nachteilig sind das etwas grössere Gewicht und der höhere Leistungsbedarf. Die hohen Anschaffungskosten setzen eine genügend hohe Auslastung voraus.

Abb. 1: Gezogene Heckaufbereiter erfreuen sich dank der grossen Verbreitung der Frontmähwerke zunehmender Beliebtheit. Vier Geräte wurden einem Vergleichstest unterzogen.

Problemstellung

Aufgrund der starken Verbreitung von Frontmähwerken erfreuen sich gezogene Aufbereiter im Heckanbau zunehmender Beliebtheit. Die von Herstellerseite realisierten Neuerungen bei Heckaufbereitern veranlassten die FAT, verschiedene Geräte in praxisnahen Versuchen zu vergleichen. Im Vordergrund stand die Untersuchung der Arbeitsqualität hinsichtlich Trocknungsbeschleunigung, Feldverlusten und Futterqualität.

Da mittlerweile alle Aufbereiter das Mähgut auch breit ablegen können, interessierte vor allem auch, wie das Verfahren der Breitablage mit gleichzeitig reduziertem Einsatz des Kreiselheuers gegenüber herkömmlicher Futterwerbung (Schwadablage und sofortiges Zetten) abschneidet. Messungen zum Leistungsbedarf rundeten das Versuchsprogramm ab.

>VERSUCHSDURCHFÜHRUNG > ERGEBNISSE

Untersuchte Aufbereiter

Es gelangten folgende gezogene Aufbereiter der Hersteller Fella, Vicon und Kurmann zum Einsatz (Tab. 1):

- Fella effective conditioner KC 270 D
- Vicon TK 300
- Kurmann K 618
- Kurmann K 618 Twin

Die ersten drei Geräte sind Normalaufbereiter mit herkömmlichem Aufbereitungssystem. Der Kurmann K 618 Twin ist ein Intensivaufbereiter mit einer zusätzlichen Bürstenwalze. Alle vier Aufbereiter arbeiten mit einem Aufnahmerotor, der das vom Frontmäher abgelegte Mähgut vom Boden aufnimmt und gleichzeitig quetscht. Als Gegenstück zum Rotor wirkt ein Aufbereiterkamm (Fella und Kurmann) oder ein Riffelblech (Vicon). Die Werkzeuge des Rotors bestehen beim Fella KC 270 D aus starren Doppelfederzinken (Abb. 2), beim Vicon TK 300 aus V-förmigen, starren Kunststoffzinken und bei den Kurmann-Aufbereitern aus

frei pendelnden Stahl-Schlegeln (Abb. 3). Beim Kurmann K 618 Twin ist über dem Rotor eine gegenläufig drehende, durchgehende Bürstenwalze mit Nylonborsten eingebaut. Der Abstand der Bürstenwalze zum Rotor kann in drei Stufen verstellt werden, wodurch sich die Intensität der Aufbereitung auf den Pflanzenbestand abstimmen lässt.

Mit den Normalaufbereitern kann das aufbereitete Mähgut wahlweise entweder am Schwad oder breitflächig abgelegt werden. Die Breitablage erfolgt durch stufenlos verstellbare Leitbleche. Mit dem Intensivaufbereiter Kurmann Twin wird in der Regel nur breit abgelegt, um ein nachträgliches Bearbeiten des Mähgutes möglichst vermeiden zu können. Die beiden Aufbereiter von Fella und Vicon haben für die Ablage am Schwad zusätzlich zu den Leitblechen zwei spezielle Schwadformbleche.

Alle vier Geräte sind ausserdem mit einem Schwenkbock (Abb. 4) und mit Tasträdern ausgerüstet, mit denen sich die Tiefenführung des Aufnahmerotors einstellen lässt.

Versuchsdurchführung

Das Versuchsprogramm diente der Abklärung folgender Aspekte:

- Abtrocknungsbeschleunigung
- Feldverluste
- Futterqualität (Verschmutzung, Gehalte)
- Qualität der Mähgutablage bei Einstellung auf Breitablage
- Leistungsbedarf an der Zapfwelle Es wurden drei Einsätze durchgeführt (s. Kasten «Begleitende Angaben»).

Ergebnisse

Abtrocknung

Die im Versuch 1 (Abtrocknungsversuch) angelegten zehn Verfahren gehen aus Tabelle 2 hervor. Gemäht wurde überall am späten Vorabend, damit sämtliche Verfahren am folgenden Morgen bei gleichen Trocknungsbedingungen und mit

Tab. 1: Technische Daten der untersuchten Heckaufbereiter

	Fella KC 270 D	Vicon TK 300	Kurmann K 618	Kurmann K 618 Twin	
Gewicht	390 kg	480 kg	400 kg	540 kg	
Abmessungen: Gesamtbreite Länge Höhe	235 cm 165 cm 115 cm	248 cm 210 cm 115 cm	231 cm 180 cm 115 cm	231 cm 180 cm 115 cm	
Anbau am Traktor	Dreipunkthydraulik, gezogen; mit Schwenkbock	Dreipunkthydraulik, gezogen; mit Schwenkbock	Dreipunkthydraulik, gezogen; mit Schwenkbock	Dreipunkthydraulik, gezogen; mit Schwenkbock	
Aufbereiter	 Aufbereiterkamm mit 19 Zinken aus Stahl 4-reihiger Aufnahmerotor mit 36 Doppelfederzinken (18 Zinken je Reihe), starr, geschraubt Prallwinkel für Intensivguetschen 	- Riffelblech - Aufnahmerotor mit 36 V-förmigen Doppelzinken aus Kunststoff, starr, geschraubt	- Aufbereiterkamm mit 20 Zinken - 5-teiliger Aufnahmerotor, 4-reihig mit total 80 pendelnden Schlegeln aus Stahl (auf Wunsch gleicher Rotor wie K 618 Twin)	Aufbereiterkamm mit 30 Zinken 5-teiliger Aufnahmerotor, 6-reihig, mit total 120 pendelnde Schlegeln aus Stahl Durchgehende Bürstenwalze mit Nylonborsten	
Antrieb Aufbereiter	Kegelradgetriebe; Keilriemen	Kegelradgetriebe; Antriebskette	Kegelradgetriebe; Keilriemen	Kegelradgetriebe; Keilriemen	
Einstellung Aufbereiter	Aufbereiterkamm (5 Stufen)	Riffelblech (4 Stufen)	Aufbereiterkamm (5 Stufen)	Aufbereiterkamm (5 Stufen) Bürstenwalze (3 Stufen)	
Aufnahmebreite	173 cm	174 cm	180 cm	180 cm	
Breitstreuvorrichtung	6 Leitbleche, stufenlos verstellbar	10 Leitbleche, stufenlos verstellbar	6 Leitbleche vorne, 6 Breitstreubleche hinten, alle stufenlos verstellbar	6 Leitbleche vorne, 6 Breitstreubleche hinten, alle stufenlos verstellbar	
Mähschwadformung	2 Schwadformbleche, in 3 Stufen verstellbar	2 Schwadformbleche, in 8 Stufen verstellbar	6 Breitstreubleche, stufenlos verstellbar	6 Breitstreubleche, stufenlos verstellbar	
Tiefenführung Aufnahmerotor	Tasträder, höhenverstellbar	Tasträder, höhenverstellbar	Tasträder, höhenverstellbar	Tasträder, höhenverstellbar	
Tasträder: Bereifung Dimension	Einfach 16 x 6.50-8	Einfach oder Tandem 16 x 6.50-8	Einfach 16 x 6.50-8	Einfach oder Tandem 16 x 6.50-8	
Zapfwellendrehzahl	540 oder 1000 U/min	540 U/min	540 oder 1000 U/min	540 oder 1000 U/min	
Preis in Fr. (2002) inkl. Breitstreuvorrichtung	6430	6770	7080	11700	

>FAT-BERICHTE Nr. 584/2002 Gezogene Aufbereiter im Vergleich

Abb. 2: Der Fella KC 270 D arbeitet mit starren Doppelfederzinken aus Stahl. Die beiden äusseren Schwadformbleche führen das Mähgut mittig zusammen.

gleichem TS-Gehalt starten konnten. Ziel war die Gewinnung von zweitägigem Dürrfutter mit mindestens 60 % Trockensubstanz. In den Verfahren mit herkömmlicher Schwadablage wurde insgesamt dreimal gezettet (am ersten Tag zweimal, am zweiten Tag noch einmal). Der erste Arbeitsgang mit dem Kreiselheuer erfolgte in diesen Verfahren nach Abtrocknung des Taus um 10:15 Uhr. In den Verfahren mit Breitablage wurde das Futter insgesamt zweimal bearbeitet und der erste Kreiselheuer-Arbeitsgang weggelassen. In diesen Verfahren stellte man die Aufbereiter etwas schärfer als beim Mähen mit Schwadablage ein. Beim Intensivaufbereiter mit Bürstenwalze wurde nur breitflächig abgelegt und das Futter zweimal, einmal, bzw. gar nicht gewendet. In der letzten Variante erfolgte das Schwaden zwei Stunden früher als in den übrigen Verfahren. Als Referenz diente das Verfahren «Mähen ohne Aufbereiter» mit dreimal Wenden.

Zur Zeit des Versuches herrschten sehr gute Trocknungsbedingungen mit Tageshöchsttemperaturen über 27 °C (Tab. 3). Folglich erreichten alle untersuchten Verfahren nach zwei Tagen den angestrebten TS-Gehalt von mind. 60 %.

Bei den Normalaufbereitern (Fella, Vicon und Kurmann K 618) mit dreimaliger Bearbeitung resultierten TS-Gehalte zwischen 70 und 72% (Abb. 5). Die Unterschiede zwischen den drei Verfahren sind gering. Der Trocknungsvorsprung gegen-

über dem Referenzverfahren (ohne Aufbereiter, dreimal Wenden) betrug somit beim Einführen 5 bis 7 % Unterschied im TS-Gehalt. Damit bestätigt sich die schon in früheren Versuchen festgestellte Erkenntnis, dass sich die Trocknungszeit beim Einsatz eines Aufbereiters im Vergleich zu nicht aufbereitetem Mähgut um rund 25 % verkürzt.

Die gleichen Geräte mit Breitablage des Mähgutes und zweimaligem Wenden ergaben bei Versuchsende gegenüber herkömmlicher Technik (Schwadablage, dreimal Wenden) um bis zu 10 % tiefere TS-Gehalte, obwohl die Aufbereiter in diesen Verfahren um zwei Stufen intensiver eingestellt waren (Tab. 4). Der Verzicht auf den ersten Arbeitsgang mit dem Kreiselheuer bringt somit eine recht deutliche Verzögerung der Abtrocknung mit sich. Auffallend ist der im Vergleich zu den Aufbereitern Fella und Vicon bessere

Abb. 4: Alle vier Aufbereiter haben einen Schwenkbock. Er garantiert ein problemloses freies Nachlaufen des Gerätes bei Kurvenfahrt.

Abb. 3: Der Kurmann K 618 hat einen fünfteiligen Aufnahmerotor mit frei pendelnden Stahlschlegeln. Das Breitstreuen des aufbereiteten Mähgutes erfolgt mit Hilfe von stufenlos verstellbaren Leitblechen.

Trocknungsverlauf beim Kurmann K 618 (66 % TS gegenüber 61 % TS bei Versuchsende). Dieses Ergebnis ist sicher nicht nur auf den besseren Aufbereitungseffekt, sondern auch auf die deutlich bessere Breitablage zurückzuführen. Mit dem Kurmann K 618 Twin erreichte man mit zweimaliger Bearbeitung einen TS-Gehalt von 72 % und damit ein gleich gutes Ergebnis wie mit den Normalaufbereitern mit dreimal Wenden (Tab. 4). Auch mit nur einmaligem Wenden am ersten Tag übertraf der Intensivaufbereiter

> ERGEBNISSE

Begleitende Angaben zu den Versuchen

Versuch 1: Arbeitsqualität

Datum: 25./26. Juli

Wirkung hinsichtlich Abtrocknungsbeschleunigung, Ziel:

Feldverlusten und Futterqualität (Verschmutzung,

Erhebungen: Abtrocknungsverlauf, Aufnahme- und Bröckelverluste,

Gehalte im Mähgut, Qualität der Breitablage

Bestand: Kunstwiese SM 330 im 3. Aufwuchs

Botanische Zusammensetzung: 70 % Gräser,

30 % Rot- und Weissklee

Ertrag: 32 dt TS pro ha

Nutzung: Belüftungsfutter; Ziel mindestens 60 % TS

Witterung: stabile Hochdrucklage, schön und warm, wolkenlos

Versuch 2: Qualität der Breitablage

Datum: 28. September

Ziel: Arbeitsqualität der Geräte bei Verwendung der

Breitstreuvorrichtung in Abhängigkeit des Mähwerkes

Bestand: Kunstwiese SM 330 im ersten Schnitt nach Ansaat

Botanische Zusammensetzung: 75 % Gräser,

25 % Rot- und Weissklee

Ertrag: 38 dt TS pro ha

Bedingungen: Boden nass, Bestand abgetrocknet Mähwerke: Trommelmäher Niemeyer RO 305

Trommelmäher Pöttinger CAT 310

Versuch 3: Leistungsbedarf

Datum:

Ziel: Ermittlung des Leistungsbedarfes in Abhängigkeit von

Futterdurchsatz und Aufbereitungsgrad

Messparameter: Fahrgeschwindigkeit, Drehmoment und Drehzahl an

der Zapfwelle

Bestand: Kunstwiese SM 330 mit 80% Gräseranteil

Ertraq: 35 dt TS pro ha

Schwadstärke: 70 kg Frischsubstanz pro 10 m Schwad

Futterdurchsätze: 7/10/13/16 km/h bzw. 13,6/19,5/25,3/31,2 kg/s

Frischmasse

Mähwerk: Trommelmäher Niemeyer RO 305

mit einem TS-Gehalt von 67 % die Normalaufbereiter mit Breitablage und zweimal Wenden recht deutlich.

Auch ohne jegliches Wenden erzielte der Kurmann Twin einen TS-Gehalt von 65 % und erfüllte damit ohne Probleme die Vorgabe für Belüftungsfutter. Zwar hinkte die Abtrocknung in diesem Verfahren bis zum Schwaden hinterher. Durch ein rechtzeitiges Schwaden (zwei Stunden früher als in den übrigen Verfahren) und Liegenlassen an den Schwaden erfolgte jedoch eine deutliche Nachtrocknung des Futters. Auch wenn das Verfahren durch die sehr gute Witterung sicher begünstigt wurde, zeigt das Ergebnis, dass es bei günstigen Trocknungsbedingungen durchaus möglich ist, mit dem Intensivaufbereiter Belüftungsfutter ohne jegliches Zetten und Wenden zu gewinnen.

Qualität der Breitablage

Voraussetzung für eine erfolgreiche Arbeitsweise mit der Breitstreuvorrichtung ist, dass das aufbereitete Mähgut sowohl längs als auch quer zur Fahrtrichtung gleichmässig und möglichst breit abgelegt wird. Nur so kann der Trocknungsprozess in den ersten Stunden nach dem Mähen ungehindert einsetzen.

Die im Versuch 1 (Abtrocknungsversuch) erzielte Breitablage, die mit allen vier Geräten vorgängig optimiert wurde, ist in Tabelle 5 aufgeführt. Untersucht wurden die Ablagebreite und die Gleichmässigkeit der Mähgutablage in Quer- und Längsrichtung. Als Mähwerk diente in diesem Versuch ein Niemeyer-Trommelmäher mit mittiger Schwadführung (Mähbreite von 3 m). Mit dem Fella-Aufbereiter resultierte damit eine relativ schmale (150 cm), aber gleichmässige Breitablage. Der Kurmann K 618 streute etwa 200 cm breit. Der Vicon TK 300 legte das Mähgut ebenfalls recht breitflächig ab, jedoch längs und quer zur Fahrtrichtung sehr unregelmässig. Die gleichmässigste Breitverteilung auf einer Breite von 240 cm ergab sich mit dem Kurmann K 618 Twin.

Der Einsatz in diesem Versuch zeigte, dass ein sehr kompakter Mähschwad, wie es das Niemeyer-Frontmähwerk formt, für eine einwandfreie Breitformung des Mähgutes nicht optimal ist. Insbesondere der Aufbereiter Vicon TK 300 konnte den Mähschwad nur sehr ungleichmässig streuen und es gelang auch mit mehrmaliger Optimierung nicht, eine gleichmässige Breitablage zu erzielen. Besser zurecht kamen die Kurmann-Aufbereiter. Im Unterschied zu Vicon und Fella besitzen sie zusätzlich zu den hinteren auch vordere Leitbleche, die das Mähgut schon vor dem Rotor breitstreuen.

Um den Einfluss verschiedener Mähwerke auf die Qualität der Breitablage zu erfassen, führten wir als Folge dieser Erkenntnis einen zweiten Einsatz durch. Verglichen wurde der Einsatz eines Pöttinger-Trommelmähers EuroCAT 310 mit Doppelschwadformung und eines Niemeyer-Trommelmähers mit mittiger Schwadbildung.

Das Ergebnis zeigt, dass alle vier Aufbereiter mit dem um zirka 40 cm breiteren Mähschwad des Pöttinger-Trommelmähers bei Einstellung auf Breitablage besser zurecht kamen als mit dem Niemeyer-Trommelmäher. Vor allem mit dem Vicon TK 300 fiel die Breitablage mit dem Pöttinger-Mähwerk deutlich gleichmässiger aus. Aber auch mit den Aufbereitern von Fella und Kurmann K 618 war die Mähgutablage gleichmässiger und auch etwas breiter. Folglich sind für ein problemloses Arbeiten mit der Breitablage Trommelmäher mit paariger Schwadformung oder Scheibenmäher zu empfeh-

Neben dem Mähwerk hat aber auch der zu mähende Bestand (Aufwuchshöhe, Ertrag, botanische Zusammensetzung) einen grossen Einfluss auf die Qualität der Breitablage. Bei jedem Mäheinsatz muss deshalb die Stellung der Breitstreubleche bei Mähbeginn optimiert werden.

Feldverluste

Die im Versuch ermittelten Feldverluste gehen aus Abbildung 7 hervor. Sie setzen

>FAT-BERICHTE Nr. 584/2002 Gezogene Aufbereiter im Vergleich

Tab. 2: Untersuchte Aufbereiter-Verfahren im Versuch 1 vom 25./26. Juli 2001

Nr.	Aufbereiter	Einstellung Aufbereitungsgrad	Mähgutablage	Bearbeitung mit Kreiselheuer		
1	Ohne Aufbereiter (Referenzverfahren)	Normal	Schwadablage	3 x		
2	Fella KC 270 D	Normal	Schwadablage	3 x		
3	Vicon TK 300	Normal	Schwadablage	3 x		
4	Kurmann K 618	Normal	Schwadablage	3 x		
5	Fella KC 270 D	Hoch	Breitablage	2 x		
6	Vicon TK 300	Hoch	Breitablage	2 x		
7	Kurmann K 618	Hoch	Breitablage	2 x		
8	Kurmann K 618 Twin	Normal	Breitablage	2 x		
9	Kurmann K 618 Twin	Normal	Breitablage	1 x		
10	Kurmann K 618 Twin	Hoch	Breitablage			

Tab. 3: Witterung (Temperatur und Luftfeuchtigkeit) im Versuch 1 vom 25./26. Juli 2001

Parameter	25. Juli	26. Juli
Temperatur Mittelwert °C	20,0	20,2
Temperatur Maximum °C	27,2	27,5
Rel. Luftfeuchtigkeit Mittelwert %	72,2	70,7
Rel. Luftfeuchtigkeit Minimum %	41,4	40,3

sich aus den Aufnahmeverlusten (vor allem gröberes Halmgut) und den Bröckelverlusten (vorwiegend Blätter und feines Material) zusammen.

Die Feldverluste betrugen zwischen 160 und 200 kg TS pro ha bzw. 5 bis 6 % des eingeführten Ertrages und lagen somit für Dürrfutterbereitung auf einem recht tiefen Niveau. Folglich sind die Unterschiede zwischen den meisten Verfahren eher gering.

In den Verfahren 2 bis 4 (Schwadablage mit dreimal Wenden) waren die Verluste beim Kurmann K 618 etwas höher als bei Fella und Vicon. Der Unterschied ist allerdings statistisch nicht gesichert. Die gleichen Aufbereiter mit Breitablage und zweimal Wenden (Verfahren 5 bis 7) ergaben Verluste, die im Vergleich zur Schwadablage (Verfahren 2 bis 4) im Durchschnitt um 25 kg TS pro ha tiefer waren. Auch wenn der Unterschied auch

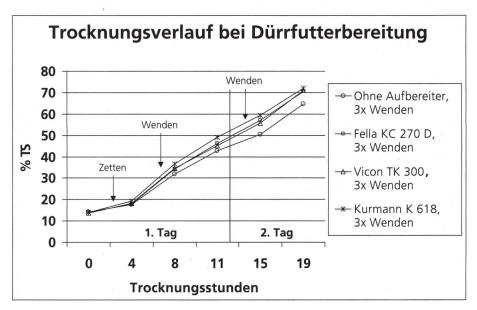


Abb. 5: Abtrocknungsverlauf bei den Normalaufbereitern von Fella, Vicon und Kurmann im Vergleich zu nicht aufbereitetem Mähgut bei Dürrfutterbereitung (Ziel mindestens 60 % TS). Bestand: Kunstwiese im 3. Aufwuchs, 30 % Kleeanteil, Ertrag 32 dt TS pro ha.

hier statistisch nicht gesichert ist, zeigt sich, dass eine reduzierte Folgebarbeitung des Mähgutes die Verluste eher günstig beeinflusst. Die Unterschiede zwischen Fella, Vicon und Kurmann sind praktisch gleich null.

Die eindeutig geringsten Verluste resultierten im Verfahren 10 (Kurmann Twin, ohne jegliches Wenden). Sie sind um mehr als die Hälfte tiefer im Vergleich zum Mittel der übrigen Verfahren. Der Unterschied ist zu sämtlichen übrigen Verfahren statistisch signifikant. Die Variante, in der das Futter einmal gezettet wurde (Verfahren 9), ergab schon deutlich höhere Verluste, die aber immer noch deutlich unter dem Mittel der Verfahren 1 bis 8 lagen. Bei zweimaliger Bearbeitung (Verfahren 8) waren die ermittelten Verluste noch höher und übertrafen jene der Normalaufbereiter mit gleich häufiger Bearbeitung (Verfahren 5 bis 7). Der Vergleich der drei Verfahren des Intensivaufbereiters lässt den Schluss zu, dass beim Einsatz des Intensivaufbereiters der Kreiselheuer nur noch sehr zurückhaltend einzusetzen ist, zumal sich die Trocknung mit häufigem Zetten und Wenden nur noch unwesentlich stärker beschleunigen lässt (vgl. Tab. 4).

Futterqualität

Die Resultate der Futteranalysen sind in Tabelle 6 zusammengestellt. Sie zeigen die Gehalte des beim Mähen und Einführen genommenen Futters in den untersuchten Verfahren sowie der Aufnahme- und Bröckelverluste. Generell resultierte eine gute Futterqualität mit einem tiefen Verschmutzungsgrad sowie mit hohen Energie- und Eiweissgehalten. Die Gehalte an NEL und APD des eingeführten Futters zeigen nur unbedeutende Unterschiede, die keine Rückschlüsse auf eine Beeinflussung der Futterqualität zulassen. Im Verfahren 10 (Kurmann K 618 Twin, ohne Wenden) fällt ein leicht höherer Gehalt an Energie und Eiweiss auf. Es ist allerdings nicht sicher, ob dieser Unterschied verfahrenstechnisch bedingt ist, denn der Kleeanteil und das Reifestadium waren nicht über die ganze Versuchsfläche homogen.

Die Gehalte an Rohasche liegen im normalen Bereich von 100 bis 110 g pro kg TS. Auch die Gehalte an erdiger Verunreinigung liegen überall deutlich unter dem Toleranzwert von 10 g pro kg TS. Die sehr günstigen Bedingungen beim Mähen brachten ein sehr sauberes Futter hervor. Auch in den Verfahren mit häufiger Bearbeitung durch den Kreiselheuer

> ERGEBNIS

Abb. 6: Vicon TK 300 bei Einstellung der Breitstreuvorrichtung auf Schwadablage (linkes Bild) und Breitablage (rechtes Bild). Durch die Breitablage erübrigt sich das sofortige Zetten nach dem Mähen, allerdings verzögert sich die Abtrocknung leicht.

resultierte keine erhöhte Verschmutzung des Futters.

Bei den Analysen der Verluste fallen die sehr hohen NEL- und APD-Gehalte der Bröckelverluste auf. Während die Aufnahmeverluste für die Qualität des eingeführten Futters weniger entscheidend sind, gehen mit den Bröckelverlusten viel wertvolle Nährstoffe (Eiweiss und Energie) verloren. Zur Gewinnung eines qualitativ guten Futters muss deshalb alles daran gesetzt werden, die Bröckelverluste durch eine schonende Futterwerbung so gering wie möglich zu halten.

Leistungsbedarf

Die Messungen zur Ermittlung des Leistungsbedarfes erfolgten in einer Kunstwiese mit einem durchschnittlichen Ertrag von 35 dt TS pro ha. Die ermittelten Werte dürften somit für Praxisbedingungen repräsentativ sein.

Um herauszufinden, wie die Aufbereiter bezüglich Leistungsbedarf auf unterschiedliche Futterdurchsätze reagieren, erfolgten die Messungen bei Fahrgeschwindigkeiten von 7, 10, 13 und 16 km/h. Dies entspricht Durchsätzen von 13,6 bis 31,2 kg/s Frischgut. Zusätzlich variierte man den Aufbereitungsgrad mit einer mittleren und einer höheren Einstellung. Als Mähwerk diente auch hier ein Front-Trommelmäher Niemeyer RO 305.

Die Ergebnisse sind in den Abbildungen 8 und 9 dargestellt. Sie zeigen im Wesentlichen Folgendes:

- Der Leistungsbedarf an der Zapfwelle kann für alle geprüften Heckaufbereiter als gering eingestuft werden. Bei einer Mähgeschwindigkeit von 10 km/h (Durchsatz von 19,5 kg/s) benötigen die Aufbereiter Fella und Vicon rund 5 bis 6 kW, der Kurmann K 618 9 kW und der Kurmann K 618 Twin zwischen 11 und 12 kW (Abb. 9).
- Die Bürstenwalze des K 618 Twin verursacht gegenüber dem normalen Kurmann-Aufbereiter eine um 3 kW höhere Antriebsleistung.
- Die Zunahme des Leistungsbedarfes als Folge eines steigenden Durchsatzes verläuft bei allen Geräten weitgehend linear (Abb. 8). Alle vier Geräte kamen mit dem bei der höchsten Fahrgeschwindigkeit resultierenden Durchsatz ohne Probleme zurecht. Mit dem Fella-Aufbereiter waren allerdings beim höchsten Durchsatz leichte Schleifgeräusche des Keilriemens zu vernehmen.
- Das Frontmähwerk benötigte je nach Futterdurchsatz 14 bis 17 kW Antriebsleistung. Die erforderliche Gesamtleistung für die Kombination Mähwerk und Aufbereiter bei den ge-

Tab. 4: Verlauf der Abtrocknung in den Verfahren mit Breitablage und reduziertem Kreiselheuer-Einsatz

Gerät Mähguta Bearbeitu		Fella KC 2 Breitabl 2x Wen	age	Vicon T Breitable 2x Wen	age	Kurmann Breitabla 2x Wen	age	Kurmann K 6 Breitabla 2x Wen	age	Kurmann K 6 Breitabla 1x Wen	age	Kurmann K Breitab Ohne W	lage
Datum	Zeit	Arbeits- gang	TS %	Arbeits- gang	TS %	Arbeits- gang	TS %	Arbeits- gang	TS %	Arbeits- gang	TS %	Arbeits- gang	TS %
24.7.	20:35	Mähen	14.6	Mähen	14.6	Mähen	14.6	Mähen	14.6	Mähen	14.6	Mähen	14.6
25.7.	08:40								13.8		13.8		
	08:55		13.6		13.4		14.1						13.7
	11:35			,					18.9		18.9		
	11:55		16.5		16.8		18.4						19.1
	14:30	Zetten		Zetten		Zetten		Zetten		Zetten			
	15:20								34.7		34.7		
-	15:35		25.6		25.4		31.3						31.6
1	17:45								47.4		47.4		
	18:00		33.2		33.0		40.2						38.2
26.7.	10:30	Wenden		Wenden		Wenden		Wenden					
	11:00								53.7		53.2		
	11:20		42.7		43.5		51.5					C ST SERVICE OF THE S	48.5
	12:00	the concession was propertied in each long-figure		EA based on the risk of the little authorise the district				music Cometonic and Company Compa	100		258	Schwaden	
	14:00	Schwaden		Schwaden		Schwaden		Schwaden		Schwaden			
	14:45								71.8		67.3		
	15:00	e inge virge editores	61.4		60.8	Surrich State of the State of t	66.4	MACHEN A GREAT TOP A STATE		BOROOM SELANDY FOR SERVICE		SSE (Accionate America) esta accionist	65.3
	15:50	Laden		Laden		Laden		Laden		Laden		Laden	

>FAT-BERICHTE Nr. 584/2002 Gezogene Aufbereiter im Vergleich

wählten Fahrgeschwindigkeiten geht aus Abbildung 9 hervor.

Tab. 5: Beurteilung der Aufbereiter bei Einstellung der Breitablage im Versuch 1 vom 25./26. Juli 2001. Mähwerk: Niemeyer RO 305

Effektive Mähbreite: 280 cm Mähschwadbreite: 90 cm

Fazit

- Die untersuchten Aufbereiter überzeugen durch eine gute Trocknungsbeschleunigung, eine schonende Arbeitsweise und eine geringe Antriebsleistung. Alle vier Geräte eignen sich deshalb für die Gewinnung von qualitativ einwandfreiem Konservierungsfutter sowohl beim Silieren als auch für die Dürrfuttergewinnung.
- Die drei Aufbereiter Fella KC 270 D, Vicon TK 300 und Kurmann K 618 zeigen bei herkömmlicher Anwendung (Schwadablage) hinsichtlich Abtrocknungseffekt und Feldverlusten nur geringe Unterschiede.
- · Recht deutliche Unterschiede bestehen jedoch bei Verwendung der Breitstreuvorrichtung. Der Kurmann K 618 legt das Mähgut breiter und gleichmässiger ab als die Geräte von Fella und Vicon. Entsprechend erzielt dieser bei der Technik mit Breitablage und reduziertem Kreiselheuer-Einsatz eine vergleichsweise bessere Abtrocknung.
- Mit der Breitablage ist es grundsätzlich möglich, den ersten Arbeitsgang mit dem Kreiselheuer einzusparen. Um die Abtrocknung nicht zu stark zu verzögern, soll dabei der Aufbereiter etwas schärfer als üblich eingestellt werden. Die Verluste fallen dank der reduzierten Bearbeitung etwas tiefer aus.
- Voraussetzung für ein erfolgreiches Arbeiten mit der Breitstreuvorrichtung ist eine gleichmässige und genügend breite Mähgutablage. Der Bestand und die Bauart des Frontmähwerkes beeinflussen die Qualität der Breitablage. Trommelmäher mit mittiger Schwadformung sind für das Breitstreuen des Mähgutes nicht geeignet.
- Der Intensivaufbereiter Kurmann K 618 Twin ermöglicht gegenüber Normalaufbereitern eine zusätzliche markante Trocknungsbeschleunigung. Zugleich fallen die Feldverluste tiefer aus, sofern der Einsatz des Kreiselheuers stark reduziert wird. Intensivaufbereiter erfordern aber eine sorgfältige und überlegte Anwendung des Kreiselheu-
- Der Leistungsbedarf von Heckaufbereitern ist allgemein tief und bewegt sich in einem Bereich von 5 bis 9 kW (ohne Intensivaufbereiter). Der Kur-

Gerät	Ablac	gebreite	Gleichmässigkeit		
	in cm	in % der effektiven Mähbreite	der Mähgutablage		
Fella KC 270 D	150	55	gut		
Vicon TK 300	180	65	mässig		
Kurmann K 618	200	70	gut		
Kurmann K 618 Twin	240	85	sehr gut		

Tab. 6: Futterqualität: Gehalte nach dem Mähen und beim Einführen (Angaben pro kg TS)

Verfahren			RA g/kg	EV g/kg	RF g/kg	RP g/kg	NEL MJ/kg	APD g/kg
Gehalte bei Versuchs	beginn:							
Gesamtparzelle nach dem Mähen			110	0,8	215	207	6,4	111
Gehalte beim Einfüh	ren:							
Gerät	Mähgutablage	Wenden						
Ohne Aufbereiter	Schwad	3 x	107	0,7	240	184	6,2	105
Fella KC 270 D	Schwad	3 x	107	0,4	236	190	6,2	106
Vicon TK 300	Schwad	3 x	105	0,5	232	188	6,3	106
Kurmann K 618	Schwad	3 x	106	1,3	242	181	6,1	104
Fella KC 270 D	Breit	2 x	107	0,6	235	193	6,2	107
Vicon TK 300	Breit	2 x	107	0,3	239	194	6,2	107
Kurmann K 618	Breit	2 x	108	0,4	240	189	6,2	106
Kurmann K 618 Twin	Breit	2 x	104	0,6	230	186	6,3	106
Kurmann K 618 Twin	Breit	1 x	105	0,6	229	188	6,3	107
Kurmann K 618 Twin	Breit		110	1,2	218	200	6,4	109
Gehalte der Feldverl	uste (Gesamtpa	rzelle):		200				
Aufnahmeverluste			106	1,0	261	177	5,9	101
Bröckelverluste			105	6,8	226	221	6,5	113

RA = Rohasche

EV = Erdige Verunreinigung

RF = Rohfaser

RP = Rohprotein nach Dumas NEL = Nettoenergie Laktation

APD = Absorbierbares Protein Darm

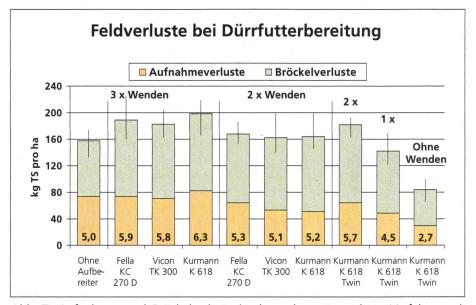


Abb. 7: Aufnahme- und Bröckelverluste in den zehn untersuchten Verfahren mit unterschiedlicher Aufbereitung und Folgebearbeitung mit dem Kreiselheuer bei zweitägigem Dürrfutter. Bestand: Kunstwiese im 3. Aufwuchs, 30 % Kleeanteil, Ertrag 32 dt TS pro ha. Die Werte in den Säulen entsprechen den Verlusten in Prozent des geernteten Ertrages.

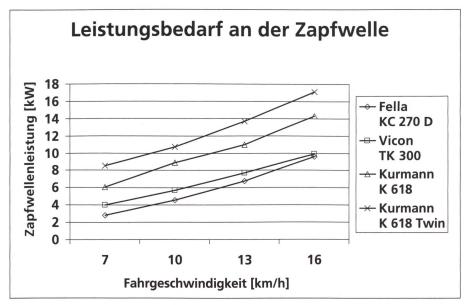
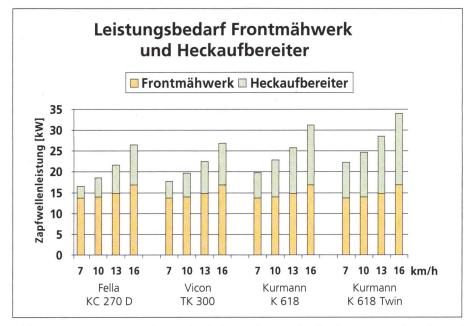


Abb. 8: Gemessene Zapfwellenleistung der vier Heckaufbereiter von Fella, Vicon und Kurmann bei verschiedenen Fahrgeschwindigkeiten bzw. Futterdurchsätzen. Bestand: Kunstwiese im 3. Aufwuchs, Ertrag 35 dt TS pro ha.

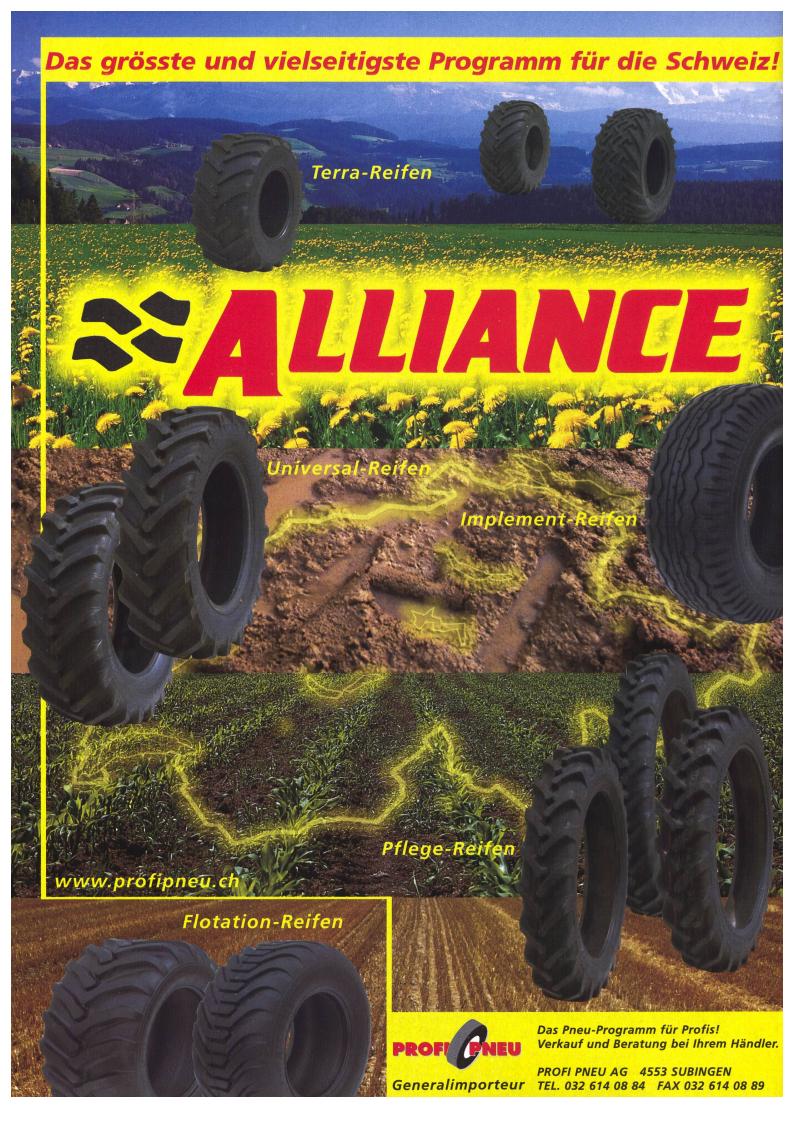
mann-Aufbereiter benötigt etwas mehr Zapfwellenleistung als die Geräte von Fella und Vicon. Die Bürstenwalze des Kurmann-Twin verursacht eine um 3 kW höhere Antriebsleistung als der normale Kurmann K 618.

Durch das geringe Eigengewicht von zirka 400 bis 480 kg (Kurmann K 618 Twin = 540 kg) und den tiefen Leistungsbedarf lassen sich die Geräte zudem auch mit hangtauglichen Traktoren oder Zweiachsmähern einsetzen.

- hinten quetschen» nicht gerade das günstigste Mähverfahren, die Technik bietet aber zwei wesentliche Vorteile: Einerseits besteht eine hohe Flexibilität. indem man wahlweise je nach Situation mit oder ohne Aufbereiter mähen kann, andererseits ist die Kombination Frontmäher und Heckaufbereiter durch die optimale Gewichtsverteilung am Zugfahrzeug recht gut hangtauglich, was die Technik auch im Berg- und Hügelgebiet interessant macht.


Die Technik der Aufbereiter der letzten Jahre ist durch zwei wesentliche Entwicklungen geprägt: Zum einen die Ausrüstung der Geräte mit einer Breitstreuvorrichtung und zum andern die Neukonzeption des Kurmann K 618 als Intensivaufbereiter. Beide Neuerungen eröffnen neue Möglichkeiten in der Futterwerbung: Einerseits lässt sich dank der Breitablage des aufbereiteten Mähgutes die Futterwerbung deutlich vereinfachen und die oft lästige Arbeitsspitze «Mähen und sofortiges Zetten» elegant umgehen. Andererseits wirkt sich die reduzierte Bearbeitung des Futters dank geringe-Bröckelverlusten vor allem in blattreichen Beständen auch auf die Futterqualität aus. Am deutlichsten zeigen sich diese qualitativen Vorteile bei der Gewinnung von Anwelksilage, da man hier auf den Kreiselheuer gänzlich verzichten kann.

Mit dem Kurmann Twin ist ein für den hiesigen Futterbau zugeschnittener Intensivaufbereiter entwickelt worden. der durch seine schonende Arbeitsweise den Einsatz in verschiedensten Futterbeständen erlaubt. Dank geringem Gewicht und Leistungsbedarf ist die Verwendung an Zweiachsmähern der oberen Leistungsklasse und damit der Einsatz auch in steileren Hanglagen möglich. Die Nachrüstung des normalen K 618 mit der Twin-Variante (sechsreihiger Rotor, Bürstenwalze, Breitstreubleche) kostet 3600 Franken, bei einer Neuanschaffung beträgt der Mehrpreis rund 5000 Franken. Die hohen Kosten erfordern eine genügend hohe Auslastung.


Ausblick

Aufbereiter leisten einen bedeutenden Beitrag zur Gewinnung von qualitativ gutem Raufutter, indem sich auch kurze Schönwetterphasen nutzen lassen und die Pflanzenbestände häufiger im optimalen Stadium gemäht werden können. Dieser Vorteil muss allerdings mit einem deutlichen Mehrpreis, der bei der integrierten Variante rund 4500 Franken und bei der gezogenen Variante 6500 bis 7000 Franken (ohne Intensivaufbereiter) beträgt, erkauft werden. Ob sich diese zusätzliche Investition lohnt, hängt im Wesentlichen von den klimatischen Verhältnissen (Lage des Betriebes) ab, aber auch davon, welchen Stellenwert eine hohe Grundfutterqualität bei der Fütterung einnimmt.

Wegen der starken Verbreitung von Frontmähwerken erfreuen sich gezogene Heckaufbereiter zunehmender Beliebtheit. Zwar ist die Variante «vorne mähen

Gemessener Leistungsbedarf an der Zapfwelle für Frontmähwerk und Heckaufbereiter bei vier verschiedenen Fahrgeschwindigkeiten. Bestand: Kunstwiese im 3. Aufwuchs, Ertrag 35 dt TS pro ha.

