Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

Band: 52 (1990)

Heft: 13

Artikel: Schadgasmessungen bei geschlossenen Güllegruben

Autor: Meier, Urs / Steiner, Beat

DOI: https://doi.org/10.5169/seals-1081175

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

FAT-Berichte

Herausgeber: Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik (FAT)

CH-8356 Tänikon TG

Tel. 052-623131

April 1990

385

Schadgasmessungen bei geschlossenen Güllegruben

Urs Meier¹), Beat Steiner²)

Mit welchen baulichen Massnahmen kann die Gefahr von Unfällen und Sachbeschädigungen bei geschlossenen Güllegruben wirkungsvoll reduziert werden? Wie viele und welche Öffnungen sind zur Fortführung der Gase aus der Grube notwendig? Diese Fragen werden nachstehend beantwortet. Als Entlüftungsöffnungen eignen sich Rostabdeckungen oder Abluftkamine. Die minimale Öffnungsfläche soll 1 m² pro 50 m² Grubenoberfläche betragen. Zur vollständigen Entlüftung müssen mindestens zwei Öffnungen, am besten diagonal, angeordnet sein. Elektrische Installationen von Rührwerken, Güllebelüftungen usw. sind soweit möglich ausserhalb des Gasbereichs zu plazieren und gut abzudichten. Die Freisetzung von Schwefelwasserstoff erfolgt schwallartig und kann während der gesamten Rührzeit lebensgefährliche Konzentrationen erreichen. Diesem Sachverhalt muss Rechnung getragen werden.

1) FAT; 2) Beratungsstelle für Unfallverhütung in der Landwirtschaft, BUL

Bei geschlossenen Güllegruben kommt es in der Landwirtschaft immer wieder zu Unfällen und zu Sachbeschädigungen durch Brände und Explosionen infolge zu hoher bzw. explosionsgefährlicher Schadgaskonzentrationen. Neben der Brand- und Explosionsgefahr können auch Vergiftungen von Mensch und Tier durch Schadgase auftreten.

Die FAT untersuchte in Zusammenarbeit mit der BUL, mit welchen baulichen Massnahmen solche Gefahren wirkungsvoll reduziert werden können. Das Schwergewicht liegt auf der Beantwortung der Frage, wie viele und welche Öffnungen vorhanden sein müssen, damit die Gase aus dem Güllebehälter herausgeführt werden können.

Neben normalen Rostabdeckungen wurde auch die Möglichkeit von Abluftkaminen und Lüftungsventilatoren untersucht.

Abb. 1: Das kann passieren, wenn Gase in einer Güllegrube explodieren!

Abb. 2: Einige der verwendeten Messgeräte. Im Hintergrund Gasprobe für gaschromatografische Analysen, im Vordergrund Gasspürröhrchen, Thermometer und H₂S-Messgerät.

1. Gasentwicklung

Jede Tätigkeit mit Gülle führt zu einer Freisetzung von Gasen. Als Abbauprodukte der anaeroben Vergärung treten gasförmige Verbindungen wie Schwefelwasserstoff (H₂S), Ammoniak (NH₃), Kohlendioxid (CO₂) und Methan (CH₄) auf [1].

H₂S führt schon in geringen Konzentrationen (ab 200 ppm) zu Atemlähmung und wirkt stark korrosiv. H₂S ist brennbar, wobei das bei der Verbrennung entstehende SO₂ ebenfalls giftig ist und korrosiv wirkt [2].

CH₄ ist bei einem Anteil von 5.3 – 14 % in Luft explosiv; in der Mischung mit rund 35 % CO₂ verengen sich die Explosionsgrenzen auf 5 – 12 % [3,4].

CH₄ ist somit die Hauptursache von Gasexplosionen und H₂S von schweren akuten Vergiftungen von Menschen und Tieren.

Tabelle 1: Zündtemperatur und Zündgrenze [5]

		NH ₃	H ₂ S	CH₄
Zündtemperatur	°C	630	270	595
untere Zündgrenze	Vol%	15.0	4.3	5.0

Bei einer Explosionsgefahr sind die untere Zündgrenze und die Zündtemperatur zu beachten (vgl. Tab. 1).

Offene Flammen oder Gluten mit Temperaturen von über 800°C oder elektrische Funken können zur Entzündung bzw. Explosion dieser Gasgemische führen [6]. Die Bildung von Gasen ist von verschiedenen Faktoren wie Stallanlage, Güllelagerung, Luftführung, Futtermittel, Lufttemperatur, Luftdruck sowie pH-Wert und TS-Gehalt der Gülle abhängig. Ausser im Methangehalt sind keine gesicherten Unterschiede bezüglich der Gasfreisetzung zwischen Rinder- und Schweinegülle bekannt [7].

Auch frische Gülle ist gefährlich, da die Gasproduktion durch Mikroorganismen bereits im Verdauungstrakt der Tiere beginnt. Hohe Ammoniumkonzentrationen (vor allem bei Rindergülle) vermindern die Methanproduktion [8]. Nutritive Antibiotika wirken ebenso hemmend auf die Gasproduktion [9].

Für das Freisetzen von Gasen ist die Schwimmschichtbildung in der Güllegrube von Bedeutung. Es ist von Vorteil, wenn eine bestehende Schwimmschicht nicht zerstört wird, weil diese eine Freisetzung der Gase vermindert.

Durch häufiges Rühren wird O_2 in die Gülle gebracht, wodurch der Gärvorgang gefördert wird [10]. Die in der Gülle gelösten und zurückgehaltenen Gase werden demnach bei folgenden Handhabungen besonders stark freigesetzt [5]:

- Zerstören von Schwimmdekken
- Ablassen von Staukanälen
- Homogenisieren und Umpumpen
- Spülung von Sinkschichten.

Tabel	le 2:	Eing	esetzte	Me	ssge	räte

Messung	Gerät	Bezeichnung	Messbereich
CO ₂	Prüfröhrchen	1 %	1 - 20 Vol%
CO ₂	Prüfröhrchen	5%	5 - 60 Vol%
H ₂ S	Prüfröhrchen	1/c	1 - 200 ppm
H ₂ S	Prüfröhrchen	100/a	100 - 2000 ppm
H₂S	H₂S-Messgerät (digital)	Mini-H ₂ S	0 - 200 ppm
NH ₃	Prüfröhrchen	5/a	5 - 700 ppm
CH₄	Prüfröhrchen	Erdgastest	qualitativ
			(ab 0.5 Vol%)
CH ₄ +			0 - 100 Vol%
CO ₂	Gaschromatograph		0 - 100 Vol%
V_{Luft}	Flügelradanemometer	Airflow	0.1 - 5 m/sec
V _{Luft}	Strömungsprüfröhrchen		Windrichtung
V_{Luft}	Rauchpulver		Windrichtung
Temp.	Oberflächenthermometer	Technotherm	-40 - +140 °C
pH-Wert	pH-Messgerät		0 - 14

ppm = Teile pro Million; 1 Vol.-% = 10'000 ppm

In der Praxis können sich im Behälter lokal explosive Gasgemische ansammeln [3]. Die beiden Gase H₂S und CO₂ sind schwerer als Luft, doch haben Untersuchungen gezeigt, dass sich die beiden Gase im grossen und ganzen gleichmässig im Stall verteilen [11].

Die Bewegung der Ventilationsluftströme und auftretende Temperaturunterschiede beeinflussen die Verteilung der Gase in Horizontalrichtung [11].

Das Ziel baulicher Massnahmen besteht darin, die entstehenden Gase gefahrlos abzuführen. Dies kann nur durch eine Lüftung (Zwangs- oder Schwerkraftentlüftung) erreicht werden. Dabei gilt es, tote Winkel durch unzureichende Lüftung zu vermeiden. Auch ist eine sichere Gasabdichtung zwischen Güllegrube und Stall bzw. Gebäuden unbedingt erforderlich. Diesbezüglich eignen sich Siphons und Stauschieber mit rundumlaufender Dichtung. Ungeeignet sind Gummilappen [13].

2. Messmethodik

In der vorliegenden Untersuchung wurden die Gase mit sogenannten «Dräger-Gasspürröhrchen» für NH₃, CO₂, H₂S und CH₄ und einem digitalen H₂S-Messgerät gemessen. Im Verlauf der Untersuchung erfolgten zudem Analysen mit einem Gaschromatographen.

Tab. 2 und Abb. 2 zeigen die in der Untersuchung eingesetzten Messgeräte. Die Luftströmung wurde mit Rauchpulver oder mit einem Strömungsprüfröhrchen nachgewiesen. Die Messung der Luftgeschwindigkeit erfolgte mit einem Flügelradanemometer. Gülleproben erhob man zur Be-

stimmung der TS und des pH-Wertes.

Den Trockensubstanzgehalt (TS) bestimmte man im Trockenschrank bei 105°C während 24 Stunden.

Die Messungen wurden auf drei Praxisbetrieben mit Rindergülle erhoben. Alle Gruben waren rechteckig mit einem Grubeninhalt von 240 m³, 315 m³ und 360 m³. Zwei Betriebe hatten eine Schwemmentmistung (Anbindestall), ein Betrieb verfügte über eine Faltschieberentmistung (Laufstall).

3. Ergebnisse

Die fünf Versuche liefen folgendermassen ab:

Die erste Messung erfolgte vor Rührbeginn, anschliessend wurde das Rührwerk in Betrieb gesetzt. Die Entlüftungsöffnungen blieben während dieser Zeit geschlossen. 35 Minuten nach Rührbeginn wurden die Entlüftungsöffnungen geöffnet.

Bei offenen Entlüftungsöffnungen erfolgten die nachfolgenden

Messungen. Während dieser Messdauer blieb das Rührwerk in Betrieb.

Die Gülletemperaturen lagen zwischen 15 – 21 °C. Ab 15 °C Gülletemperatur beginnt die Methanproduktion und erreicht ab 20 °C kritische Bereiche.

In Abb. 3 sind die Gaskonzentrationen von CO₂ und CH₄ aufgetragen. Bei den Versuchen 1 und 2 wurde eine Öffnungsfläche von 2 x 0.8 m² (Lichtmass) bei einer Grubenoberfläche von 100 m² gewählt. In Versuch 1 wurden keine Abdeckungen verwendet; in Versuch 2 waren Gitterroste mit 80 % Luftdurchsatz montiert.

Die genügend grossen und richtig angeordneten Öffnungen gewährleisten eine rasche Abnahme der Gaskonzentrationen unmittelbar nach deren Öffnen. Diese Abnahme konnte für CH₄ und CO₂ gemessen werden.

Auch bei höheren Gaskonzentrationen zu Beginn wäre mit diesen Öffnungen eine rasche und vollständige Abführung der Gase gewährleistet.

In der Praxis kann jedoch nicht immer mit solchen optimalen Verhältnissen gerechnet werden. Ein minimaler Sicherheitszuschlag bei der Gesamtöffnungsfläche ist

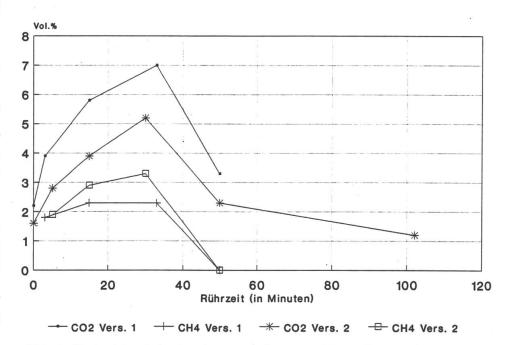


Abb. 3: Verlauf der Schadgaskonzentrationen bei Versuch 1 und 2

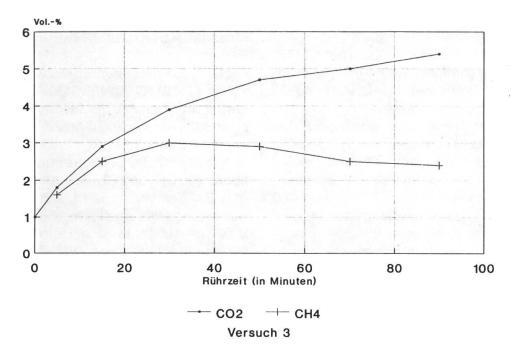


Abb. 4: Verlauf der Schadgaskonzentrationen bei Versuch 3

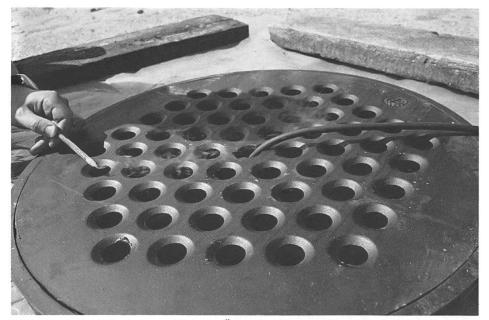


Abb. 5: Beispiel einer zu kleinen Öffnungsfläche. Die Luft streicht über den Gussdeckel hinweg.

daher nötig. In Berücksichtigung aller Faktoren ist eine Fläche von 2 x 1 m² pro 100 m² Grubenoberfläche erforderlich.

In Abb. 4 sind die Gaskonzentrationen aufgetragen, welche sich bei Öffnungen mit 2 x 0.28 m² (Lichtmass) und einer Grubenoberfläche von 90 m² ergaben. In diesem Fall wurden runde, gelochte Gussdeckel mit einem Durchmesser von 60 cm (5 t Raddruck) getestet.

Bei diesem Versuch nahm die CH₄-Konzentration nur sehr langsam ab. Die CO₂-Konzentration stieg sogar von 4 Vol.-% auf 5.4 Vol.-% an. Die Durchmischung des Gasvolumens war somit unzureichend. Luftströmungsmessungen ergaben, dass die Öffnungen des Gussdeckels zu klein sind, um einen genügend grossen Luftdurchtritt zu gewährleisten. Die Luft strich über den Dekkel hinweg (vgl. Abb. 5).

Aus Abb. 6 sind die Gaskonzentrationen ersichtlich, die bei der Verwendung von Abluftkaminen erfolgten. Es wurden zwei verschieden Kamine (ohne Ventilator, nicht isoliert) getestet:

Bei Versuch 4 Abluftkamine mit 40 cm Durchmesser und einer Höhe von 4 m (Abb. 7).

Bei Versuch 5 Abluftkamine mit 15 cm Durchmesser und einer Höhe von 5 m (Abb. 8).

Auf der gegenüberliegenden Grubenseite befand sich eine mit Gitterrosten abgedeckte Öffnung (Öffnungsfläche 0.6 x 0.8 m im Lichtmass). Auch in den Versuchen mit Abluftkaminen zeigte sich deutlich, dass die Öffnungsfläche der entscheidende Faktor zur Wegführung der Gase ist. Bei Versuch 4 erfolgte eine schnellere Abnahme der Gaskonzentrationen als bei Versuch 5. Im Fall der kleineren Abluftkamine nahm die Gaskonzentration deutlich weniger schnell ab. Die Abnahme der CO₂-Konzentration verlangsamte sich zusehends. Bei höheren Anfangskonzentrationen wäre somit eine Brand- bzw. Explosionsgefahr über längere Zeit vorhanden gewesen.

Bei allen Versuchen wurde deutlich, dass eine Gefährdung durch H₂S nach Rührbeginn über einen längeren Zeitraum (mehr als eine Stunde) vorhanden war.

Werden Entlüftungsöffnungen eingesetzt, so muss diese Gefahr berücksichtigt werden. Das H₂S entwich schwallartig. Messungen ein Meter über und neben der Öffnung zeigten deutlich, dass auch eine Gefährdung ausserhalb der Grube vorhanden ist und tödliche Konzentrationen (> 1'000 ppm) auftreten können. Besonders Kinder sind dieser Gefahr ausgesetzt.

In Abb. 9 sind die H₂S-Konzentrationen der Versuche 1 bis 5 dargestellt.

4. Folgerungen

Das schnelle Abführen von Gasen aus der Güllegrube kann nur mit einer Lüftung (Schwerkraftoder Zwangsentlüftung) gewährleistet werden. Dazu sind zwei Öffnungen vorzusehen und zwar

nach Möglichkeit auf den gegenüberliegenden und am weitesten entfernten Seiten der Grube. Eine diagonale Anordnung der Öffnungen ist im Hinblick auf eine Durchmischung auch von toten Winkeln in der Grube besser geeignet als in der Mitte der Seiten angeordnete Öffnungen.

Um eine genügende Sicherheit einer Abführung der Gase zu er-

reichen, sollte die Gesamtöffnungsfläche (Lichtmass) 2 % der Grubenoberfläche nicht unterschreiten. Neben Gitterrosten haben sich Abluftkamine bewährt. Der Durchmesser solcher Kamine sollte nicht unter 40 cm liegen. Die Zwangsentlüftung führt zum schnellsten Abführen von Gasen (Abb. 10 und 11). Sie sollte aus Kostengründen nur zum Einsatz kommen, wenn eine Entlüftung mit normalen Öffnungen bzw. Kaminen zu wenig wirkungsvoll ist. Ventilatoren sollten aus korrosionsbeständigem Material gebaut und eine Nennleistung von 3'000 m³/h aufweisen. Explosionssichere Radialventilatoren bieten am meisten Sicherheit.

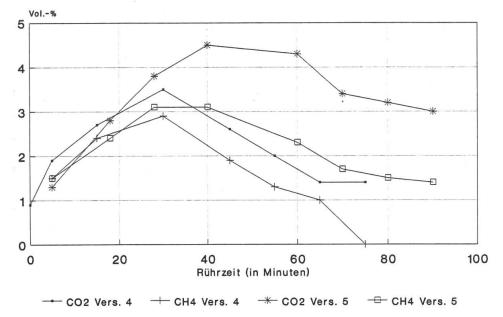


Abb. 6: Verlauf der Schadgaskonzentrationen bei den Versuchen 4 und 5 (mit Abluftkaminen)

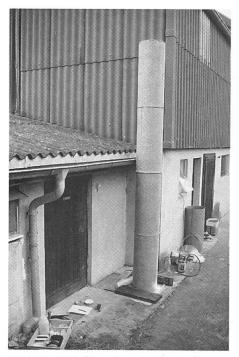


Abb. 7: Abluftkamin mit 40 cm Durchmesser (links). Der Rauch zieht durch das Kamin nach aussen weg (rechts). Eine Alternative zum Gitterrost...

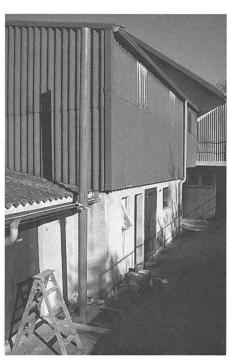


Abb. 8: ... aber keine Alternative mit 15 cm Durchmesser!

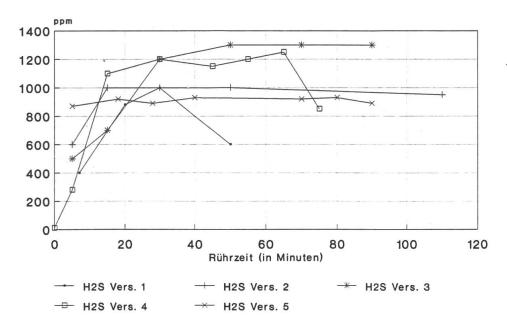


Abb. 9: Verlauf der H2S-Konzentrationen während der Versuche 1 bis 5

Die Freisetzung von H₂S erfolgt nach Rührbeginn über längere Zeit (> 1h). Eine Gefährdung in der Nähe der Öffnungen bleibt bestehen. Auf gasdichte Zuleitungen (Schwemmkanal, WC, Waschraum etc.) muss geachtet werden, um ein Eindringen der Gase (insbesondere H₂S) in andere Gebäudeteile zu vermeiden. Die Untersuchung ergab folgende **Bedingungen**, die eine kritische Gasentwicklung begünstigen:

- Sonnenexponierte Güllegruben und warmes Wetter (> 20°C).
- Gülletemperatur über 20 °C.
- Keine Entlüftung vorhanden, was zur Folge hat, dass kein Gasaustausch gewährleistet ist und ein Überdruck in der Grube entsteht. Die Gase können in gefährliche Bereiche (Stall, Nebenräume, elektrische Installationen etc.) gedrückt werden.

- Unmittelbar nach Rührbeginn ist mit der grössten Gefahr zu rechnen.
- Auf das Rühren bei warmem und windstillem Wetter sollte verzichtet werden.

Auswertungen von Güllegas-Bränden und -Explosionen durch die BUL bestätigen die erwähnten Bedingungen einer kritischen Gasentwicklung. Damit aber ein Gasgemisch zur Explosion kommen kann, ist eine Zündquelle erforderlich.

In den meisten Fällen handelt es sich dabei um das **Rührwerk** selbst!

Es ist deshalb unbedingt notwendig, dass die Motoranschlüsse von Rührwerken, Güllebelüftungen usw. abgedichtet und Schalter bzw. Steuerkasten aus dem Gasbereich herausgenommen werden.

Weitere bekannte Zündquellen sind das Rauchen sowie mechanische Arbeiten wie das Schleifen.

Für die **Entlüftungsöffnungen** konnten im wesentlichen die in den Unfallverhütungsvorschriften der BUL erwähnten Forderungen bestätigt werden (Broschüren 7 und 7a).

Abb. 10: Bei der Entlüftung mit Ventilator wird die Luft auf der einen Öffnungsseite angesaugt . . .

Abb. 11: ... und auf der anderen Öffnungsseite herausgeblasen

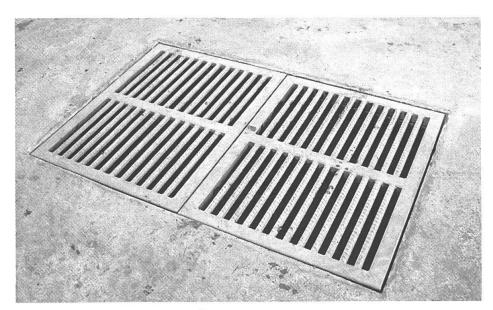


Abb. 12: Zwei Normroste für Öffnung mit 80 cm x 120 cm Fläche

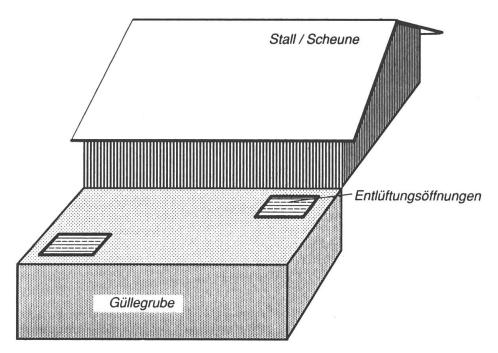


Abb. 13: Güllegrube gebäudeseitig: Obwohl die Grubendecke mehrere Funktionen übernimmt, ist der Einbau von zwei gegenüberliegenden Entlüftungsöffnungen möglich.

- Pro 50 m² Grubendecke ist eine Gesamtöffnungsfläche bzw. Rostfläche von 1 m² erforderlich.
- Entlüftungsöffnungen sollten mindestens 2 m von Türen, Fenstern und Ventilatoren entfernt sein.
- Entlüftungskamine müssen mindestens 2 m über dem Boden geführt werden.
- Als Einzelöffnung eignen sich die Lichtmasse 80 cm x 80 cm oder 80 cm x 120 cm (Abb. 12).
 - Mit diesen Öffnungen sind auch die Anforderungen für Einstieg und Montage gewährleistet.
- Runde, gelochte Gussdeckel sind weniger geeignet, da die Öffnungsfläche bei der Ver-

- wendung üblicher Gussdekkel zu klein ist. Kommen trotzdem solche Öffnungen zum Einsatz, sind mehr als zwei pro Grube vorzusehen.
- Als Abdeckungen der Entlüftungsöffnungen eignen sich korrosionsbeständige Roste und Lochdeckel. Mindestens 50 % der Rostflächen müssen Luftdurchlass gewähren.

Für die **Plazierung** der Entlüftungsöffnungen kommen die Möglichkeiten in Abb. 13, 14 und 15 in Frage.

Bei der Variante in Abb. 15 kann zusätzlich ein Ventilator eingebaut werden. Die dargestellte Plazierung – auf der einen Seite ein Abluftkamin, auf der anderen Seite eine normale Entlüftungsöffnung – garantiert eine grössere Gesamtöffnungsfläche als zwei Abluftkamine.

5. Literaturverzeichnis

- [1] Boxberger J., 1982: Unfälle durch Güllegase. Praktische Landtechnik 6, 181–184.
- [2] Fankhauser J. und Moser A., 1983: Studie über die Eignung von Biogas als Treibstoff für Landwirtschaftstraktoren. Schriftenreihe der FAT, Nr. 18.
- [3] Wellinger A. und Kaufmann R., 1982: Biogasproduktion aus Schweinegülle in nicht beheizten Anlagen. Blätter für Landtechnik 198: 1–12.
- [4] Wentworth R.L., 1981: Flammability of Mixtures of Air and Fuel Gas from Anaerobic Digestion. Paper presented at the scd. International Symposium on Anaerobic Digestion, 7. Sept. Travemünde.

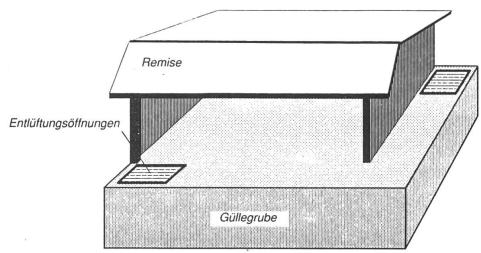


Abb. 14: Güllegrube unter der freistehenden Remise: Das Verlängern der Grube über das Gebäude hinaus ist längerfristig die einfachere Lösung als eine Zwangsentlüftung.

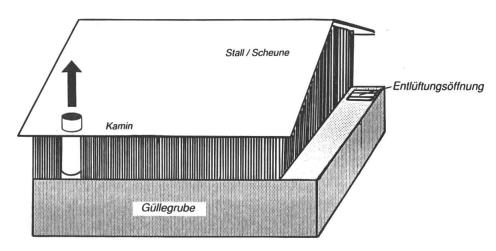


Abb. 15: Güllegrube vollständig unter dem Gebäude: In Ausnahmefällen ist je nach Gebäude- und Geländesituation eine sichere Lösung mit einem Entlüftungsventilator möglich.

- [5] Hammer K., Mittrach B., Koller G., 1982: Lebensgefährliche Gase aus dem Flüssigmist. DLZ 4, 509-513.
- [6] Scheller F., 1988: persönl. Gespräch mit der SUVA, Sektion Chemie, Luzern.
- [7] Diekmann L. und Mannebeck H., 1983: Tödliche Gase aus der Gülle und wie sie vermeiden können. Top Agrar 7, 64–67.
- [8] Zeemann G., Treffers M.E., Hahn H.D., 1983: Mesophilic digestion of dairy cow slurry. Poster

- paper at the seminar on anaerobic waste water treatment, Nordwijkerhout, NL.
- [9] Iannotti E.L., Fischer J.R., 1981: Effect of feed additives and antibiotics on swine digesters. Annual Report of the North Central Regional Project, University of Missouri.
- [10] Irps H., 1982: Schadgasmessungen im Güllebereich. DLZ 3, 326-327.
- [11] Norén O., Skarp S.-U., Aniansson G., 1967: Neure Erfahrun-

- gen nach JTIs Untersuchungen über das Mistgasproblem. Schwedisches Institut für Landtechnik, Zirkular 20.
- [12] Unfallverhütungsvorschriften für Güllebehälter der Beratungsstelle für Unfallverhütung in der Landwirtschaft (BUL).
- [13] Kupper K., 1983: Untersuchungen zur Qualität des Gummilappens als Geruchsverschluss von Treibmistkanälen in Milchviehställen. Semesterarbeit am Institut für Tierproduktion der ETH Zürich.