Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

**Band:** 46 (1984)

**Heft:** 13

**Artikel:** Die Berechnung des Wärmehaushaltes in Ställen

Autor: Stuber, A.

**DOI:** https://doi.org/10.5169/seals-1081857

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 23.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch



## FAT-MITTEILUNGEN

13/84

Landtechnisches Mitteilungsblatt für die Praxis herausgegeben von der Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik CH-8355 Tänikon

Verantwortliche Redaktion: Direktor Dr. W. Meier

15. Jahrgang, Oktober 1984

Nachdruck der unveränderten Beiträge unter Quellenangabe gestattet.

Entwurfsgrundlagen für landwirtschaftliche Betriebsgebäude

Ord. Nr. 1.0.40

## Die Berechnung des Wärmehaushaltes in Ställen

A. Stuber

In der Tierhaltung stellt das Stallklima einen bedeutenden Umweltfaktor dar. Es beeinflusst die Gesundheit und Leistungsfähigkeit der im Stall gehaltenen Tiere sowie der darin arbeitenden Menschen. Zudem bestimmt es den Zustand und die Lebensdauer der Stallgebäude mit. Dieser Beitrag weist auf die Schweizerische Stallklima-Norm hin, die alle Grundlagen, Daten und Berechnungsverfahren sowie Rechenbeispiele enthält.

Das in den Tabellen aufgeführte optimale Stallklima ist trotz der davon abweichenden Sommerund Winterverhältnisse und der Unbill der Witterung während des ganzen Jahres aufrecht zu halten. Bezüglich Lufttemperaturen ist ein Stall dann in Ordnung, wenn dem Wärmeverlust durch raumumschliessende Bauteile (QR) und dem Wärmebedarf für die erforderliche Lüftung (QL) eine gleichwertige Wärmeleistung der Tiere (QTi) gegenübersteht. Genügt letztere nicht, so muss künstlich geheizt werden (Heizleistung = QH), beispielsweise in Ferkelställen (Abb. 1). Schwieriger stellt sich das Problem, wenn die von den Tieren produzierte

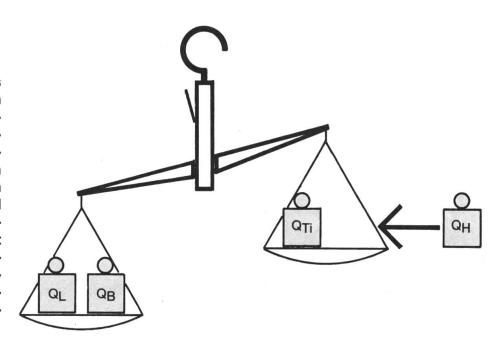



Abb. 1: Schematische Darstellung der Wärmebilanz.

Wärme nicht mehr abfliessen kann und nur durch künstliches Kühlen (Sommerluftrate) optimale Verhältnisse möglich sind. Nebst den Rechenwerten für den Wärmehaushalt sind für ein gutes Stallklima noch folgende Faktoren zu beachten:

- Lage des Gebäudes zur Himmelsrichtung und zu Nachbargebäuden (Wind- und Wetterexposition),
- Material und Gewicht der Gebäudehülle (Wärmespeicherfähigkeit),
- Schichtaufbau der Aussenkonstruktion (Dampfdiffusion),

 Entmistungssystem sowie Art und Weise der Stallreinigung (Schadgase, Staub, zusätzliche Feuchtigkeit).

## Wärmeverlust durch Bauteile

Vorerst gilt es, den Wärmeverlust durch die raumumschliessenden Bauteile (QB) zu bestimmen, indem man die Flächen der Wände, Decken, Türen und Fenster ermittelt und mit den entsprechenden Wärme-

#### Formel 1

$$Q_B = (F_1 \cdot k_1 + F_2 \cdot k_2 + \dots F_n \cdot k_n) \cdot \Delta t$$

QB = Wärmeverlust durch raumumschliessende Bauteile in W

F = Fläche der Bauteile in m²

k = Wärmedurchgangszahl in W/m²K

∆ t = Temperaturdifferenz t<sub>i</sub> - t<sub>a</sub> in Kelvin (K) wieviel Wärme in Watt bei einem Grad Temperaturunterschied (1 Kelvin) zwischen der inneren und äusseren Oberfläche durch einen Quadratmeter eines Bauteils abfliesst. Beachte: je kleiner der k-Wert, umso weniger Wärme fliesst ab und umso besser die Wärmedämmung.

durchgangszahlen k multipliziert und die erhaltenen Produkte addiert. Das Resultat entspricht dem Wärmeverlust bei einem Grad Temperaturdifferenz (oder einem Kelvin) zwischen Raumluft ( $t_i$ ) und Aussenluft ( $t_a$ ). Um den tatsächlichen Verhältnissen gerecht zu werden, ist die erwähnte Summe noch mit der effektiven Temperaturdifferenz zwischen  $t_i$  und  $t_a$  ( $\triangle$  t) zu multiplizieren (siehe Formel 1).

## Beispiel

Es sei der Wärmeverlust durch eine Längswand eines Milchviehstalles von 24 m Länge und 2,7 m Höhe, mit 10 Fenstern zu je  $0.8 \times 1.25$  m  $(1.0 \text{ m}^2)$  und einer Flügeltüre von  $0.95 \times 2.10$  m  $(2.0 \text{ m}^2)$  zu berechnen.

F der Wand =  $24.0 \cdot 2.7 = 64.8$  m<sup>2</sup>, abzüglich Fenster und Türen 64.8-12.0=52.8 m<sup>2</sup>

k-Wert der Wand 0,55 W/m<sup>2</sup>K k-Wert der Fenster (einfach verglast) 5,0 W/m<sup>2</sup>K

k-Wert der Türe (wärmegedämmt) 1.0 W/m<sup>2</sup>K

t<sub>i</sub> = 10° C

 $t_a = -10 \, C$ 

 $\triangle t = 21 K$ 

nach Formel 1

 $Q_B = (52.8 \cdot 0.55 + 10.0 \cdot 5.0 +$ 

 $2.0 \cdot 1.0) \cdot 21 = 1701 \text{ W}$ 

Der grösste Anteil des Wärmeverlustes dieser Wand dringt durch die nur einfach verglasten Fenster.

Als **Wärmedurchgangszahl k** bezeichnet man den Dämmwert einer Konstruktion. Er gibt an,

Tabelle 1: Empfohlene Wärmedurchgangszahlen für Wände und Decken

| Bauteile   |               | k-Wert<br>Talgebiet<br>W/m²K | k-Wert<br>Berggebiet<br>W/m²K |
|------------|---------------|------------------------------|-------------------------------|
| Wände      | Wohnhaus      | 0,6                          | 0,5                           |
|            | Rindviehstall | 0,6                          | 0,5                           |
|            | Kälberstall   | 0,5                          | 0,4                           |
|            | Schweinestall | 0,5                          | 0,4                           |
| Decken/    | Wohnhaus      | 0,5                          | 0,4                           |
| Dachdecken | Rindviehstall | 0,6                          | 0,5                           |
|            | Kälberstall   | 0,5                          | 0,4                           |
|            | Schweinestall | 0,5                          | 0,4                           |

Tabelle 2: Wärmedurchgangszahlen für Fenster und Türen

| Bauteile                        | k-Wert<br>W/m² K |  |
|---------------------------------|------------------|--|
| Aussentüren, nicht wärmegedämmt | 4,0              |  |
| Aussentüren, wärmegedämmt       | 1,0              |  |
| Fenster, einfach verglast       | 3,0              |  |
| Fenster, doppelt verglast       | 2,5              |  |

Bedingt durch die unterschiedlichen Höhenlagen vom Flachland bis zum Berggebiet sind die Verhältnisse in der Schweiz ausserordentlich verschieden. Die Aussenlufttemperaturen für den Winter und Sommer sind in Klimakarten im Massstab 1: 300'000 dargestellt. Bei einem Temperaturunterschied von 1 Kelvin von Klimazone zu Klimazone ergeben sich 21 Klimazonen mit den Kältekennwerten von -6° C bis -26° C. Wo aus Gründen mangelnder Übersicht diese starke Differenzierung nicht darzustellen war, wurden

jeweils Unterschiede von 3 Kelvin zu einer Klimazone zusammengefasst. In solchen Fällen genügt der Mittelwert als einzusetzender Rechenwert.

Aus der Klimakarte «Sommer» sind jene Werte zu entnehmen, aus denen die Luftmengen berechnet werden können, die erforderlich sind, um die Stallufttemperaturen nicht mehr als 2, 3 oder 4 Kelvin über die Aussenlufttemperatur ansteigen zu lassen. Für eine überschlagsmässige Rechnung genügen die Angaben über Sommerluftraten in den Tabellen 4 bis 6.

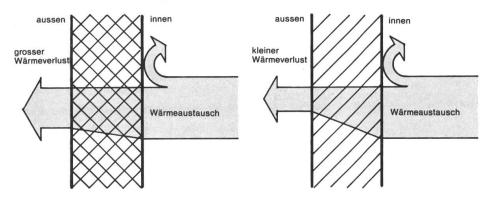



Abb. 2: Wärmeaustausch bei fehlender (links) und vorhandener Wärmedämmung (rechts).

Tabelle 3: Wasserdampfgehalt x und Wärmeinhalt i der Luft bei 100 % relativer Feuchtigkeit (nach Dr. Schreiber, Stuttgart-Hohenheim)

| ta                                   | ×a                                   | ia                                             | t <sub>a</sub>                               | xa                                           | i <sub>a</sub>                                 |
|--------------------------------------|--------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|
| °C                                   | g/m³                                 | Wh/m³                                          | oC '                                         | g/m³                                         | Wh/m³                                          |
| - 6                                  | 2,87                                 | - 0,03                                         | - 16                                         | 1,22                                         | - 4,95                                         |
| - 7                                  | 2,64                                 | - 0,56                                         | - 17                                         | 1,12                                         | - 5,42                                         |
| - 8                                  | 2,43                                 | - 1,08                                         | - 18                                         | 1,02                                         | - 5,88                                         |
| - 9                                  | 2,24                                 | - 1,58                                         | - 19                                         | 0,93                                         | - 6,37                                         |
| - 10                                 | 2,05                                 | - 2,08                                         | - 20                                         | 0,85                                         | - 6,81                                         |
| - 11<br>- 12<br>- 13<br>- 14<br>- 15 | 1,89<br>1,73<br>1,59<br>1,46<br>1,33 | - 2,58<br>- 3,06<br>- 3,54<br>- 4,03<br>- 4,49 | - 21<br>- 22<br>- 23<br>- 24<br>- 25<br>- 26 | 0,77<br>0,70<br>0,63<br>0,57<br>0,52<br>0,47 | - 7,24<br>- 7,68<br>- 8,12<br>- 8,56<br>- 9,01 |

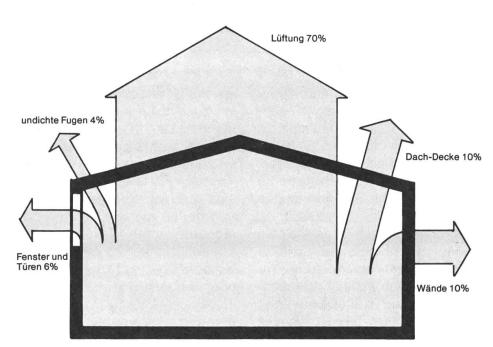



Abb. 3: Wärmeverlust aus einem Schweinemaststall für 200 Tiere bei einer Aussenlufttemperatur von ca. – 10° C.

## Lüftungsrate nach Wasserdampfmassstab

Neben dem Wärmeverlust durch Bauteile bildet der zur Abführung des anfallenden Wasserdampfes notwendige Wärmebedarf für die Lüftung meist die wichtigere Komponente (Abb. 3). Die erforderliche Zuluftmenge (Luftrate) errechnet sich nach der Formel 2.

#### Formel 2

$$V_X = \frac{x_{Ti}}{x_i - x_a}$$

 $V_X$  = Luftrate in m<sup>3</sup>/h

X<sub>Ti</sub> = Wasserdampfproduktion der Tiere in g/h

x<sub>i</sub> = Wasserdampfgehalt der Raumluft in g/m<sup>3</sup>

x<sub>a</sub> = Wasserdampfgehalt der Aussenluft in g/m<sup>3</sup>

#### **Beispiel**

Berechnung der erforderlichen Luftrate zur Abführung des Wasserdampfes von 38 Kühen zu je 600 kg LG und 12 Zuchtkälbern zu je 100 kg LG, bei einer Stalllufttemperatur von 10° C und einer Aussenlufttemperatur von -11° C.

 $X_{Ti} = 38 \cdot 323 + 12 \cdot 83 =$  12'274 + 996 = 13'270 g/h(Tabelle 4)  $x_i$  bei 10° C und 80% rF =  $7,17 \text{ g/m}^3$  (Tabelle 4)  $x_a$  bei -11° C und 100% rF =  $1,89 \text{ g/m}^3$  (Tabelle 3)
nach Formel 2:

$$V_X = \frac{13'270}{7,17 - 1,89} = 2'515 \,\text{m}^3/\text{h}$$

Tabelle 4: Rechenwerte für Wiederverkäufer und Pferde

|                                | 1.0                      | Rechenwerte          |         |                      | Anfall pro Tier         |                          |                          | mind.                   | Sommerluftrate $\triangle t = 3K  \triangle t = 4K$ |                          |                          |
|--------------------------------|--------------------------|----------------------|---------|----------------------|-------------------------|--------------------------|--------------------------|-------------------------|-----------------------------------------------------|--------------------------|--------------------------|
| Tierkategorie                  | LG<br>kg                 | t <sub>i</sub><br>°C | rF<br>% | Xi<br>g/m³           | i <sub>i</sub><br>Wh/m³ | QTi<br>W                 | XTi<br>g/h               | CO₂ Ti<br>Liter/h       | Luftrate<br>m³/h                                    | m³/h                     |                          |
| Aufzuchtkälber                 | 50<br>100<br>150         | 10                   | 80      | 7,17                 | 8,61                    | 143<br>238<br>314        | 50<br>83<br>109          | 24<br>39<br>51          | 7,5<br>12,2<br>16,0                                 | 60<br>95<br>130          | 50<br>70<br>100          |
|                                | 50<br>100                | 18                   | 70      | 10,26                | 13,37                   | 143<br>272               | 78<br>137                | 24<br>44                | 7,5<br>13,8                                         | 60<br>95                 | 50<br>70                 |
| Mastkälber                     | 50<br>100<br>150<br>200  | 15                   | 70      | 8,56                 | 11,17                   | 143<br>272<br>372<br>480 | 78<br>137<br>176<br>206  | 24<br>44<br>61<br>78    | 7,5<br>13,8<br>19,1<br>24,4                         | 60<br>95<br>130<br>165   | 50<br>70<br>100<br>125   |
| Jungvieh<br>Aufzucht           | 200<br>300<br>400<br>500 | 10                   | 80      | 7,17                 | 8,61                    | 431<br>543<br>636<br>709 | 153<br>193<br>226<br>252 | 70<br>87<br>104<br>116  | 21,9<br>27,2<br>32,5<br>36,3                        | 165<br>225<br>275<br>320 | 125<br>170<br>205<br>240 |
| Jungvieh<br>Mast               | 200<br>300<br>400<br>500 | 15                   | 80      | 9,79                 | 12,09                   | 480<br>640<br>752<br>830 | 206<br>274<br>323<br>356 | 78<br>105<br>124<br>136 | 24,4<br>32,8<br>38,8<br>42,5                        | 165<br>225<br>275<br>320 | 125<br>170<br>205<br>240 |
| Milchkühe<br>(10 kg Milch/Tag) | 500<br>600<br>700        | 10                   | 80      | 7,17                 | 8,61                    | 821<br>908<br>991        | 292<br>323<br>352        | 135<br>149<br>163       | 42,2<br>46,6<br>50,9                                | 320<br>350<br>380        | 240<br>260<br>280        |
| Zuchtstiere                    | 1000                     | 10                   | 80      | 7,17                 | 8,61                    | 991                      | 352                      | 163                     | 50,9                                                | 420                      | 320                      |
| Mastlämmer                     | 20<br>40                 | 16                   | 80      | 10,40                | 12,89                   | 77<br>113                | 37<br>46                 | 12<br>18                | 3,8<br>5,6                                          | 28<br>44                 | 21<br>33                 |
| Wastallille                    | 20<br>40                 | 12                   | 80      | 8,13                 | 9,96                    | 77<br>113                | 37<br>46                 | 12<br>18                | 3,8<br>5,6                                          | 28<br>44                 | 21<br>33                 |
| Zucht- und<br>Milchschafe      | 60                       | 12<br>10<br>8        | 80      | 8,13<br>7,17<br>6,31 | 9,96<br>8,61<br>7,28    | 120                      | 42                       | 20                      | 6,3                                                 | 52                       | 39                       |
| Pferde                         | 500                      | 15<br>10<br>8        | 70      | 8,56<br>6,27<br>5,52 | 11,17<br>7,95<br>6,70   | 590                      | 280                      | 98                      | 30,6                                                | 225                      | 170                      |
|                                | 600                      | 12<br>10<br>8        | 80      | 8,13<br>7,17<br>6,31 | 9,96<br>8,61<br>7,28    | 678                      | 236                      | 110                     | 34,4                                                | 225                      | 170                      |

# FAT-Mitteilungen

Tabelle 5: Rechenwerte für Schweine

| Tierkategorie          | LG<br>kg                    | t <sub>i</sub><br>°C | Reche<br>rF<br>% | enwerte<br>Xi<br>g/m³   | i <sub>i</sub><br>Wh/m³ | Q <sub>Ti</sub><br>W           | Anfall pro Tie<br>XTi<br>g/h | er<br>CO₂ Ti<br>Liter/h    | mind.<br>Luftrate<br>m³/h             |                             | merluftrate<br>K ∆t=3K<br>m³/h |
|------------------------|-----------------------------|----------------------|------------------|-------------------------|-------------------------|--------------------------------|------------------------------|----------------------------|---------------------------------------|-----------------------------|--------------------------------|
|                        | 2                           | 31<br>28             | 70               | 21,39<br>18,17          | 25,58<br>22,40          | 12                             | 2.2                          | 2                          | 0,62                                  |                             |                                |
| Ferkel                 | 5                           | 28<br>24<br>22       | 70               | 18,17<br>14,53<br>12,96 | 22,40<br>18,34<br>16,58 | 23                             | 4.1                          | 4                          | 1,25                                  |                             |                                |
|                        | 10                          | 22<br>18             | 80               | 14,82<br>11,72          | 18,00<br>14,49          | 40                             | 17                           | 6                          | 1,88                                  | 25                          | 17                             |
|                        | 20                          | 22<br>18             | 80               | 14,82<br>11,72          | 18,00<br>14,49          | 66                             | 28                           | 11                         | 3,44                                  | 35                          | 24                             |
| Zuchtsauen<br>und Eber | 150<br>200<br>250<br>300    | 10                   | 80               | 7,17                    | 8,61                    | 216<br>258<br>305<br>349       | 93<br>111<br>131<br>150      | 35<br>42<br>50<br>57       | 10,94<br>13,12<br>15,62<br>17,81      | 145<br>185<br>225<br>260    | 97<br>123<br>150<br>175        |
| säugende               | 150<br>200<br>250<br>300    | 18                   | 80               | 11,72                   | 14,49                   | 309<br>359<br>405<br>450       | 133<br>154<br>172<br>193     | 51<br>59<br>65<br>74       | 15,94<br>18,44<br>20,31<br>23,12      | 220<br>280<br>330<br>380    | 145<br>185<br>220<br>255       |
| Sauen<br>(ohne Ferkel) | 150<br>200<br>250<br>300    | 14                   | 80               | 9,21                    | 11,38                   | 309<br>359<br>405<br>450       | 133<br>154<br>172<br>193     | 51<br>59<br>65<br>74       | 15,94<br>18,44<br>20,31<br>23,12      | 220<br>280<br>330<br>380    | 145<br>185<br>220<br>250       |
|                        | 20<br>40<br>60<br>80<br>100 | 18                   | 80               | 11,72                   | 14,49                   | 66<br>112<br>151<br>186<br>222 | 28<br>48<br>65<br>81<br>95   | 11<br>18<br>25<br>31<br>36 | 3,44<br>5,62<br>7,81<br>9,69<br>11,25 | 36<br>55<br>75<br>91<br>106 | 24<br>36<br>50<br>61<br>71     |
| Mastschweine           | 20<br>40<br>60<br>80<br>100 | 16                   | 80               | 10,40                   | 12,89                   | 66<br>112<br>151<br>186<br>222 | 28<br>48<br>65<br>81<br>95   | 11<br>18<br>25<br>31<br>36 | 3,44<br>5,62<br>7,81<br>9,69<br>11,25 | 36<br>55<br>75<br>91<br>106 | 24<br>36<br>50<br>61<br>71     |

## Wärmeverlust durch Lüftung

Um den Wärmeverlust durch Lüftung ( $Q_L$ ) zu erhalten, ist die errechnete Luftrate ( $V_X$ ) mit der

Differenz der Wärmeinhalte zwischen Raum- und Aussenluft zu multiplizieren (Formel 3).

## Formel 3

$$Q_L = V_X \cdot (i_j - i_a)$$

Q<sub>L</sub> = Wärmeverlust durch Lüftung in W

 ii = Wärmeinhalt der Raumluft in Wh/m³

i<sub>a</sub> = Wärmeinhalt der Aussenluft in Wh/m³

Tabelle 6: Rechenwerte für Nutzgeflügel

|                            |          |                      | Rech    | enwerte                 |                         | Anfall pro Tier |            |                   | mind.            | Sommerluftrate   |     |
|----------------------------|----------|----------------------|---------|-------------------------|-------------------------|-----------------|------------|-------------------|------------------|------------------|-----|
| Tierkategorie              | LG<br>kg | t <sub>i</sub><br>°C | rF<br>% | x <sub>i</sub><br>g/m³  | i <sub>i</sub><br>Wh/m³ | QTi<br>W        | XTi<br>g/h | CO₂ Ti<br>Liter/h | Luftrate<br>m³/h | △ t = 11<br>m³/h |     |
|                            | 0,05     | 34<br>30             | 60      | 21,50<br>17,37          | 26,54<br>22,31          | 0,7             | 0,3        | 0,11              | 0,034            | 0,8              | 0,4 |
| Kücken                     | 0,3      | 26<br>22             | 60      | 13,94<br>11,11          | 18,59<br>15,18          | 2,8             | 1,4        | 0,46              | 0,144            | 3,4              | 1,7 |
|                            | 0,5      | 21<br>18             | 70      | 12,24<br>10,26          | 15,81<br>13,37          | 4,1             | 2,0        | 0,66              | 0,206            | 5,0              | 2,5 |
| Junghennen<br>Mastgeflügel | 1,0      | 20<br>18             | 70      | 11,54<br>10,26          | 14,94<br>13,37          | 6,7             | 3,3        | 1,10              | 0,344            | 8,0              | 4,0 |
|                            | 1,5      | 18<br>17             | 70      | 10,26<br>9,66           | 13,37<br>12,59          | 9,2             | 4,5        | 1,50              | 0,469            | 10,0             | 5,0 |
| Legehennen                 | 1,5      | 22<br>20<br>18       | 80      | 14,82<br>13,19<br>11,72 | 18,00<br>16,02<br>14,49 | 9,2             | 4,5        | 1,50              | 0,469            | 10,0             | 5,0 |
|                            | 2,0      | 20<br>18<br>15       | 80      | 13,19<br>11,72<br>9,79  | 16,02<br>14,49<br>12,09 | 11,4            | 5,6        | 1,86              | 0,581            | 12,0             | 6,0 |
| Elterations                | 2,5      | 18<br>15             | 80      | 11,72<br>9,79           | 14,49<br>12,09          | 13,6            | 6,7        | 2,20              | 0,688            | 13,0             | 6,5 |
| Elterntiere                | 4,0      | 18<br>15             | 80      | 11,72<br>9,79           | 14,49<br>12,09          | 20,6            | 10,1       | 3,40              | 1,062            | 15,0             | 7,5 |

#### **Beispiel**

Bestimmung des Wärmeverlustes (Q<sub>I</sub>) der im vorangehenden Beispiel errechneten Luftrate (V<sub>X</sub>) von 2515 m<sup>3</sup>/h i; bei 10° C und 80% rF = 8,61 Wh/m3 (Tabelle 4) ia bei -11° C und 100% rF = -2,58 Wh/m3 (Tabelle 3) nach Formel 3:  $2515 \cdot (8,61 - (-2,58) =$ 2515 · 11,19 = 28'145 W Die Wärmeleistung der Tiere beträgt gemäss Tabelle 4 total 37'360 W (38 Kühe zu je 908 W = 34'404 W und 12 Kälber zu je 238 W = 2856 W). Mit 28'145 W für die Wasserdampfabführung (Q<sub>I</sub>) werden 75% der gesamten Wärmeproduktion der Tiere benötigt. Der Wärmeverlust durch Bauteile (QB) darf deshalb höchstens 25% betragen, sofern man ohne Heizung auskommen will.

## Lüftungsrate nach Kohlendioxydmassstab

Das durch die Atmung der Tiere anfallende Kohlendioxyd CO2 soll keine Konzentrationen erreichen, welche die Gesundheit Leistungsfähigkeit und Mensch und Tier beeinträch-Als maximale Konzentration in Ställen wurden 3,5 Liter pro m3 Stalluft (0,35 Vol.% oder 3500 ppm) festgelegt. Nachdem in der Frischluft bereits 0,03 Vol.% CO2 enthalten sind, errechnet sich die betreffende Luftrate nach Formel 4.

#### Formel 4

$$V_{CO_2} = \frac{CO_2 T_i}{3.5 - 0.3} = \frac{CO_2 T_i}{3.2}$$

V<sub>CO2</sub> = Luftrate nach Kohlendioxydmassstab

in m<sup>3</sup>/h

CO₂Ti = Kohlendioxyd-Produktion der Tiere in Liter/h

#### **Beispiel**

Berechnung der Luftrate nach Kohlendioxydmassstab für 38 Kühe zu je 600 kg LG und für 12 Kälber zu je 100 kg LG.  $CO_2T_1=38 \cdot 149+12 \cdot 39=5662+468=6130$  Liter/h (Tabelle 4) nach Formel 4:

$$V_{CO_2} = \frac{6'130}{3,2} = 1915 \text{ m}^3/\text{h}$$

#### **Die Mindestluftrate**

Die Mindestluftrate V<sub>mind.</sub> ist gleich der grösseren der beiden Luftraten. Im vorangehenden Beispiel gilt deshalb die Luftrate nach dem Wasserdampfmassstab V<sub>x</sub> mit 2515 m³/h.

Damit der anfallende Wasserdampf vollends auf dem Luftweg abgeführt wird, sind erhebliche Wärmemengen nötig. Letztere stehen jedoch nicht unbeschränkt zur Verfügung. Mit der vorliegenden Berechnung, die unseres Erachtens bei jedem Bauvorhaben erfolgen soll, lässt sich die vorhandene Energie haushälterisch einsetzen.

#### Literatur

Schweiz. Stallklima-Kommission: Schweizerische Stallklima-Norm 1983.
Institut für Tierproduktion ETH-Z
Gruppe Physiologie und Hygiene, 8092 Zürich.

Dr. B. Primault: Klimakarten im Massstab 1:300'000. Anhang zur Schweiz. Stallklima-Norm. Eidg. Forschungsanstalt für Betriebswirtschaft und Land-

technik, 8355 Tänikon.

Schweiz. Ingenieur- und Architekten-Verein: SIA-Norm Nr. 180. Empfehlung für den Wärmeschutz im Hochbau. SIA-Norm Nr. 381/1. Baustoff-Kennwerte.

Allfällige Anfragen über das behandelte Thema, sowie auch über andere landtechnische Probleme, sind an die unten aufgeführten kantonalen Maschinenberater zu richten. Weitere Publikationen und Prüfberichte können direkt bei der FAT (8355 Tänikon) angefordert werden (Tel. 052 - 47 20 25 Bibliothek).

| Tel. 052 - 25 31 21<br>Tel. 033 - 54 11 67<br>Tel. 032 - 83 32 32<br>Tel. 063 - 22 30 33<br>Tel. 035 - 2 42 66<br>Tel. 031 - 57 31 41<br>Tel. 033 - 57 11 16 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tel. 041 - 76 15 91<br>Tel. 045 - 81 33 18<br>Tel. 045 - 54 14 03<br>Tel. 041 - 88 20 22                                                                     |
| Tel. 044 - 21536                                                                                                                                             |
| Tel. 055 - 48 33 45                                                                                                                                          |
| Tel. 041 - 68 16 16                                                                                                                                          |
| Tel. 041 - 63 11 22                                                                                                                                          |
| Tel. 042 - 36 46 46                                                                                                                                          |
| Tel. 037 - 82 11 61                                                                                                                                          |
| Tel. 065 - 22 93 42                                                                                                                                          |
| Tel. 061 - 83 28 88                                                                                                                                          |
| Tel. 061 - 99 05 10                                                                                                                                          |
| Tel. 053 - 233 21                                                                                                                                            |
| Tel. 071 - 89 14 52                                                                                                                                          |
| Tel. 071 - 33 26 33                                                                                                                                          |
| Tel. 085 - 7 58 88                                                                                                                                           |
| Tel. 071 - 83 16 70                                                                                                                                          |
| Tel. 071 - 83 16 70                                                                                                                                          |
| Tel. 081 - 81 17 39                                                                                                                                          |
| Tel. 064 - 31 52 52                                                                                                                                          |
| Tel. 072 - 64 22 44<br>Tel. 092 - 24 35 53                                                                                                                   |
|                                                                                                                                                              |
| Tel. 052 - 33 19 21                                                                                                                                          |
|                                                                                                                                                              |

FAT-Mitteilungen können als Separatdrucke in deutscher Sprache unter dem Titel «Blätter für Landtechnik» und in französischer Sprache unter dem Titel «Documentation de technique agricole» im Abonnement bei der FAT bestellt werden. Jahresabonnement Fr. 30.— Einzahlungen an die Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik, 8355 Tänikon, Postcheck 30 - 520. In beschränkter Anzahl können auch Vervielfältigungen in italienischer Sprache abgegeben werden.